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1 Introduction and summary of the main results

1.1 Generalities

’t Hooft-Wilson defects are the simplest class of non-local operators in gauge theories

and have been studied from various perspectives, starting with the pioneering work of ’t

Hooft [65, 68, 69]. In this paper we study ’t Hooft defects in four-dimensional N = 2∗

SU(N) gauge theory on R3 × S1, where the defect is inserted at the origin of R3. In a

4d, N = 2 Lagrangian theory on R3 × S1, the vev of an ’t Hooft defect, characterized

by an element of the cocharacter lattice B and denoted as TB, can be understood as a

supersymmetric index:

〈TB〉 = TrH(B)
(−1)F e−2πR·H e2πiλ·(J3+JR) e2πiµf ·Ff e2πiθ ·Q, (1.1)

where H(B) denotes the Hilbert space of the theory with the line defect, F is the fermion

number, R is the radius of the circle, and H is the Hamiltonian. Here J3 generates ro-

tation in the 1 − 2 plane of R3, JR is the Cartan generator for the R-symmetry group

SU(2)R, {Ff} generate the flavor symmetries in theories with matter. Additionally, λ is

the chemical potential for (J3+JR), {µf} are chemical potentials for {Ff}, and θ = (θe, θm)

are background electric and magnetic Wilson lines (which are chemical potentials for the

electric and magnetic charges at spatial infinity Q = (Qe, Qm)).

The above index should be interpreted as a path integral with the appropriate bound-

ary conditions at the origin of R3 and at spatial infinity. The boundary conditions at the

origin are

Aµ dxµ ∼ −g2ϑ
B

16π2

1

r
dτ +

B

2
cos θ dφ,

Y ∼ −g2ϑ
B

16π2

1

r
, X ∼ B

2r
,

(1.2)

where r = |~x|, and g2, ϑ are the 4d gauge coupling and theta-angle respectively, and we

view the cocharacter B as an element of a Cartan subalgebra of the Lie algebra of SU(N).

X and Y are real scalars of the N = 2 vector multiplet. For vanishing theta-angle, the

above equations reduce to the simplified form:

F ∼ −B
2

sin θ dθ ∧ dφ = −B
2
εijk

xi

r3
dxj ∧ dxk , X ∼ B

2r
, (1.3)

and Y is regular at r = 0. At spatial infinity, the field configurations approach a vacuum

associated with a generic point on the Seiberg-Witten moduli spaceM [54], which is a fibra-

tion over the Coulomb branch of the 4d theory by a torus of electric and magnetic Wilson

– 1 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
4

lines. The magnetic Wilson line θm is introduced in the path integral by first working with

a fixed magnetic charge γm at infinity, and then defining θm as the Fourier dual of γm. In

other words, we first introduce a path integral 〈TB〉 (γm) with boundary conditions (1.2)

at the origin of R3 and the following boundary conditions at spatial infinity:1

F → γm
2

sin θdθ ∧ dφ , X → X(∞) − γm
2r

+O(r−1−δ) ,∮
S1
τ |r→∞

Aτdτ = θe , Y → Y (∞) +O(r−δ), δ > 0 ,
(1.4)

and then define the Fourier dual of the path integral:

〈TB〉 (θm) =
∑
γm

〈TB〉 (γm)e−2πiγmθm . (1.5)

The Seiberg-Witten moduli space M is a hyperkähler manifold with a CP1 worth of

complex structures parametrized by ζ ∈ C×.2 The ’t Hooft operator vev 〈TB〉 (θm) is a

holomorphic function on M with respect to a chosen complex structure ζ associated with

the ’t Hooft defect. In this paper, we will set ζ = 1, and indeed we have done so in

writing (1.2).

Recently, extremely powerful techniques for computing vevs of ’t Hooft-Wilson defects

were devised for theories in class S using the AGT correspondence [23]. In this approach,

vevs of 4d line operators are related to correlation functions of appropriate loop operators

in Liouville/Toda CFT which live on the Riemann surface associated with the class S
construction of the 4d theory. The latter can then be computed using the standard Verlinde

operator approach [61, 62], as discussed in [22, 25], leading to explicit expressions for the

4d line operator vevs.

In a parallel set of developments, vevs of Wilson defects were computed for 4d,N = 2

theories on compact space-time manifolds like ellipsoids and four-spheres [15, 17] using

localization techniques. Localization of ’t Hooft defects in 4d,N = 2∗ SU(N) theory

on a round four-sphere was addressed by Gomis, Okuda, and Pestun (GOP) in [14]. It is

important to note that GOP did not compute the vev 〈TB〉 directly. Instead they computed

the vev of a product of ’t Hooft operators in a minimal representation (the fundamental

representation for the case of N = 2∗ SU(N)) in the coincident limit of collinear insertion

points. Rather than computing the SU(2) defect TB with B = diag(p2 ,−
p
2), GOP computes

the following correlation function:〈
T̃B

〉
= lim
{zi}→0

〈
p∏
i=1

TBmin(zi)

〉
, (1.6)

where Bmin = diag(1
2 ,−

1
2). This ’t Hooft defect is S-dual to a Wilson defect in the rep-

resentation R =
(
Rfund

)p
, where {Rfund} is the fundamental representation of SU(2), as

opposed to the irreducible j = p
2 representation. Using the operator product algebra for

line defects, one can of course extract 〈TB〉 from a knowledge of 〈T̃B′〉 for various B′.

1Note that the superscript (∞) implies the vev of the respective field at the spatial infinity r →∞.
2ζ should not be confused with FI parameters of quiver gauge theories that appear later.
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In [16], Ito, Okuda, and Taki (IOT) extended the computation of GOP [14] for an ’t

Hooft operator on R3 × S1
R inserted at the origin of R3 and wrapping S1

R, where R3 × S1
R

has the coordinates {xµ} = (~x, τ) and a metric ds2 = d~x2 + dτ2, where τ is a periodic

coordinate: τ ∼ τ + 2πR.3 They primarily considered N = 2∗ SYM, and N = 2 SYM

with fundamental hypers, with a single SU(N) gauge group, although their formula can be

generalized to include other gauge groups and matter representations.

These ’t Hooft operators
〈
T̃B

〉
are holomorphic functions on the Seiberg-Witten mod-

uli space M. Therefore, it is convenient to write the localization answer in terms of a

particular set of holomorphic coordinates — the complexified Fenchel-Nielsen coordinates

(a, b) [12, 21] — which have the following expressions in terms physical parameters defined

in the weak coupling expansion:

a =
(
θe + iRY (∞)

)
+ . . . , b =

(
θm
2π
− 4πiR

g2
X(∞) +

iϑR

2π
Y (∞)

)
+ . . . , (1.7)

where we have written the classical contribution explicitly in the weak-coupling expansion

of (a, b), while the ellipsis indicate non-perturbative corrections. A systematic discussion

of these non-perturbative contributions will be discussed in a future paper.

Given the boundary conditions in (1.2) and (1.4), the localization formula for the ’t

Hooft operator vev can be written as a Fourier series w.r.t. a complexified Fenchel-Nielsen

coordinate b:〈
T̃B

〉
(θm) =

∑
{v∈Λcr+B| (v,v)≤(B,B)}

e2πi(b,v)Z1-loop(a, µf , λ; v)Zmono(a, µf , λ;B,v) , (1.8)

where λ, µf are chemical potentials defined in (1.1), v is a cocharacter such that v−B is

an element of the coroot lattice Λcr, and (· , ·) denotes a Killing form on the Lie algebra of

SU(N). The factorization of the Fourier coefficient into Z1−loopZmono is discussed in the

next paragraph.

The sum over v in (1.8) can be physically interpreted as a sum over the monopole

bubbling sectors where v is the effective ’t Hooft charge after bubbling in a given sector.

As shown in GOP and IOT [14, 16], this sum arises from a sum over the isolated fixed

points of the Q-fixed locus of the 4d path integral with ’t Hooft defect. These can be

described as the fixed points of a certain group action on the moduli space of U(1)K-

invariant4 instantons on C2 where the U(1)K-action on the instanton bundle is specified by

the defect data (B,v). We will denote this moduli space as M(B,v). The fixed points of

M(B,v) with respect to the U(1)K action are then labelled by tuples of Young diagrams

consistent with the U(1)K invariance (see appendix G for a quick review of the results of

IOT). Similarly, the one-loop determinant from fluctuations of fields around these fixed

points are obtained by restricting to the U(1)K-invariant weights of the group action at

each fixed point. The universal part of this determinant is called Z1-loop while the remaining

part (dependent on the fixed points) is identified as Zmono.

3Similar computations were done for line operators on other four-manifolds in [70, 71].
4U(1)K acts on C2 as (z1, z2) → (e2πiνz1, e

−2πiνz2) and this induces an action on the moduli space of

instantons on C2. See section 2.2 for a review of the ADHM construction of the moduli space M(B,v).

– 3 –
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In reference [16] IOT have given a formula for Zmono of the form

ZIOT
mono(a, µf , λ;B,v) = ZS

1×R4

inst |U(1)K inv.
k=k(B,v) =

∫
M(B,v)

C(TM)C(E) , (1.9)

where M(B,v) is the moduli space of U(1)K-invariant instantons on C2, k = k(B,v)

is the instanton number, and the integrand of the equivariant integral for ZIOT
mono is the

appropriate characteristic class for the 5d instanton partition function on S1×R4 for a given

theory.5 This formula is not precise, in part because the integral is over a singular space.

In the case of SU(N) N = 2∗, a natural regularization of the integral (explained below)

yields answers for the ’t Hooft line defect vev’s in agreement with those given by the AGT

prescription. However, as noted in [16] for other groups and hypermultiplet representations

the prescription for defining the integrals in (1.9) in general does not agree with the relevant

AGT computations. We will comment on this issue in more detail after (1.12) in section 1.2.

Before summarizing the results of this paper, we would like to mention briefly a couple

of important issues that we do not pursue in this paper but hope to address in a future work:

• The path integral expression for the vev 〈TB〉(γm) can be reduced to an integral over

the moduli space of singular monopoles on R3 with an ’t Hooft defect of charge B

at the origin and asymptotic charge γm at spatial infinity. We will denote this space

M(B, γm, X
∞). The expansion (1.8) of the path integral is closely related to the

recent analysis of singular monopole moduli spaces by Nakajima and Takayama [3]

in the context of bow construction [1, 18, 19, 24] for moduli spaces of instantons on a

Taub-NUT space. In particular, the authors of [3] show that the spaceM(B, γm, X
∞)

admits a stratification

M(B, γm, X
∞) =

∐
0≤v≤B
v∈Λcr+B

M(s)
(v, γm, X

∞) , (1.10)

whereM(s)
(v, γm, X

∞) is the smooth component (i.e. the complement of the singular

locus) ofM(v, γm, X
∞), and thatM(B,v) is the transversal slice toM(s)

(v, γm, X
∞)

in M(B, γm, X
∞).

• ’t Hooft defects in 4d N = 2 theories are closely related to Coulomb branch physics

of 3d,N = 4 theories. Given the formula for 〈TB〉R3×S1
R

, one can compute expecta-

tion values of monopole operators in the 3d,N = 4 theory on R3 by taking the S1

radius R→ 0 carefully. In particular, this allows one to compute precise equivariant

expressions for coefficients of the “Abelianization Maps” introduced by Bullimore,

Dimofte and Gaiotto [6].

1.2 Summary

In this work, we revisit the localization computation of the vev of ’t Hooft defects of

the form (1.6) in a 4d N = 2∗ theory on R3 × S1. In particular, we show that the

non-perturbative part of the path integral is an equivariant integral over a Kronheimer-

Nakajima moduli space of instantons on an orbifold of C2, and is given by the Witten index

of a N = (4, 4) SQM living on S1. The main results of our paper are summarized as follows.

5We discuss these characteristic classes in detail in appendix D.
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U(1)K-invariant moduli space of instantons as a KN moduli space. From the

ADHM construction of U(1)K-invariant SU(N) instantons on C2, we show that the moduli

spaceM(B,v) is isomorphic to a Kronheimer-Nakajima (KN) space,6 which describes the

moduli space of U(N) instantons on an orbifold of C2. The space M(B,v) can therefore

be described as a linear quiver variety Γ~k,~w, where the quiver data (~k, ~w) can be derived

from the defect data (B,v).

M(B,v, SU(N)) ∼=MC2/Zn
inst. (~k, ~w, U(N)) (1.11)

where n is sufficiently large. This is a crucial observation which allows one to realize the

moduli space of U(1)K-invariant instantons in terms of a very well-known moduli space.

We discuss the derivation in section 2.2.

Monopole bubbling Index as Witten index of an SQM. Given the identification

ofM(B,v) with a KN moduli space, the result (1.9) implies that Zmono for ’t Hooft defects

in an N = 2∗ SU(N) theory is equal to a 5d N = 1∗ SU(N) instanton partition function

of instanton number k, on S1 × C2/Zn for a sufficiently large n. The instanton number k

is determined by the defect data (B,v).

The linear quiver Γ~k,~w therefore encodes the data of a (4,4) supersymmetric quiver

quantum mechanics, such that the moduli space M(B,v) is realized as the Higgs branch

of this quantum mechanics. In other words, Γ~k,~w arises as the ADHM quiver for the KN

instantons in (1.11). The moduli space is singular, and can be resolved by introducing

real stability parameters in the ADHM construction. This corresponds to turning on FI

parameters for U(1) factors in the linear quiver Γ~k,~w.

The 5d instanton partition function is given by the Witten index of the SQM computed

in the Higgs scaling limit, where we take the SQM gauge coupling e2 → 0 and the FI

parameter ζ →∞ such that ζ ′ = e2ζ is held fixed.7 Therefore, one can write a formula for

ZR3×S1

mono in terms of the SQM Witten index:8

Zmono

(
B,v;G = SU(N)

)
= Z

S1×C2/Zn
inst

(
~k, ~w;G′ = U(N)|

N∑
i=1

ai = 0

)

= ZSQM

(
Γ~k,~w|

N∑
i=1

ai = 0

) (1.12)

Generically, the Witten index and the 5d partition function will depend on the sign of

ζ ′. However, the N = 1∗ SU(N) instanton partition function and the associated Witten

index are invariant under the transformation ζ ′ → −ζ ′. Therefore, the above equation is

well-defined.

6This was also noted in [3].
7For multiple unitary gauge groups, one sets ei = e and ζi = ζ for all i, and then takes the Higgs scaling

limit.
8We drop the dependence on some of the equivariant parameters in this equation for brevity.
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In the general case, where the partition function is dependent on the sign of ζ ′, setting

Zmono naively equal to the partition function in the ζ ′ > 0 or ζ ′ < 0 chamber gives a

wrong result. For example, in the SU(2) theory with Nf = 4 flavors, the naive answer for

Zmono computed in any chamber differs from the AGT expression by certain extra terms.

These extra terms are closely related to the non-trivial wall-crossing of the Witten index

as ζ ′ → −ζ ′. A further investigation into this discrepency is in progress.

Defect SQMs for N = 2∗ SU(2). As an illustrative example, we work out the linear

quivers associated with ’t Hooft defects in N = 2∗ SU(2) explicitly. Consider a defect

labelled by B = diag(p2 ,−
p
2), and a monopole bubbling sector labelled by v = diag(v2 ,−

v
2 ),

with integer (p, v) and v = −p,−p + 2, . . . , p. The quiver SQMs associated with ZR3×S1

mono

for the cases v = 0 and v 6= 0 are given as:

1 2 3 p
2
− 1

p
2

p
2
− 1 3 2 1

2

1 2 3 p−v
2
− 1

p−v
2

p−v
2

p−v
2
− 1 3 2 1

1 1

respectively. The quiver SQMs for ’t Hooft defects in N = 2∗ SU(2) are discussed in

section 2.4. Using the Witten index formula (1.12), we compute ZR3×S1

mono for a few examples

with small p and v (in section 2.4 and appendix C) and check that they agree with the

IOT expressions.

Hanany-Witten construction and SU(N) quiver. We present a Type IIB Hanany-

Witten type construction of singular monopoles which can be used to describe monopole

bubbling in a 4d N = 2 U(N) SYM (or N = 2∗ U(N) SYM). This construction is

described by the worldvolume theory of a stack of D3-branes with decorating D1- and

NS5-branes. We show that using this construction, we can derive the Higgs branch quiver

(a quiver gauge theory whose Higgs branch is isomorphic to the moduli space in question)

for M(B,v) from the world volume theory on the D1-branes. For generic N > 2, we

write down a general form of the Higgs branch quiver, built out of a linear array of N − 1

superconformal sub-quivers Si (i = 1, . . . , N − 1). These superconformal subquivers are

connected by exactly N − 2 unbalanced9 gauge nodes, such that two adjacent sub-quivers

9A balanced U(ki) gauge node in a linear quiver gauge theory is one for which the one-loop β function

vanishes. This happens when 2ki = ki+1 + ki−1 + wi in the notation of figure 2 below.

– 6 –
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are separated by a single unbalanced gauge node:

S1 kn1 S2 kn1+n2 S3 kntot SN−1

wn1 wn1+n2
wntot

where the circular nodes denote the unbalanced gauge nodes. Details of this quiver are

discussed in section 3.3.

The plan of the paper is as follows. Section 2, the core of the paper, discusses the con-

tribution of monoopole bubbling to the expectation value of ‘t Hooft line defects. There

we show how this contribution can be given by an equivariant integral over a certain

Kronheimer-Nakajima quiver variety describing the moduli space of U(1)K-invariant in-

stantons on C2
(
M(B,v)

)
which can equivalently be written as a Witten index for the

associated quiver SQM. Then in section 3, we introduce a D-brane description of singular

monopoles and monopole bubbling. Using this description, we give a derivation and phys-

ical explanation of the quiver SQM associated to M(B,v). In the appendices we provide

additional background material on computing the Witten index of ADHM SQM’s and previ-

ous work on computing the Zmono contributions to ‘t Hooft defects. We also explicitly com-

pute several examples and discuss equivariant integrals associated to these Witten indices.

2 Defect SQM for ’t Hooft operators in SU(N) N = 2∗ theories

In [14, 16], the authors showed that the monopole bubbling contribution Zmono to the ’t

Hooft operator vev is given by an equivariant integral of certain trigonometric characteristic

classes over M(B,v): the moduli space of U(1)K-invariant instantons on C2. In addition,

these characteristic classes were shown to be precisely those which that appear in the equiv-

ariant integral formula for a 5d instanton partition function on S1×C2.10 In other words,

Zmono is given by the U(1)K-invariant part of a 5d instanton partition function on S1×C2.

In this section, we derive that for a given SU(N) defect labelled by a cocharacter B,

the space M(B,v) can be thought of as a Kronheimer-Nakajima (KN) space describing

U(N) instantons on an orbifold C2/Zn for a sufficiently large positive integer n. We will

show that the fact that M(B,v) can be described as a KN space implies that Zmono is

an equivariant integral of a characteristic class over the KN space, and therefore can be

identified with a 5d instanton partition function on S1×C2/Zn specified by the defect data.

In order to write Zmono as an equivariant integral, we must address the singularities of

M(B,v). The resolution of singularities in KN moduli spaces is a well-studied problem and

one can unambiguously define equivariant integrals on such spaces. This consists of taking

the closure (adding point instantons) and then resolving the singularities by introducing

stability parameters (FI parameters). For an N = 2∗ theory, this leads to a well-defined

10By 5d instanton partition function, we will mean the non-perturbative part of the 5d index only and

therefore not including the one-loop part.

– 7 –
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equivariant integral formula for Zmono, which we discuss in appendix D. However, in ad-

dition to resolving M(B,v), in a generic Lagrangian N = 2 theory one must address the

chamber-dependence of Zmono with respect to the stability/FI parameters. However, for

the case of the N = 2∗ theory, this dependence is trivial as we discuss in section 2.3.

From a string theory perspective, instantons on C2/Zn can be realized in Type IIA,

by considering the world volume theory of D4-branes wrapped on C2/Zn with k dissolved,

fractional D0-branes [52]. The moduli space of these configurations can also be realized as

the Higgs branch of the world volume theory on the D0 branes (which we will refer to as

the KN quiver). From this construction, it is clear that the 5d instanton partition function

is given by the Witten index11 of the D0-brane world volume theory [40, 48]. Therefore, by

exploiting the relation between a 5d instanton partition function and the Witten index of an

SQM, one can write Zmono as the Witten index of the SQM corresponding to the fractional

instanton. This allows us to write Zmono as an equivariant integral over a characteristic class

which can be reduced to a contour integral whose solution is a sum over poles enumerated

by Young diagrams.

In summary, for a 4d N = 2∗ theory with gauge group SU(N) and an associated 5d

N = 1∗ theory with gauge group U(N), Zmono satisfies

Zmono

(
B,v; SU(N)

)
= Z

S1×C2/Zn
inst

(
~k, ~w; U(N)|ε− = 0,

N∑
i=1

ai = 0

)
(2.1)

= ZSQM

(
Γ~k,~w|ε− = 0,

N∑
i=1

ai = 0

)

where the equivariant parameters in ZR3×S1

mono (a,m, λ) and Z
S1×C2/Zn
inst (a,m, ε+) are related

in a simple fashion:

a = 2iπa , m = 2iπm , ε+ = iπλ . (2.2)

Here the SU(N) defect data B and bubbling data v is mapped to U(N) instanton

data on C2/Zn specified by vectors (~k, ~w). Also, the lower bound of n is determined by

the defect data. We discuss the defect data/instanton data map as well as the bound on n

in detail in section 2.2.

2.1 Brief review of the KN quiver variety

We begin with a brief review of instanton moduli spaces on C2/Zn and KN quiver variety

relevant for the subsequent discussion. We will restrict our discussion to U(N) instantons

on C2/Zn. Consider the standard ADHM complex

0 −→ V
σ(z)−→ C2 ⊗ V ⊕W τ(z)−→ V −→ 0 , (2.3)

where V = Ck and W = CN . Recall that V is the space of Dirac zero modes on R4 in an

instanton background, while W is the fiber of the associated bundle in the fundamental

representation at a base-point at infinity.

11For review, see appendix A and B.
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The maps σ(z) and τ(z), explicitly given as

σ(z) =

B1 − z1

B2 − z2

J

 , τ(z) =
(
z2 −B2 B1 − z1 I

)
, (2.4)

obey the condition τ(z)σ(z) = 0, so that the sequence (2.3) is a complex. The ADHM data

consists of the following matrices:

B1 ∈ Hom(V, V ) , I ∈ Hom(W,V ),

B2 ∈ Hom(V, V ) , J ∈ Hom(V,W ) .
(2.5)

The moduli space of instantons on C2/Zn is a hyperkähler quotient of the ADHM data

invariant under the Zn orbifold action, induced from the action on C2 given by (z1, z2) 7→
(ωz1, ω

−1z2), where ω = e2πi/n. The invariance condition on the ADHM variables under

Zn action is given by the following equations:

Ba = R b
a (g)γV (g)Bbγ

−1
V (g) , (a, b = 1, 2) ,

I = γV (g)Iγ−1
W (g) ,

J = γW (g)Jγ−1
V (g) ,

(2.6)

where g is a generator of Zn, the matrix R b
a implements an SU(2) rotation on C2 while

γV (g), γW (g) implement the Zn orbifold action on the vector spaces V (dimV = k) and W

(dimW = N) respectively. In terms of the one-dimensional irreps of Zn, defined as

Rj : ω = e2πi/n 7→ ωj = e2πij/n , j ∼ j mod n , (2.7)

the spaces V and W admit the following isotypical decomposition:

V = ⊕n−1
j=0Vj ⊗Rj , W = ⊕n−1

j=0Wj ⊗Rj , (2.8)

Let the integers kj = dimVj and wj = dimWj count dimensions of the degeneracy

spaces, i.e. the number of times the j-th one-dimensional irrep appears in the isotypical

decomposition, such that
∑n−1

j=0 kj = dimV = k and
∑n−1

j=0 wj = dimW = N . This data is

summarized in terms of the KN vector ~k = {k0, k1, . . . , kn−1} and the monodromy vector

~w = {w0, w1, . . . , wn−1}.
Explicitly, the matrices R b

a , γV and γW can be written, in some suitable basis,

as follows:

R b
a (g) = diag(ω−1, ω) ,

γV (g) = diag(ωn1 , ωn2 , . . . , ωnk) ,

γW (g) = diag(ωr1 , ωr2 , . . . , ωrN ) ,

(2.9)

where ni (i = 1, . . . , k) and rα (α = 1, . . . , N) are integers defined modulo n, and can be

repeated. The multiplicities of the integers {ni} and {rα} are given by the entry kni in the

– 9 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
4

KN vector ~k and wrα in the monodromy vector ~w respectively. For SU(N) instantons, one

must also impose
∑N

α=1 rα = 0 modn.

A generic solution of the equation (2.6) is given as follows:

B1 ∈ ⊕n−1
i=0 Hom(Vi+1, Vi) , I ∈ ⊕n−1

i=0 Hom(Vi,Wi) ,

B2 ∈ ⊕n−1
i=0 Hom(Vi−1, Vi) , J ∈ ⊕n−1

i=0 Hom(Wi, Vi) .
(2.10)

In the final step, we take the hyperkähler quotient of the Zn-invariant ADHM data w.r.t.

the group
∏n−1
i=0 U(ki), i.e.

MKN (U(N)) := {(B1, B2, I, J)Zn}
///∏

i

U(ki) , (2.11)

where the quotient is implemented via the ADHM equations:

µC ≡ [B1, B2] + IJ = 0 , µR ≡ [B†1, B1] + [B†2, B2] + II† − J†J = 0 . (2.12)

The resultant space is a quiver variety labelled by the vectors ~k and ~w. For our study

of line defects, we will be interested in KN instantons where one or more integers ki may

be zero, such that the KN vector ~k and monodromy vector ~w are given as:

~k = diag(0, . . . , 0, kimin , kimin+1, kimin+2, . . . , kimax , 0, . . . , 0) ,

~w = diag(0, . . . , 0, wimin , wimin+1, wimin+2, . . . , wimax , 0, . . . , 0) .
(2.13)

The KN data is related to topological data of the instanton bundle on the orbifold/ALE

space. We mention a few useful results here and refer the reader to [29, 39, 60] for details.

Given an ALE space of An−1 type, one can introduce a tautological bundle T over the

ALE base with a regular representation of Zn being the fiber. T admits a decomposition

T = ⊕n−1
j=0Tj ⊗ Rj , where Rj is the j-th irrep of Zn, and Tj are certain vector bundles on

the ALE space such that their first Chern classes — c1(Tj) — form a basis for H2(ALE,Z)

for j 6= 0 (we set c1(T0) = 0). The first and the second Chern classes of the instanton

bundle can be written in terms of the first and second Chern classes of the bundles Tj :

c1 =

n−1∑
j=0

(wj − 2kj + kj+1 + kj−1) c1(Tj) ,

c2 =

n−1∑
j=0

(wj − 2kj + kj+1 + kj−1) c2(Tj) +
1

n

n−1∑
i=0

ki ,

(2.14)

The number 1
n

∑n−1
i=0 ki is often referred to as the instanton number, which coincides

with the second Chern class of the instanton bundle only for a balanced quiver. In addition,

we do not require dim V to be an integer multiple of n which implies that the KN instantons

are generically fractional.
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2.2 Moduli spaces for U(1)K-invariant instantons on C2 as

Kronheimer-Nakajima quiver varieties

Kronheimer’s correspondence states that smooth monopoles in the presence of a single ‘t

Hooft defect can be described by U(1)K-invariant instantons on C2 [63]. For this pur-

pose, the ADHM construction for U(1)K-invariant SU(N) instantons on C2 was presented

in [14, 16, 32]. We now demonstrate how this ADHM moduli space can be thought of as

a special case of a KN moduli space of U(N) instantons on an orbifold of C2. The basic

result of this subsection may be summarized as follows.

The SU(N) defect data on R3 consists of a cocharacter B = diag(p1, p2, . . . , pN ) and

v = diag(v1, v2, . . . , vN ) ∈ Λcr + B, such that (v,v) ≤ (B,B), with pi, vi ∈ Z, and∑N
i=1 pi = 0,

∑N
i=1 vi = 0. Given a pair of cocharacters (B,v), let M(B,v, SU(N)) be

the moduli space of U(1)K-invariant SU(N) instantons on C2, where B and v determine

the U(1)K action on the fibers of the instanton bundle at the origin and at infinity respec-

tively. For sufficiently large n, we claim

M(B,v, SU(N)) ∼=MC2/Zn
frac inst.(

~k, ~w, U(N)) (2.15)

whereMC2/Zn
frac inst.(

~k, ~w, U(N)) is the moduli space of a U(N) instanton on the orbifold C2/Zn
with a monodromy vector ~w and a Kronheimer-Nakajima vector ~k, as discussed above. The

relation between the defect data (B,v) and the KN data (~k, ~w) is explained later in this

subsection. The isomorphism implies that M(B,v, SU(N)) can be understood as a linear

quiver variety.

Let us review the ADHM construction of the U(1)K-invariant instanton moduli space

of instanton number k. Consider the following U(1) action on C2 : z = (z1, z2) 7→
(e2πiνz1, e

−2πiνz2), where e2πiν ∈ U(1). This is the action of U(1)K . To discuss the equiv-

ariant version of the ADHM construction under the U(1)K action, it is convenient to write

the standard ADHM complex in a slightly different (but equivalent) form:

0 −→ V ⊗ L−
σ(z)−→ S+ ⊗ V ⊕W τ(z)−→ V ⊗ L+ −→ 0 , (2.16)

where V = Ck, W = CN , and S± are the chiral spinor bundles on C2 (with fibers S± at a

point z ∈ C2). Under the U(1) action, S− decomposes into line bundles: S− = L− ⊕ L+,

and L± denote the corresponding fibers of the line bundles. The maps σ(z) and τ(z),

explicitly given as

σ(z) =

B1 − z1

B2 − z2

J

 , τ(z) =
(
z2 −B2 B1 − z1 I

)
, (2.17)

obey the condition τ(z)σ(z) = 0, so that the sequence (2.16) is a complex. The ADHM

data is given by (2.5).

Next, we promote the vector spaces V,W to U(1)K representations so that the maps

σ(z), τ(z) are themselves equivariant. The representations are of the following form:

ρV

(
e2πiν

)
= e2πiKν , ρW

(
e2πiν

)
= e2πivν , (2.18)

– 11 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
4

where K and v are cocharacters. Explicitly the complex is U(1)K equivariant if the ADHM

variables obey the following relations:

e2πiKνB1e
−2πiKν = e2πiνB1 , e2πiKνIe−2πivν = I ,

e2πiKνB2e
−2πiKν = e−2πiνB2 , e2πivνJe−2πiKν = J .

(2.19)

Given the equivariant complex, one can define the fibers of the gauge bundle using coho-

mology groups of the complex:

H0
z = Ker[σ(z)] , H1

z = Ker[τ(z)]/Im[σ(z)] , H2
z = V/Im[τ(z)] . (2.20)

If H0
z = H2

z = 0, then Ez = H1
z describes the fiber of a smooth irreducible instanton bundle

over C2. In particular, the fiber E∞ is identified with W, (dimW = N) and E0 is the fiber

at the origin z1 = 0, z2 = 0 (dimE0 = N). Therefore, the U(1)K representation associated

with the fiber E0 is of the form:

ρE0

(
e2πiν

)
= e2πiBν . (2.21)

The cocharacters (B,v,K) are related. From the Euler-Poincare principle, the U(1)K
characters must obey the following equation:

chS+⊗V + chW − chS−⊗V = chE0 . (2.22)

Noting that chS+⊗V − chS−⊗V = (e2πiν + e−2πiν − 2) TrV e
2πiKν , and that E0

∼= W as

vector spaces, we arrive at the equation [32]:

TrW e2πiBν = TrW e2πivν + (e2πiν + e−2πiν − 2) TrV e
2πiKν (2.23)

Given (B,v), the above equation determines the cocharacter K up to conjugacy. Note

that the equation doesn’t always have a solution. Taking the limit ν → 0, we have the

following relations in the leading and sub-leading order:

TrW B = TrW v , k = dimV =
1

2
(TrW B2 − TrW v2) , (2.24)

where the second equation implies that (B,B) ≥ (v,v) for (2.23) to have a solution.

This U(1)K action descends to an action on the ADHM hyperkähler quotient. The

resultant fixed point subspace is the moduli space of U(1)K-invariant instantons, which we

have denoted as M(B,v, SU(N)).

We will now show that M(B,v, SU(N)) is a linear quiver variety. Let us perform the

following transformation of the triplet of matrices (B,v,K):

B → B′ = B − pmin I ,

v→ v′ = v − pmin I ,

K → K ′ = K − pmin I .

(2.25)

The resultant triple (B′,v′,K ′) is a solution of the Euler-Poincare character formula (2.23),

where the eigenvalues of the matrices (B′,v′,K ′) can be taken to be non-negative integers.12

12Note that this is an arbitrary choice. However, the quiver variety is stable under any such overall shift

transformation of (B′,v′,K′).
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Note that for B′ = diag(p′1, p
′
2, . . . , p

′
N ), for p′i ∈ Z, we have

∑N
i=1 p

′
i 6= 0, which implies

that B′ is an element of the cocharacter lattice of U(N) as opposed to SU(N). In addition,

the conditions of U(1)K equivariance of the ADHM data (B1, B2, I, J) are invariant under

the shift (2.25). This leads to the following isomorphism of moduli spaces:

M(B,v, SU(N)) ∼=M(B′,v′,U(N)) , (2.26)

where (B′,v′) for a given pair (B,v) are given by the transformation in (2.25).

The vector spaces V and W are now associated with U(1) representations labelled by

the cocharacters K ′ and v′ respectively. Let ρq denote an irreducible representation of

U(1)K with charge q:

ρq : x = e2πiν 7→ xq = e2πiqν , q ∈ Z. (2.27)

One can now write the isotypical decompositions of V and W under this U(1) ac-

tion. Since all eigenvalues of the operators K ′ and v′ are non-negative integers, isotypical

decompositions of V and W will only involve irreps with non-negative U(1)K charges, i.e.

V =
⊕
q∈Z≥0

V (q) ⊗ ρq , W =
⊕
q∈Z≥0

W (q) ⊗ ρq . (2.28)

where V (q) and W (q) are degeneracy spaces.

Invariance of the ADHM data under U(1)K action implies invariance under any sub-

group of U(1)K and in particular, the subgroup of n-th roots of unity, Zn. Under the

inclusion

ι : Zn ↪→ U(1) , (2.29)

one can write the Z/nZ irrep Rj , defined as

Rj : ω = e2πi/n 7→ ωj = e2πij/n , j ∼ j mod n , (2.30)

as a pull back of the U(1) irrep ρq:

ι∗(ρq) = Rj , j = q mod n . (2.31)

The isotypical decompositions can therefore be rewritten in terms of the Z/nZ irreps

as follows:

V = ⊕jVj ⊗Rj , W = ⊕jWj ⊗Rj , (2.32)

where Vj , Wj are the corresponding degeneracy spaces, and j = q mod n with q ∈ Z≥0.

We can now choose n such that the labels of the Z/nZ irreps Rj can be taken in the

fundamental domain, i.e. j = 0, . . . , n− 1, and one can unambiguously set j = q. This can

be done if n is greater than the maximal U(1)K charge qmax which appears in the isotypical

decomposition (2.28).

n > qmax (2.33)
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which is what we mean by a sufficiently large n. Given j in the fundamental domain, the

isotypical decompositions assume the form

V =
n−1⊕
j=0

Vj ⊗Rj , W =
n−1⊕
j=0

Wj ⊗Rj . (2.34)

Analogous to the Kronheimer-Nakajima construction, one can now define the vectors ~k

and ~w which count the dimensions of the degeneracy spaces:

~k =
(
k0, k1, . . . , kn−1

)
, kj = dimVj ,

~w =
(
w0, w1, . . . , wn−1

)
, wj = dimWj .

(2.35)

In addition, some of the integers kj may be zero. For example, writing the character

equation (2.23) for the triple (B′,v′,K ′) as

Trk x
K′ =

(TrN x
B′ − TrN x

v′)

(x
1
2 − x−

1
2 )2

=

n−1∑
j=0

kjx
j , q ≥ 0 , (2.36)

and taking x → 0 limit, one can see that k0 = 0, if the eigenvalues p′i, v
′
i ≥ 0, ∀i. Also, kj

for all j > qmax will vanish.

Therefore, a more precise way of writing the isotypical decompositions is:

V =

qmax⊕
j=qmin

Vj ⊗Rj , W =

qmax⊕
j=qmin

Wj ⊗Rj , (2.37)

where qmin > 0 and qmax < n. The vectors ~k, ~w are given as

~k =
(
k0, k1, . . . , kn−1

)
=
(

0, . . . , 0, kqmin , kqmin+1, kqmin+2, . . . , kqmax , 0, . . . , 0
)
,

~w =
(
w0, w1, . . . , wn−1

)
=
(

0, . . . , 0, wqmin , wqmin+1, wqmin+2, . . . , wqmax , 0, . . . , 0
)
.

(2.38)

One can write down the explicit solution for the U(1)K invariant ADHM variables

{B1, B2, I, J}K from equation (2.19):

B1 ∈ ⊕qmax−1
j=qmin

Hom(Vj+1, Vj) , I ∈ ⊕qmax

j=qmin
Hom(Vj ,Wj) ,

B2 ∈ ⊕qmax

j=qmin+1Hom(Vj−1, Vj) , J ∈ ⊕qmax

j=qmin
Hom(Wj , Vj) .

(2.39)

In particular, note that B1, B2 does not have a component of the form Hom(Vqmax , Vqmin)

or Hom(Vqmin , Vqmax), since n > qmax. It is obvious from the discussion above that the

U(1)K invariant ADHM data (2.39) can be thought of as solutions of the Zn invariance

equation (2.6) provided we make the following identification:

ni := K ′i, rα := v′α (2.40)

where the integers ni and rα are in the fundamental domain, i.e. 0 ≤ ni ≤ n − 1 for all i,

and 0 ≤ rα ≤ n− 1 for all α. Note that the integers K ′i and v′α are non-negative.
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Finally, the moduli space M(B′,v′,U(N)) is given by the hyperKähler quotient

M(B′,v′,U(N)) = {(B1, B2, I, J)K}
///∏

j

U(kj) ∼=M(B,v, SU(N)) (2.41)

where the last equality follows from (2.26). The hyperkähler quotient is implemented via

the ADHM equations (the first of which follows from the condition τ(z)σ(z) = 0):

µC ≡ [B1, B2] + IJ = 0 ,

µR ≡ [B†1, B1] + [B†2, B2] + II† − J†J = 0 .
(2.42)

M(B′,v′,U(N)) is therefore a linear KN quiver variety, with generic form of vectors ~k and

~w, given in (2.38). Note that, the quiver variety stabilizes as a function of n for sufficiently

large n. Consider shifting the triple (B,v,K) to (B′′,v′′,K ′′) such that

B → B′′ = B − (pmin − u) I,

v→ v′′ = v − (pmin − u) I,

K → K ′′ = K − (pmin − u) I.

(2.43)

where u ∈ Z>0, such that the eigenvalues of K ′′ are positive integers, different from the

eigenvalues of K ′ defined earlier. Using the same line of argument as above, one can show

thatM(B′′,v′′,U(N)) is isomorphic to the same linear quiver variety for a sufficiently large

n.

2.3 Defect SQM and Witten index

In the previous subsection, we established that the moduli space of U(1)K-invariant in-

stantons on C2 can be understood in terms of certain KN instantons on C2/Zn. Given this

description of U(1)K-invariant instanton moduli space, one can now express the bubbling

index of an ’t Hooft defect vev in an N = 2∗ SU(N) SYM as a 5d instanton partition func-

tion of an N = 1∗ U(N) theory on S1 × C2/Zn following the discussion in the beginning

of section 2.

ZR3×S1

mono (B,v; a,m, λ|G = SU(N)) = Z
S1×C2/Zn
inst. (~k, ~w; a,m, ε+, ε−|G′ = U(N),

∑
i

ai = 0)

(2.44)

where the equivariant parameters on both sides of the equation are related as

a = 2iπa , m = 2iπm , ε+ = iπλ , ε− = 0 . (2.45)

Unfortunately, the r.h.s. of equation (2.44) is not well-defined since the instanton mod-

uli space on the r.h.s. suffers from UV singularities arising from zero-size instantons. As

discussed in section D.2, the singularities can be resolved which introduces suitable stabil-

ity/FI parameters {ζiR} (with i = qmin, . . . , qmax) that deform the real moment map. There

exists two natural chambers defined by: ζiR < 0 (or ζiR > 0) for all i, where the partition

function ZS
1×C2/Zn is given by a Zn-projection of the partition function ZS

1×C2
.
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This is the partition function that appears in the r.h.s. of (2.44) and will be studied

in this section. For a generic 5d N = 1 theory, the answer would still depend on the sign

of the stability parameters. However, for the specific case of N = 1∗ theory, the instanton

partition function is invariant under an overall sign flip of the FI parameters, which allows

one to write down the r.h.s. of (2.44) unambiguously.

The 5d instanton partition function Z
S1×C2/Zn
inst. is given by an equivariant integral over

a KN moduli space, which can also be realized as the Higgs branch of a (4,4) quiver SQM

(ADHM SQM). Following [40], the instanton partition function is given by the Witten

index of this SQM (reviewed in appendix B.2). An effective way to read off the quiver

SQM is to realize the 5d instanton particles in a Type IIA brane construction, i.e. as a

stack of fractional D0-branes probing N D4-branes wrapping the orbifold C2/Zn [52]. The

(4,4) quiver SQM then arises as the D0-brane world volume theory.

We now discuss some general features of these quiver SQMs and write down a formula

for their Witten index. A generic circular quiver associated with the instanton moduli

space MC2/Zn
inst (~k, ~w) is given in figure 1, while figure 2 shows a generic linear quiver —

these are known as the Kronheimer-Nakajima (KN) quivers [60]. In each case, the quiver

is specified by the following data:

1. Kronheimer-Nakajima vector ~k=(k0, k1, . . . , kn−1) with ki∈Z≥0 for i=0, 1, . . . , n−1.

Figure 1 corresponds to the case where ki 6= 0 ∀i — the gauge group is G=
∏n−1
i=0 U(ki)

with bifundamental hypers forming an affine An−1-type quiver. For linear quivers,

where one or more entries of the vector ~k are zero, one simply deletes the correspond-

ing nodes in the quiver along with the bifundamentals, leading to a linear quiver.

2. The monodromy vector ~w = (w0, . . . , wn−1) associated with holonomy vector ~r of the

gauge fields such that

wi =

N∑
α=1

δi,rα , N = w0 + . . .+ wn−1 , (2.46)

with wi ∈ Z≥0 for all i = 0, . . . , n − 1, denoting the number of fundamental hyper

associated with each gauge node U(ki).

As mentioned earlier, the ADHM construction of the instanton moduli space is equiv-

alent to the description of the Higgs branch of the above quiver SQMs as a hyperkähler

quotient. From the Zn-invariant ADHM data in equation (2.39), one can clearly see that

the variables B1, B2 assemble themselves as scalar vevs of hypers in the bifundamental

of U(ki+1) × U(ki) while I, J give the scalar vevs of hypers in the fundamental of the

U(ki)s. The moment map equations arise as F-term and D-term equations. In addition,

the stability parameters {ζiR} arise as FI parameters for the gauge groups U(ki).

We can now write down the Witten index of the quiver SQM following the general

approach in [7–9]. For computing the index using localization, various flat directions in

the space of supersymmetric vacua should be lifted. The global symmetry twists in the

definition of the Witten index ensure that the flat directions coming from various hyper-
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Figure 1. The Kronheimer-Nakajima quiver for a regular U(N) instantons on C2/Zn. Each node

denotes the unitary group with the labelled rank. The circular nodes denote gauge groups and the

square nodes denote the flavour symmetries.

k k

w

k kkk0 1 3 4 l-1 l

w w w w w0 1 2 3 l-1 l

Figure 2. The Kronheimer-Nakajima quiver for a fractional U(N) instanton on C2/Zn, with KN

vector ~k = (k0, k1, k2, . . . , kl, 0, . . . , 0) and monodromy vector ~w = (w0, w1, w2, . . . , wl, 0, . . . , 0).

multiplet scalars are lifted. Flat directions associated with one of the adjoint scalars13

which is neutral under these global symmetries, is lifted by turning on the FI parameters

{ζiR}. We will be interested in studying the partition function in a chamber where all the

FI parameters have the same sign. Furthermore it will be convenient to set the SQM gauge

couplings ei = e and FI parameters ζiR = ζ for all i.

Further, since we are interested in computing the instanton partition function, which is

given by an equivariant integral on the Higgs branch of the SQM, it is natural to compute

the Witten index in the Higgs scaling limit [7] which introduces large masses for all the

vector multiplet scalars. This limit is defined by taking e2 → 0 and ζ →∞ while holding

ζ ′ = e2ζ fixed. The Witten index computed in this fashion generically depends only on the

13This is the scalar component of the (0, 2) vector multiplet inside the (0, 4) vector multiplet which, in

turn, lives inside the (4, 4) vector multiplet.
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sign of ζ ′. Therefore, we have

Z
S1×C2/Zn
inst. (~k, ~w; a,m, ε±;±ζiR →∞|U(N)) = ZSQM(Γ~k,~w|a,m, ε±;±ζ ′ > 0) (2.47)

where the signs on the two sides of the equation are correlated.

Following the basic recipe given in appendix B.2, the Witten index ZSQM can be written

as a contour integral over a real and compact k-dimensional cycle in (tG⊗C)/Λcr
∼= (C∗)k,

where k =
∑qmax

i=qmin
ki and Λcr is the coroot lattice. For a linear quiver quantum mechanics

with (4,4) supersymmetry, as shown in figure 2, the Witten index is14

ZSQM(Γ~k,~w|a,m, ε+, ε−; ζ ′) =
1∏qmax

i=qmin
ki!

∮
JK(ζ′)

qmax∏
i=qmin

ki∏
I=1

[
dφiI
2πi

]
· Zvector

~k
(φ,m; ε1,2) · Zbifund

~k
(φ,m; ε1,2) · Z fund

~k,~w
(φ, a,m; ε1,2) ,

(2.48)

The integrand is written as contributions of various (4, 4) supermutiplets (gauge and mat-

ter) of the SQM. Explicitly, these functions are:15

Zvec
~k

(φ, a,m; ε1,2) =

qmax∏
i=qmin

 ki∏
I,J=1

2 sinh
(φiIJ+2ε+)

2

2 sinh
(φiIJ+m±ε+)

2

×
ki∏
I 6=J

2 sinh
φiIJ
2

 ,

Zbifund
~k

(φ, a,m; ε1,2) =

qmax−1∏
j=qmin

kj+1∏
I=1

kj∏
J=1

2 sinh
(φj+1
I −φjJ+m+ε−)

2 2 sinh
(φjJ−φ

j+1
I +m−ε−)

2

2 sinh
(φj+1
I −φjJ+ε++ε−)

2 2 sinh
(φjJ−φ

j+1
I +ε+−ε−)

2

,

Z fund
~k,~w

(φ, a,m; ε1,2) =

qmax∏
i=qmin

ki∏
I=1

wi∏
l=1

2 sinh
(φiI−a

i
l+m)

2 2 sinh
(−φiI+ail+m)

2

2 sinh
(φiI−a

i
l+ε+)

2 2 sinh
(−φiI+ail+ε+)

2

. (2.49)

Here the parameters {ail} are related to the U(1)N equivariant parameters a` (with ` =

1, . . . , N) as follows.

a`(i,l) = ail, `(i, l) = N + 1−
i∑

j=qmin

wj−1 − l, (2.50)

where i = qmin, . . . , qmax, l = 1, . . . , wi, and wqmin−1 = 0. Note that this ordering of the

a`(i,j) is a convenient choice which does not affect the final result because Zmono is invariant

under the action of the Weyl group.

As discussed in [4, 7–9], these contour integrals should be evaluated using the JK

residue prescription (reviewed in appendix B.2) with the covector η of dimension k being

set to η = ζ ′(1, 1, · · · , 1), where ±ζ ′ > 0 depending on the chamber.

14Note that the formula can be easily extended to the affine quiver, where qmin = 0 and qmax = n − 1,

and one bifundamental hyper connecting the nodes labelled by qmin and qmax.
15We use the following notation in all subsequent Witten index expressions

2 sinh(x± y) = 2 sinh(x+ y) 2 sinh(x− y) .
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Equivalently, one can evaluate the contour integral by a colored version of the Young

diagram prescription [39]. For ζ ′ > 0, for example, this proceeds as follows:16

1. Consider all N -tuples of Young diagrams consisting of a total number of k =
∑n−1

i=0 ki
boxes. Label each box by the Zn charge: the (i, j) box in the `-th Young diagram17

is assigned the integer s = r` + i− j = v` + i− j.18

2. Each N-tuple of Young diagrams inR(~k, ~w) labels a pole in the contour integral (2.48).

Given an N-tuple of Young diagrams D ∈ R(~k, ~w), let T Ds (~k, ~w) denote the collec-

tion of ks boxes labelled by the Zn charge s. Then the poles in the variables φsI ,

corresponding to D, will be given as

φs` = as` + ε+ − iε1 − jε2 , ∀(i, j) ∈ T Ds (~k, ~w) , ` = 1, . . . , ks . (2.51)

3. Compute the sum of all residues coming from such poles.

As explained in appendix D, flipping the sign of ζ ′ corresponds to the transformation

ε+ → −ε+ in the Witten index, with all other equivariant parameters held fixed. The

expression for the Witten index in the ζ ′ < 0 chamber can therefore be readily obtained

from the expression for the ζ ′ > 0 chamber by the following equation:

ZSQM

(
Γ~k,~w|a,m, ε+, ε− = 0; ζ ′ < 0

)
= ZSQM

(
Γ~k,~w|a,m,−ε+, ε− = 0; ζ ′ > 0

)
. (2.52)

It turns out that ZSQM is an even function of ε+ for SQMs associated with N = 1∗ instanton

partition functions, so that the former is invariant under a sign change of ζ ′. Therefore,

we can unambiguously define a 5d instanton function for this theory.

Given the relation between 5d instanton partition function on S1 × C2/Zn and Zmono

stated in (2.44), we therefore have a concrete formula for the monopole bubbling contri-

bution to line defects in N = 2∗ SU(N) SYM, where the r.h.s. is explicitly given by the

equations (2.48)–(2.49), i.e.

Zmono(B,v; a,m, λ|SU(N)) = ZSQM

(
Γ~k,~w|a,m, ε+, ε− = 0;±ζ ′ > 0

)
(2.53)

where the equality holds for both signs of ζ ′. The map between equivariant parameters

on the two sides of the equation is given in equation (2.45), and the map between the

defect data (B,v) on one side and the instanton data (~k, ~w) on the other is discussed in

section 2.2.

16The prescription below is essentially a Zn-projection of Nekrasov’s original prescription for instantons

on C2.
17Our convention for Young diagrams is to draw them in the first quadrant with i and j labelling the hor-

izontal and vertical axes respectively, increasing away from the origin. Also, note that r` = v` from (2.40).
18Note that the subset of Young diagrams R(~k, ~w) depend on r`, and therefore on the monodromy

vector ~w.
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2.4 Examples of defect SQMs

2.4.1 SU(2) SYM

We now proceed to write down explicitly the contour integral formula for Zmono in 4d,N=2∗

SU(2) SYM using (2.53). The Dirac quantization condition for an N = 2∗ SU(2) theory

allows for the charges B and v to be labelled by half integers, i.e.

B := (p/2,−p/2) , v := (v/2,−v/2) , (2.54)

where p, v are integers, and p = vmod 2. As discussed above, Zmono(B,v) in this case is

given by the instanton partition function Z
S1×C2/Zn
~k,~w

where ~w is determined by v and ~k is

determined by the matrix K.

From the character equation (2.23) one can write down an explicit solution for the

matrix K in this case:

Tr e2πiKν = e2πi( p
2
−1)ν + 2e2πi( p

2
−2)ν + . . .+

p− v
2

e2πi( v
2

)ν + . . .+
p− v

2
e2πi(−v

2
)ν + . . .

+ 2e−2πi( p
2
−2)ν + e−2πi( p

2
−1)ν , (2.55)

such that one has exactly p− 1 distinct entries Ki = p
2 − i, where i = 1, . . . , p− 1, with the

multiplicities shown above. Using the redefinition

(B,v,K) 7→
(
B +

p

2
I,v +

p

2
I,K +

p

2
I
)
,

as discussed in (2.25), we have:

Tr e2πiKν = e2πi(p−1)ν + 2e2πi(p−2)ν + . . .+
p− v

2
e2πi( p+v

2
)ν + . . .+

p− v
2

e2πi( p−v
2

)ν + . . .

+ 2e2πi(2)ν + e2πi(1)ν ,

=⇒ K = diag(1, 2, 2, 3, 3, 3, . . . , p− 2, p− 2, p− 1) , (2.56)

and a redefined v:

v =

(
p+ v

2
,
p− v

2

)
. (2.57)

The redefined K and v can be packaged into KN data for a fractional U(2) instanton

(not SU(2)) on C2/Zn as follows:

~k =
(
k0, k1, k2, . . . , k p−v

2
, . . . , k p+v

2
, . . . , kp−2, kp−1, kp, . . . , kn−1

)
=

(
0, 1, 2, . . . ,

p− v
2

, . . . ,
p− v

2
, . . . , 2, 1, 0, . . . , 0

)
, (2.58)

~w =
(
w0, w1, . . . , w p−v

2
, . . . , w p+v

2
, . . . , wp, . . . , wn−1

)
=
(
0, 0, . . . , wp/2 = 2, 0, . . . , 0

)
if v = 0, (2.59)

=
(

0, 0, . . . , w p−v
2

= 1, 0, . . . , 0, w p+v
2

= 1, 0, . . . , 0
)

if v 6= 0 , (2.60)
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Figure 3. The Kronheimer-Nakajima quiver associated to a ’t Hooft loop labelled by

B = (p/2,−p/2) (with p even) in the sector v = (0, 0) in an N = 2∗ SU(2) theory.

1 2 3 p−v
2
− 1

p−v
2

p−v
2

p−v
2
− 1 3 2 1

1 1

Figure 4. The Kronheimer-Nakajima quiver associated to a ’t Hooft loop labelled by

B = (p/2, −p/2) in the sector v = (v/2,−v/2) with v 6= 0 in an N = 2∗ SU(2) theory. The

gauge node U( p−v
2 ) is repeated v + 1 times.

where p−v
2 is repeated v + 1 times in ~k. Note that ki = 0, ∀i ≥ p, since these integers do

not appear as entries in the matrix K.

The above data completely fixes the D0 world volume theory — a linear quiver (not

a necklace quiver since ki = 0, ∀i ≥ p) with a gauge group G =
∏p−1
i=1 U(ki) with bifun-

damentals and two fundamental hypers distributed among the gauge nodes (as dictated

by ~w), as shown in the figures 3 and 4. The monopole bubbling contribution to the line

operator can then be computed using (2.53).

The complex dimension of the vector space V is given by the quaternionic dimension

of the Coulomb branch quiver which can be computed as a function of p and v:

k = dimCV = dimHMC(Γ~k,~w) =
n−1∑
i=0

ki =
p− v

2
× p+ v

2
, (2.61)

while the quaternionic dimension of the quiver varietyM(B,v) is given by the Higgs branch

dimension of the quiver

dimHM(B,v) = dimHMH(Γ~k,~w) =
p− v

2
. (2.62)

One can now proceed to compute some simple examples and check that the above

contour integral indeed reproduces the IOT result. Consider the simplest example of

Zmono(p = 2, v = 0): the character equation (2.23) for p = 2, v = 0 gives a one-dimensional

matrix K = 0. After the aforementioned shift in K and v, we get K = 1 and v = (1, 1).

The KN quiver is therefore characterized by the instanton data ~k = (0, 1, 0, . . . , 0) and

~w = (0, 2, 0, . . . , 0) for a U(2) theory on a C2/Zn orbifold. This gives a (4, 4) theory with

gauge group U(1) and two fundamental hypers, as shown in figure 5. The Witten index in
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2
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Figure 5. The Kronheimer-Nakajima quiver associated to a ’t Hooft loop labelled by B = 1
2 (2, −2)

in the sector v = (0, 0) in an N = 2∗ SU(2) theory. This corresponds to the integer p = 2 in

the figure 3.

the ζ ′ > 0 chamber can be read off from (2.48):

ZSQM(Γ~k,~w|a,m, ε+, ε−; ζ ′ > 0) =

∮
JK(ζ′)

[
dφ

2πi

]
Zvector(φ,m; ε1,2) · Z fund(φ, a,m; ε1,2) ,

Zvec(φ,m; ε1,2) =

(
2 sinh (ε+)

2 sinh (m±ε+)
2

)
,

Z fund(φ, a,m; ε1,2) =

2∏
`=1

2 sinh (φ−a`+m)
2 2 sinh (−φ+a`+m)

2

2 sinh (φ−a`+ε+)
2 2 sinh (−φ+a`+ε+)

2

. (2.63)

The poles of the above contour integral correspond to doublets (since we have a U(2)

theory) of colored Young diagrams with total number of boxes equal to
∑

i ki = 1, where

every box is assigned the integer s = v` + i − j (l = 1, 2 indexes the doublet of Young

diagrams and (i, j) in the first quadrant) such that the number of boxes labelled by integer

s is ks. From equation (2.51), the poles are then explicitly given as

(1) ~Y = (Y1, Y2) : Y1 = 1 , Y2 = ∅, =⇒ φ = a1 − ε+,

(2) ~Y = (Y1, Y2) : Y1 = ∅ , Y2 = 1 , =⇒ φ = a2 − ε+.
(2.64)

Computing the residues at these two poles, one obtains

Zmono(p= 2,v= 0;a,m,ε+) =ZSQM(Γ~k,~w|a,m,ε+, ε−;ζ ′> 0)|ε−=0

=
sinh (2a+m+ε+)

2 sinh (2a−m+ε+)
2

sinhasinh(a+ε+)
+

sinh (2a+m−ε+)
2 sinh (2a−m−ε+)

2

sinhasinh(a−ε+)
. (2.65)

The above formulae matches IOT’s expressions with the redefinition of equivariant param-

eters as given in (2.45).

We compute more examples of ’t Hooft operators and check their agreement with the

results of [16] in appendix C. We discuss quivers arising in N = 2∗ SU(N) theory for N > 2

in section 3, after discussing the Type IIB construction of singular monopole moduli spaces

and its relation to the SQMs associated to ’t Hooft defects.

2.4.2 U(2) SYM

We now proceed to write down explicitly the contour integral for Zmono for line defects in

N = 2∗ U(2) SYM. Consider a line defect TB and the screening charge v labelled by

B := (p, 0) , v := (v, p− v) , (2.66)

– 22 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
4

22 vv 11 

1 1

1 p-2v+1

Figure 6. The Kronheimer-Nakajima quiver associated to a ’t Hooft loop labelled by B = (p, 0)

in the sector v = (v, p− v) (where v 6= p− v) in an N = 2∗ U(2) theory.

v 2

2

2 v-1v-1 11 

Figure 7. The Kronheimer-Nakajima quiver associated to a ’t Hooft loop labelled by B = (p, 0) (

with p even) in the sector v = (p/2, p/2) in an N = 2∗ U(2) theory.

where p, v are non-negative integers with v ≤ p. Similar to the SU(2) case, Zmono(B,v) in

this case is given by the instanton partition function Z
S1×C2/Zn
~k,~w

where ~r is determined by v

and ~k is determined by the matrix K. We determine the instanton data and the associated

quiver description of the answer in the usual fashion.

From the character equation (2.23) one can write down an explicit solution for the

matrix K in this case:

Tre2πiKν = e2πi(1)ν+2e2πi(2)ν+. . .+ve2πivν+ve2πi(v+1)ν+. . .+ve2πi(p−v−1)ν+ve2πi(p−v)ν

+(v−1)e2πi(p−v+1)ν+. . .+2e2πi(p−2)ν+e2πi(p−1)ν , (2.67)

which translates to the following KN instanton data of a U(2) theory on C2/Zn:

~k = (0, 1, 2, . . . , v − 1, v, . . . , v, v − 1, . . . , 2, 1, 0, . . . , 0) ,

~w = (0, 1, 2, . . . , 0, 1, . . . , 1, 0, . . . , 0, 0, 0, . . . , 0) .
(2.68)

where v is repeated p− 2v + 1 times. The associated quiver quantum mechanics are given

in figure 6 and 7 (for v 6= p/2 and v = p/2) and its Witten index can be computed as

before. Line defects labelled by B = (p,−p) work out in ways similar to the SU(2) SYM

with a defect B labelled by an even spin.

3 String theory description of singular monopole moduli spaces

associated to line defects

In this section, we present a Type IIB string theory description of monopole bubbling on

R3, and demonstrate how one can derive the quiver variety M(B,v) from a configuration

involving D1-D3-NS5-branes. Without monopole bubbling, the Type IIB description pre-

sented in this section is U-dual to the brane configuration of Cherkis and Kapustin [46]
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— the new element is the incorporation of monopole bubbling in the picture. The brane

picture gives an alternative derivation of the quiver variety M(B,v) for an SU(N) line

defect with N > 2, the general form of which is rather difficult to derive directly from the

character equation (2.23).

3.1 Review of D1-D3 system for smooth monopoles

Let us first review the standard Type IIB description of smooth monopoles in terms of finite

segments of D1 branes ending on D3 branes, using the Nahm construction [49]. Consider

the D1-D3-brane configuration:

Type IIB

0 1 2 3 4 5 6 7 8 9

D3 – – – –

D1 – –

where – indicates that the D-brane extends along that direction and blanks mean a Dirichlet

boundary condition is imposed for that coordiinate. Here x4 is a coordinate on a compact

direction transverse to the D3-brane. We will often denote it by s. A Yang-Mills-Higgs

system is naturally realized in the low energy string theory on the world volume of D3

branes. These extend along the directions xµ, µ = 0, 1, 2, 3, in the 10d spacetime of Type

IIB string theory and sit at definite values of xα, α = 4, 5, 6, 7, 8, 9. The low energy world

volume gauge theory on a stack of N coincident D3-branes is 4d N = 4 U(N) SYM, which

consists of a gauge field, six real adjoint scalars and four adjoint Weyl fermions. The adjoint

scalars encode the profile of the D3-branes in the six directions xα, α = 4, . . . , 9 [55]. For

the rest of this section, we will consider a classically truncated version of the D3-brane

world volume theory where we set all fermions and five of the six scalar fields to zero,

choosing only the scalar field X associated with the x4 direction to be non-zero.19

The world volume theory on a stack of D1-branes is a 2d (8, 8) SYM theory, while the

D3 branes act as half-BPS boundary conditions that reduce the supersymmetry to (4, 4).

The 2d (8, 8) vector multiplet consists of a 2d gauge field and eight real scalars which encode

the position of the D1-brane along the eight transverse directions in the 10-dimensional

space-time. Let (Xi)i=1,2,3 denote the three real scalar fields which are associated with the

positions of D1-branes in the spatial R3
1,2,3 of the D3-brane world volume. In the effective

0+1 dimensional theory obtained by KK-reducing the D1-brane world volume theory along

the compact direction, the scalars (Xi) combine with the scalar A4 to give the bosonic part

of a (4, 4) hypermultiplet.

For the sake of brevity, we will specialize to the case of smooth SU(2) monopoles in this

subsection. The Type IIB picture in this case consists of two D3-branes located at s = ±s0,

and m D1-brane segments ending on them. It was shown [49] that the moduli space of

supersymmetric ground states (preserving (4, 4) supersymmetry) of this brane configuration

is isomorphic to the moduli space of smooth SU(2) monopoles with asymptotic magnetic

19This is a consistent truncation because the equations of motion for these fields have no source terms

built only out of (Aµ=0,1,2,3, X).
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charge γm = diag(−m,m) and Higgs vev X∞ = diag(−s0, s0). The moduli space of

supersymmetric ground states of the brane configuration is given by the moduli space of

solutions of the following BPS equations in the D1 world volume gauge theory:

dXi

ds
− i[A4, Xi] +

i

2
εijk[Xj , Xk] = 0 , (3.1)

where A4, Xi are m×m Hermitian matrices, transforming under a SU(m) gauge transfor-

mation g(s) as follows:

(A4, Xi)→ (g−1A4g + ig−1dg, g−1Xig) . (3.2)

This SU(m) gauge transformation can be used to gauge-fix A4 to zero. In addition, the

fields Xi encounter Nahm poles in the vicinity of D3-branes, i.e. around s→ ±s0,

Xi =
L±i
s∓ s0

+O(1) , [L±i , L
±
j ] = iεijkL

±
k , (3.3)

where the L±i s form a spin-(m−1)/2 representation of the SU(2) Lie algebra. Equation (3.1)

is equivalent to Nahm’s equation [64, 66, 67] — the moduli space of solutions of this equation

subject to the boundary condition in equation (3.3) gives the moduli space of smooth SU(2)

monopoles on R3 with asymptotic charge γm. The scalar fields Xi(s) together with the

boundary condition constitute the Nahm data.

In addition to the moduli space, the explicit monopole solution (Ai, X) in the SU(2)

Yang-Mills-Higgs system can be constructed from the Nahm data using the reconstruction

procedure [33] in the following fashion. Let us define a linear differential operator

∆(~x, s) :=
d

ds
−Xi(s)⊗ σi + xiIm ⊗ σi , (3.4)

and compute solutions to the equation:

∆†(~x, s)w(~x, s) =

[
− d

ds
−Xi(s)⊗ σi + xiIm ⊗ σi

]
w(~x, s) = 0 , (3.5)

where w(~x, s) is a 2m-dimensional vector. Let {wa(~x, s)} denote a basis of normalizable

linearly independent solutions of the above equation with a = 1, 2 in the present case.20

Given these solutions, the Yang-Mills-Higgs fields (Ai, X) are given as

Xab(~x) = 〈wa|x4|wb〉 =

∫ s0

−s0
ds sw†a(~x, s)wb(~x, s) , (3.6)

Aabi (~x) = 〈wa|pi|wb〉 =

∫ s0

−s0
dsw†a(~x, s) (−i∂i)wb(~x, s) . (3.7)

It can be explicitly shown that the classical field configurations constructed by the above

procedure satisfies the Bogomolnyi equation for an SU(2) Yang-Mills-Higgs system on R3

and gives the correct asymptotic behavior at infinity. We refer the reader to section 4

of [33] for details.

20It was shown in [33] that there are precisely N basis vectors labelled by a = 1, . . . , N for SU(N).

Normalizability of the solution requires that w(~x, s) be regular as s → ±s0. See section 4.4.3 of [33] for

more details.
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3.2 D1-D3-NS5 system for SU(2) singular monopoles and monopole bubbling

We now discuss how singular monopoles on R3 can be realized in Type IIB string theory

by introducing NS5-branes in the D1-D3 configuration described above. As mentioned

earlier, the relevant brane set-up is closely related to a U-dual version of the brane con-

figuration studied in [46]. We discuss in detail the case of a product of minimal singu-

lar SU(2) monopoles with total ’t Hooft charge B = diag(−p, p) and asymptotic charge

γm = diag(−m,m), where p,m are positive integers. The bubbling sectors are labelled

by v = diag(−v, v), where v ≤ p is a positive integer. Also, let γ̃m = γm + B =

diag(−p − m, p + m). Generalization to the SU(N) case is straightforward, and will be

discussed in the next subsection.

Consider the Type IIB configuration consisting of 2 D3-branes, n = 2p NS5-branes

and (m+ p) D1-branes, summarized in the table (and in figure 8):

Type IIB

0 1 2 3 4 5 6 7 8 9

D3 – – – –

D1 – –

n-NS5 – – – – – –

As before, — indicates that the corresponding brane extends in that particular direction,

while other directions have Dirichlet boundary conditions.

Specifically, the D3-branes are located at s = ±s0 along the compact direction x4

and the 2p NS5-branes are located at points (x1, x2, x3) in the R3 of the D3-brane world

volume. For an SU(2) monopole, we will take the R3 positions of the NS5-branes to pairwise

coincide such that there are exactly p independent positions ~xα (α = 1, . . . , p) and each

pair has an NS5-brane located at s = ±s1 in the x4 direction.21 Additionally, we take a

single D1-brane connecting every NS5-brane to the nearest D3-brane and (p + m) other

D1-branes connecting the two D3-branes at points on R3 (generically distinct from ~xα) as

shown in figure 8.

The moduli space of supersymmetric ground states of this Type IIB brane configuration

gives the moduli space of multiple singular SU(2) monopoles22 on R3 with total ’t Hooft

charge B and asymptotic charge γm. In the limit where all the ~xα coincide,23 this describes

a configuration with a single magnetic defect of magnetic charge B.

This Type IIB picture admits a nice physical description for monopole bubbling.

Given the D1/D3/NS5-brane configuration, one can check that it corresponds to singular

monopoles by directly constructing the classical solutions for the Yang-Mills-Higgs system

(Ai, X) on the D3-brane world volume theory. This can be accomplished by solving Nahm’s

equations along the compact direction x4 and then using the reconstruction procedure as

21For generic positions, we will end up with 2p insertions of minimal SU(2) ‘t Hooft defects.
22Note that each singular monopole is the coincident limit of a pair of singular monopoles which are

S-dual to a Wilson defect in the fundamental representation.
23Note that in order to take this coincident limit in the brane construction, we require displacing the

NS5-branes in the x4-direction so that they are all at distinct points.
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1

2

p

1

2

p

p+m

LD3 =p+m
1

LD3 =p-m
2

x1,2,3

x4-s1 -s0 s0 s1

Figure 8. D1-D3-NS5 brane configuration for singular monopoles in an SU(2) theory. Circles

with crosses, horizontal lines in red, and vertical black lines, denote NS5-branes, D1-branes and

D3-branes respectively. Linking numbers of the two D3 branes are m+ p and −m+ p respectively,

while the NS5 linking numbers are all equal to 1, as described below.

outlined earlier (a procedure that requires the bow diagram technology [18]). However,

solving Nahm’s equations for arbitrary p,m of course is a technically difficult problem of

computing non-Abelian solutions of the Nahm equation. Our goal in this section is to give

an intuitive D-brane picture of the bubbling locus of singular monopoles. We will see that

this will give a clear, physical interpretation of the space M(B,v).

To begin, consider the D1/D3/NS5-brane configuration shown in figure 8 for p = 1

and m = 0. Here there are two NS5-branes and a single D1-brane stretched between the

D3-branes. This has the interpretation of a single smooth monopole in the presence of an

’t Hooft singularity. In order to construct the field configuration of these branes, we want

to solve Nahm’s equations on the interval between the NS5-branes. For this configuration,

the D3- and NS5-branes introduce boundary conditions to the Nahm equations.

It was shown in [28, 50] that the NS5-branes (located at s = ±s1) impose Dirichlet

boundary conditions while the D3-branes introduce Nahm pole boundary conditions (lo-

cated at s = ±s0). Since m + p = 1, the Xi’s are 1 × 1 matrices and the Nahm equation

away from the boundaries reduces to its Abelian version, i.e.

dXi

ds
+

i

2
εijk[Xj , Xk] = 0 , =⇒ Xi = constant . (3.8)

This implies that the fields Xi(s) are piece-wise constant and can jump discontinuously

across a D3-brane. Explicitly, one can write solution corresponding to an SU(2)
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monopole as:

~X =


~x1 for − s1 < s < −s0

~x′1 for − s0 < s < s0

~x1 for s0 < s < s1

(3.9)

Physically, the solutions simply correspond to the position of the respective D1-brane

segment in the spatial R3 of the D3-brane world volume — in particular, ~x′1 is the position

of the smooth monopole on R3. Given the above solution, the Yang-Mills-Higgs system

(Ai, X) can be obtained by the standard reconstruction procedure of Nahm data. Such

problems have been analyzed in [26, 30], and therefore we can use their results instead of

going through the details of the reconstruction procedure. In the limit |s1| → ∞, the Higgs

field X and the gauge connection A are given by [30]

X = ~σ · ~φ , A = ~σ · ~A ,

~φ =

((
s0 +

1

2r

)
K
L
− 1

2l

) ~l
l
− l

rL

(
~d−

~l · ~d
l2
~l

)
,

~A =

((
s0 +

r + d

D

)
D
L
− 1

2l

) ~l × d~x

l
− l

L

(
~r × d~x

r
+

(
K
D
− 1

) ~l · (~r × d~x)

l r

~l

l

)
,

(3.10)

where ~σ are the Pauli matrices, the various relative position vectors and the functions K,L
are given as

~r = ~x− ~x1 , ~l = ~x− ~x′1 , ~d = ~x′1 − ~x1 ,

K = ((r + d)2 + l2) cosh (2s0l) + 2l(r + d) sinh (2s0l) ,

L = ((r + d)2 + l2) sinh (2s0l) + 2l(r + d) cosh (2s0l) ,

D = ((r + d)2 − l2) .

(3.11)

To begin with, consider the situation where the D1-brane segment between the pair of

D3-branes is far away from the location of the NS5-branes, i.e. |~x′1| → ∞, and r = |~r|
is finite. From the perspective of the D3 world volume theory, this corresponds to the

smooth monopole being far away from the location of the ’t Hooft defect. In this limit,

d = |~d| → ∞, l = |~l| → ∞, KL ∼ 1, L ∼ l2e2 s0 l, which leads to the Dirac monopole solution

at ~x = ~x1 with ’t Hooft charge B1 = diag(−1, 1):24

X ∼
(
s0 +

1

2r

)
~σ ·~l
l
, |X| =

√
~φ · ~φ ∼

(
s0 +

1

2r

)
. (3.12)

Now, let us use this to study monopole bubbling. In this description, monopole bubbling

corresponds to when the position of the D1-brane on R3
1,2,3 coincides with that of the NS5

branes. In the D3 world volume theory, this corresponds to a smooth monopole dissolving

in the ’t Hooft defect, thereby screening the ’t Hooft charge. In the present example, this

24We can apply a constant SU(2) gauge transformation to diagonalize X and A in the neighborhood of

x = x1. Here we are using the convention of [26, 30] to write down the solutions of X,A.
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happens when ~x′1 → ~x1, which implies ~r → ~l, ~d → 0, and therefore leads to complete

screening of the ’t Hooft charge, i.e.

X ∼
(
s0 +

1

2r
− 1

2r

)
~σ · ~r
r

=⇒ |X| ∼ s0 . (3.13)

This monopole bubbling configuration is labelled by the effective ’t Hooft charge v = (0, 0).

Now consider the case of arbitrary p,m. In the limit where the D1-branes are far away,

the p-pairs of NS5-branes introduce p Dirac monopoles of ’t Hooft charge Bα = diag(−1, 1)

at positions ~xα, α = 1, . . . , p, on R3 of the D3 world volume. A single Dirac monopole of

’t Hooft charge B = diag(−p, p) can be obtained by making the positions ~xα of the p pairs

NS5-branes coincide, while keeping their positions in the x4-direction unchanged.

Monopole bubbling can be observed in this set-up in the following fashion. Consider

the configuration in which the pairs of NS5-branes are well-separated. Now let us move a

total of (p− v) D1-branes such that their R3 positions coincide with that of (p− v) pairs

of NS5-branes, thereby completely screening their ’t Hooft charge, as described above.

The ’t Hooft charges of the remaining p − (p − v) = v Dirac monopoles are not screened.

Therefore, in taking the limit where R3 positions of the p Dirac monopoles coincide, we

obtain a product of ’t Hooft defects with effective charge v = (−v, v). This corresponds

to the bubbling configuration labelled by the effective ’t Hooft charge v = (−v, v). The

Type IIB description is shown in figure 9.

Now, one can use the Type IIB brane configuration to derive the quiver variety

M(B,v). Recall that M(B,v) is the transversal slice to the smooth space

M(s)(v, γm;X∞) ⊂M(B, γm;X∞) .

Since the smooth space M(s) describes the moduli of unbubbled monopoles in the bulk

away from the singular monopole, this means that M(B,v) describes the moduli of the

bubbled monopoles.

Now recall from [50] that, given a Type IIB configuration of D1/D3/NS5-branes, one

can associate a linking number to every D3 and NS5-brane.25 The linking numbers of these

three and five-branes can be read off from the brane configurations in figure 8 or figure 9.

This quantity measures the effective D1-brane number at infinity on the respective D3 or

NS5-brane [50]. We will define a Hanany-Witten frame as a brane configuration obtained

by moving NS5 and D3-branes in the original configuration past each other — creating

or destroying D1-branes in the process — such that the linking numbers of the D3 and

NS5-branes are preserved. Explicitly, using the convention of [27], we have

LD31 := nleft(NS5) + nright(D1)− nleft(D1) = m+ p ,

LD32 := nleft(NS5) + nright(D1)− nleft(D1) = −m+ p ,

LNS5α := nleft(D3) + nright(D1)− nleft(D1) = 1 , ∀α ,
(3.14)

where nleft(NS5) denotes the number of NS5 to the left of a given D3-brane, nleft(D3)

denotes the number of D3-branes to the left of a given NS5-brane, and nright(D1), nleft(D1)

denote the number of D1-branes ending on a D3 or an NS5-brane from the right and the

left respectively.

25Notice that this construction is T-dual to a D3/D5/NS5-brane configuration as studied in [50].
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LD3 =p-mLD3 =p+m

1

pp

v+m

LD3 =p-mLD3 =p+m

v+m

p-v

1 12 2

x1,2,3

x4

1

v

v+1

v

v+1

Figure 9. D1-D3-NS5-brane configuration for bubbling monopole in a SU(2) theory in the sector

v = diag(−v, v). The R3 positions of the p pairs of NS5-branes are distinct. The R3 positions of

(p− v) D1-branes coincide with the R3 positions of (p− v) pairs of NS5-branes, thereby completely

screening their ’t Hooft charge, as described above. In the figure, the pairs labelled v + 1 through

p are screened, while the pairs labelled 1 through v are not. On taking the limit where the R3

positions coincide, one obtains a single ’t Hooft defect with charge v = diag(−v, v).

Consider only D1-branes corresponding to bubbled monopoles. To read off the quiver

gauge theory whose Higgs branch corresponds to M(B,v), we need to go to a specific

Hanany-Witten frame, where these D1-branes begin and end only on NS5 branes.26 The

brane configuration resulting from these transitions is shown in figure 10. The associated

quiver, which arises as the low energy effective theory on the D1 world volume, can be easily

read off from the massless open string spectrum (see figure 11), as summarized in [50]:

1. D1-D1 open strings beginning/ending on ki D1-branes between the i-th and the

(i+ 1)-th NS5 branes give a U(ki) vector multiplet.

2. D1-D1 open strings connecting D1-branes in adjacent intervals give bifundamental

hypers.

3. D1-D3 open strings in the interval between the i-th and the (i + 1)-th NS5 branes

give wi hypers in the fundamental representation of U(ki), where wi is the number

of D3 branes in the interval.
26This is related to the fact that an NS5-brane imposes Neumann boundary conditions on the (4,4)

vector multiplet and Dirichlet boundary conditions on the adjoint (4,4) hypermultiplet, in the D1-brane

world volume theory. We refer the reader to [27, 28, 50] for details.
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1 2 3 p-v p+v 2p-2 2p-1 2p

1 2 3 p-v p-v 2 1

Figure 10. This figure shows the brane configuration of figure 9 in a specific Hanany-Witten frame

where the D1-branes localized at the origin begin and end only on NS5 branes. The number in red

is the number of D1-branes in an interval between two NS5-branes.

1 2 3 p− v − 1 p− v p− v p− v − 1 3 2 1

1 1

Figure 11. Higgs branch quiver for M(B,v) in a SU(2) theory for B = (−p, p) and v = (−v, v)

as deduced from the D3-D1-NS5-brane system. The quiver is the same as the one given in figure 4

with p→ 2p, v → 2v.

As a consistency check, one can see that the quiver agrees with figure 4 in section 2, with

p→ 2p, v → 2v.

Note that this construction of line defects in the brane description is different from

that studied in [10]. There the authors introduced singular monopoles to the world volume

theory of a stack of D3-branes by taking the limit of a D3-brane with finite D1-branes

(smooth monopoles) attached to infinity, thus creating semi-infinite D1-branes (singular

monopoles). It is not obvious to us if we can derive the description of singular monopoles

and monopole bubbling in [10] from the picture here by a chain of U-dualities. This will

be discussed in more detail in a future paper.

3.3 SU(N) defect SQM for N > 2

In this subsection, we extend the construction above to SU(N) singular monopoles for

N > 2 and discuss a prescription to determine from the defect data in a given bubbling

sector. The defect data associated with a given bubbling sector in the path integral is

specified by the SU(N) cocharacters:

B = diag(p1, p2, . . . , pN ) , v = diag(v1, v2, . . . , vN ) , (3.15)

where the diagonal entries are integers arranged in a non-decreasing order.

The Type IIB description for this configuration consists of D1-D3-NS5-branes such that

D1-branes end on N parallel D3-branes. We can then introduce a singular monopole by

adding a certain number of NS5-branes in each chamber defined by consecutive D3-branes
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Figure 12. D1-D3-NS5 configuration for monopole bubbling in a SU(N) theory. The number

of NS5-branes in the i-th chamber is ni. The number of D1-branes in the i-th chamber (begin-

ning/ending on D3-branes) is the same and denoted by k̃i, where k̃is are defined in (3.18).

whose positions in R3 coincide at the origin: x1,2,3 = 0. The generic Type IIB configuration

is shown in figure 12, where we only show the D1-branes localized at the origin.27

Let ni be the number of NS5 branes in the i-th chamber (i.e. the chamber between the

i-th and the i+ 1-th D3-brane with i = 1, . . . , N − 1) and let LD3i be the linking number

of the i-th D3 brane (i increasing left to right). Also, let k̃i be the number of D1-branes

localized at x1,2,3 = 0 in the i-th chamber.28

The data of the integers (ni, LD3i) for all i suffices to determine the entire Type IIB

brane configuration. In order to see this note that for the i-th D3 brane we have

LD3i =
i−1∑
j=0

nj + k̃i − k̃i−1 , i = 1, . . . , N , (3.16)

where k̃i (k̃i−1) is the number of D1-branes ending on the right (left) of the i-th D3-brane

and k̃0 = 0, k̃N = 0, and n0 = 0. Therefore, one can readily compute {k̃i} from the data

(ni, LD3i), thereby completely specifying the Type IIB configuration.

The above data also fixes the NS5-brane linking numbers:

LNS5α = nleft(D3) + nright(D1)− nleft(D1) = i , where
i−1∑
j=0

nj + 1 ≤ α ≤
i∑

j=0

nj , (3.17)

where i = 1, . . . , N − 1, and α = 1, . . . ,
∑N−1

j=1 nj labels the NS5-branes. This condition on

α implies that it is located in the i-th chamber.

27There can also be D1-branes away from x1,2,3 = 0 in each interval. They are related to smooth

monopoles in the presence of the ’t Hooft defect.
28Only D1-branes localized at x1,2,3 = 0 are relevant for the quiver data. There could be other freely

moving D1-branes, as in figure 9, but their presence (or absence) will not affect our discussion.
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In analogy to the case of an SU(2) defect, the map between the Type IIB data and

the defect data (B,v) is given as

B =

N−1∑
i=1

nih
i , B − v =

N−1∑
i=1

k̃iHi , (3.18)

where the Hi are simple coroots29 and the hi are magnetic weights satisfying (hi, Hj) = δij .

These translate to the following relations between the Type IIB data (ni, LD3i) and the

defect data (B,v):

ni = pi+1 − pi, (i = 1, . . . , N − 1) , LD3i = vi − p1, (i = 1, . . . , N) . (3.19)

Note that the above map is invariant under an overall shift of ~p and ~v, which implies

that the Type IIB description is invariant under transformations of the defect data of the

form (2.43). Thus, from the defect data (B,v), we can construct the brane configuration

described above (figure 12).

As before, the quiver can be read off from this configuration after a series of standard

Hanany-Witten moves, such that the D1-branes, associated with monopole bubbling, end

only on NS5-branes. In this Hanany-Witten frame, let ñα be the number of D3-branes

between the α-th and the (α + 1)-th NS5-brane, and kα and kα−1 be the number of D1-

branes ending on the right and left of the α-th NS5-brane respectively.30 Then, using the

definition of linking number of an NS5-brane, we have

kα+1 + kα−1 − 2kα + ñα = LNS5α+1 − LNS5α ,

=⇒ kα+1 + kα−1 − 2kα +

N∑
i=1

δα,LD3i
= LNS5α+1 − LNS5α , (3.20)

where k0 = 0, and k∑N−1
j=1 nj

= 0, and we have used the fact that ñα =
∑N

i=1 δα,LD3i
. This

equation allows one to compute the ranks of the gauge and flavor symmetry groups of the

Higgs branch quiver from the linking numbers of NS5 and D3-branes.

Note that the condition for the α-th gauge node in the quiver to be balanced (i.e. to

have zero β-function) is that the l.h.s. of the above equation has to vanish. This always

happens if the α-th and the (α + 1)-th NS5-brane are in the same D3 chamber in the

original Hanany-Witten frame (see figure 12), i.e. LNS5α+1 = LNS5α . However, if there is

a D3-brane between the α-th and the (α + 1)-th NS5-brane, the NS5 linking number has

an aditional contribution so that there is a single unbalanced node.

This makes the general structure of the quiver manifest. It consists of N −1 supercon-

formal sub-quivers Si (i = 1, . . . , N − 1) of length ni where all gauge nodes are balanced

which are connected by a single unbalanced gauge node, as shown in figure 13. For SU(2)

monopoles, the quiver just consists of a single superconformal sub-quiver, as we found ear-

lier, while for SU(N) monopoles, one generically ends up with a quiver containing exactly

N − 2 unbalanced nodes.

29In our convention, Hi = −ei,i + ei+1,i+1, where ei,j is an N × N matrix with the (ij)-th entry equal

to 1, and all other entries zero.
30The integers {kα} should be identified with the non-zero entries of the KN vector ~k in section 2.
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Figure 13. General form for the Higgs branch quiver associated with M(B,v) in a SU(N) theory.

Each octagon Si denotes a superconformal sub-quiver with precisely ni − 1 balanced nodes. The

circular nodes denote the unbalanced gauge nodes, the total number of such nodes being N − 2.

Note that ntot =
∑N−1

i=1 ni = pN−p1. The precise form of Si and expression for wni
are given below.

We now derive the detailed form of the superconformal sub-quivers from the Type IIB

data, by performing a sequence of Hanany-Witten moves on the configuration of figure 12,

to obtain a brane configuration from which the ADHM quiver can be read off. We will

refer to the brane configuration in figure 12, where D1-branes end on D3-branes, as the

“electric” Hanany-Witten frame (e). In an intermediate brane configuration (c), let `
(c)
i

denote the number of NS5-branes in the ith chamber.31 The linking number of the ith

D3-brane in this configuration is given as by

LD3i = L
NS5,(c)
`,i + L

D1,(c)
k,i , (3.21)

where L
NS5,(c)
`,i =

∑i−1
j=1 `

(c)
i and L

D1,(c)
k,i denote the contributions from the NS5- and D1-

branes respectively. Note that `
(e)
i = ni in the electric frame.

We now want to perform a sequence of Hanany-Witten moves — that is move NS5-

branes across adjacent D3-branes — to go to the “magnetic” Hanany-Witten frame (m),

where all the D1-branes end only on the NS5-branes: L
D1,(m)
k,i = 0 ∀i. The quiver SQM

can then be read off as the D1 world volume theory in this configuration.

Since we have the condition32

|v| ≤ |B| =⇒ ni ≥ 2k̃i , (3.22)

this can be achieved by a sequence of HW-moves in which NS5-branes cross at most, a

single D3-brane.

Let us denote the change of a generic linking number L by HW-moves across the ith D3-

brane as ∆iL. Then in going from the electric to the magnetic frame (where L
D1,(m)
k,i = 0),

we have the relations33

∆iLD3i = ∆iL
NS5
`,i + ∆iL

D1
k,i = 0 , ∆iL

D1
k,i = −LD1,(e)

k,i , ∆i`i = −∆i`i−1 . (3.23)

31Here we introduce `
(c)
i to account for the fact that in performing Hanany-Witten moves, the number of

NS5-branes in a given chamber will change.
32This condition comes from the fact that each D1-brane screens 2 coincident NS5-branes as we saw in

the last section. Therefore the completely screened condition is when 2k̃i = ni.
33∆iLD3i denotes the change in the linking number of the i-th D3-brane — there is no sum over i.
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By combining these equations, we can solve for the change in `i:

∆i`i−1 = L
D1,(e)
k,i = k̃i − k̃i−1 =⇒ ∆i`i = k̃i−1 − k̃i . (3.24)

The sign of ∆i`i tells us whether NS5-branes cross the D3-brane to the left or right.

Adding contributions from the HW-moves involving the ith and (i + 1)th D3-branes,

gives the total

∆`i = ∆i`i + ∆i−1`i = k̃i+1 + k̃i−1 − 2k̃i . (3.25)

Since `
(e)
i ≥ 2k̃i, there always exists a solution to this set of equations so that `

(m)
i ≥ 0, ∀i.

Now since moving an NS5-brane through a D3-brane changes the D3-brane contribu-

tion to the linking number by ±1, the number of D1-branes ending on the left and right

of such an NS5-brane must differ by 1 as well. This means that generically the quiver

describing the SQM on the D1-branes is of the form:

Γ0,1 Σ1 Γ1,2 Σ2 Γ2,3 ΣN−1 ΓN−1,N

The sub-quiver Σi is given by

k̃i k̃i k̃i k̃i

ωi,i−1 ωi,i+1

=Σi

where Σi is of length

|Σi| = ni + 1− |k̃i+1 − k̃i|ωi,i+1 − |k̃i−1 − k̃i|ωi,i−1 , ωi,j =

{
0 k̃i ≤ k̃j
1 k̃i > k̃j

(3.26)

while the sub-quiver Γi,i+1 is given by (with k̃0 = 0 and k̃N = 0)

k̃i + 1 k̃i + 2 k̃i+1 − 2 k̃i+1 − 1=Γi,i+1

when k̃i < k̃i+1 and

k̃i − 1 k̃i − 2 k̃i+1 + 2 k̃i+1 + 1=Γi,i+1

when k̃i > k̃i+1.
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In the expressions above we have a few special cases:

• k̃i = k̃i+1: there is no Γi,i+1 quiver connecting Σi and Σi+1, but rather the last node

of Σi is identified with the first node of Σi+1. Note that in this case |Σi + Σi+1| =

|Σi|+ |Σi+1| − 1.

• k̃i = k̃i+1 ± 1: Γi,i+1 is omitted and Σi is directly connected to Σi+1.

• |Σi| = 1: there is a single gauge node of magnitude k̃i with two fundamental hyper-

multiplets.

Here the subquivers Γi,i+1 come from NS5-branes that change chambers in going to

the magnetic Hanany-Witten frame and the subquivers Σi correspond to the NS5-branes

which do not. Moving NS5-branes to the left or right across the D3i+1-brane (determined

by the ordering of k̃i, k̃i+1) will give rise to an increasing or decreasing Γi,i+1 respectively

and additionally endows the Σi+1 or Σi subquiver respectively with a fundamental hy-

permultiplet on the gauge node of the adjacent end. This combination of the ordering of

k̃i, k̃i+1 and k̃i, k̃i−1 and their corresponding hypermultiplet nodes give rise to 4 different

types of Σi subquivers.

One can now write down the superconformal sub-quivers Si (i = 1, . . . , N − 1) which

appear in figure 13:

Si = Γi−1,i k̃i k̃i k̃i Γi,i+1

1 1

for k̃i > k̃i+1, k̃i−1,

Si = k̃i k̃i k̃i Γi,i+1

1

for k̃i−1 ≤ k̃i < k̃i+1,

Si = Γi−1,i k̃i k̃i k̃i

1

for k̃i+1 ≤ k̃i < k̃i−1,

Si = k̃i k̃i k̃i
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1(a) 1 1 1 1 1 1 1 1 1

1 1 1

1(b) 2 2 2 2 2 1

1 1 1

1(c) 2 3 3 3 3 3 3 3 3 2 1

1 1 1

Figure 14. Example of quiver SQMs in an SU(3) theory for (a) B = diag(−6, 1, 5) and v =

diag(−5, 1, 4), (b) B = diag(−5, 2, 3) and v = diag(−3, 1, 2), and (c) B = diag(−8, 3, 5) and

v = diag(−5, 2, 3). Each quiver consists of two superconformal sub-quivers separated by a single

unbalanced gauge node, which is drawn in red.

for when k̃i ≥ k̃i+1, k̃i−1. Here the number of repeated k̃i nodes (without any fundamental

hyper) are given by `
(m)
i −2, `

(m)
i −1−k̃i+k̃i−1, `

(m)
i −1−k̃i+k̃i+1, and `

(m)
i −2k̃i+k̃i−1+k̃i+1

respectively and the kni and wni are given by

kni =

{
k̃i k̃i < k̃i+1

k̃i+1 k̃i ≥ k̃i+1

, wn1+n2+...+ni =

{
0 k̃i 6= k̃i+1

1 k̃i = k̃i+1

(3.27)

and

Si = Γi−1,i k̃i Γi,i+1

2

in the special case of ni = 2ki − ki+1 − ki+1.

Now we will consider a few examples of a SU(3) defects. We will consider the ex-

amples: (a) B = diag(p1, p2, p3) = diag(−6, 1, 5) in the bubbling sector labelled by v =

diag(−5, 1, 4), (b) B = diag(−5, 2, 3) in the bubbling sector v = diag(−3, 1, 2), and (c)

B = diag(−8, 3, 5) in the bubbling sector v = diag(−5, 2, 3). The quivers associated with

the corresponding M(B,v) are shown in figure 14.
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3.4 Relation to the character equation

We now show that the quiver obtained from the brane description of monopole bubbling

discussed in this section is indeed the quiver that arises from the character equation (2.23).

Recall that each kj in the KN vector ~k, associated to the quiver SQM, contributes a term

kjx
j to the trace TrV xK (where x = e2πiν), up to some overall monomial which can be

absorbed by a shifting (B,v,K) (see equation (2.43) and subsequent discussion). Since

generically, the kj vary by at most one, multiplying TrV xK by (x + x−1 − 2) cancels all

contributions except for the terms of degree si, where si is the eigenvalue of K associated

with the first or the last node of the Σi subquiver (additionally one must include a term

from the first and last node of the full quiver) which will lead to a contribution of terms

(x+ x−1 − 2)TrV xK =

2N∑
i=1

(−1)σixni , (3.28)

where σi = 0, 1 mod2 determines the sign of each contribution.

Note first that in the case where k̃I = k̃I+1, the prefactor (x + x−1 − 2) will cancel

all contributions from the last and first nodes of the ΣI and ΣI+1 subquiver respectively.

However, k̃I = k̃I+1 implies there is a zero in the matrix

κ = v −B =
∑
I

k̃IHI = diag(κ1, . . . , κN ) , (3.29)

and hence pI+1 = vI+1. Therefore, these terms will themselves cancel and thus should not

appear in the term (x + x−1 − 2)TrV xK . Therefore, without loss of generality, we will

consider the generic case k̃I 6= k̃J .

By careful analysis (see appendix E) of the boundary cases where ΣI ,ΣI+1 joins to

ΓI,I+1, one can show that the contribution to the character equation will be of the form

(x+ x−1 − 2)TrV xK

= 1− xk̃1 − x(pN−p1−k̃N−1) + x(pN−p1) +
N−2∑
I=1

(
x(pI+1−p1) − x(pI+1−p1+k̃I+1−k̃I)

)
.

(3.30)

Now we can fix the overall factor (that is by shifting K so that it is traceless) by multiplying

by a factor of xp1 , we find the contribution to be

(x+ x−1 − 2)TrV xK

= xp1 − x(p1+k̃1) − x(pN−k̃N−1) + xpN +
N−2∑
I=1

(
xpI+1 − x(pI+1+k̃I+1−k̃I)

)
.

(3.31)

Now by using the identity

k̃I = (hI , κ) =
1

2

(
I∑

J=1

κJ −
N∑

J=I+1

κJ

)
=⇒ k̃I+1 − k̃I = κI+1 = vI+1 − pI+1 , (3.32)
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we can see that pI+1 + k̃I+1 − k̃I = vI+1. Therefore, we see that the contribution to the

character equation determined by the brane configuration can in fact be reduced

(x+ x−1 − 2)TrV xK = xp1 − xv1 − xvN + xpN +
N−2∑
I=1

(xpI+1 − xvI+1) ,

=
N∑
I=1

(xpI − xvI ) = TrNx
B − TrNx

v ,

(3.33)

and thus solves the character equation.
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A 5d, N =1∗ instanton partition function and Witten index of

ADHM QM

Consider a 4d N = 2∗ Lagrangian theory with gauge group G (and maximal torus TG) on

C2. With the same data, one can define a 5d N = 1∗ SYM on C2 × S1
β with the same

gauge group and matter content. One can now define a supersymmetric index in 5d w.r.t.

to the supercharges Q ≡ Q1
1̇ = −Q12̇

, Q† ≡ Q2
2̇ = Q

21̇
(where QAα , Q

A
α̇ are the supercharges

of the 4d/5d theory):

Z5d(ε1, ε2, ai,m) = TrHQFT(C2)(−1)F e−β{Q,Q
†}e−(ε1(J1+JR)+ε2(J2+JR)+2mJf+

∑
i aiOi),

(A.1)

where the trace is over the Hilbert space HQFT(C2) getting contributions only from states

which are invariant under Q-supersymmetry. Additionally, J1, J2 are the Cartans of the

spatial SO(4) rotating two orthogonal C ∼= R2s which we denote as SO(4)1. Writing

so(4)1
∼= su(2)l⊕ su(2)r, the Cartan generators of SU(2)l and SU(2)r are given in terms of

J1, J2 as: Jl = J1−J2
2 , Jr = J1+J2

2 . Another SO(4) symmetry arises as the subgroup of the

SO(5) R-symmetry which is unbroken by a single non-zero scalar vev (see below), which

we denote as SO(4)2. Writing so(4)2
∼= su(2)R ⊕ su(2)f , we denote the Cartan generators

of SU(2)R and SU(2)f as JR and Jf respectively. {Oi} denotes the Cartan generators of

the gauge group.

Geometrically, the twists introduced by J1, J2 in the definition of the index above can be

realized by replacing the flat 5d spacetime by a C2 bundle over S1, i.e. C2×R coordinatized

by (z1, z2, τ) ∈ C2 × S1, with the following identification (Melvin identification):

(z1, z2, τ) ∼ (eε1z1, e
ε2z2, τ + β) , (A.2)
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so that we can take 0 ≤ τ < β. The metric on the fiber bundle is chosen such that the

monodromy along S1 is an element (g, r) ∈ SO(4)1 × SU(2)R. Explicitly, parametrizing

R4 as a circle fibration over R3 and defining ε± = ε1±ε2
2 , the 5d metric is

ds2
5(Ω) =

1

4r

(
dr2+r2dθ2+r2 sin2 θ

(
dφ+Ṽ φdτ

)2
)

+
r

4

(
dψ+ω+Ṽ ψdτ

)2
+dτ2 , (A.3)

where the vector field Ṽ is given as follows:

Ṽ r = Ṽ θ = 0 , Ṽ φ = −2iε+
β

, Ṽ ψ = −2iε−
β

. (A.4a)

The resulting space-time is called an Ω-background. Note that the Ω-deformed action for

the 4d,N = 2∗ theory can be obtained by using this metric to write the 5d theory on the

bundle and then dimensionally reducing along the circle (which amounts to setting the Lie

derivatives of all fields along the circle to zero).

The index can be written as a path integral with the following boundary condition at

the infinity of R4:

F (4) −→ 0 , (Aτ + iY ) −→ a , a ∈
(
tG ⊗ C

)
/Λcr . (A.5)

The standard 5d N = 1∗ SYM action has to be deformed to accommodate the various

twists in the index. For generic values of the parameters ε1, ε2, and appropriate back-

ground fields turned on, the Ω-deformed theory preserves a supercharge Q, which squares

to a U(1)2
ε1,ε2 × TG ×U(1)m-transformation on the fields. The Q-fixed locus of the path

integral consists of a set of isolated fixed points on the moduli space of G-instantons on R4

under the combined U(1)2
ε1,ε2 × TG × U(1)m action [34, 44]. For G = SU(N), these fixed

points are labelled by N -tuples of Young diagrams consisting of k boxes, where k is the

instanton number.

The path integral can then be evaluated from the one-loop determinant arising from

fluctuations of fields around these fixed points. The universal part of the determinant is

denoted as Z1−loop, while the part dependent on the fixed points is denoted as Zinst. The

localized 5d index can therefore be written as34

Z5d = Z1−loop. Zinst ,

Z1−loop = Zvec
1−loop. Z

adj.hyper
1−loop

=

(
(uv;u, v)rank(G)

∞
∏

α∈roots

(uv eα(a);u, v)∞

)
×

( ∏
α∈roots

(
√
uv eα(a)+m;u, v)−1

∞

)
,

Zinst =

∞∑
k=0

qkZ inst
k , (u = e−ε1 , v = e−ε2 , q = e

− 8π2β

g2
5d ) .

where {µi} are chemical potentials associated to the global symmetry of the theory.

Now consider the instanton part of the 5d path integral. A saddle point of the path

integral at a given τ -slice corresponds to a 4d instanton localized at the origin. These sad-

dle points can therefore be visualized as k-instantons whose parameters slowly vary with τ .

34The function (x; y, z)∞ is defined as (x; y, z)∞ =
∏∞
i,j=0(1− x yi zj).
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This implies that one can approximate the path integral with that of a quantum mechanical

particle moving in the moduli space of instantons — this is called the moduli space approx-

imation, and it becomes exact in computing certain quantities in theories with supersym-

metry. Using the moduli space approximation, the instanton part of the 5d index can be

written in terms of the Witten index of a (4, 4) supersymmetric quantum mechanics (SQM):

Z inst
k (ε1,2, ai,m) = TrHSQM

k
(−1)F e−β{Q,Q

†}e−(ε1(J1+JR)+ε2(J2+JR)+2mJf+
∑
i aiOi) , (A.6)

where HSQM
k is the Hilbert space of the supersymmetric quantum mechanics on k-instanton

moduli space. The bosonic part of HSQM
k has complex dimension 2h∨(G)k (where h∨(G) is

the dual Coxeter number) which is the dimension of k-instanton moduli space Mk
inst. The

fermionic part also has complex dimension 2h∨(G) — this is the dimension of a fiber of

the vector bundle V(Radj) onMk
inst associated with fermionic zero modes from the adjoint

hypermultiplet.

The natural action of U(1)ε1 × U(1)ε2 on C2 induces an action on Mk
inst. Similarly,

there are natural actions of TG and U(1)m. Therefore, the Witten index is given by a

U(1)2 × TG × U(1)m equivariant integral over Mk
inst with an appropriate characteristic

class on the manifold as integrand (such integrals were first considered in [45] and then

shown to be related to the instanton partition function in [44]). If Mk
inst were a smooth

compact space with isolated U(1)2 × TG × U(1)m fixed points, the integral would be well-

defined and then one could use a generalization of the Atiyah-Bott localization formula to

write the integral formally as a sum over fixed points. However, Mk
inst is noncompact and

has singularities due to small instantons, and therefore one has to be careful in defining

such equivariant integrals. A standard alternative is to replace Mk
inst by the smooth space

Mk
ADHM via the ADHM construction with a non-zero real stability/FI parameter and

regularize the infinite volume with a moment map [45]. The ADHM construction has a

clear interpretation in the string theory embedding, where the SQM is realized as a world

volume gauge theory on a stack of D0-branes probing a stack of D4-branes which engineers

the 5d gauge theory. The group action as well as the characteristic classes can be extended

to Mk
ADHM and the equivariant integral is well-defined. In the case of the N = 2∗ theory

studied in this paper the resulting Witten index is independent of the FI parameter. For

more general hypermultiplet representations this will not be the case.

We discuss some basic properties of the (4,4) Witten index in appendix B. We review

the related equivariant integral in appendix D.

B Basic properties of the Witten index

In this section, we will focus on ADHM SQMs associated with instantons in an N = 1∗

SU(N) theory on S1 × C2/Zn. Consider a (4,4) SQM living on a circle of radius β with a

gauge group Ggauge and a flavor symmetry group Gflavor. These are quiver gauge theories

with Ggauge =
∏n
i=1 U(ki), where

∑
i ki = k, with fundamental and bifundamental matter.

For n = 1, we have a single U(k) gauge group with a single adjoint hypermultiplet and

fundamental matter.
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The full global symmetry of the theory, including the R-symmetry, is

Gglobal = SU(2)l × SU(2)r × SU(2)R × SU(2)f ×Gflavor ,

where SU(2)l × SU(2)r × SU(2)R is the R-symmetry associated with (4,4) supersymmetry.

Let Jl, Jr,JR, Jf be the Cartan generators of SU(2)l, SU(2)r,SU(2)R and SU(2)f respec-

tively, while the flavor symmetry generators are collectively labelled as {Oj}. The Witten

index of the theory is then formally written as

ZSQM(ε1, ε2, ai,m) = TrHSQM(−1)F e−β{Q,Q
†}e−(ε1(J1+JR)+ε2(J2+JR)+2mJf+

∑
i aiOi) , (B.1)

where the generators J1, J2 are related to Jl, Jr as Jl,r = J1∓J2
2 .

B.1 (4,4) multiplets in terms of (0,2) multiplets

Let us first list the (4,4) multiplets and their global symmetries, which can be effectively

read off from a Type IIA description. Recall that the ADHM SQMs are realized as D0

world volume theories in a D0-D4-brane system where the D4-branes wrap the orbifold

C2/Zn. The massless modes of the open string spectrum in the D0-D4-brane system can

be assembled in (4, 4) multiplets on the D0-brane as follows:

D0-D0 : vector multiplet (At, ϕ, ϕAa), (λ̄
A
α̇ , λ̄

a
α̇)

adjoint/bifundamental hyper (aαβ̇), (λAα , λ
a
α)

D0-D4 : fundamental hyper (qα̇), (ψA, ψa).

(B.2)

where the indices correspond to the different global symmetries: α, α̇, A, a ∈ {1, 2} label the

indices of SU(2)l, SU(2)r, SU(2)R and SU(2)f respectively. Note that we have suppressed

all gauge indices for the fields listed above.

Here ϕ is a “real” scalar in the sense that it is valued in the Lie algebra of the compact

gauge group, while ϕAa and aαβ̇ are complex scalars satisfying a natural reality constraint,

namely, they define quaternions.

The localization formula for the Witten index is given in terms of (0,2) supermultiplets

(see below). Therefore, we need to write the various (4,4) supermultiplets in our theory

in terms of (0,2) supermultiplets. To do this, it is convenient to first split up (4,4) mul-

tiplets into (0,4) multiplets, and then split them further into (0,2) constituents. This is

summarized in table 1. We refer the reader to [8] for more details.

B.2 Localization formula

For the index to be computable using standard localization techniques, the space of super-

symmetric vacua should not have any flat directions. The global symmetry twists in the

definition of the Witten index ensure that the flat directions coming from various hyper-

multiplet scalars are lifted. However, one of the adjoint scalars ϕ, which lives in a (0, 2)

vector multiplet inside the (4, 4) vector multiplet, is neutral under these symmetries and

therefore flat directions associated with it cannot be lifted by the above twists. For unitary

gauge groups, one can turn on FI parameters which lift the flat directions for ϕ. In this
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(4,4) multiplets (0,4) constituents (0,2) constituents (r+, r−, f)

Vector
Vector (At, ϕ, λ̄

A
α̇ )

Twisted adj. hyper (ϕAa, λ̄
a
α̇)

Vector + Adj. Fermi

(Adj. +Adj.) Chiral

(0,0,0) + (1,0,0)

(1
2 , 0, 1

2) + (-1
2 , 0, 1

2)

Adj./Bif.Hyper
Adj./Bif Hyper (aαβ̇ , λ

A
α )

Adj./Bif. Fermi (λaα)

(Adj./Bif. + Adj./Bif.) Chiral

(Adj./Bif. + Adj./Bif.) Fermi

(1
2 ,1

2 ,0) + (1
2 , -1

2 , 0)

(0,1
2 ,1

2) + (0,-1
2 ,1

2)

Fund. Hyper
Fund. Hyper (qα̇, ψ

A)

Fund. Fermi (ψa)

(Fund. + Fund.) Chiral

(Fund. + Fund.) Fermi

(1
2 ,0,0) + (1

2 ,0,0)

(0, 0, 1
2) + (0, 0, 1

2)

Table 1. (4,4) mutiplets in terms of (0,4) and (0,2) multiplets. The last column lists the charges

(r+, r−, f) for the various chiral and fermi multiplets that constitute the (4,4) multiplets. Note that

the m-dependent terms in (B.10) and (2.48) arise from the fields charged under the SU(2)f .

paper, we will only consider SQMs which arise as ADHM QM of instantons associated

with 5d N = 1∗ SU(N) gauge theories. The gauge groups Ggauge for these ADHM QM

are products of unitary factors so that one can always turn on appropriate FI parameters.

Following the approach in [7, 8], we will only turn on real FI parameters {ζi}. For our study

of Witten indices associated with 5d instanton partition functions, it will be sufficient to

take ζi = ζ, for all i.

The path integral associated with the index can then be computed in the weak gauge

coupling limit e2β3 → 0 using standard localization techniques [7, 8]. The answer generi-

cally depends on the FI parameter ζ. In the present problem, we are interested in computing

a 5d instanton partition function, which is given by an equivariant integral of trigonometric

characteristic classes over the Higgs branch of the SQM. Therefore, we should compute the

associated Witten index in a region of the parameter space of ζ such that the index has

support only on the Higgs branch. The relevant limit of the Witten index is the Higgs

scaling limit [7] where we take e2β3 → 0 holding ζ ′ = β2e2ζ fixed to a non-zero value.

In this limit, the vector multiplet and the chiral adjoint multiplet become massive with

a mass of the order of MH = e
√
|ζ|, and can be integrated out so that the low energy

effective theory is well approximated by the theory on the Higgs branch. The Witten index

computed in the Higgs scaling limit is piecewise constant in ζ ′, and undergoes wall-crossing

at ζ ′ = 0 where the effective Higgs masses MH vanish.

We now present the localization formula for a (4,4) quiver ADHM SQM (associated

with instantons in an N = 1∗ SU(N) theory on S1 × C2/Zn) with Ggauge =
∏n
i=1 U(ki)

with
∑n

i=1 ki = k - we refer the reader to [7, 8] for details. The Witten index can be

written in terms of the (0,2) multiplets, i.e. (0,2) vector multiplets and (0,2) chiral and

fermi multiplets transforming in a representation R of Ggauge ×Gflavor. The path integral

in (B.1) can be reduced to an integral over the space M of bosonic zero modes from the

vector multiplets, given by the holonomy of the gauge field around S1 and the adjoint scalar

ϕ (neutral under the global symmetry twists), which by constant gauge transformations

can be put in the Cartan subalgebra of the SQM gauge group. Given the eigenvalues ϕiI
and Aiτ I (such that Aiτ I + 2π ∼ Aiτ I), with I = 1, 2, . . . , ki and i = 1, 2, . . . , n, the k

variables φiI = ϕiI +iAiτ I define complex coordinates on M. Therefore, the space of bosonic

zero modes can be identified as M = tGgauge ⊗ C/Λcoroot
∼= (C?)k.

– 43 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
4

The integral on M can be further reduced to a contour integral over k complex variables

φiI . In the Higgs scaling limit, the contour integral is explicitly given as

Z
(4,4)
SQM(µ, ε±; ζ ′) =

1∏n
i=1 ki!

∮
JK(ζ′)

n∏
i=1

ki∏
I=1

[
dφiI
2πi

]
Z1−loop ,

Z1−loop := Z
(0,2)
vector · Z

(0,2)
chiral · Z

(0,2)
fermi ,

(B.3)

The various contributions to Z1−loop are given as:

Z
(0,2)
vector =

∏
α∈roots

2 sinh
α(φ)

2
,

Z
(0,2)
chiral =

∏
ρ∈weights(Rchiral)

(
2 sinh

ρ(φ, a) + 2ε+ r
+ + 2ε− r

− + 2mf

2

)−1

,

Z
(0,2)
fermi =

∏
ρ∈weights(Rfermi)

2 sinh
ρ(φ, a) + 2ε+ r

+ + 2ε− r
− + 2mf

2
,

(B.4)

where r+, r−, f denote the charges of the respective fields under the Cartan generators

Jr + JR, Jl, Jf respectively.

The integrand diverges along certain hyperplanes Hi in M, where non-zero modes

arising from chiral multiplets become massless. Such a hyperplane is of the form:

Hi =
{
φ ∈M|Qi(φ) + 2r+

i ε+ + 2r−i ε− + 2mf +QFi (a) = 0
}
, (B.5)

where Qi ∈ t∗Ggauge
, QFi ∈ t∗Gflavor

are charge covectors associated to the gauge and flavor

symmetry respectively. Let Msing be a collection of points in M where at least k such

linearly independent hyperplanes intersect. Following [7, 8], the integral in (B.3) should

be evaluated on a compact contour which is a given by a collection of infinitesimal com-

pact contours around a certain subset of points in Msing. The appropriate subset and

the resultant sum of residues can be conveniently stated using the Jeffrey-Kirwan residue

prescription [42, 57] which we will describe momentarily.

Let {Ql ∈ t∗} be a collection of charge covectors, with l = 1, . . . , L, for some L, such

that {Hl} defines a collection of L hyperplanes in M intersecting at φ = φ∗, i.e.

Hl =
{
φ ∈M|Ql(φ− φ∗) = 0

}
. (B.6)

For notational simplicity, let us take φ∗ = 0 — for generic φ∗ one has to shift the variables

φI appropriately. The contour integral of k complex variables has a pole at φ = 0 if L ≥ k
hyperplanes intersect at that point. This hyperplane arrangement is called projective [4, 42]

when the L charge covectors are contained in a half-space of t∗. In all ADHM SQMs

associated with instantons in 5d N = 1∗ SYM, the projective condition is satisfied.

Now, let us compute the JK residue of the above integrand at φ = φ∗ = 0. On

Laurent-expanding the integrand around φ = 0, the non-zero residues are obtained from

simple poles. Near the singularity, the relevant denominator takes the form:

1

Ql1(φ) . . . Qlk(φ)
,
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where Ql1 , · · · , Qlk(φ) are k independent covectors. The definition of the JK residue also

depends on a covector η ∈ t∗. For a projective arrangement, the JK residue at φ = 0 is

then defined as

JK−Res({Ql},η)
dφ1 · · ·dφk

Ql1(φ) . . .Qlk(φ)
:=

{
|det(Ql1 . . .Qlk)|−1, if η ∈Cone(Ql1 . . .Qlk)

0, otherwise,
(B.7)

where η ∈ Cone(Ql1 . . . Qlk) if η =
∑k

i=1 aiQi with strictly positive coefficients ai (η should

be in the interior of the cone). Finally, to complete the contour prescription given in (B.3),

we set η = ζ ′(1, . . . , 1). It was shown in [7, 8], that this choice sets the residues of all poles

coming from the asymptotic region of M to zero. We denote this contour prescription as

JK(ζ) in (B.3).

As an illustrative example, consider the case of an Abelian quiver gauge theory. The

singular hyperplanes are of the form:

HAbelian
i = {φ ∈M|Qiφ+ 2r+

i ε+ + 2r−i ε− + 2mf +QFi (a) = 0} , (B.8)

In this case, one can choose r+
i > 0, for all chiral multiplets, using shifts by gauge and/or

flavor charges. Therefore, a given pole φ = φ∗, can either correspond to a set of singular

hyperplanes with Qi > 0 or a set with Qi < 0, but never both. Let ∆(±) denote the set

of poles of the contour integral corresponding to singular hyperplanes with Qi > 0 for all

i, and Qi < 0 with all i respectively. Then, applying the definition (B.7) for r = 1 to the

formula (B.3), we get [4]:

Z
(4,4)
SQM(a,m, ε±; ζ ′) =

∮
JK(ζ′)

[ dφ

2πi

]
Z1−loop

=


∑

φ∗∈∆+ Resφ=φ∗

[
Z1−loop

dφ
2πi

]
if ζ ′ > 0 ,

−
∑

φ∗∈∆− Resφ=φ∗

[
Z1−loop

dφ
2πi

]
if ζ ′ < 0 .

(B.9)

B.3 ADHM SQM for 5d N = 1∗ SU(N) SYM on S1 × C2

As an illustrative example, consider the Witten index for the (4,4) ADHM SQM associated

with k-instantons in a 5d U(N) or SU(N) N = 1∗ SYM on S1 × C2 — this corresponds

to the n = 1 quiver in the notation of appendix B.2. The SQM consists of a single U(k)

vector multiplet with a single adjoint hyper and N fundamental hypers. The Witten index

for this theory could be written from the general equation (B.3) and table 1 as follows:35

Z
(4,4)
SQM(a,m, ε1,2; ζ ′)

=
1

k!

∮
JK(ζ′)

[
dφI
2πi

]
Zvector
k, (4,4)(φ,m, ε1,2) · Zadj

k, (4,4)(φ,m, ε1,2) · Z fund
k, (4,4)(φ, a, ε1,2) , (B.10)

35In all Witten index formulae, we adopt the notation: 2 sinh (x± y) = 2 sinh (x+ y) 2 sinh (x− y).
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where the contribution of different (4,4) multiplets to the index

Zvec
k, (4,4)(φ, a, ε1,2) =

k∏
I,J=1

2 sinh 1
2(φIJ + 2ε+)

2 sinh 1
2(φIJ +m± ε+)

×
k∏

I 6=J
2 sinh

φIJ
2
,

Zadj
k, (4,4)(φ, a,m, ε1,2) =

k∏
I,J=1

2 sinh 1
2(φIJ +m± ε−)

2 sinh 1
2(φIJ + ε1) 2 sinh 1

2(φIJ + ε2)
,

Z fund
k, (4,4)(φ, a,m, ε1,2) =

k∏
I=1

N∏
i=1

2 sinh 1
2(±(φI − ai) +m)

2 sinh 1
2(±(φI − ai) + ε+)

.

(B.11)

can be computed from the decomposition of (4,4) multiplets into (0,2) multiplets, and then

using the prescription in (B.3).

The contour integral should be evaluated using the JK prescription. Let us write down

the formula (B.10) explicitly in the chamber ζ ′ > 0. The ζ ′ < 0 formula can be worked out

in an analogous fashion. For the (4,4) ADHM SQM under consideration, it was explicitly

shown [8] that the JK prescription leads to the Young diagram formula, such that the poles

of the above contour integral are labelled by N -tuples of Young diagrams (Y1, Y2, . . . , YN )

with the total number of boxes |~Y | =
∑N

α=1 |~Yα| = k. The resultant Witten index, which

is usually written in terms of the 5d N = 1∗ vector- and adjoint hyper-multiplets, can be

expressed as:

Z
(4,4)
k SQM (a,m, ε1,2; ζ ′ > 0) =

∑
~Y

zvec
~Y , 5d

(ε1, ε2, a)zadj
~Y , 5d

(ε1, ε2, a,m) , (B.12)

where zvec
~Y , 5d

and zadj
~Y , 5d

are contributions of the 5d vector multiplet and the 5d hypermulti-

plet at the pole labelled by ~Y — the explicit expressions are discussed below. In order to

write these we note that for a given ~Y , each box in a given N-tuple is labelled by a φI for

some I (we choose a rule where the count of I starts at the box at the leftmost corner of

the first non-empty Young diagram) and the corresponding poles in φI are given by36

φI = φs := aα + ε+ − iαε1 − jαε2 , (B.13)

where I = 1, . . . , k and α = 1, . . . , N , with s = (iα, jα) denoting a box in the α-th Young

diagram in ~Y .37

The 5d vector multiplet contribution to the residue at ~Y is

zvec
~Y , 5d

(ε1, ε2,~a) =
1∏

(α,β,s∈Yα) sinh 1
2Eαβ(s) sinh 1

2(−2ε+ + Eαβ(s))
,

Eαβ(s) := E(aα − aβ , Yα, Yβ , s) = aα − aβ − ε1LYβ (s) + ε2(AYα(s) + 1) ,

(B.14)

36It is a special feature of 5d N=1* U(N) partition function that the residues arising from the other

poles (i.e. the ones which depend on the adjoint mass m) are zero. This was already noted in the original

paper of Nekrasov [44] and proved carefully in later papers — we refer the reader to section 3.1 of [8] for

a detailed proof.
37Our convention for Young diagrams is to draw them in the first quadrant with i and j labelling the

horizontal and vertical axes respectively, with i and j increasing away from the origin.
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where LYα(s) is the distance of the box s from the rightmost edge of the Young diagram

in the same row, and AYα(s) is the distance of the box s from the bottom of the diagram

in the same row.

The 5d adjoint hypermultiplet contributes as follows:

zadj
~Y , 5d

(ε1, ε2,~a,m) =
∏

(α,β,s∈Yα)

sinh
1

2
(Eαβ(s) +m− ε+)× sinh

1

2
(Eα,β(s)−m− ε+) .

(B.15)

Combining all the residues, the k instanton partition for a given N -tuple Young dia-

grams ~Y = {Y1, Y2, · · · , YN} is

Z inst
k =

∑
|~Y |=k

N∏
α,β=1

∏
s∈Yα

sinh 1
2(Eα,β(s) +m− ε+) sinh 1

2(Eα,β(s)−m− ε+)

sinh 1
2Eα,β(s) sinh 1

2(Eα,β(s)− 2ε+)
. (B.16)

C Computation of Zmono from the defect SQM

In this section, we compute explicit expressions for Zmono associated with ’t Hooft operators

in N = 2∗ SU(2) SYM using the Witten index formula (2.48)–(2.49) of the related SQMs

discussed in section 2.3. The function Zmono is labelled by the following defect data:

B =
1

2
diag(p, −p) , v =

1

2
diag(v, −v) , (C.1)

where p is a positive integer, and v = p, p − 2, p − 4, . . . ,−p. We will compute Zmono

for a few small values of p and v below — the SQMs, along with the defect data and

the instanton data, associated with Zmono in these examples are listed in table 2. The

resultant expressions are identical to those assembled from the IOT expressions summarized

in (G.13)–(G.14), if we identify the equivariant parameters in the following fashion:38

a := 2iπa , m := 2iπm , ε+ := iπλ , ε− := 0 . (C.2)

The Witten indices are even functions of ε+ indicating that they are invariant under wall-

crossing w.r.t. the FI parameters. We will use the pole prescription corresponding to the

chamber ζ ′ > 0 to evaluate them.

• (p = 3,v = 1). The defect data is given as B = diag1
2(3, −3) and v = diag1

2(1,−1).

From equation (2.23), we obtain K = diag(−1
2 ,

1
2). Using the shift transformation as

discussed in section 2.4, we have K = diag(1, 2) and v = diag(2, 1), which leads to

the following U(2) instanton data on a C2/Zn orbifold (n > 3):

~k = (0, 1, 1, 0, . . . , 0) ~w = (0, 1, 1, 0, . . . , 0) v = diag(2, 1). (C.3)

The associated (4, 4) SQM has a U(1) × U(1) gauge group with one bifundamental

hyper and one fundamental hyper at each node, as given in table 2. The Witten

38Here a a complex number.
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Defect Data (B,v) KN Data (~k, ~w) Quiver SQM

B =
1

2
(3,−3),

v =
1

2
(1,−1).

~k = (0, 1, 1, 0, . . . , 0),

~w = (0, 1, 1, 0, . . . , 0).

11

1 1

B =
1

2
(4,−4),

v =
1

2
(0, 0).

~k = (0, 1, 2, 1, . . . , 0),

~w = (0, 0, 2, 0, . . . , 0).

2

2

11

B =
1

2
(4,−4),

v =
1

2
(2,−2).

~k = (0, 1, 1, 1, . . . , 0),

~w = (0, 1, 0, 1, 0 . . . , 0).

1 11

11

Table 2. Summary table for examples of quiver SQMs associated with the monopole bubbling

indices of ’t Hooft operators in N = 2∗ SU(2) SYM.

index in the Higgs scaling limit can be written as

ZSQM(a,m, ε1,2) =

∮ [
dφI
2πi

]
Zvec
~k
· Zbif

~k
· Z fund

~k,~w
,

Zvec
~k

(φ,m, ε1,2) =

(
2 sinh(ε+)

2 sinh 1
2(m± ε+)

)2

,

Zbif
~k

(φ,m, ε1,2) =
sinh 1

2(φ2
1 − φ1

1 +m+ ε−) sinh 1
2(φ1

1 − φ2
1 +m− ε−)

sinh 1
2(φ2

1 − φ1
1 + ε+ + ε−) sinh 1

2(φ1
1 − φ2

1 + ε+ − ε−)
,

Z fund
~k,~w

(φ, a,m, ε1,2) =
sinh 1

2(φ1
1 − a2 +m) sinh 1

2(−φ1
1 + a2 +m)

sinh 1
2(φ1

1 − a2 + ε+) sinh 1
2(−φ1

1 + a2 + ε+)

×
sinh 1

2(φ2
1 − a1 +m) sinh 1

2(−φ2
1 + a1 +m)

sinh 1
2(φ2

1 − a1 + ε+) sinh 1
2(−φ2

1 + a1 + ε+)
. (C.4)

From the residue prescription following (2.48)–(2.49) in section 2.3, the poles are

labelled by the following doublets of colored Young diagrams:

I.

 1
2 , ∅

 II.
(

2 , 1
)

III.
(
∅ , 1 2

)
(C.5)

where the (i, j)-th box in the `-th Young diagram is labelled by its Zn-charge, i.e

s = r` + i − j, such that the total number of boxes with charge s is ks. The pole
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associated with a box with coordinates (i, j) and Zn-charge s in the `th Young diagram

of a given doublet is:

φsI = a` + ε+ − iε1 − jε2 . (C.6)

Explicitly, the poles of the contour integral are given by our residue prescription

as follows:

I. φ1
1 = a1 − 2ε+ + ε−, φ

2
1 = a1 − ε+ ,

II. φ1
1 = a2 − ε+, φ2

1 = a1 − ε+ ,
III. φ1

1 = a2 − ε+, φ2
1 = a2 − 2ε+ − ε− .

(C.7)

Computing residues at the three poles, with a1 = −a2 = a, we obtain

Zmono(a,m, ε+; p = 3, v = 1) = ZSQM(a,m; ε+, ε−)|ε−=0

=
sinh 1

2(2a+m− 2ε+) sinh 1
2(2a−m− 2ε+)

sinh 1
2(2a− ε+) sinh 1

2(2a− 3ε+)

+
sinh 1

2(2a+m+ 2ε+) sinh 1
2(2a−m+ 2ε+)

sinh 1
2(2a+ ε+) sinh 1

2(2a+ 3ε+)

+
sinh 1

2(2a+m) sinh 1
2(2a−m)

sinh 1
2(2a+ ε+) sinh 1

2(2a− ε+)
. (C.8)

• (p = 4,v = 0). The defect data, after the usual shift, is given as:

B = diag(4, 0) , v = diag(2, 2) , (C.9)

with the associated KN data:

~k = (0, 1, 2, 1, 0, . . .) , ~w = (0, 0, 2, 0, 0, . . .) , r = v = diag(2, 2) . (C.10)

The defect SQM is given by the N = (4, 4) quiver in table 2. This has contributions

from the vector, fundamental chiral, and bifundamental chiral multiplets:

Zvec
~k

=

(
2sinh(ε+)

2sinh 1
2
(m±ε+)

)4
sinh 1

2
(±φ2

12)sinh 1
2
(±φ2

12+2ε+)

sinh 1
2
(φ2

12+m±ε+)sinh 1
2
(φ2

21+m±ε+)
,

Z fund
~k,~w

=
2∏
i=1

sinh 1
2
(φ2

1−ai+m)sinh 1
2
(φ2

2−ai+m)sinh 1
2
(−φ2

1+ai+m)sinh 1
2
(−φ2

2+ai+m)

sinh(φ2
1−ai+ε+)sinh 1

2
(φ2

2−ai+ε+)sinh 1
2
(−φ2

1+ai+ε+)sinh 1
2
(−φ2

2+ai+m)
,

Zbif
~k

=

(
sinh 1

2
(φ21

11+m+ε−)sinh 1
2
(φ12

11+m−ε−)sinh 1
2
(φ21

21+m+ε−)sinh 1
2
(φ12

12+m−ε−)

sinh 1
2
(φ21

11+ε1)sinh 1
2
(φ12

11+ε2)sinh 1
2
(φ21

21+ε1)sinh 1
2
(φ12

12+ε2)

)
×
(

sinh 1
2
(φ32

11+m+ε−)sinh 1
2
(φ23

11+m−ε−)sinh 1
2
(φ32

12+m+ε−)sinh 1
2
(φ23

21+m−ε−)

sinh 1
2
(φ32

11+ε1)sinh 1
2
(φ23

11+ε2)sinh 1
2
(φ32

12+ε1)sinh 1
2
(φ23

21+ε2)

)
,

(C.11)

where φiIJ = φiI − φiJ and φijIJ = φiI − φ
j
J .
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From the residue prescription following (2.48)–(2.49) in section 2.3, the poles are

labelled by the following doublets of colored Young diagrams and their symmetric

pairs (i.e. doublets of Young diagrams I, II and III, with Y1 ↔ Y2):

I.

 1 2
2 3 , ∅

 II.

 1
2 3 , 2

 III.

 2 3 ,

1
2

 (C.12)

where the (i, j)-th box in the `-th Young diagram is labelled by its Zn-charge, i.e

s = r` + i − j, such that the total number of boxes with charge s is ks. The pole

associated with a box with coordinates (i, j) and Zn-charge s in the `th Young diagram

of a given doublet is:

φsI = a` + ε+ − iε1 − jε2. (C.13)

Explicitly the poles can be listed as follows:

I.) φ1
1 = a+ε+−ε1−2ε2 II.) φ1

1 = a+ε+−ε1−2ε2 III.) φ1
1 =−a+ε+−ε1−2ε2

φ2
1 = a+ε+−ε1−ε2 φ2

1 = a+ε+−ε1−ε2 φ2
1 = a+ε+−ε1−ε2

φ2
2 = a+ε+−2ε1−2ε2 φ2

2 =−a+ε+−ε1−ε2 φ2
2 =−a+ε+−ε1−ε2

φ3
1 = a+ε+−2ε1−ε2 φ3

1 = a+ε+−2ε1−ε2 φ3
1 = a+ε+−2ε1−ε2

(C.14)

Plugging these into (C.11), we get the contributions:

I.
sinh 1

2(2a±m− ε+) sinh 1
2(2a±m− 3ε+)

sinh(a) sinh2(a− ε+) sinh(a− 2ε+)
,

II.
sinh2 1

2(2a±m− ε+)

sinh2(a) sinh2(a− ε+)
,

III.
sinh 1

2(2a±m+ ε+) sinh 1
2(2a±m− ε+)

sinh(a± ε+) sinh2(a)
.

(C.15)

The symmetric pair for each of these diagrams leads to poles for which the contribu-

tion to Zmono is given by I, II or III, with a→ −a. This gives us the final result:

Zmono(a,m, ε+; p = 4, v = 0) =

[
sinh 1

2(2a±m− ε+) sinh 1
2(2a±m− 3ε+)

sinh(a) sinh2(a− ε+) sinh(a− 2ε+)

+
sinh2 1

2(2a±m− ε+)

sinh2(a) sinh2(a− ε+)
+

sinh 1
2(2a±m+ ε+) sinh 1

2(2a±m− ε+)

sinh(a± ε+) sinh2(a)

]
+
[
a→ −a

]
.

(C.16)

• (p = 4,v = 2). The KN data of this contribution is described by the vectors:

~k = (0, 1, 1, 1, 0, . . .) , ~w = (0, 1, 0, 1, 0, . . .) , r = v = diag(3, 1). (C.17)
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The SQM is given by the N = (4, 4) quiver given in table 2. This has contributions

from the vector, fundamental chiral, and bifundamental chiral multiplets:

Zvec
~k

=

(
2sinh(ε+)

2sinh 1
2
(m±ε+)

)3

,

Zbif
~k

=
sinh 1

2
(φ21

11+m+ε−)sinh 1
2
(φ12

11+m−ε−)sinh 1
2
(φ32

11+m+ε−)sinh 1
2
(φ23

11+m−ε−)

sinh 1
2
(φ21

11+ε1)sinh 1
2
(φ12

11+ε2)sinh 1
2
(φ32

11+ε1)sinh 1
2
(φ23

11+ε2)
,

Z fund
~k,~w

=
sinh 1

2
(φ1

1−a2+m)sinh 1
2
(−φ1

1+a2+m)sinh 1
2
(φ3

1−a1+m)sinh 1
2
(−φ3

1+a1+m)

sinh 1
2
(φ1

1−a2+ε+)sinh 1
2
(−φ1

1+a2+ε+)sinh 1
2
(φ3

1−a1+ε+)sinh 1
2
(−φ3

1+a1+ε+)
,

(C.18)

where φijIJ = φiI − φ
j
J .

The poles for the contour integral are labelled by the following doublets of Young

diagrams:

I.


1
2
3 , ∅

 II.

 2
3 , 1

 III.
(

3 , 1 2
)

IV.
(
∅ , 1 2 3

)

(C.19)

Explicitly, these poles are of the form:

I. φ1 = a+ε+−ε1−3ε2 II. φ1 =−a+ε+−ε1−ε2 III. φ1 =−a+ε+−ε1−ε2
φ2 = a+ε+−ε1−2ε2 φ2 = a+ε+−ε1−2ε2 φ2 =−a+ε+−2ε1−ε2
φ3 = a+ε+−ε1−ε2 φ3 = a+ε+−ε1−ε2 φ3 = a+ε+−ε1−ε2

IV. φ1 =−a+ε+−ε1−ε2
φ2 =−a+ε+−2ε1−ε2
φ3 =−a+ε+−3ε1−ε2

(C.20)

From (C.18), we get the following residues (setting ε− = 0):

I.
sinh 1

2(2a±m−3ε+)

sinh(a−ε+)sinh(a−2ε+)
, III.

sinh 1
2(2a±m+ε+)

sinh(a)sinh(a+ε+)
,

II.
sinh 1

2(2a±m−ε+)

sinh(a)sinh(a−ε+)
, IV.

sinh 1
2(2a±m+3ε+)

sinh(a+ε+)sinh(a+2ε+)
.

(C.21)

This leads to the result

Zmono(a,m,ε+;p= 4,v= 2) =
sinh 1

2(2a±m−3ε+)

sinh(a−ε+)sinh(a−2ε+)
+

sinh 1
2(2a±m−ε+)

sinh(a)sinh(a−ε+)

+
sinh 1

2(2a±m+ε+)

sinh(a)sinh(a+ε+)
+

sinh 1
2(2a±m+3ε+)

sinh(a+ε+)sinh(a+2ε+)
.

(C.22)
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D Bubbling index as an equivariant integral

The five dimensional instanton partition function of a 5d N = 1 theory on S1×R4 is given

by an equivariant integral of certain trigonometric characteristic classes over the moduli

space of instantons on R4 [44]. Similarly, the instanton partition function of a 5d N = 1

theory on S1×R4/Zn is given by an equivariant integral with the same characteristic classes

as above, and the domain of integration is an appropriate KN moduli space. Since instanton

moduli spaces on R4 as well as KN moduli spaces have small instanton singularities, these

equivariant integrals are not well-defined in general. However, in both cases, there exist

resolutions of the moduli spaces obtained by introducing suitable stability parameters (FI

parameters). The group action lifts naturally such that the equivariant characteristic

classes can be extended to these resolved spaces, and therefore one can unambiguously

define these integrals.

In both cases, the equivariant integral may be reduced to a contour integral. For

instanton partition functions on R4 and S1 × R4, such contour integrals were studied in

detail by Nekrasov and Shadchin [38, 40, 41]. In the 5d case, these contour integrals

coincide with the Witten index of the ADHM quiver SQM in the Higgs scaling limit, i.e. in

the limit of e2 → 0 with the FI parameter |ζ| → ∞ such that ζ ′ = e2ζ is held fixed [8, 20].

The instanton partition function then depends only on the sign of the FI parameter. In

a pure N = 2 or N = 2∗ SU(N) SYM, the instanton partition function is completely

independent of the FI parameter, but this is not true if we include hypermultiplets in

general representations.

In section D.1, we discuss the equivariant integral formula for 5d instanton partition

functions on S1 × R4 together with the relevant characteristic classes. In section D.2, we

write down the analogous expressions for S1 × R4/Zn.

D.1 Equivariant integrals for 5d instanton partition function on S1 × R4

D.1.1 4d partition function

Let us first review the equivariant integral formula for a 4d instanton partition function

of a pure N = 2 U(N) SYM on R4 and how it reduces to a contour integral. Let Mk

be the affine space of ADHM data, and Mk
ADHM is the ADHM moduli space with fixed

framing at infinity (i.e. choice of a basis of the vector space W ) obtained as a non-compact

hyperkähler quotient Mk////U(k) implemented via the ADHM equations:

µC ≡ [B1, B2] + IJ = 0 , µR ≡ [B†1, B1] + [B†2, B2] + II† − J†J = 0 .

Note that by splitting the moment maps into real and complex, we are implicitly choosing

a complex structure on R4. Let ω be the symplectic (1,1) form w.r.t. the chosen complex

structure. As discussed in [44, 45], the 4d instanton partition function involves computation

of a T -equivariant volume, associated with the torus action of T = U(1)2|ε1,ε2×U(1)N |~a, i.e.

Zinst(ε1, ε2,~a) =
∑
k≥0

qk
∫
Mk

ADHM=Mk////U(k)
eω+µT , (D.1)

where µT is the T -moment map so that we have an equivariant 2-form.
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The smooth locus of the moduli space Mk
ADHM is metrically incomplete as a hy-

perkähler manifold and this can be addressed by adding point/ideal instantons (in the

Uhlenbeck compactification):

Mk
=Mk

ADHM ∪
(
Mk−1

ADHM × R4
)
∪
(
Mk−2

ADHM × Sym2(R4)
)
∪ . . . ∪ Symk(R4) . (D.2)

The resultant spaceMk
is a singular manifold and one cannot apply the standard theorems

of localization directly to such spaces. However, the Uhlenbeck compactificationMk
admits

a smooth resolution M̃k
ADHM(ζ), which is the moduli space of torsion free sheaves on

CP2 with fixed framing of the line at infinity, with rank N and second Chern class c2 =

k [36, 37, 58]. M̃k
ADHM(ζ) is a hyperkähler manifold and can be shown to be isomorphic

to the hyperkähler quotient [36]:

M̃k
ADHM(ζ) ∼=

{
(B1, B2, I, J)

∣∣∣∣∣ µC = 0

µR = ζ · Ik

}/
U(k,C) , (D.3)

where ζ is a fixed positive real number. In terms of the string theory picture of Dp-D(p+4)

branes, where the ADHM construction can be understood as the Higgs branch of the Dp

world volume gauge theory, this amounts to turning on an FI parameter for the U(1) factor

of the U(k) gauge group.

In addition, the T-action lifts to M̃k
ADHM(ζ), so that one can now unambiguously de-

fine the equivariant volume of the resolved moduli space. As explained in [31, 44], the

equivariant volume relevant for the original gauge theory problem of instanton counting is

the one computed with respect to the pull back of the symplectic 2-form on the Uhlenbeck

compactified moduli spaceMk
. The resulting 2-form on M̃k

ADHM(ζ) vanishes on the excep-

tional set M̃k
ADHM(ζ)→Mk

and reduces to the original 2-form onMk
ADHM ⊂ M̃k

ADHM(ζ).

Thinking of the equivariant integral as an integral of a function with respect to a volume

form, and noting that M̃k
ADHM(ζ) \Mk

ADHM has measure zero, one can attempt to define

the singular integral on Mk
ADHM by:∫
Mk

ADHM

eω+µT :=

∫
M̃k

ADHM(ζ)
eω+µT , (D.4)

where we have used the same symbol for the symplectic (1,1)-form and its pull back. Of

course this definition only makes sense if the right hand side is ζ-independent.

Integrals of equivariant characteristic classes over Mk
ADHM can be similarly written as

integrals over the resolved space with pulled back equivariant classes as integrands. For

the special case of a pure N = 2 SYM (and N = 2∗ SYM), it turns out that the volume

integral/instanton partition function defined above is ζ-independent.

Computing the integral
∫
M̃k

ADHM
eω+µT can be done in two steps: firstly, consider the

integral on the level set µ−1
C (0) ∩ µ−1

R (ζ) and write it as an integral over Mk which can

be computed using the Duistarmaat-Heckman theorem of equivariant localization for a

non-compact space.39 Finally, integrate over the group G = U(k).

39The extension of the Duistarmaat-Heckman theorem to non-compact hyperkähler quotients was derived

in [45]. More rigorous treatment of the problem can be found in [31, 59].
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Schematically, one has∫
M̃k

ADHM

eω+µT =

∫
Dφ

Vol(G)

∫
Mk

eω+µT+µTG =

∫
Dφ

Vol(G)

∑
F

∫
F

eω+µT+µTG

eT×TG(νF )
, (D.5)

where φ lives in the Cartan subalgebra of G = U(k) and TG = U(1)k. F denotes the fixed

point set under the T × TG-action on Mk, and eT×TG(νF ) is the equivariant Euler class of

the normal bundle at F . Since Mk is non-compact, there is an additional restriction on

the quantity on the r.h.s. of the last equality i.e. the equivariant parameters lie in a open

cone C — this is precisely the set of all parameters for which the r.h.s. converges [31, 59].

The choice of this cone C depends on the sign of the FI parameter.

We specialize to the case relevant for the Nekrasov partition function, where F consists

of a single point since only the origin is preserved under the full T × TG-action, and the

denominator then is a product of weights of the T ×TG-action on the tangent space at the

origin. It is useful to describe the integral over Mk in the cohomological QFT approach

of [38, 45] (see [56] for more background) where the above integral is written in terms of

the ADHM variables {B1, B2, I, J} (and their superpartners) as well as certain auxiliary

multiplets (χR, HR) and (χC, HC) (with χ fermionic and H bosonic) which implement

restriction of the fields to the level set µ−1
C (0)∩µ−1

R (ζ). In this language, the above integral

can be packaged into a contour integral, i.e.∫
M̃k

ADHM

eω+µT =

∮
JK(ζ)

∏k
i=1 dφi
k!

∏
Φ

(
1∏

P w
T×TG
P (Φ)

)εΦ
|Φ∈{B1,B2,I,J,χR,χC} ,

=

∮
JK(ζ)

∏k
i=1 dφi
k!

( ∏
i,jw

T×TG
i (χR)wT×TGj (χC)∏

k,l,m,nw
T×TG
k (B1)wT×TGl (B2)wT×TGm (I)wT×TGn (J)

)
,

(D.6)

where the integrand involves the weights wT×TGP (Φ) of the ADHM variables and constraints

under the torus action T × TG at the origin, with P labelling the individual weights of an

ADHM variable Φ under the torus action (see equation (D.8) below). Also, εΦ ∈ {±1}
denotes the fermionic parity, and in writing the second equality we have used the fact that

{B1, B2, I, J} are bosonic while {χR, χC} are fermionic. In the second equality, the indices

i, j, k, l,m, n run over the non-zero weights of the respective ADHM fields and constraints

as indicated.

The residues of the contour integral should be computed using the Jeffrey-Kirwan (JK)

prescription [53] (reviewed in appendix B.2)– this is inherited from the restriction of the set

of equivariant parameters to a cone C [31, 59]. It can be shown that the JK prescription

is equivalent to the standard Young diagram rule for computing these integrals [8].

Finally, one needs to compute the weights wT×TGP (Φ). Given u = eialT
l ∈ TU(N) and

g = eiφiH
i ∈ TG, the action of T × TG on the ADHM variables and constraints is40

B1 → eiε1g B1 g
−1 , I → eiε+g I u−1 , χC → ei(ε1+ε2)g χC g

−1,

B2 → eiε2g B2 g
−1 , J → eiε+uJ g−1 , χR → g χR g

−1 ,
(D.7)

40The following is that action on the ADHM variables defining Mk
ADHM(ζ). In order to define the

resolution of singularities one uses geometric invariant theory and hence the lifting of the T -action under

the resolution of singularities is not simple in terms of ADHM variables defining the hyperkahler quotient.
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and the weights wT×TGP (Φ) can be read off as follows:

Bs : εs + φi − φj , ∀i, j, (s = 1, 2),

I : ε+ − al + φi, ∀i, ∀l , χC : ε1 + ε2 + φi − φj , ∀i, j ,
J : ε+ + al − φi, ∀i, ∀l , χR : φi − φj , ∀i 6= j.

(D.8)

Putting everything together, we get the final expression for the T -equivariant volume

Z4d
k inst :=

∫
M̃k

ADHM

eω+µT

=

∮
JK(ζ)

∏k
i=1 dφi
k!

∏
i 6=j(φi−φj)

∏
i,j(φi−φj+ε1+ε2)∏

i,j(φi−φj+ε1)(φi−φj+ε2)
∏
i,l(φi−al+ε+)(ε++al−φi)

,

(D.9)

where the residues are given by the JK prescription, or equivalently by the Young

diagram rule.

D.1.2 5d partition function

Instanton partition functions of theories (with or without matter) on S1×C2 are given by

integrals of T -equivariant characteristic classes, and can be similarly expressed as contour

integrals. Consider a T -equivariant characteristic class FT (TMk
ADHM) given as a function

of Chern roots {x1, . . . , xd}, i.e. FT (TMk
ADHM) =

∏d
i=1 F (xi), where chT (TMk

ADHM) =∑d
i=1 e

xi and d = dim(M̃k
ADHM). Proceeding in the same fashion as before, the corre-

sponding contour integral is of the following form:∫
M̃k

ADHM(ζ)
eω+µTFT (TM̃k

ADHM(ζ))

=

∮
JK(ζ)

∏k
i=1 dφi
k!

∏
Φ

(∏
P F (wT×TGP (Φ))∏
P w

T×TG
P (Φ)

)εΦ ∣∣∣
Φ∈{B1,B2,I,J,χR,χC}

,

(D.10)

where, as before, the statistics of the field has to be taken into account while unpacking

the integrand.

In an N = 1 theory on S1 × C2 with hypermultiplets in a representation R, the BPS

equations of the Ω-deformed path integral consists of the self-duality equation for the gauge

fields on R4 as well as a Dirac equation in the instanton background, where the connection

transforms in the representation R of the gauge group. Let V(R) be a vector bundle over

M̃k
ADHM such that the fiber at a given point m ∈ M̃k

ADHM is the index of the Dirac operator

in the instanton background (labelled by m) with the connection transforming in the repre-

sentation R. The instanton partition function therefore involves equivariant characteristic

classes of these vector bundles V(R), and we will write the corresponding equivariant in-

tegral momentarily. The weights of the torus action on these bundles can be read off from

the equivariant index of the Dirac operator, which in turn can be computed from the Chern

character of the universal bundle — we refer the reader to the papers [38, 41, 43, 47, 51]

for details.
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The equivariant integral formula for the partition function is most conveniently read

off from the contour integral formula of the Witten index of the associated SQM. For a

hyper in an arbitrary representation R of a U(N) gauge group, we have

Z5d
inst(ε1,2,~a, ~m;ζ) =

∑
k≥0

qk
∫
M̃k

ADHM

eω+µT ÂT (TM̃k
ADHM)·CT×TF (V(R)) ,

=
∑
k≥0

qk
∮
JK(ζ)

∏k
i=1 dφi
k!

∏
Φ

(∏
P A(wT×TGP (Φ))∏
P w

T×TG
P (Φ)

)εΦ
×
∏
K

(∏
P ′

sinhwT×TG×TFP ′ (K)

)εK
,

(D.11)

where Φ ∈ {B1, B2, I, J, χR, χC} is the set of ADHM variables and constraints for a pure

SYM, K denotes ADHM variables which parametrize the hypermultiplet zero modes, and

εΦ ∈ {±1}, εK ∈ {±1} denote the fermionic parity of the set of fields {Φ} and {K}
respectively. Additionally, TF indicates that we also work equivariantly with respect to

flavor symmetry.

The equivariant characteristic classes ÂT (TM̃k
ADHM) and CT×TF (V(R)), and the func-

tion A(x), are defined as

ÂT (TM̃k
ADHM) =

d∏
i=1

xi

exi/2 − e−xi/2
:=

d∏
i=1

A(xi) , chT (TM̃k
ADHM) =

d∑
i=1

exi ,

CT×TF (V(R)) =

dR∏
i=1

2 sinh
ξi
2
, chT×TF (V(R)) =

dR∑
i=1

eξi ,

(D.12)

where TF is the maximal torus of the flavor symmetry group associated with the hyper-

multiplet, d = dim(TM̃k
ADHM) and dR = dim(V(R)).

For a pure 5d N = 1 SYM, the integral involves the T -equivariant A-roof genus:

Z5d
inst(ε1,2,~a; ζ) =

∑
k≥0

qk
∫
M̃k

ADHM

eω+µT ÂT (TM̃k
ADHM) , (D.13)

From the general formula (D.10), we have∫
M̃k

ADHM

eω+µT ÂT (TM̃k
ADHM)

=

∮
JK(ζ)

∏k
i=1 dφi

k!

∏
Φ

(
1∏

P w
T×TG
P (Φ)

)εΦ∏
P

(
wT×TG
P (Φ)

e
1
2
w

T×TG
P

(Φ)−e− 1
2
w

T×TG
P

(Φ)

)εΦ ∣∣∣
Φ∈{B1,B2,I,J,χR,χC}

=

∮
JK(ζ)

∏k
i=1 dφi

k!

∏
Φ

∏
P

(
1

e
1
2
w

T×TG
P

(Φ)−e− 1
2
w

T×TG
P

(Φ)

)εΦ∣∣∣
Φ∈{B1,B2,I,J,χR,χC}

=

∮
JK(ζ)

∏k
i=1 dφi

k!

∏
i 6=j sinh 1

2
(φi−φj)

∏
i,j sinh 1

2
(φi−φj+ε1+ε2)∏

i,j sinh 1
2
(φi−φj+ε1)sinh 1

2
(φi−φj+ε2)

∏
i,l sinh 1

2
(±(φi−al)+ε+)

.

For matter multiplets, one can read off the weights wT×TG×TFP ′ (K) from the Chern

character chT×TG×TF (V(R)), and these were computed for various representations and
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gauge groups in [38]. For example, in N = 1∗ theory, one can show that

chT×TF (V(R= adj)) = emchT (TM̃k
ADHM) =

∑
i

e(xi+m) ,

=⇒ CT×TF (V(R= adj)) =
d∏
i=1

2sinh
(xi+m)

2
, where chT (TM̃k

ADHM) =
∑
i

exi .

(D.14)

Therefore the integrand in (D.11) can be combined to give T -equivariant χ̂y genus

Z5d
inst(ε1,2,~a,m; ζ) =

∑
k≥0

qk
∫
M̃k

ADHM

eω+µT χ̂y, T (TM̃k
ADHM) ,

χ̂y, T (TM̃k
ADHM) =

d∏
i=1

(yexi/2 − y−1e−xi/2)xi

exi/2 − e−xi/2
,

(D.15)

where y = em/2 and {x1, . . . , xd} are Chern roots as before. Again using the general

formula (D.10), we get∫
Mk

ADHM

eω+µT χ̂y,T (TMk
ADHM)

=

∮
JK(ζ)

∏k
i=1 dφi
k!

∏
Φ

∏
P

(
(e

1
2

(w
T×TG
P (Φ)+m)−e−

1
2

(w
T×TG
P (Φ)+m))

e
1
2
w
T×TG
P (Φ)−e−

1
2
w
T×TG
P (Φ)

)εΦ
|Φ∈{B1,B2,I,J,χR,χC}

=

∮
JK(ζ)

∏k
i=1 dφi
k!

∏
i 6=j 2sinh 1

2(φi−φj)
∏
i,j 2sinh 1

2(φi−φj+ε1+ε2)∏
i,j 2sinh 1

2(φi−φj+ε1)2sinh 1
2(φi−φj+ε2)

∏
i,l 2sinh 1

2(±(φi−al)+ε+)

×
∏
i,j 2sinh 1

2(φi−φj+m+ε1)2sinh 1
2(φi−φj+m+ε2)

∏
i,l 2sinh 1

2(±(φi−al)+m+ε+)∏
i,j 2sinh 1

2(φi−φj+m)
∏
i,j 2sinh 1

2(φi−φj+m+ε1+ε2)
,

(D.16)

The expression matches with (B.10) after a redefinition of the adjoint mass m→ m− ε+.

D.1.3 Transformation of the equivariant integrals under ζ → −ζ and

wall-crossing

We now describe how the contour integral expressions for 4d/5d instanton partition func-

tion change under a change in the sign of the real FI parameter ζ in (D.3). The moment

maps in the ADHM construction are then given as:

µC ≡ [B1, B2] + IJ = 0 ,

µR ≡ [B†1, B1] + [B†2, B2] + II† − J†J = −ζ , ζ > 0 .
(D.17)

Define a new set of ADHM variables:
(
Ĩ , J̃ , B̃1, B̃2

)
, such that

B̃1 = B†2 , Ĩ = J† ,

B̃2 = B†1 , J̃ = J† .
(D.18)
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In terms of the variables
(
Ĩ , J̃ , B̃1, B̃2

)
, the moment maps can be written as:

µ̃C = µ†C ≡ [B̃1, B̃2] + Ĩ J̃ = 0 ,

µ̃R = −µR ≡ [B̃†1, B̃1] + [B̃†2, B̃2] + Ĩ Ĩ† − J̃†J̃ = ζ .
(D.19)

The T × TG group action on the ADHM variables and constraints is then given as:

B̃1 → e−iε2g B̃1 g
−1 , Ĩ → e−iε+g Ĩ u−1 , χ̃C → e−i(ε1+ε2)g χC g

−1 ,

B̃2 → e−iε1g B̃2 g
−1 , J̃ → e−iε+u J̃ g−1 , χ̃R → g χR g

−1 .
(D.20)

Comparison with (D.7) shows that the group action above is identical, with ε+ → −ε+.

Therefore, a change of sign in ζ in the ADHM moduli space (D.3) leads to exactly the same

manifold with an almost identical group action — the only difference being a change of sign

in the equivariant parameter ε+. The equivariant weights of the ADHM variables can be

obtained from those in (D.8) after the transformation ε+ → −ε+. The equivariant weights

associated to the matter multiplets can be read off from the original ones after substituting

ε+ → −ε+.

The integrand of the contour integral for a 5d partition function in the −ζ-chamber

can be obtained from the ζ-chamber integrand by substituting ε+ → −ε+, while the JK-

residue should be taken w.r.t. ζ (and not −ζ). As an example, consider the 5d instanton

partition function for a pure N = 1 SU(N) SYM:

Z5d
k−inst(ε+, ε−,~a;−ζ) =

∫
M̃k

ADHM(−ζ)
eω+µT ÂT (TM̃k

ADHM)

=

∮
JK(ζ)

∏k
i=1 dφi
k!

∏
i 6=j sinh 1

2(φi−φj)
∏
i,j sinh 1

2(φi−φj−ε1−ε2)∏
i,j sinh 1

2(φi−φj−ε2)sinh 1
2(φi−φj−ε1)

∏
i,l sinh 1

2(±(φi−al)−ε+)

=Z5d
k−inst(−ε+, ε−,~a;ζ) . (D.21)

On evaluating the contour integral, one can check that Z5d
k−inst is an even function of

ε+, i.e.

Z5d
k−inst(−ε+, ε−,~a; ζ) = Z5d

k−inst(ε+, ε−,~a; ζ) , (D.22)

which implies that it is wall-crossing invariant.

For an N = 1∗ SU(N) theory, equation (D.14) implies that the equivariant weights

associated with the adjoint hypermultiplet are related to those of the vector multiplet

by an overall shift of the adjoint mass m. As discussed above, the partition function is

then obtained from (D.16) after shifting the adjoint mass m: m → m − ε+. Under a

transformation ζ → −ζ, the instanton partition function is given as:

Z5d
k−inst(ε+, ε−,~a,m;−ζ) =

∫
M̃k

ADHM(−ζ)
eω+µT χ̂y, T (TM̃k

ADHM)

= Z5d
k−inst(−ε+, ε−,~a,m; ζ) .

(D.23)

As before, on computing the contour integral explicitly, one can check that Z5d
k−inst for

N = 1∗ SU(N) theory is invariant under wall-crossing.
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Wall-crossing invariance of the 5d instanton partition function for the N = 1∗ theory

and the pure N = 1 SYM can be checked (without actually performing the contour inte-

grals) as follows. Consider first the N = 1∗ theory in the instanton sector k = 1 which

is associated with an Abelian SQM. In this case, the wall-crossing formula of the Witten

index can be read off from (B.9):

Z
(4,4)
SQM(a,m, ε±; ζ ′ < 0)− Z(4,4)

SQM(a,m, ε±; ζ ′ > 0)

= −
∑

φ∗∈∆−

Resφ=φ∗

[
Z1−loop

dφ

2πi

]
−
∑

φ∗∈∆+

Resφ=φ∗

[
Z1−loop

dφ

2πi

]
= R−∞ +R∞ ,

(D.24)

where R±∞ are the residues of
[
Z1−loop

dφ
2πi

]
at φ = ±∞. The sum (R−∞ + R∞) vanishes

for the (4,4) ADHM SQMs associated with instanton particles in 5d N = 1∗ SU(N) SYM

on S1×C2 or S1×C2/Zn, which can be directly checked from the Abelian version of (B.10)

and (2.48) respectively. For generic k, the change in the Witten index as ζ → −ζ is similarly

given by a sum over the various asympototic residues (i.e. when one or more of the φIs or

φiIs go to ±∞). However, from equation (B.10) and (2.48), one can directly check that the

residues for a given φI (or φiI) from ±∞ (with other integration variables generic) cancel

against each other. Therefore, the sum over the asymptotic residues vanish as in the case

of k = 1 leading to a wall-crossing invariant Witten index.

For the pure N = 1 SYM, in the instanton sector k=1, the residues R−∞ and R∞
vanish individually. For generic k, the asymptotic residues also vanish individually since

the residues associated with any φI → ±∞ or φiI → ±∞, with other integration variables

generic, is zero. Therefore, we also have a wall-crossing invariant Witten index in this case.

D.2 Equivariant integrals for Zmono and 5d instantons on S1 × C2/Zn

Let us review the equivariant integral formula for the 4d instanton partition function of

a pure N = 2 U(N) SYM on an orbifold C2/Zn and show how it reduces to a contour

integral using the cohomological QFT approach [45]. The moduli space of instantons on

C2/Zn can be constructed as a hyperkähler quotient of the Zn-invariant ADHM data, as

reviewed in section 2.1. As in the case of the ADHM construction of instanton moduli

space on C2, the Uhlenbeck compactification of the moduli space MKN is singular. The

smooth resolution in this case is the moduli space of Zn-equivariant torsion free sheaves

on CP2 with fixed framing at the line at infinity [5, 35, 37]. The resolved space M̃KN (ζiR)

can again be described as a hyperkähler quotient after introducing stability/FI parameters

which deform the real moment map as follows:

M̃KN (ζiR) ∼=

{
(B1, B2, I, J)Zn

∣∣∣∣∣ µC = 0

µR = ζR

}/
U(k,C) , (D.25)

where we only consider ζR in the set41

C0 := {ζR = (ζiR) ∈ Rn|ζiR < 0, ∀i = 1, . . . , n} . (D.26)

41The cone associated to the other chamber for ζR discussed above corresponds to taking ζiR > 0, ∀i.
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Given the above definition, equivariant integrals on M̃KN (ζiR) can be written as Zn-

invariant projections of equivariant integrals on the moduli space of instantons on C2.

Similar to the case of instantons on C2, such equivariant integrals may be written as con-

tour integrals using the cohomological QFT prescription discussed before. These contour

integrals coincide with the Witten index formula for the ADHM SQM in the Higgs scaling

limit, i.e. e2 → 0 and |ζ| → ∞ (after setting the gauge couplings ei = e, and ζiR = ζ, for all

i) holding ζ ′ = e2ζ fixed. The instanton partition function therefore depends only on the

sign of ζ or ζ ′.

The contour integral can be constructed using the orbifold-invariant ADHM variables

B1 ∈
qmax−1⊕
j=qmin

Hom(Vj+1, Vj) , I ∈
qmax⊕
j=qmin

Hom(Vj ,Wj) ,

B2 ∈
qmax⊕

j=qmin+1

Hom(Vj−1, Vj) , J ∈
qmax⊕
j=qmin

Hom(Wj , Vj) .

(D.27)

and the fields imposing the moment map equations

(χR, χC) ∈
qmax⊕
j=qmin

(
Hom(Vj , Vj),Hom(Vj , Vj)

)
. (D.28)

The generating function for 5d instanton partition functions on S1 × C2/Zn with a mon-

odromy vector ~w at spatial infinity can be written as

Z̃
S1×C2/Zn
inst (ε1,2,~a, ~m; ζ | ~w) =

∑
~k

qk
qmax∏
j=qmin

u
βj
j Z

S1×C2/Zn
inst (~k, ~w;~a, ~m; ζ ) , (D.29)

where the sum is over ~k such that
∑qmax

j=qmin
kj = k, βj = wj + kj−1 + kj+1 − 2kj (these βjs

are the beta functions of j-th gauge node of the quiver), q is the fugacity associated with

the instanton number, and uj are fugacities associated with the second Chern class of the

instanton bundle (see (2.14)). The instanton partition function labelled by the KN vector
~k and the monodromy vector ~w is

Z
S1×C2/Zn
inst (~k, ~w;~a, ~m; ζ ) =

∫
M̃KN (ζ′)

eω+µT ÂT (TM̃KN (ζiR))·CT×TF (VKN (R))

=

∮
JK(ζ)

1∏qmax
i=qmin

ki!

qmax∏
i=qmin

ki∏
I=1

dφiI
2πi

∏
Φ

(∏
P A(wT×TG

P (Φ))∏
P w

T×TG
P (Φ)

)
×
∏
K

(∏
P ′

sinh
1

2
wT×TG×TFP ′ (K)

)
,

(D.30)

where, as before, {Φ} runs over the Zn invariant ADHM variables {B1, B2, I, J} while {K}
parametrizes the Zn invariant zero modes arising from the hypermutiplets in representation

R in the ADHM construction. ÂT (TM̃KN (ζiR)) is the A-roof genus and CT×TF (VKN (R))
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is the characteristic class associated with the matter bundle:

ÂT (TM̃KN (ζiR)) =

d∏
i=1

xi

exi/2 − e−xi/2
:=

d∏
i=1

A(xi) , chT (TM̃KN (ζiR)) =
∑
i

exi ,

CT×TF (VKN (R)) =

dR∏
i=1

sinh
1

2
ξi, chT×TF (VKN (R)) =

∑
i

eξi ,

(D.31)

where TF is the maximal torus of the flavor symmetry group associated with the hyper-

multiplet, d = dim(TM̃KN (ζiR)) and dR = dim(VKN (R)). In particular, for the case of a

5d N = 1∗ theory where R is adjoint, the characteristic classes in the integrand can be

combined to give a T -equivariant χy-genus of the KN moduli space, which can be written

as a contour integral, i.e.

Z
S1×C2/Zn
inst (~k, ~w;~a, ~m; ζ ) =

∫
M̃KN (ζ′)

eω+µTχy

=

∮
JK(ζ)

1∏qmax
i=qmin

ki!

qmax∏
i=qmin

ki∏
I=1

dφiI
2πi

∏
Φ

∏
P

(
e

1
2

(w
T×TG
P

(Φ)+m)−e−
1
2

(w
T×TG
P

(Φ)+m)
)

e
1
2
w

T×TG
P

(Φ)−e− 1
2
w

T×TG
P

(Φ)
|Φ∈{B1,B2,I,J,χR,χC}Zn

m→m−ε+
=

∮
JK(ζ)

1∏qmax
i=qmin

ki!

qmax∏
i=qmin

ki∏
I=1

dφiI
2πi

qmax∏
i=qmin

ki∏
I,J=1

2sinh 1
2
(φiIJ+2ε+)

2sinh 1
2
(φiIJ+m±ε+)

×
ki∏
I 6=J

sinh
1

2
φiIJ

×
qmax−1∏
j=qmin

kj+1∏
I=1

kj∏
J=1

2sinh 1
2
(φj+1
I −φjJ+m+ε−)2sinh 1

2
(φjJ−φ

j+1
I +m−ε−)

2sinh 1
2
(φj+1
I −φjJ+ε++ε−)2sinh 1

2
(φjJ−φ

j+1
I +ε+−ε−)

×
qmax∏
j=qmin

ki∏
I=1

wi∏
l=1

2sinh 1
2
(φiI−al+m)2sinh 1

2
(−φiI+al+m)

2sinh 1
2
(φiI−al+ε+)2sinh 1

2
(−φiI+al+ε+)

. (D.32)

The last line of the above formula is precisely the same as equation (2.48)–(2.49) above.

From (2.44), we can therefore write down a formula for ZR3×S1

mono as an equivariant integral

on a resolved KN moduli space:

ZR3×S1

mono (B,v; a,m, λ|G = SU(N)) =

∫
M̃KN (ζ′)

eω+µTχy|~k=~k(B,v), ~w=~w(B,v)
(D.33)

where the equivariant parameters on the two sides of the equation are related as in (2.45).

The formula for these contour integrals under a change of sign of all the FI param-

eters, i.e. ζ → −ζ (or ζ ′ → −ζ ′), can be obtained in a similar fashion as discussed in

appendix D.1.3 in the context of partition functions on S1 × R4. The resultant contour

integral can be obtained from the original one by substituting ε+ → −ε+. One can check

that the expressions in (D.32) and (D.33) are even functions of ε+ and therefore invariant

under ζ → −ζ.

E Character equation analysis

In this appendix we will derive equation (3.30). Let us introduce the notation

K = diag(K1,K2, . . . ,Kk) , x = e2πiν , (E.1)
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where the entries can be repeated. In the character equation we will want to reduce the term

(x+ x−1 − 2)TrV xK = (x+ x−1 − 2)
k∑
s=1

xKs = (x+ x−1 − 2)
n−1∑
s=1

ksx
s , (E.2)

where ~k = (k0, . . . , kn−1). Note that generically

ki = ki+1 ± 1 or ki = ki+1 . (E.3)

This means that the factor of (x + x−1 − 2) will actually eliminate most of the terms.

Consider two sequence of k′s: (a) (ks− 1, ks, ks + 1) and (b) (ks, ks, ks). In the case of (a),

we have the terms of degree xn will cancel:

x ·
[
(ks − 1)xs−1

]
− 2 ·

[
(ks)x

s
]

+ x−1 ·
[
(ks + 1)xs+1

]
= (ks − 1)xs − 2ksx

s + (ks + 1)xs = 0 .
(E.4)

Similarly for the case of (b) the terms of degree xs will cancel:

x ·
[
(ks)x

s−1
]
− 2 ·

[
(ks)x

s
]

+ x−1 ·
[
(ks)x

s+1
]

= (ks)x
s − 2ksx

s + (ks)x
s = 0 .

(E.5)

This means that the product (x + x−1 − 2)Trk x
K will cancel order by order along the

sequences of purely increasing, decreasing, or constant ks’s respectively. Therefore, the

only sequences where there is not a complete cancellation is at the connection between the

quivers of type Σi and Γj,j+1.

Now let us compute the terms which contribute to the character equation. There are

4 such sequences

I.) (ks − 1, ks, ks) , II.) (ks, ks, ks − 1) ,

III.) (ks + 1, ks, ks) , IV.) (ks, ks, ks + 1) ,
(E.6)

where we have taken the middle term to be the s-th term in the vector ~k.

Computing the terms of degree s we see

I.) (ks − 1)xs − 2ksx
s + ksx

s = −xs ,
II.) ksx

s − 2ksx
s + (ks − 1)xs = −xs ,

III.) (ks + 1)xs − 2ksx
s + ksx

s = xs ,

IV.) ksx
s − 2ksx

s + (ks + 1)xs = xs .

(E.7)

Note that each term is (+1) or (−1) times a simple power of x. Therefore, we see that

there will be a sum of monomials with positive or negative coefficient whose degree is the

position along the full quiver of the beginning and end nodes of the Σi subquivers.

Now to determine the contribution to the character equation, we must determine the

generic positions of all of the Σi quivers. Let us use the notation

B = diag(p1, . . . , pN ) , v = diag(v1, . . . , vN ) ,

κ = v −B =
∑
I

k̃IHI = diag(κ1, . . . , κN ) , (E.8)

where the pI and vI are non-decreasing.
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First, note that in the case k̃I = k̃I+1, we have that there will be no ΓI,I+1 subquiver,

and consequently there will be no contribution from the pair of edges connection ΣI to

ΣI+1. This is okay though, because it means that there is a zero in the matrix κ and

hence there is a value of pi = vi and hence the terms drop from the character equation. So

therefore we will consider the generic case where k̃I 6= k̃J for I 6= J .

Second, it is particularly insightful to consider the contributions from the terms sur-

rounding a given ΓI,I+1 for I 6= 0, N − 1:

ΣI ΓI,I+1 ΣI+1

Note that the length of ΓI,I+1 and ΣI (denoted |ΓI,I+1| and |ΣI | respectively) are given by

|ΓI,I+1| = |k̃I+1 − k̃I | − 1 , |ΣI | = nI + 1− |k̃I+1 − k̃I |ωI,I+1 − |k̃I − k̃I−1|ωI,I−1 , (E.9)

where again

ωI,J =

{
0 k̃I ≤ k̃J
1 k̃I > k̃J

(E.10)

Let us assume for simplicity that k̃I < k̃I−1 and k̃I+1 < k̃I+2. Additionally let us assume

that the first node of ΣI is at the position m+ 1 in the vector ~k. Then using (E.7), we see

that the terms contributing from the above subquivers is given by

xm + (−1)ωI,I+1xm+nI−|k̃I+1−k̃I |ωI,I+1 + (−1)ωI+1,Ixm+nI+|k̃I+1−k̃I |ωI+1,I + xm+nI+nI+1

(E.11)

So, no matter what the sign of (k̃I − k̃I+1) is, there will always be the contribution of

the form42

xm + xm+nI − xm+nI+(k̃I+1−k̃I) + xm+nI+nI+1 . (E.12)

Now once we solve the beginning (and end) couple contributions, we can iterate on the

above formula, and compute the entire contribution to the character equation. Using the

fact that |Γ0,1| = |k̃1| − ‘, |ΓN−1,N | = |k̃N | − ‘, we have that the first two contributions are

of the form

1− x|k̃1| . (E.13)

Now by iterating, we see that the full contribution to the character equation is of the form

1− xk̃1 − xpN−p1−k̃N−1 + xpN−p1 +
N−2∑
I=1

(
xpI+1−p1 − xpI+1−p1+(k̃I+1−k̃I)

)
. (E.14)

Here we used the relations

nI = pI+1 − pI ,
I∑

J=1

nJ = pI+1 − p1 , (E.15)

where here I = 1, . . . , N − 1 and we extend the definition of nI to nN = 0.

42Note that this also holds for the special cases `
(m)
i = 0 and |k̃i − k̃i+1| = 1.
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F Q-fixed point equations and ’t Hooft defect

In this section, we discuss the Q-fixed locus of the 4d path integral associated with an

’t Hooft defect. For the sake of brevity, we focus on vector multiplets — including hy-

permultiplets in an arbitrary representation will involve an obvious generalization of the

procedure presented here. We choose to write the Q-fixed equations in Minkowskian signa-

ture, with the metric ds2 =
∑3

i=1(dxi)2− (dτ)2 on R3×S1, to match conventions of recent

papers [2, 10, 11] on monopole moduli spaces. The Euclidean versions of these equations

can be obtained by Wick rotating appropriate bosonic fields.

The bosonic part of an N = 2 vector multiplet in four dimensions consists of a gauge

field A = (Aτ , Ai), with i = 1, 2, 3, and a complex scalar field ϕ (or a pair of real scalars

X,Y ), while the fermionic part consists of a pair of Weyl spinor doublets ψαA, ψ̄α̇A, with

A = 1, 2 being the SU(2)R index, and (α, α̇) labelling the SU(2)l × SU(2)r Lorentz spinor

indices respectively. The Weyl spinor doublets obey reality conditions: (ψαA)∗ = −ψ̄Aα̇ .

We adopt the following convention for the σ-matrices:

σa = (I, ~σ) , σ̄a = (I,−~σ) , a = 0, 1, 2, 3 , (F.1)

where I is the 2 × 2 unit matrix and ~σ are the Pauli matrices. While writing multilinear

expressions in terms of the scalar fields, we will often suppress the Lorentz spinor indices —

the undotted indices will be contracted in the “northwest to southeast” convention while

the dotted ones will follow the “southwest to northeast” convention.

F.1 Q-fixed point equations of the undeformed 4d path integral

Let us first discuss the Q-fixed point equations for an ’t Hooft defect on the undeformed

space R3 × S1 (i.e. when λ = 0 in (1.1)). Given the field content described above, the

action of an N = 2 vector multiplet with an ’t Hooft defect at the origin, is

S = Svector + Sboundary ,

Svector =
1

g2

∫
R3×S1

d4xTr

(
1

2
FµνFµν +DµϕD

µϕ̄− 1

4
[ϕ, ϕ̄]2

)
+

1

g2

∫
R3×S1

d4xTr
(
− 2iψ̄Aσ̄µDµψA − iψA[ϕ̄, ψA] + iψ̄A[ϕ, ψ̄A]

)
+

ϑ

8π2

∫
R3×S1

Tr
(
F ∧ F

)
,

Sboundary =
−i

g2

∫
Σ3={xµ | r=δ}

Tr((ϕ− ϕ̄)F + (ϕ+ ϕ̄) ?(4) F ) ∧ dτ ,

(F.2)

where Svector is the standard action for an N = 2 vector multiplet, and Sboundary is a

boundary term43 necessary to regularize the classical action in the ’t Hooft background [2].

The N = 2 supersymmetry transformations for the vector multiplet fields are generated

43The boundary term as written in [2] is dependent on the complex structure ζ associated with the line

operator Lζ . Here we have chosen ζ = 1.

– 64 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
4

by the parameters ξαA, ξ̄
α̇
A (we take these to be bosonic) which are solutions of the Killing

spinor equations:

∇µξA :=

(
∂µ +

1

4
ωa bµ σa b

)
ξA = 0 ,

∇µξ̄A :=

(
∂µ +

1

4
ωa bµ σ̄a b

)
ξ̄A = 0 ,

(F.3)

where we have suppressed the Lorentz spinor indices. In the case of undeformed R3 × S1,

we have ωa bµ = 0, which implies that the supersymmetry parameters ξαA, ξ̄
α̇
A are constants.

Explicitly, the supersymmetry transformation rules for the bosonic fields are

δAi = ξAσiψ̄A + ξ̄Aσ̄iψA , δφ = 2ξAψA ,

δAτ = ξAσ0ψ̄A + ξ̄Aσ̄0ψA , δφ̄ = 2ξ̄Aψ̄A ,
(F.4)

while variation of the fermionic fields are

δψA = −iσµνFµνξA + iσµDµϕξ̄A +
i

2
ξA[ϕ, ϕ̄] , (F.5)

δψ̄A = iσ̄µνFµν ξ̄A − iσ̄µDµϕ̄ξA +
i

2
ξ̄A[ϕ, ϕ̄] . (F.6)

For treating line defects, it is more convenient to work with the following redefined

fields:

Y =
1

2
(ϕ+ ϕ̄) , ρA =

1

2
(ψA + σ0ψ̄A) , (F.7)

X =
1

2i
(ϕ− ϕ̄) , λA =

1

2i
(ψA − σ0ψ̄A) , (F.8)

where X,Y are real scalar fields and ρA, λA are symplectic Majorana Weyl spinors —

ρ̄A = σ̄0ρA, λ̄A = σ̄0λA. Similarly, one redefines the supersymmetry parameters in the

following fashion:

εA =
1

2
(ξA + σ0ξ̄A) ,

ηA =
1

2i
(ξA − σ0ξ̄A) .

(F.9)

where εA, ηA are symplectic Majorana Weyl spinors. Supersymmetry transformation gen-

erated by the parameter εA, generating R-supersymmetry [2], may be explicitly written as

δAi = 2εAσ
0σ̄iρ

A , δY = 2εAρA,

δAτ = −2iεAλ
A , δX = 2εAλA ,

δρA = [−(D0X − [Y,X]) + iσ0σ̄i(Ei −DiY )]εA ,

δλA = [D0Y + iσ0σ̄i(Bi −DiX)]εA ,

(F.10)

while supersymmetry generated by the parameter ηA, generating T -supersymmetry, has

the following form:

δAi = 2ηAσ
0σ̄iλ

A , δX = 2ηAλ
A ,

δAτ = 2iηAρ
A , δY = −2ηAρ

A ,

δρA = [D0Y − iσ0σ̄i(Bi +DiX)]ηA ,

δλA = [(D0X + [Y,X]) + iσ0σ̄iεA(Ei +DiY )]ηA .

(F.11)

– 65 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
4

Various derivatives of vector multiplet fields appearing in the above equations are

defined as follows:

DiX = ∂iX + [Ai, X] , Bi =
1

2
εijkF

jk , (F.12)

DiY = ∂iY + [Ai, Y ] , Ei = Fiτ = ∂iAτ − ∂τAi + [Ai, Aτ ] . (F.13)

In the undeformed background R3 × S1 i.e. for λ = 0, an ’t Hooft operator insertion at

the origin, specified by the boundary condition (1.2), only preserves four supercharges

generated by εA, with ηA = 0. Therefore, setting δρA = 0 and δλA = 0 for a generic

symplectic-Majorana-Weyl spinor εA, the BPS equations for the undeformed background

with a line defect are

Bi −DiX = 0 , DτX − [Y,X] = 0 ,

Ei −DiY = 0, , DτY = 0 ,
(F.14)

of which the last three equations impose Q2-invariance on the bosonic fields. Note that the

Dirac monopole configuration in (1.2) is an exact solution of the above equations.

F.2 Q-fixed point equations of the deformed 4d path integral

Now consider the Ω-deformed background with λ 6= 0. The metric in terms of the local

coordinates is given as

ds2 = dr2 + r2dθ2 + r2 sin2 θ

(
dφ+

λ

R
dτ

)2

− dτ2,

=
3∑
i=1

(dxi + V idτ)2 − dτ2, V 1 =
λ

R
x2, V 2 = − λ

R
x1, V 3 = 0,

(F.15)

while all the fields in the theory are understood to be periodic under τ -direction.

One can choose the following orthonormal basis (and its inverse):

e a
µ =


1 0 0 0

0 1 0 0

0 0 1 0

V 1 V 2 0 1

 , E µ
a =


1 0 0 0

0 1 0 0

0 0 1 0

−V 1 −V 2 0 1

 . (F.16)

Let us comment on the supersymmetry preserved by the line defect in this deformed

background. Preserving part of the supersymmetry of the undeformed background requires

turning on a background gauge field which lives in the Cartan subalgebra of the SU(2)R
symmetry. The supersymmetry parameters are solutions of a more general Killing spinor

equation:44

DµξA :=

(
∂µ +

1

4
ωa bµ σa b

)
ξA + iV B

µAξB = 0 ,

Dµξ̄A :=

(
∂µ +

1

4
ωa bµ σ̄a b

)
ξ̄A + iV B

µAξ̄B = 0 ,

(F.17)

where V B
µA is the background SU(2)R gauge field.

44For the most general form, see [15].
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It is convenient to write the supersymmetry in the Donaldson-Witten twisted form, i.e.

let SU(2)r ∼= SU(2)R, which implies that the supersymmetry parameters may be written as

ξ̄α̇A → ξ̄BA = δBAξ̄ + (σ̄ab)
B
A ξ̄

ab ,

ξαA → ξαA = (σa)αAξ
a .

(F.18)

where a, b = 0, 1, 2, 3 label the vierbeins.

The R and T supersymmetry parameters can also be written in terms of the twisted

supersymmetry parameters:

εαA = (σ0)αAξ̄ + (σa)αAξ
a + (σ0)αB(σ̄ab)

B
Aξ̄

ab ,

ηA = (σ0)αAξ̄ − (σa)αAξ
a − (σ0)αB(σ̄ab)

B
Aξ̄

ab .
(F.19)

Setting the background SU(2)R gauge field to cancel the self-dual part of the spin connec-

tion, i.e.

iV B
µA +

1

4
ωa bµ (σ̄a b)

B
A = 0, (F.20)

one obtains the following solution of the Killing spinor equations in the deformed

background:

ξi = ξ̄ab = 0 , ∂µξ̄ = ∂µξ
0 = 0 =⇒ ξ̄, ξ0 = constant , (F.21)

The deformed background therefore preserves only two supercharges, with associated pa-

rameters ξ̄ and ξ0. In terms of the R and T supersymmetry parameters, we have

εαA = (σ0)αA(−ξ0 + ξ̄) , ηαA = −(σ0)αA(ξ0 + ξ̄) . (F.22)

Now, a line defect in this deformed background, specified by the boundary conditions

at r → 0, preserves a single supercharge: the condition ηA = 0 sets a linear combination

of ξ̄ and ξ0 to zero. More explicitly,

ηαA = 0 =⇒ ξ0 + ξ̄ = 0 , εαA = 2(σ0)αAξ̄. . (F.23)

The transformation of the bosonic fields under this supercharge are:

δX = 2iεAρ
A , δAi = 2εAσ

0σ̄iρ
A ,

δY = −2iεAλ
A , δAτ = −2iεAλ

A + 2V iεAσ
0σ̄iρ

A .
(F.24)

Note that the supersymmetry preserves a Wilson loop at the origin where V i = 0, so that

δsusy(Aτ − Y ) = 0. The fermionic fields transform as:

δρA = [−(DτX − [Y,X]− V iDiX) + iσ0σ̄i(Ei −DiY − V jFij)]ε
A,

δλA = [(DτY − V iDiY ) + iσ0σ̄i(Bi −DiX)]εA ,
(F.25)

Therefore, BPS equations in the deformed background with the ’t Hooft operator

insertion are then given as follows:

Bi −DiX = 0 , DτX − [Y,X]− V iDiX = 0 ,

Ei −DiY − V jFij = 0 , DτY − V iDiY = 0 .
(F.26)
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Note that the last three equations give the Q2-invariance of the fields (X,Y,Ai),
45 where

Q2 = LG + gauge transformation, with LG being a covariant Lie derivative w.r.t. a vector

field G. In the vierbein basis, the vector field is defined as

Ga = ξ̄Aσ̄aξA = (1, 0, 0, 0) , a = 0, 1, 2, 3. (F.27)

where ξ̄ is appropriately normalized. Therefore, in the coordinate basis, G is given as

Gµ = Eµ0G
0 =⇒ Gτ = 1 , Gi = −V i , i = 1, 2, 3 , (F.28)

leading to the above Q2-invariance equations. Therefore, Q2 generates the following group

action

Q2Ai = τ − translation + rotation + gauge transformation . (F.29)

The BPS equations imply that the 4d path integral localizes on a sublocus of the moduli

space of singular monopoles on R3 which is invariant under the group action generated by

Q2. Kronheimer’s correspondence [63] states that moduli space of singular monopoles on

R3 is isomorphic to the moduli space of U(1)-invariant instantons on a Taub-NUT space.

IOT/GOP argued that, for studying the monopole bubbling locus, it is sufficient to consider

instantons localized at the tip of the Taub-NUT which is locally R4. In addition, the group

action generated by Q2 can be lifted to an appropriate group action on the moduli space of

instantons. Therefore, the Q-fixed locus of the 4d path integral can also be thought of as a

sublocus of the moduli space of U(1)-invariant instantons on R4, which is invariant under

the above group action. In analogy to Nekrasov’s original computation [44], the Q-fixed

locus is given by a set of isolated fixed points on the U(1)-invariant instanton moduli space.

G IOT result: Zmono from 5d instanton partition function

In this subsection, we show that IOT formula [16] for Zmono for pure ’t Hooft operators on

S1 × R3 may be derived from Nekrasov’s partition function for instantons on S1 × R4 by

imposing the constraint of U(1)K invariance. In a 4d N = 2 SU(N) SYM with matter in

representation R, the monopole bubbling contribution Zmono for an ’t Hooft defect labelled

by B, in the bubbling sector labelled by v, has the following form:

Zmono(a,mf , λ;B,v) =
∑
~Y ′

zvec
~Y ′

(a, λ;B,v)zR~Y ′(a,mf ;B,v) , (G.1)

The sum in (G.1) is over a U(1)K-constrained set of fixed points on the moduli space of

instantons on R4, which are labelled by U(1)K-invariant N -tuples of Young diagrams ~Y ′.

The one-loop determinants zvec
~Y ′
, zR~Y ′

at a given fixed point are obtained by restricting to

U(1)K-invariant weights, as we discuss below. We would like to emphasize that the above

formula gives the complete answer for Zmono only for an N = 2∗ SU(N) theory.

45Q2-invariance of Aτ is obtained as a linear combination of the other equations and is therefore identically

satisfied. Explicitly, δ2Aτ = −V iFiτ +DτY = 0, using (F.26).
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One can derive the above formula using two standard ingredients: the ADHM con-

struction of U(1)K invariant instantons on C2 [32] and Nekrasov’s formula for the instanton

partition function of 5d N = 1 theories on S1 × C2 [44].

G.1 Zmono from 5d instanton partition function

The Q-fixed locus of the 5d G = SU(N) instanton partition function on S1×C2 (defined as

the non-perturbative part of the 5d supersymmetric index in (A.1)) is given by a finite set of

fixed points on the moduli space of SU(N) instantons on C2 under the U(1)ε1×U(1)ε2×TG
equivariant action.46

Using the standard ADHM description of a k-instanton moduli space, the sub-locus

invariant under the U(1)ε1 ×U(1)ε2 × TG action is given by the ADHM data (B1, B2, I, J)

that satisfy

ε1B1 + [φ,B1] = 0 , φI − Ia = 0 ,

ε2B2 + [φ,B2] = 0 , (ε1 + ε2)J + aJ − Jφ = 0 ,
(G.2)

for generic equivariant parameters (ε1, ε2, a) (where a is an element of the Cartan subalgebra

of SU(N)), and for some φ = diag(φ1, . . . , φk) parametrizing the Cartan subalgebra of U(k).

The invariant sub-locus consists of a finite set of isolated points if the above equations are

satisfied only for discrete choices of φ, which turns out to be the case [44]. A fixed point is

then labelled by a particular value of φ, which in turn could be read off from an N -tuple of

Young diagrams ~Y consisting of a total of k boxes. Explicitly, the solution for φ associated

with a fixed point labelled by a given N -tuple of Young diagrams is:

φs = aα + ε+ + ε1(is,Yα − 1) + ε2(js,Yα − 1) , s = 1, . . . , k , α = 1, . . . , N , (G.3)

where (is,Yα , js,Yα) denotes the s-th box (out of the total k) which belongs to the diagram Yα.

Now, consider the case of U(1)K-invariant instantons as discussed in section 2.2. For

e2πiν ∈ U(1)K , the U(1)K-invariance imposes a set of constraints on the ADHM variables

— summarized in (2.19). Invariance under an infinitesimal U(1)K transformation therefore

leads to the following constraints on the ADHM variables:

−B1 + [K,B1] = 0 , KI − Iv = 0 ,

B2 + [K,B2] = 0 , vJ − JK = 0 ,
(G.4)

where K is a cocharacter which is determined by the defect data (B,v) via (2.23).

To derive the U(1)K-invariant fixed points we proceed as follows. We multiply the

equations (G.4) by ν and add them to the corresponding equation in the set (G.2), which

leads to

ε̃1B1 + [φ̃, B1] = 0 , φ̃I − Iã = 0 ,

ε̃2B2 + [φ̃, B2] = 0 , (ε̃1 + ε̃2)J + ãJ − Jφ̃ = 0 ,
(G.5)

46The structure of fixed points remains the same for SU(N) theory with hypermultiplets in arbitrary

representation R. The one-loop determinant at a given fixed point is obtained from the weights of the

U(1)ε1 ×U(1)ε2 ×TG×TF action (TF being the maximal torus of the flavor symmetry group) on the vector

bundle V(R) on the instanton moduli space, associated with fermion zero modes of the hypermultiplet.
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where the new parameters are simply

φ̃s = φs +Ksν , ε̃1 = ε1 − ν ,
ãα = aα + vαν , ε̃2 = ε2 + ν .

(G.6)

Since the equations (G.5) are of the same form as the equations (G.2), the solution for

φ̃ is given by equation (G.3) with the equivariant parameters (ε1, ε2, aα) replaced by

(ε̃1, ε̃2, ãα), i.e.

φ̃s = ãα+ε++ε̃1(is,Yα−1)+ε̃2(js,Yα−1), (G.7)

=⇒ φs = aα+ε++ε1(is,Yα−1)+ε2(js,Yα−1)+
(
−Ks+vα+(js,Yα−is,Yα)

)
ν. (G.8)

The U(1)K-invariant fixed points must be independent of ν, and therefore correspond

to the following N -tuple of Young diagrams

~Y = (Y1, Y2, . . . , YN ) such that Ks = vα + (js,Yα − is,Yα) , (G.9)

up to a permutation of s ∈ {1, . . . , k}, with α = 1, . . . , N and (is,Yα , js,Yα) representing s-th

box in the α-th Young diagram. This gives a clear recipe for determining the fixed points

on the U(1)K invariant instanton moduli space under the U(1)ε1 ×U(1)ε2 × TG action.

For computing the one-loop determinants in equation (G.1), one should restrict to

U(1)ε1 × U(1)ε2 × TG × TF weights (TF being the maximal torus of the flavor symmetry

group) that contribute to the index at a given fixed point are the ones that are U(1)K-

invariant. Consider the vector multiplet contribution to the instanton partition function

in the standard case [44]:47,48

zvec
~Y ,Nek.

=
∏

(α,β,s)

(
2sinh

[
1

2

(
aα−aβ+(AYα(s)−LYβ (s)±1)ε+−(AYα(s)+LYβ (s)+1)ε−

)])−1

,

(G.10)

where the products are over the triples (α, β, s) with s ∈ Yα. In the present case, we

should only include in the product those triples (α, β, s) in the above product for which

the argument of the sinh function is invariant under the transformation of the equivariant

parameters (a, ε1, ε2)→ (ã, ε̃1, ε̃2), with (ã, ε̃1, ε̃2) given in (G.6). From (G.6), the argument

of the sinh function transforms as

(aα−aβ+(AYα(s)−LYβ (s)±1)ε+−(AYα(s)+LYβ (s)+1)ε−)

→ (aα+vαν−aβ−vβν+(AYα(s)−LYβ (s)±1)ε+−(AYα(s)+LYβ (s)+1)(ε−−ν))

= (aα−aβ+(AYα(s)−LYβ (s)±1)ε+−(AYα(s)+LYβ (s)+1)ε−)

+(vα−vβ+AYα(s)+LYβ (s)+1)ν ,

(G.11)

47We adopt the notation

2i sin(x± y) = 2i sin(x+ y) 2i sin(x− y) .

48The arm and leg-lengths of a given Young diagram w.r.t. a box s = (i, j) (not necessarily inside the

diagram) are defined as AY (s) = λi − j , LY (s) = λTj − i, where λi and λTi are the numbers of boxes in

the i-th row and column of Y , respectively. Note that AY , LY can be negative if s is outside the diagram.
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which implies that the argument is invariant under the U(1)K-action for a triple (α, β, s) if

vα − vβ +AYα(s) + LYβ (s) + 1 = 0 . (G.12)

Therefore, using the identification aα = 2iπaα, ε+ = iπλ, and ε− = 0, the function zvec
~Y

in the U(1)K-invariant case is

zvec
~Y

=
∏

(α,β,s)

(
2i sin

[
π

(
aα − aβ +

1

2
(AYα(s)− LYβ (s)± 1)λ

)])−1

(G.13)

where the products are over the triples (α, β, s), with s ∈ Yα, satisfying (G.12).

This reproduces the IOT formula for a vector multiplet.49

Similarly, proceeding as above and defining m = 2iπm, contribution of the adjoint

hyper is given as:

zadj
~Y

=
∏

(α,β,s)

(
2i sin

[
π

(
aα − aβ +

1

2
(AYα(s)− LYβ (s))λ±m

)])
(G.14)

where the products are over the same triples (α, β, s) as given in (G.12).

Contribution of fundamental hypers to the instanton partition function is given by:

zfund
~Y ,Nek.

=
∏
(α,s)

2 sinh
(
aα −mf + ε+ + ε1(is − 1) + ε2(js − 1)

)
, (G.15)

where the product is over the pairs (α, s) with s ∈ Yα. Under the U(1)K-action (G.6), the

argument of the sinh function transforms as:

(aα −mf + ε+ + ε1(is − 1) + ε2(js − 1))

→ (aα −mf + ε+ + ε1(is − 1) + ε2(js − 1)) + (vα − is + js)ν .
(G.16)

Invariance under the U(1)K-action requires restricting the product over the pairs (α, s)

with s ∈ Yα, such that

vα − is + js = 0. (G.17)

Therefore, proceeding as before and defining mf = 2πimf , the contribution of the

fundamental hyper to Zmono is given as

zfund
~Y

(a,mf , λ;B, v) =
∏

(α,s∈Yα)

2i sin

[
π

(
aα −mf +

1

2
(is + js − 1)λ

)]
(G.18)

where the product is over the pairs (α, s) satisfying (G.17).

49The formula for zvec
~Y

is identical to equation 5.25 in IOT up to some overall factors of i. These factors

of i are needed to produce the correct overall sign of Zmono, which IOT ignored in their expressions. See

discussion after equation 6.11 in [16]. The same is true for zadj
~Y

and zfund
~Y

.
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G.2 One-loop contribution to the ’t Hooft defect vev

For a monopole bubbling sector with effective ’t Hooft charge v = diag(0, . . . , 0), we have

Z1-loop(a,mf , λ; v = 0) = 1 .

For a non-zero v, the one-loop contribution to the ’t Hooft defect expectation value was

explicitly computed in [16] and can be written as,

Z1-loop(a,mf , λ; v) := Zvm
1-loop(a, λ; v)Zhm

1-loop(a,mf , λ; v) , (G.19)

where the contribution of the vector multiplet is

Zvm
1-loop(a, λ; v) =

∏
n∈Z

∏
α

|α·v|−1∏
k=0

[
nε+

1

2
λ+ α · a +

(
|α · v| − 1

2
− k
)
λ

]−1/2

=
∏
α>0

|α·v|−1∏
k=0

∏
±

sin−1/2

[
π

(
α · a±

(
|α · v|

2
− k
)
λ

)]
, (G.20)

and the contribution of the hypermultiplets are

Zhm
1-loop(a,mf ,λ;v) =

∏
n∈Z

NF∏
f=1

∏
w∈R

|w·v|−1∏
k=0

[
nε+w ·a−mf+

(
|w ·v|−1

2
−k
)
λ

]1/2

=

NF∏
f=1

∏
w∈R

|w·v|−1∏
k=0

sin1/2

[
π

(
w ·a−mf+

(
|w ·v|−1

2
−k
)
λ

)]
, (G.21)

where w represents a weight of the representation R of the gauge group in which the

hypermultiplet transforms.

The one-loop contribution can also be derived from the one-loop factor of a five-

dimensional supersymmetric index — we refer the reader to [13] for details.

G.3 IOT formula: 〈Lp,0〉 in N = 2∗, SU(2) SYM

For N = 2∗ SU(2) SYM, B and v can be parametrized as:

B =
1

2
diag(p, −p) , v =

1

2
diag(v, −v) , (G.22)

where p is a positive integer, and v = p, p − 2, p − 4, . . . ,−p. To illustrate the IOT pre-

scription, let us compute the monopole bubbling contribution to 〈L2,0〉. In this case,

we have B = 1
2diag(2,−2), and the possible values of v are 1

2diag(2,−2),−1
2diag(2,−2)

and diag(0, 0). From (2.23), it is clear that K has no solution (for generic ν) for v =

±1
2diag(2,−2) which implies that there are no monopole bubbling contributions in these

cases. For v = diag(0, 0), there is a solution for K — a 1 × 1 matrix with entry 0. The

fixed points therefore correspond to doublets of Young diagrams with total number of boxes

equal to one:

(1) : Y1 = , Y2 = ∅ ,

(2) : Y1 = ∅ , Y2 = .
(G.23)
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In the first case, for the only box s = (1, 1) ∈ Y1: AY1(s) = 0, LY1(s) = 0, AY2(s) = −1,

LY2(s) = −1. The triple (1, 2, s ∈ Y1) satisfies (G.12) and therefore using (G.13) and (G.14)

zvec
~Y

(1) =
(
− sinπ(2a) sinπ(2a + λ)

)−1
, zadj

~Y
(1) = − sinπ

(
2a +

1

2
λ±m

)
. (G.24)

In the second case, for the only box s = (1, 1) ∈ Y2: AY1(s) = −1, LY1(s) = −1, AY2(s) = 0,

LY2(s) = 0. The triple (2, 1, s ∈ Y2) satisfies (G.12) and therefore using (G.13) and (G.14)

zvec
~Y

(2) =
(
− sinπ(2a) sinπ(2a− λ)

)−1
,

zadj
~Y

(2) = − sinπ

(
2a− 1

2
λ±m

)
.

(G.25)

Putting together (1) and (2), we have

Zmono(a,m, λ; p = 2, v = 0)

= zvec
~Y

(1)zadj
~Y

(1) + zvec
~Y

(2)zadj
~Y

(2)

=
sinπ

(
2a + 1

2λ±m
)(

sinπ(2a) sinπ(2a + λ)
) +

sinπ
(
2a− 1

2λ±m
)(

sinπ(2a) sinπ(2a− λ)
) . (G.26)

The configurations v = ±1
2diag(2,−2) receive classical and one-loop contributions. Putting

those together with Zmono computed above, we obtain the final answer for 〈L2,0〉.

〈L2,0〉 =
(
e4πib + e−4πib

) ∏
s1,s2=± sinπ(2a + s1m + s2

2 λ)

sinπ(2a + 1
2λ) sinπ(2a− 1

2λ) sin 2πa

+
sinπ

(
2a + 1

2λ±m
)(

sinπ(2a) sinπ(2a + λ)
) +

sinπ
(
2a− 1

2λ±m
)(

sinπ(2a) sinπ(2a− λ)
) . (G.27)
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