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1 Introduction and summary of the main results

1.1 Generalities

't Hooft-Wilson defects are the simplest class of non-local operators in gauge theories
and have been studied from various perspectives, starting with the pioneering work of 't
Hooft [65, 68, 69]. In this paper we study 't Hooft defects in four-dimensional N' = 2*
SU(N) gauge theory on R3 x S', where the defect is inserted at the origin of R3. In a
4d, N' = 2 Lagrangian theory on R3 x S!, the vev of an 't Hooft defect, characterized
by an element of the cocharacter lattice B and denoted as Tp, can be understood as a
supersymmetric index:

<TB> _ TrH<B>(_1)F6727rR-H 627ri)\-(J3+JR) e2mipf-Fy 8271'i9-Q7 (11)

where Hp) denotes the Hilbert space of the theory with the line defect, F' is the fermion
number, R is the radius of the circle, and H is the Hamiltonian. Here J3 generates ro-
tation in the 1 — 2 plane of R3, Jg is the Cartan generator for the R-symmetry group
SU(2)gr, {Fy} generate the flavor symmetries in theories with matter. Additionally, A is
the chemical potential for (J3+Jg), {/1f} are chemical potentials for {F¢}, and § = (0, O,,)
are background electric and magnetic Wilson lines (which are chemical potentials for the
electric and magnetic charges at spatial infinity Q = (Qe, Qm))-

The above index should be interpreted as a path integral with the appropriate bound-
ary conditions at the origin of R? and at spatial infinity. The boundary conditions at the

origin are
B 1 B
A, da? ~ —g*) —d7r + — cosfdo,
Yo~ —g9- D1 B '
AT 2r’

where r = |Z|, and ¢?,9 are the 4d gauge coupling and theta-angle respectively, and we
view the cocharacter B as an element of a Cartan subalgebra of the Lie algebra of SU(N).
X and Y are real scalars of the A/ = 2 vector multiplet. For vanishing theta-angle, the
above equations reduce to the simplified form:

B . B . B
FN—5s1n¢9d9/\dq§:—Seijkr—gdxj/\dxk, X~o (1.3)

and Y is regular at » = 0. At spatial infinity, the field configurations approach a vacuum
associated with a generic point on the Seiberg-Witten moduli space M [54], which is a fibra-
tion over the Coulomb branch of the 4d theory by a torus of electric and magnetic Wilson



lines. The magnetic Wilson line 6,,, is introduced in the path integral by first working with
a fixed magnetic charge v, at infinity, and then defining 6,, as the Fourier dual of v,,. In
other words, we first introduce a path integral (T5) (v,,) with boundary conditions (1.2)
at the origin of R? and the following boundary conditions at spatial infinity:!

F %msinedamgb, X — x(0) ;ﬂ+0(r_1_5)7
T
(1.4)
7{ Ardr =6, Y Y@ 1007,  §>0,
Sql—‘r%oo

and then define the Fourier dual of the path integral:

(Tp) (0m) = Y (Tp) (ym)e 2T m0m . (1.5)

TYm

The Seiberg-Witten moduli space M is a hyperkihler manifold with a CP! worth of
complex structures parametrized by ¢ € C*.2 The 't Hooft operator vev (Tg) (6,,) is a
holomorphic function on M with respect to a chosen complex structure ( associated with
the 't Hooft defect. In this paper, we will set ( = 1, and indeed we have done so in
writing (1.2).

Recently, extremely powerful techniques for computing vevs of 't Hooft-Wilson defects
were devised for theories in class S using the AGT correspondence [23]. In this approach,
vevs of 4d line operators are related to correlation functions of appropriate loop operators
in Liouville/Toda CFT which live on the Riemann surface associated with the class S
construction of the 4d theory. The latter can then be computed using the standard Verlinde
operator approach [61, 62], as discussed in [22, 25], leading to explicit expressions for the
4d line operator vevs.

In a parallel set of developments, vevs of Wilson defects were computed for 4d, N = 2
theories on compact space-time manifolds like ellipsoids and four-spheres [15, 17] using
localization techniques. Localization of 't Hooft defects in 4d,N' = 2* SU(N) theory
on a round four-sphere was addressed by Gomis, Okuda, and Pestun (GOP) in [14]. It is
important to note that GOP did not compute the vev (T5) directly. Instead they computed
the vev of a product of 't Hooft operators in a minimal representation (the fundamental
representation for the case of N'=2* SU(N)) in the coincident limit of collinear insertion
points. Rather than computing the SU(2) defect Tp with B = diag(§, —%), GOP computes
the following correlation function:

p
<TB> = Jm <i:1TBmm(Zi)> : (1.6)

where Bpin = diag(%, —%) This 't Hooft defect is S-dual to a Wilson defect in the rep-
f
resentation R = (Rfund) , where {Runq} is the fundamental representation of SU(2), as

opposed to the irreducible j = g representation. Using the operator product algebra for
line defects, one can of course extract (Ts) from a knowledge of (Ts/) for various B'.

!Note that the superscript (00) implies the vev of the respective field at the spatial infinity r — oo.
2¢ should not be confused with FI parameters of quiver gauge theories that appear later.



In [16], Ito, Okuda, and Taki (IOT) extended the computation of GOP [14] for an 't
Hooft operator on R3 x S}% inserted at the origin of R? and wrapping S}%, where R3 x S}%
has the coordinates {z*} = (Z,7) and a metric ds?> = dz? + d72, where T is a periodic
coordinate: 7 ~ 7 4 2rR.3 They primarily considered N' = 2* SYM, and N/ = 2 SYM
with fundamental hypers, with a single SU(NN) gauge group, although their formula can be
generalized to include other gauge groups and matter representations.

These 't Hooft operators <TVB> are holomorphic functions on the Seiberg-Witten mod-
uli space M. Therefore, it is convenient to write the localization answer in terms of a
particular set of holomorphic coordinates — the complexified Fenchel-Nielsen coordinates
(a,b) [12, 21] — which have the following expressions in terms physical parameters defined
in the weak coupling expansion:

a:<06+iRY(°°)>+..., b=<27T 7 o

Y(°°>> +..., @7
where we have written the classical contribution explicitly in the weak-coupling expansion
of (a,b), while the ellipsis indicate non-perturbative corrections. A systematic discussion
of these non-perturbative contributions will be discussed in a future paper.

Given the boundary conditions in (1.2) and (1.4), the localization formula for the ’t
Hooft operator vev can be written as a Fourier series w.r.t. a complexified Fenchel-Nielsen
coordinate b:

<fB> (Hm) = Z €2ﬂi(b’v)Zl-loop(a>Mf=/\;V)Zmono(aa,ufu/\;BaV> > (1-8)
{vEAa+B| (v,v)<(B,B)}

where A, us are chemical potentials defined in (1.1), v is a cocharacter such that v — B is
an element of the coroot lattice A¢y, and (-, -) denotes a Killing form on the Lie algebra of
SU(N). The factorization of the Fourier coefficient into Z;_jo0pZmono is discussed in the
next paragraph.

The sum over v in (1.8) can be physically interpreted as a sum over the monopole
bubbling sectors where v is the effective 't Hooft charge after bubbling in a given sector.
As shown in GOP and IOT [14, 16], this sum arises from a sum over the isolated fixed
points of the Q-fixed locus of the 4d path integral with ’t Hooft defect. These can be
described as the fixed points of a certain group action on the moduli space of U(1) -
invariant* instantons on C? where the U(1) x-action on the instanton bundle is specified by
the defect data (B, v). We will denote this moduli space as M(B,v). The fixed points of
M(B,v) with respect to the U(1)x action are then labelled by tuples of Young diagrams
consistent with the U(1)x invariance (see appendix G for a quick review of the results of
I0T). Similarly, the one-loop determinant from fluctuations of fields around these fixed
points are obtained by restricting to the U(1)g-invariant weights of the group action at
each fixed point. The universal part of this determinant is called Z;.1oop While the remaining
part (dependent on the fixed points) is identified as Zyono-

3Similar computations were done for line operators on other four-manifolds in [70, 71].
4U(l)K acts on C? as (z1,22) — (627’”’21, efz’m’zg) and this induces an action on the moduli space of
instantons on C2. See section 2.2 for a review of the ADHM construction of the moduli space M(B, V).



In reference [16] IOT have given a formula for Zyone of the form

20T (0, g, X B,v) = Z5 )R e = / C(TM)C(E), (1.9)
M(B,v)

mono inst k=k(B,v) —

where M(B,v) is the moduli space of U(1)x-invariant instantons on C?, k = k(B,v)
is the instanton number, and the integrand of the equivariant integral for ZIOT "is the
appropriate characteristic class for the 5d instanton partition function on S' xR* for a given
theory.” This formula is not precise, in part because the integral is over a singular space.
In the case of SU(N) N = 2% a natural regularization of the integral (explained below)
yields answers for the 't Hooft line defect vev’s in agreement with those given by the AGT
prescription. However, as noted in [16] for other groups and hypermultiplet representations
the prescription for defining the integrals in (1.9) in general does not agree with the relevant
AGT computations. We will comment on this issue in more detail after (1.12) in section 1.2.

Before summarizing the results of this paper, we would like to mention briefly a couple

of important issues that we do not pursue in this paper but hope to address in a future work:

e The path integral expression for the vev (Tz)(ym) can be reduced to an integral over
the moduli space of singular monopoles on R? with an 't Hooft defect of charge B
at the origin and asymptotic charge ~,, at spatial infinity. We will denote this space
M(B,ym, X*°). The expansion (1.8) of the path integral is closely related to the
recent analysis of singular monopole moduli spaces by Nakajima and Takayama [3]
in the context of bow construction [1, 18, 19, 24] for moduli spaces of instantons on a
Taub-NUT space. In particular, the authors of [3] show that the space M (B, ¥, X*°)
admits a stratification

MBAm X =[] ™M (v, 7m. X, (1.10)
0<v<B
vEA+B
where M(S) (U, Ym, X°) is the smooth component (i.e. the complement of the singular
locus) of M (v, Y, X*°), and that M (B, v) is the transversal slice to B(S) (V, Ym, X)
in M(B, ym, X*®).

e 't Hooft defects in 4d N/ = 2 theories are closely related to Coulomb branch physics
of 3d, N' = 4 theories. Given the formula for (T)gs, s1, One can compute expecta-
tion values of monopole operators in the 3d, N' = 4 theory on R? by taking the S*
radius R — 0 carefully. In particular, this allows one to compute precise equivariant
expressions for coefficients of the “Abelianization Maps” introduced by Bullimore,
Dimofte and Gaiotto [6].

1.2 Summary

In this work, we revisit the localization computation of the vev of 't Hooft defects of
the form (1.6) in a 4d N/ = 2* theory on R3 x S'. In particular, we show that the
non-perturbative part of the path integral is an equivariant integral over a Kronheimer-
Nakajima moduli space of instantons on an orbifold of C?, and is given by the Witten index
of a N = (4,4) SQM living on S'. The main results of our paper are summarized as follows.

5We discuss these characteristic classes in detail in appendix D.



U(1) g-invariant moduli space of instantons as a KN moduli space. From the
ADHM construction of U(1) g-invariant SU(N) instantons on C2, we show that the moduli
space M(B, v) is isomorphic to a Kronheimer-Nakajima (KN) space,® which describes the
moduli space of U(N) instantons on an orbifold of C2. The space M(B,v) can therefore
be described as a linear quiver variety T’ R where the quiver data (E, W) can be derived
from the defect data (B, v).

2 =
M(B,v, SU(N)) = My (%" (k,, U(N)) (1.11)
where n is sufficiently large. This is a crucial observation which allows one to realize the
moduli space of U(1)x-invariant instantons in terms of a very well-known moduli space.
We discuss the derivation in section 2.2.

Monopole bubbling Index as Witten index of an SQM. Given the identification
of M(B,v) with a KN moduli space, the result (1.9) implies that Zyeno for 't Hooft defects
in an N = 2* SU(N) theory is equal to a 5d N/ = 1* SU(N) instanton partition function
of instanton number k, on S! x C2/Z, for a sufficiently large n. The instanton number k
is determined by the defect data (B, v).

The linear quiver FE@ therefore encodes the data of a (4,4) supersymmetric quiver
quantum mechanics, such that the moduli space M(B,v) is realized as the Higgs branch
P arises as the ADHM quiver for the KN
instantons in (1.11). The moduli space is singular, and can be resolved by introducing

of this quantum mechanics. In other words, I'

real stability parameters in the ADHM construction. This corresponds to turning on FI
parameters for U(1) factors in the linear quiver L'z o

The 5d instanton partition function is given by the Witten index of the SQM computed
in the Higgs scaling limit, where we take the SQM gauge coupling > — 0 and the FI
parameter ( — oo such that ¢/ = e2( is held fixed.” Therefore, one can write a formula for
ZBXS! i terms of the SQM Witten index:®

mono

N

inst
i=1

(1.12)

N
= ZSQM (P];u_}.’ Z a; = 0)
i=1

Generically, the Witten index and the 5d partition function will depend on the sign of
¢’. However, the N/ = 1* SU(NV) instanton partition function and the associated Witten
index are invariant under the transformation ¢/ — —(’. Therefore, the above equation is
well-defined.

5This was also noted in [3].

"For multiple unitary gauge groups, one sets e; = e and ¢; = ¢ for all 4, and then takes the Higgs scaling
limit.

8We drop the dependence on some of the equivariant parameters in this equation for brevity.



In the general case, where the partition function is dependent on the sign of ¢/, setting
Zmono naively equal to the partition function in the ¢’ > 0 or ¢’ < 0 chamber gives a
wrong result. For example, in the SU(2) theory with Ny = 4 flavors, the naive answer for
Zmono computed in any chamber differs from the AGT expression by certain extra terms.
These extra terms are closely related to the non-trivial wall-crossing of the Witten index
as ¢/ — —(’. A further investigation into this discrepency is in progress.

Defect SQMs for N/ = 2* SU(2). As an illustrative example, we work out the linear
quivers associated with 't Hooft defects in N' = 2* SU(2) explicitly. Consider a defect
labelled by B = diag(%, —%), and a monopole bubbling sector labelled by v = diag(%},}@— %S)l,
Z X

mono

with integer (p,v) and v = —p, —p + 2,...,p. The quiver SQMs associated with
for the cases v =0 and v # 0 are given as:

OO0 (O OO0

@@@ (+) OO0

respectively. The quiver SQMs for 't Hooft defects in N/ = 2* SU(2) are discussed in

ZRE‘XS1

mong, for a few examples

section 2.4. Using the Witten index formula (1.12), we compute
with small p and v (in section 2.4 and appendix C) and check that they agree with the

IOT expressions.

Hanany-Witten construction and SU(IN) quiver. We present a Type IIB Hanany-
Witten type construction of singular monopoles which can be used to describe monopole
bubbling in a 4d N' = 2 U(N) SYM (or N' = 2* U(N) SYM). This construction is
described by the worldvolume theory of a stack of D3-branes with decorating D1- and
NS5-branes. We show that using this construction, we can derive the Higgs branch quiver
(a quiver gauge theory whose Higgs branch is isomorphic to the moduli space in question)
for M(B,v) from the world volume theory on the Dl-branes. For generic N > 2, we
write down a general form of the Higgs branch quiver, built out of a linear array of N — 1
superconformal sub-quivers S; (i = 1,..., N — 1). These superconformal subquivers are
connected by exactly N — 2 unbalanced” gauge nodes, such that two adjacent sub-quivers

9A balanced U(k;) gauge node in a linear quiver gauge theory is one for which the one-loop 5 function
vanishes. This happens when 2k; = k;+1 + ki—1 + w; in the notation of figure 2 below.



are separated by a single unbalanced gauge node:

wntot

where the circular nodes denote the unbalanced gauge nodes. Details of this quiver are
discussed in section 3.3.

The plan of the paper is as follows. Section 2, the core of the paper, discusses the con-
tribution of monoopole bubbling to the expectation value of ‘t Hooft line defects. There
we show how this contribution can be given by an equivariant integral over a certain
Kronheimer-Nakajima quiver variety describing the moduli space of U(1)g-invariant in-
stantons on C2 (./\/l(B,v)) which can equivalently be written as a Witten index for the
associated quiver SQM. Then in section 3, we introduce a D-brane description of singular
monopoles and monopole bubbling. Using this description, we give a derivation and phys-
ical explanation of the quiver SQM associated to M(B,v). In the appendices we provide
additional background material on computing the Witten index of ADHM SQM’s and previ-
ous work on computing the Z,on, contributions to ‘t Hooft defects. We also explicitly com-
pute several examples and discuss equivariant integrals associated to these Witten indices.

2 Defect SQM for ’t Hooft operators in SU(N) N = 2* theories

In [14, 16], the authors showed that the monopole bubbling contribution Zpone to the ’t
Hooft operator vev is given by an equivariant integral of certain trigonometric characteristic
classes over M(B,v): the moduli space of U(1) x-invariant instantons on C2. In addition,
these characteristic classes were shown to be precisely those which that appear in the equiv-
ariant integral formula for a 5d instanton partition function on S x C2.10 In other words,
Zmono is given by the U(1) g-invariant part of a 5d instanton partition function on S* x C2.

In this section, we derive that for a given SU(N) defect labelled by a cocharacter B,
the space M(B,v) can be thought of as a Kronheimer-Nakajima (KN) space describing
U(N) instantons on an orbifold C2/Z,, for a sufficiently large positive integer n. We will
show that the fact that M(B,v) can be described as a KN space implies that Zy,ono i8
an equivariant integral of a characteristic class over the KN space, and therefore can be
identified with a 5d instanton partition function on S! x C?/Z,, specified by the defect data.

In order to write Zono as an equivariant integral, we must address the singularities of
M(B,v). The resolution of singularities in KN moduli spaces is a well-studied problem and
one can unambiguously define equivariant integrals on such spaces. This consists of taking
the closure (adding point instantons) and then resolving the singularities by introducing
stability parameters (FI parameters). For an N' = 2* theory, this leads to a well-defined

0By 5d instanton partition function, we will mean the non-perturbative part of the 5d index only and
therefore not including the one-loop part.



equivariant integral formula for Zy,on, which we discuss in appendix D. However, in ad-
dition to resolving M(B,Vv), in a generic Lagrangian N' = 2 theory one must address the
chamber-dependence of Zy,ono with respect to the stability/FI parameters. However, for
the case of the N/ = 2* theory, this dependence is trivial as we discuss in section 2.3.

From a string theory perspective, instantons on C2?/Z,, can be realized in Type IIA,
by considering the world volume theory of D4-branes wrapped on C?/Z, with k dissolved,
fractional DO-branes [52]. The moduli space of these configurations can also be realized as
the Higgs branch of the world volume theory on the DO branes (which we will refer to as
the KN quiver). From this construction, it is clear that the 5d instanton partition function
is given by the Witten index!! of the DO-brane world volume theory [40, 48]. Therefore, by
exploiting the relation between a 5d instanton partition function and the Witten index of an
SQM, one can write Zyono as the Witten index of the SQM corresponding to the fractional
instanton. This allows us to write Z,on0 as an equivariant integral over a characteristic class
which can be reduced to a contour integral whose solution is a sum over poles enumerated
by Young diagrams.

In summary, for a 4d N' = 2* theory with gauge group SU(N) and an associated 5d
N = 1* theory with gauge group U(N), Znono satisfies

N
Zono (B, viSUN) ) = 23,/ /% (kz B UN)|e- =0, 0 = 0) (21)
=1

N
= ZSQM (FE@"G_ = 0, Zai = 0>
i=1

ivari ; R3x S? StxC? /7y,
where the equivariant parameters in Z3 x> (a,m,\) and Z; (a,m,ey) are related

in a simple fashion:
a = 2ira, m = 2imm, €4 =IimA. (2.2)

Here the SU(N) defect data B and bubbling data v is mapped to U(N) instanton
data on C?/Z, specified by vectors (E, w). Also, the lower bound of n is determined by
the defect data. We discuss the defect data/instanton data map as well as the bound on n
in detail in section 2.2.

2.1 Brief review of the KN quiver variety

We begin with a brief review of instanton moduli spaces on C?/Z,, and KN quiver variety
relevant for the subsequent discussion. We will restrict our discussion to U(N) instantons
on C?/7Z,,. Consider the standard ADHM complex

0 —v™U@lcovew Ay o, (2.3)

where V = C* and W = CV. Recall that V is the space of Dirac zero modes on R* in an
instanton background, while W is the fiber of the associated bundle in the fundamental
representation at a base-point at infinity.

HEor review, see appendix A and B.



The maps o(z) and 7(z), explicitly given as

Bl — 21
O'(Z) = BQ — 29 , T(Z) = (,22 — BQ Bl — 21 I) s (24)
J

obey the condition 7(z)o(z) = 0, so that the sequence (2.3) is a complex. The ADHM data
consists of the following matrices:

B; € Hom(V, V), I € Hom(W,V),

2.5
By € Hom(V,V), J € Hom(V,W). (25)

The moduli space of instantons on C2?/Z,, is a hyperkihler quotient of the ADHM data

invariant under the Z,, orbifold action, induced from the action on C2? given by (z1, 22)

27i/n

(wz1,w 12), where w = e . The invariance condition on the ADHM variables under

Z, action is given by the following equations:

Ba = R2(9)w(9)Byyy' (9), (a,b=1,2),
I=w(9) ' (9), (2.6)
J =ywl(9) T (9),

where g is a generator of Z,, the matrix R? implements an SU(2) rotation on C? while
w(9),yw (g) implement the Z,, orbifold action on the vector spaces V (dimV = k) and W
(dim W = N) respectively. In terms of the one-dimensional irreps of Z,, defined as

R; : w = ¥/ s = 2T/ j~j modn, (2.7)
the spaces V and W admit the following isotypical decomposition:
V= EB V®RJ, W = @ W®RJ, (2.8)

Let the integers k; = dimV; and w; = dimW; count dimensions of the degeneracy
spaces, i.e. the number of times the j-th one- dimensional irrep appears in the isotypical
decomposition, such that 7~ o ki =dimV =k and Y77, i g wj =dim W = N. This data is

summarized in terms of the KN vector k = {ko,k1,...,kn—1} and the monodromy vector
W= {wo,wl, ce ,wn_l}.
Explicitly, the matrices R’ vy and 7y can be written, in some suitable basis,
as follows:
R(9) = diag(w ™" w),
w(g) = diag(w",w",...,w"), (2.9)
’VW(g) = diag(wma TQ? y W N) >
where n; (i =1,...,k) and 7 (o = 1,...,N) are integers defined modulo n, and can be

repeated. The multiplicities of the integers {n;} and {r,} are given by the entry k,, in the



KN vector k and wy,, in the monodromy vector W respectively. For SU(N) instantons, one
must also impose Z(]lvzl ro = Omodn.

A generic solution of the equation (2.6) is given as follows:

Bl € @?:_OlHom(‘/%-‘rlv ‘/;) ) 1 € EB?:_OIHOHI(‘/Z‘, Wz) s

1 o1 (2.10)
By € @~y Hom(V;_1,V;), J € @} yHom(W;,V;) .

In the final step, we take the hyperkédhler quotient of the Z,-invariant ADHM data w.r.t.
the group [}y U(ks), i.c.

Micn(U(N)) = {(B1, Bo, 1, )z} | | [ TT Uk (2.11)
where the quotient is implemented via the ADHM equations:
pe =B, Bl +1J=0, pgp=[Bl,B]+[B}, B+ 1I"—JfJ=0. (2.12)

The resultant space is a quiver variety labelled by the vectors k and . For our study
of line defects, we will be interested in KN instantons where one or more integers k; may
be zero, such that the KN vector k and monodromy vector W are given as:

ol
Il

’imax707"'70 )
) (2.13)

diag(O, ce ,0, Wiin s Winin+1y Wi +25 -+ Wigaxs 0, ceey 0) .

diag((), ey 0, kilnin’ kimin+1a kimin+27 ceey k

g
Il

The KN data is related to topological data of the instanton bundle on the orbifold/ALE
space. We mention a few useful results here and refer the reader to [29, 39, 60] for details.
Given an ALE space of A,_1 type, one can introduce a tautological bundle 7 over the
ALE base with a regular representation of Z, being the fiber. 7 admits a decomposition
T = @?;& T; ® R;j, where R; is the j-th irrep of Zj,, and 7; are certain vector bundles on
the ALE space such that their first Chern classes — ¢1(7;) — form a basis for H?(ALE, Z)
for j # 0 (we set ¢1(7p) = 0). The first and the second Chern classes of the instanton
bundle can be written in terms of the first and second Chern classes of the bundles 7;:

n—1
cr =Y (wj = 2kj + kj1 + ki) e (Tj)
- ) (2.14)
n— 1 n—
cy = Z(wj —2kj + kjp1 + /Cj_l) 62(7;) + ” Z k;,
=0 i=0

The number %Z?:_ol k; is often referred to as the instanton number, which coincides
with the second Chern class of the instanton bundle only for a balanced quiver. In addition,
we do not require dim V' to be an integer multiple of n which implies that the KN instantons

are generically fractional.
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2.2 Moduli spaces for U(1) g-invariant instantons on C? as
Kronheimer-Nakajima quiver varieties

Kronheimer’s correspondence states that smooth monopoles in the presence of a single ‘t
Hooft defect can be described by U(1)g-invariant instantons on C? [63]. For this pur-
pose, the ADHM construction for U(1) g-invariant SU(N) instantons on C? was presented
in [14, 16, 32]. We now demonstrate how this ADHM moduli space can be thought of as
a special case of a KN moduli space of U(N) instantons on an orbifold of C2. The basic
result of this subsection may be summarized as follows.

The SU(N) defect data on R? consists of a cocharacter B = diag(p1,p2,...,pn) and
v = diag(vi,va,...,on) € A + B, such that (v,v) < (B,B), with p;,v; € Z, and
Zi]\il pi =0, Zf\il v; = 0. Given a pair of cocharacters (B,v), let M(B,v, SU(N)) be
the moduli space of U(1)g-invariant SU(N) instantons on C2, where B and v determine
the U(1)x action on the fibers of the instanton bundle at the origin and at infinity respec-
tively. For sufficiently large n, we claim
C%/Zn,

M(B,v, SU(N)) = M /= (k,@, UN)) (2.15)

where Mfriézigst. (k,, U(N)) is the moduli space of a U(NN) instanton on the orbifold C2/Z,

with a monodromy vector @ and a Kronheimer-Nakajima vector E, as discussed above. The
relation between the defect data (B,v) and the KN data (k, @) is explained later in this
subsection. The isomorphism implies that M (B, v, SU(N)) can be understood as a linear
quiver variety.

Let us review the ADHM construction of the U(1) g-invariant instanton moduli space
of instanton number k. Consider the following U(1) action on C? : z = (21,22)
(€2™V 21, e 2™ 25), where €*™ € U(1). This is the action of U(1)x. To discuss the equiv-
ariant version of the ADHM construction under the U(1)x action, it is convenient to write
the standard ADHM complex in a slightly different (but equivalent) form:

0—>V®L,@S+®V@WﬁV®L+—>0, (2.16)

where V = CF, W = CV, and ST are the chiral spinor bundles on C? (with fibers ST at a
point z € C?). Under the U(1) action, S~ decomposes into line bundles: S~ = L_ & L,
and Ly denote the corresponding fibers of the line bundles. The maps o(z) and 7(z),
explicitly given as

B1—=»

O'(Z) = BQ — Z9 s T(Z) = (ZQ — BQ B1 — 21 I) N (217)
J

obey the condition 7(z)o(z) = 0, so that the sequence (2.16) is a complex. The ADHM
data is given by (2.5).

Next, we promote the vector spaces V, W to U(1)x representations so that the maps
o(z),7(z) are themselves equivariant. The representations are of the following form:

ov (627@) — 2k ow <€27riy> — e2mivy (2.18)

- 11 -



where K and v are cocharacters. Explicitly the complex is U(1) x equivariant if the ADHM
variables obey the following relations:
eQTriKuBle—ZwiKV — eQﬂiVBl ’ eQﬂiKVIe—Zwivu -7 ,

. . . . . (2.19)
e27r1K1/B2€727r1K1/ — 6727“1132 , 6271'1v1/J6727r1K1/ - 7J.

Given the equivariant complex, one can define the fibers of the gauge bundle using coho-
mology groups of the complex:

H? = Ker[o(2)], H!=Ker[r(2)]/Im[o(2)], HZ?=V/Im[r(2)]. (2.20)

If H) = H? = 0, then E, = H} describes the fiber of a smooth irreducible instanton bundle
over C2. In particular, the fiber E is identified with W, (dim W = N) and Ej is the fiber
at the origin z; = 0,29 = 0 (dim Ey = N). Therefore, the U(1)x representation associated
with the fiber Ej is of the form:

PEL <€27ri1/> _ 2miBy (2.21)

The cocharacters (B,v,K) are related. From the Euler-Poincare principle, the U(1)g
characters must obey the following equation:

chg+gy + chy — chg-gy = chg, . (2.22)

Noting that chg+ gy — chg-gy = (2™ + 2™ — 2) Try > 5¥ and that By 2 W as
vector spaces, we arrive at the equation [32]:

TI'W e?ﬂiBu — TI'W e27riv1/ + (627riu + e—27riu _ 2) TI'V 627TiKV (223)

Given (B, v), the above equation determines the cocharacter K up to conjugacy. Note
that the equation doesn’t always have a solution. Taking the limit v — 0, we have the
following relations in the leading and sub-leading order:

1
Tryy B = Trwy v, k=dimV = 5(TIW B? — Tryy v?), (2.24)

where the second equation implies that (B, B) > (v, v) for (2.23) to have a solution.

This U(1)k action descends to an action on the ADHM hyperkéhler quotient. The
resultant fixed point subspace is the moduli space of U(1)g-invariant instantons, which we
have denoted as M(B,v,SU(N)).

We will now show that M(B,v, SU(N)) is a linear quiver variety. Let us perform the
following transformation of the triplet of matrices (B, v, K):

B—)B/:B—pminl,
V>V =V —puinl, (2.25)
K=K =K — pun L.

The resultant triple (B’, v/, K') is a solution of the Euler-Poincare character formula (2.23),

where the eigenvalues of the matrices (B’, v/, K') can be taken to be non-negative integers. !

12Note that this is an arbitrary choice. However, the quiver variety is stable under any such overall shift
transformation of (B’,v', K').
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Note that for B’ = diag(p},ph,...,py), for p, € Z, we have ZZ]\;I p; # 0, which implies
that B’ is an element of the cocharacter lattice of U(N) as opposed to SU(N). In addition,
the conditions of U(1)x equivariance of the ADHM data (Bi, Be, I, J) are invariant under
the shift (2.25). This leads to the following isomorphism of moduli spaces:

M(B,v,SU(N)) = M(B,v',U(N)), (2.26)

where (B’,v’) for a given pair (B, v) are given by the transformation in (2.25).

The vector spaces V and W are now associated with U(1) representations labelled by
the cocharacters K’ and v’ respectively. Let p, denote an irreducible representation of
U(1)x with charge g¢:

— 627ri1/

pg i T 2l =M g e 7. (2.27)

One can now write the isotypical decompositions of V' and W under this U(1) ac-
tion. Since all eigenvalues of the operators K’ and v’/ are non-negative integers, isotypical
decompositions of V' and W will only involve irreps with non-negative U(1)x charges, i.e.

V=P vWep. W= W, (2.28)

qEZE() qEZzo

where V(@ and W@ are degeneracy spaces.

Invariance of the ADHM data under U(1)x action implies invariance under any sub-
group of U(1)x and in particular, the subgroup of n-th roots of unity, Z,. Under the
inclusion

L Zy > U(L), (2.29)

one can write the Z/nZ irrep R;, defined as

Rj:w= 2T/ sl = 2™/ 5w mod n, (2.30)
as a pull back of the U(1) irrep py:
*(pg) = R; j=¢q modn. (2.31)

The isotypical decompositions can therefore be rewritten in terms of the Z/nZ irreps
as follows:

V=0;V;®R;, W =0;W; @ R;, (2.32)

where V;, W; are the corresponding degeneracy spaces, and j = ¢ mod n with ¢ € Z>o.
We can now choose n such that the labels of the Z/nZ irreps R; can be taken in the
fundamental domain, i.e. 7 =0,...,n — 1, and one can unambiguously set j = ¢. This can
be done if n is greater than the maximal U(1) g charge gmax which appears in the isotypical
decomposition (2.28).

N > Qmax (2.33)
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which is what we mean by a sufficiently large n. Given j in the fundamental domain, the
isotypical decompositions assume the form

n—1 n—1
V=PVieRr, W=W;aR;. (2.34)
j=0 j=0

Analogous to the Kronheimer-Nakajima construction, one can now define the vectors k
and @ which count the dimensions of the degeneracy spaces:

- (ko,kl,...,kn_1>, k; = dimV;,
(2.35)
w= (wo,wl,...,wn,l) y w; :diij.

In addition, some of the integers k; may be zero. For example, writing the character
equation (2.23) for the triple (B',v', K') as

. (Try 2B — Trya2Y) 2
Try 2% _ L ) _ > kja?, ¢>0, (2.36)
(z2 —272)? =0

and taking x — 0 limit, one can see that ko = 0, if the eigenvalues p}, v} > 0, Vi. Also, k;
for all j > gmax will vanish.
Therefore, a more precise way of writing the isotypical decompositions is:

Qmax gmax
V= @V}@Rj, W = @Wj@Rj, (2.37)

J=Qmin J=Qmin
where ¢min > 0 and gmax < n. The vectors k, W are given as
P (ko,kl,...,kn_1> - (o,...,o,kqmm,kqmmﬂ,k;qmw,...,kqm,o,...,0) :
w = (wo,wl, - ,wn,l) = (O, e 0, Wei s Wanin 415 Wamin 425 - - - » Wamaes 05 - - .,0) .

One can write down the explicit solution for the U(1)g invariant ADHM variables
{B1, B2, I, J}k from equation (2.19):

Bieefzy Hom(Vier V), Ty Hom(uW)), o
By € &1 tlom(Vien V), J € @2, Hom (W5, V). |
In particular, note that By, By does not have a component of the form Hom(V, ., Vq...)

Vi

dmax

or Hom(V,, ., ), since m > @gmax. It is obvious from the discussion above that the
U(1)g invariant ADHM data (2.39) can be thought of as solutions of the Z,, invariance
equation (2.6) provided we make the following identification:

Pp— / Pp— /
n; = Kj, To 1= Uy,

(2.40)

where the integers n; and r, are in the fundamental domain, i.e. 0 < n; < n — 1 for all 7,
and 0 <7, <n —1 for all . Note that the integers K| and v;, are non-negative.
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Finally, the moduli space M(B’,v’, U(N)) is given by the hyperKéhler quotient

M(B',V', U(N)) = {(B1, Ba, I, )i} /// [Tutky) = MB.v.SUN)  (241)

where the last equality follows from (2.26). The hyperkéhler quotient is implemented via
the ADHM equations (the first of which follows from the condition 7(z)o(z) = 0):

NcE[Bl,BQ]—FIJ:O,

(2.42)
pr = (B}, Bi] + B, By + 11T — JtJ = 0.
M(B',v', U(N)) is therefore a linear KN quiver variety, with generic form of vectors &k and
W, given in (2.38). Note that, the quiver variety stabilizes as a function of n for sufficiently
large n. Consider shifting the triple (B, v, K) to (B”,v”, K") such that

B — B" = B — (pmin — u) 1,
v—=v'=v— (pmin —u) 1, (2.43)
K— K'"=K — (pmin —u) L

where u € Z~g, such that the eigenvalues of K" are positive integers, different from the
eigenvalues of K’ defined earlier. Using the same line of argument as above, one can show
that M(B”,v" ,U(N)) is isomorphic to the same linear quiver variety for a sufficiently large
n.

2.3 Defect SQM and Witten index

In the previous subsection, we established that the moduli space of U(1)g-invariant in-
stantons on C? can be understood in terms of certain KN instantons on C2?/Z,,. Given this
description of U(1)g-invariant instanton moduli space, one can now express the bubbling
index of an 't Hooft defect vev in an N' = 2* SU(NN) SYM as a 5d instanton partition func-
tion of an V' = 1* U(N) theory on S' x C2?/Z,, following the discussion in the beginning
of section 2.

3 1 2 —
ZES (B,via,m, NG = SUN)) = 25,35 /™" (k@ a,m, e e |G = U(N), Y a; = 0)
i
(2.44)
where the equivariant parameters on both sides of the equation are related as
a=2ira, m=2mm, ey =imA, e-=0. (2.45)

Unfortunately, the r.h.s. of equation (2.44) is not well-defined since the instanton mod-
uli space on the r.h.s. suffers from UV singularities arising from zero-size instantons. As
discussed in section D.2, the singularities can be resolved which introduces suitable stabil-
ity /FI parameters {Ck} (With i = gmin, - - - , gmax) that deform the real moment map. There
exists two natural chambers defined by: (ﬁé < 0 (or {ﬁé > 0) for all 4, where the partition
function Z5 XC*/Zn ig given by a Z,-projection of the partition function Z° xe2,
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This is the partition function that appears in the r.h.s. of (2.44) and will be studied
in this section. For a generic 5d N/ = 1 theory, the answer would still depend on the sign
of the stability parameters. However, for the specific case of N’ = 1* theory, the instanton
partition function is invariant under an overall sign flip of the FI parameters, which allows
one to write down the r.h.s. of (2.44) unambiguously.

‘?;SthCQ/ In i given by an equivariant integral over
a KN moduli space, which can also be realized as the Higgs branch of a (4,4) quiver SQM
(ADHM SQM). Following [40], the instanton partition function is given by the Witten

index of this SQM (reviewed in appendix B.2). An effective way to read off the quiver

The 5d instanton partition function Z

SQM is to realize the 5d instanton particles in a Type ITA brane construction, i.e. as a
stack of fractional DO-branes probing N D4-branes wrapping the orbifold C2/Z,, [52]. The
(4,4) quiver SQM then arises as the D0-brane world volume theory.

We now discuss some general features of these quiver SQMs and write down a formula
for their Witten index. A generic circular quiver associated with the instanton moduli
space M;EIZZ"
these are known as the Kronheimer-Nakajima (KN) quivers [60]. In each case, the quiver

(E, w) is given in figure 1, while figure 2 shows a generic linear quiver —

is specified by the following data:

1. Kronheimer-Nakajima vector k= (ko,k1,...,kn—1) with k; €Z>¢ for i=0,1,...,n—1.
Figure 1 corresponds to the case where k; # 0 Vi — the gauge group is G= H?;ol U(k;)
with bifundamental hypers forming an affine A,,_i-type quiver. For linear quivers,
where one or more entries of the vector k are zero, one simply deletes the correspond-
ing nodes in the quiver along with the bifundamentals, leading to a linear quiver.

2. The monodromy vector @ = (wo, . .., w,—1) associated with holonomy vector 7 of the
gauge fields such that

N
w; = Zéi,ra , N=wy+...+wn_1, (246)
a=1
with w; € Z>¢ for all 7 = 0,...,n — 1, denoting the number of fundamental hyper

associated with each gauge node U(k;).

As mentioned earlier, the ADHM construction of the instanton moduli space is equiv-
alent to the description of the Higgs branch of the above quiver SQMs as a hyperkahler
quotient. From the Z,-invariant ADHM data in equation (2.39), one can clearly see that
the variables B, By assemble themselves as scalar vevs of hypers in the bifundamental
of U(kjy1) x U(k;) while I,J give the scalar vevs of hypers in the fundamental of the
U(k;)s. The moment map equations arise as F-term and D-term equations. In addition,
the stability parameters {(%} arise as FI parameters for the gauge groups U(k;).

We can now write down the Witten index of the quiver SQM following the general
approach in [7-9]. For computing the index using localization, various flat directions in
the space of supersymmetric vacua should be lifted. The global symmetry twists in the
definition of the Witten index ensure that the flat directions coming from various hyper-
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n1

2 Wa W4

Figure 1. The Kronheimer-Nakajima quiver for a regular U(NV) instantons on C?/Z,,. Each node
denotes the unitary group with the labelled rank. The circular nodes denote gauge groups and the
square nodes denote the flavour symmetries.

OO0

W, Wil | W | W w, | w

Figure 2. The Kronheimer-Nakajima quiver for a fractional U(N) instanton on C2?/Z,, with KN
vector k = (ko, k1, ka,...,k;,0,...,0) and monodromy vector @ = (wp, w1, wa, ..., w;,0,...,0).

multiplet scalars are lifted. Flat directions associated with one of the adjoint scalars'?
which is neutral under these global symmetries, is lifted by turning on the FI parameters
{¢k}. We will be interested in studying the partition function in a chamber where all the
FI parameters have the same sign. Furthermore it will be convenient to set the SQM gauge
couplings e; = e and FI parameters Cﬁ'{ = ( for all 1.

Further, since we are interested in computing the instanton partition function, which is
given by an equivariant integral on the Higgs branch of the SQM, it is natural to compute
the Witten index in the Higgs scaling limit [7] which introduces large masses for all the
vector multiplet scalars. This limit is defined by taking e? — 0 and ( — oo while holding
(' = €%( fixed. The Witten index computed in this fashion generically depends only on the

13This is the scalar component of the (0,2) vector multiplet inside the (0,4) vector multiplet which, in
turn, lives inside the (4,4) vector multiplet.
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sign of ¢’. Therefore, we have

StxC?/Zy,
inst.

(k,@; a,m, ex; £Ch — 00| U(N)) = ZSQM(FE,JC% m,ex; £¢ > 0) (2.47)

where the signs on the two sides of the equation are correlated.
Following the basic recipe given in appendix B.2, the Witten index Zsqu can be written
as a contour integral over a real and compact k-dimensional cycle in (tq ® C)/Aq =2 (C*)F,

Qmax
1=¢min
with (4,4) supersymmetry, as shown in figure 2, the Witten index is

TT%max 1. |
i= qmm JK({') 1 1 27”

. Z%ector(qb’ m; 61,2) . Zglfund(¢’ m; 6172) . Z,%?;d(gf): a,m; 61,2) )

(2.48)

where k = k; and A, is the coroot lattice. For a linear quiver quantum mechanics

14

ZSQM (Fﬁ’ww‘a m, €4, €—; CI)

The integrand is written as contributions of various (4,4) supermutiplets (gauge and mat-
ter) of the SQM. Explicitly, these functions are:'®

gmax ki (¢ +2€e4) ki i
2sinh ~~— oy
Z3(p,a,m;€12) = 2 X 2sinh —== | |
k i};{m Lljll 9 sinh (¢,J+mie+ 1171 2

gmax—1kj+1 kj : (¢]1+1_¢{]+m+€7) : (¢?]‘¢J1‘+1+m_€7)
2 sinh 2 sinh 3

Zblfund(¢ a m €1 2 H H H v ‘2 ‘ .
) J+1_ J € . . i+l c—e 5

Gmax ki w; ZSinh (¢l‘1_a§+m)

" ¢7 Pl 2) — | I Sin
? 5 2
( Qmin I=11= 2 Slnh

(=¢i+aj+m)
h I 5 L

£ = . 2.49
(¢}_aj+e+) 2 Sinh (—¢3+2(l§+€+) ( )

Here the parameters {a}} are related to the U(1)V equivariant parameters a; (with ¢ =
1,...,N) as follows.

i
agigy =aj, Li)=N+1- Y wji—1, (2.50)
J=qmin
where ¢ = Gmin, -+, qmax, | = 1,...,w;, and wy, ;1 = 0. Note that this ordering of the

ag(i,;) is a convenient choice which does not affect the final result because Zmono is invariant
under the action of the Weyl group.

As discussed in [4, 7-9], these contour integrals should be evaluated using the JK
residue prescription (reviewed in appendix B.2) with the covector n of dimension k being
set ton =¢'(1,1,---,1), where +¢’ > 0 depending on the chamber.

1 Note that the formula can be easily extended to the affine quiver, where gmin = 0 and gmax = n — 1,
and one bifundamental hyper connecting the nodes labelled by g¢min and gmax-
15WWe use the following notation in all subsequent Witten index expressions

2sinh(z + y) = 2sinh(z + y) 2sinh(z — y) .
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Equivalently, one can evaluate the contour integral by a colored version of the Young

diagram prescription [39]. For ¢’ > 0, for example, this proceeds as follows:!©

1. Consider all N-tuples of Young diagrams consisting of a total number of k£ = Z?gol k;
boxes. Label each box by the Z, charge: the (i, ) box in the /-th Young diagram!”

is assigned the integer s =7y +i—j = vy +i— ;.18

2. Each N-tuple of Young diagrams in R (k, 1) labels a pole in the contour integral (2.48).
Given an N-tuple of Young diagrams D € R(k, @), let T2 (k, @) denote the collec-
tion of ks boxes labelled by the Z, charge s. Then the poles in the variables ¢7,
corresponding to D, will be given as

0F = af + ey —iey —jey, V(i,j) € TP(kw), (=1,... k. (2.51)

3. Compute the sum of all residues coming from such poles.

As explained in appendix D, flipping the sign of ¢’ corresponds to the transformation
€+ — —ey in the Witten index, with all other equivariant parameters held fixed. The
expression for the Witten index in the ¢’ < 0 chamber can therefore be readily obtained
from the expression for the ¢’ > 0 chamber by the following equation:

ZsqQMm (Fgw\a,m, €y, 6 = O;C/ < 0) = ZsqMm <I’Ew|a,m, —€4,e_ =0 CI > 0) . (2.52)

It turns out that Zgqwm is an even function of e for SQMs associated with N' = 1* instanton
partition functions, so that the former is invariant under a sign change of ¢’. Therefore,
we can unambiguously define a 5d instanton function for this theory.

Given the relation between 5d instanton partition function on S x C? /2, and Zono
stated in (2.44), we therefore have a concrete formula for the monopole bubbling contri-
bution to line defects in N = 2* SU(N) SYM, where the r.h.s. is explicitly given by the
equations (2.48)—(2.49), i.e.

Zmono(Ba via,m, )‘|SU(N)) = ZSQM <FE w|a) m, €y, e =0; :l:C/ > 0) (253)

where the equality holds for both signs of (/. The map between equivariant parameters
on the two sides of the equation is given in equation (2.45), and the map between the
defect data (B,v) on one side and the instanton data (k,) on the other is discussed in
section 2.2.

16The prescription below is essentially a Zn-projection of Nekrasov’s original prescription for instantons
on C%.

7QOur convention for Young diagrams is to draw them in the first quadrant with ¢ and j labelling the hor-
izontal and vertical axes respectively, increasing away from the origin. Also, note that r¢ = v¢ from (2.40).

18Note that the subset of Young diagrams R(I;, W) depend on 7, and therefore on the monodromy
vector w.
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2.4 Examples of defect SQMs
2.4.1 SU(2) SYM

We now proceed to write down explicitly the contour integral formula for Z,on, in 4d, N=2*
SU(2) SYM using (2.53). The Dirac quantization condition for an A/ = 2* SU(2) theory
allows for the charges B and v to be labelled by half integers, i.e.

B := (p/2,—p/2), v = (v/2,—v/2), (2.54)

where p, v are integers, and p = vmod2. As discussed above, Zyono(B, V) in this case is
S1xC2? /7y,

N

given by the instanton partition function Z where @ is determined by v and k is
determined by the matrix K.
From the character equation (2.23) one can write down an explicit solution for the
matrix K in this case:
Tr e2miKy _ o2mi(5-1p 4 g 2mi(5-2w 4 b— Ue%i(g)u 4 p— Ue%i(%”)u +
- 5 .. 5 .
4 2e2mi(5 -2 | —2mi(h-1)w (2.55)

such that one has exactly p — 1 distinct entries K; = § —4, where i =1,...,p—1, with the
multiplicities shown above. Using the redefinition

(B,v,K) — <B+gl,v+§I,K+gI) ,

as discussed in (2.25), we have:

Ty e2miKv _ 2mi(p—1)v + 927i(p—2)v +o+ p g U627ri(p‘gv)y +oF p g ve%i(%)u 4.
+ 2627ri(2)1/ + 627ri(1)u’

— K =diag(1,2,2,3,3,3,....p—2,p—2,p—1), (2.56)

and a redefined v:

v:<p‘2“’,p;”>. (2.57)

The redefined K and v can be packaged into KN data for a fractional U(2) instanton
(not SU(2)) on C?/Z,, as follows:

—v —v
:<0,1,2, ,p2 ,...,p2 21,0 ,0>, (2.58)
W= (wo,wl, yWpzv,y oy Wate, .o, W, ,wnfl)
=(0,0,...,wp2 =2,0,...,0) ifv=0, (2.59)
- (0,0, e = 1,0,..,0,wpme = 1,0,. ,0) ifo£0,  (2.60)
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Figure 3. The Kronheimer-Nakajima quiver associated to a ’t Hooft loop labelled by
= (p/2, —p/2) (with p even) in the sector v = (0,0) in an N' = 2* SU(2) theory.

O-O-@(+) @ 0 —O-O-O

Figure 4. The Kronheimer-Nakajima quiver associated to a ’t Hooft loop labelled by
= (p/2, —p/2) in the sector v = (v/2,—v/2) with v # 0 in an N = 2* SU(2) theory. The
gauge node U(Z5*) is repeated v + 1 times.

where % is repeated v + 1 times in k. Note that k; = 0, Vi > p, since these integers do
not appear as entries in the matrix K.

The above data completely fixes the DO world volume theory — a linear quiver (not
a necklace quiver since k; = 0, Vi > p) with a gauge group G = Hf;ll U(k;) with bifun-
damentals and two fundamental hypers distributed among the gauge nodes (as dictated
by @), as shown in the figures 3 and 4. The monopole bubbling contribution to the line
operator can then be computed using (2.53).

The complex dimension of the vector space V is given by the quaternionic dimension
of the Coulomb branch quiver which can be computed as a function of p and v:

n—1
k:dimCV:dimHMc(FEw):Zki:pgv p;”, (2.61)
=0

while the quaternionic dimension of the quiver variety M (B, v) is given by the Higgs branch
dimension of the quiver

= . (2.62)

dimyg M(B,v) = dimg My (T';; -

One can now proceed to compute some simple examples and check that the above
contour integral indeed reproduces the IOT result. Consider the simplest example of
Zyono(p = 2,v =0): the character equation (2.23) for p = 2, v = 0 gives a one-dimensional
matrix K = 0. After the aforementioned shift in K and v, we get K =1 and v = (1,1).
The KN quiver is therefore characterized by the instanton data k= (0,1,0,...,0) and

= (0,2,0,...,0) for a U(2) theory on a C?/Z, orbifold. This gives a (4,4) theory with
gauge group U(1) and two fundamental hypers, as shown in figure 5. The Witten index in
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Figure 5. The Kronheimer-Nakajima quiver associated to a 't Hooft loop labelled by B = %(2, —2)
in the sector v .= (0,0) in an N' = 2* SU(2) theory. This corresponds to the integer p = 2 in
the figure 3.

the ¢’ > 0 chamber can be read off from (2.48):

do
Z3oM a,m,eqr e >0 j(I{ { -
(T gla, m, 1= o |22

2sinh (e4)
2sinh M ’

2 sinh w 2 sinh (—W—;ﬂ

:| ZveCtor(¢7 m; 61,2) : qund(¢’ a, m; 61,2) ;

2" (g, m;€12)

2
7' (6 a,m; e ) = H (2.63)

1 2sinh w 2sinh % .

The poles of the above contour integral correspond to doublets (since we have a U(2)
theory) of colored Young diagrams with total number of boxes equal to >, k; = 1, where
every box is assigned the integer s = vy 4+ i — j (I = 1,2 indexes the doublet of Young
diagrams and (i, j) in the first quadrant) such that the number of boxes labelled by integer
s is ks. From equation (2.51), the poles are then explicitly given as

1) Y=,v): vi=1, v= — d=a— e, 1)
2) Y=(V,Y): Yi=0, YQ:-, — bp=as—ey
Computing the residues at these two poles, one obtains
Zrnono(p =2,v=0;a,m, 6+) = ZSQM(F;;@'M’ m,eq,€—; C, > O)|€_=O
sinh 2atmtes) gy Qammber) gy Qadmoey) gy (2amm—ey)
_ 2 2 2 2
; . . . . (2.65)
sinhasinh (a+e€4) sinhasinh (a—e4)

The above formulae matches IOT’s expressions with the redefinition of equivariant param-
eters as given in (2.45).

We compute more examples of 't Hooft operators and check their agreement with the
results of [16] in appendix C. We discuss quivers arising in N' = 2* SU(N) theory for N > 2
in section 3, after discussing the Type IIB construction of singular monopole moduli spaces
and its relation to the SQMs associated to 't Hooft defects.

2.4.2 U(2) SYM

We now proceed to write down explicitly the contour integral for Z oo for line defects in
N =2* U(2) SYM. Consider a line defect Ts and the screening charge v labelled by

B := (p,0), v:=(v,p—v), (2.66)
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Figure 6. The Kronheimer-Nakajima quiver associated to a ’t Hooft loop labelled by B = (p, 0)
in the sector v = (v,p — v) (where v # p — v) in an N' = 2* U(2) theory.

G}@m@@

Figure 7. The Kronheimer-Nakajima quiver associated to a 't Hooft loop labelled by B = (p, 0) (
with p even) in the sector v = (p/2,p/2) in an N' = 2* U(2) theory.

where p, v are non-negative integers with v < p. Similar to the SU(2) case, Zono(B, V) in

S1xC?/Zy,

this case is given by the instanton partition function Zk where 7 is determined by v

,w

and k is determined by the matrix K. We determine the instanton data and the associated
quiver description of the answer in the usual fashion.

From the character equation (2.23) one can write down an explicit solution for the
matrix K in this case:

Tr 627riKV _ e27ri(1)u_’_2627ri(2)u_’_' ) ‘+U€27rivz/+ve27ri(v+1)l/+' ' ‘+U€27ri(p7v71)1/_|_U€27ri(p7v)z/
+(v—1)e2milpmvt)y 4 oe2milp=2y y 2milp—1)v (2.67)
which translates to the following KN instanton data of a U(2) theory on C2/Z,:

k=(0,1,2,...,v—1,v,...,0,u—1,...,2,1,0,...,0),

(2.68)
=(0,1,2,...,0,1,...,1,0,...,0,0,0,...,0).

where v is repeated p — 2v + 1 times. The associated quiver quantum mechanics are given
in figure 6 and 7 (for v # p/2 and v = p/2) and its Witten index can be computed as
before. Line defects labelled by B = (p, —p) work out in ways similar to the SU(2) SYM
with a defect B labelled by an even spin.

3 String theory description of singular monopole moduli spaces
associated to line defects

In this section, we present a Type IIB string theory description of monopole bubbling on
R3, and demonstrate how one can derive the quiver variety M(B,v) from a configuration
involving D1-D3-NS5-branes. Without monopole bubbling, the Type IIB description pre-
sented in this section is U-dual to the brane configuration of Cherkis and Kapustin [46]
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— the new element is the incorporation of monopole bubbling in the picture. The brane
picture gives an alternative derivation of the quiver variety M(B,v) for an SU(N) line
defect with N > 2, the general form of which is rather difficult to derive directly from the
character equation (2.23).

3.1 Review of D1-D3 system for smooth monopoles

Let us first review the standard Type IIB description of smooth monopoles in terms of finite
segments of D1 branes ending on D3 branes, using the Nahm construction [49]. Consider
the D1-D3-brane configuration:

Type 1IB
01 2 3 4 5 6 7 8 9
D3| - - - -
D1 | - -

where — indicates that the D-brane extends along that direction and blanks mean a Dirichlet

boundary condition is imposed for that coordiinate. Here z*

is a coordinate on a compact
direction transverse to the D3-brane. We will often denote it by s. A Yang-Mills-Higgs
system is naturally realized in the low energy string theory on the world volume of D3
branes. These extend along the directions z#, u = 0,1,2,3, in the 10d spacetime of Type
IIB string theory and sit at definite values of ¢, a = 4,5,6,7,8,9. The low energy world
volume gauge theory on a stack of N coincident D3-branes is 4d N’ = 4 U(N) SYM, which
consists of a gauge field, six real adjoint scalars and four adjoint Weyl fermions. The adjoint
scalars encode the profile of the D3-branes in the six directions 2, o =4,...,9 [55]. For
the rest of this section, we will consider a classically truncated version of the D3-brane
world volume theory where we set all fermions and five of the six scalar fields to zero,
choosing only the scalar field X associated with the z? direction to be non-zero.'”

The world volume theory on a stack of D1-branes is a 2d (8,8) SYM theory, while the
D3 branes act as half-BPS boundary conditions that reduce the supersymmetry to (4,4).
The 2d (8, 8) vector multiplet consists of a 2d gauge field and eight real scalars which encode
the position of the D1-brane along the eight transverse directions in the 10-dimensional
space-time. Let (Xj;);=123 denote the three real scalar fields which are associated with the
positions of D1-branes in the spatial R?,2,3 of the D3-brane world volume. In the effective
0+ 1 dimensional theory obtained by KK-reducing the D1-brane world volume theory along
the compact direction, the scalars (X;) combine with the scalar A4 to give the bosonic part
of a (4,4) hypermultiplet.

For the sake of brevity, we will specialize to the case of smooth SU(2) monopoles in this
subsection. The Type IIB picture in this case consists of two D3-branes located at s = +sg,
and m D1-brane segments ending on them. It was shown [49] that the moduli space of
supersymmetric ground states (preserving (4, 4) supersymmetry) of this brane configuration
is isomorphic to the moduli space of smooth SU(2) monopoles with asymptotic magnetic

9This is a consistent truncation because the equations of motion for these fields have no source terms
built only out of (Apu=0,1,2,3, X).
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charge ~,, = diag(—m,m) and Higgs vev X, = diag(—sp,s9). The moduli space of
supersymmetric ground states of the brane configuration is given by the moduli space of
solutions of the following BPS equations in the D1 world volume gauge theory:
dX;
ds

where Ay, X; are m x m Hermitian matrices, transforming under a SU(m) gauge transfor-

. 1
— 1[A4,Xi] + §Eijk[Xjan] = 0, (3.1)

mation g(s) as follows:
(Ag, Xi) = (97" Asg +1ig7'dg, 97" Xig) - (3:2)

This SU(m) gauge transformation can be used to gauge-fix A4 to zero. In addition, the
fields X; encounter Nahm poles in the vicinity of D3-branes, i.e. around s — =+sg,

L:t + + . 4+
Xi = s :FZSO + O(l) ) [Lz 7Lj ] = ZeijkLk ’ (33)

where the Lis form a spin-(m—1)/2 representation of the SU(2) Lie algebra. Equation (3.1)
is equivalent to Nahm’s equation [64, 66, 67] — the moduli space of solutions of this equation
subject to the boundary condition in equation (3.3) gives the moduli space of smooth SU(2)
monopoles on R? with asymptotic charge 7,,. The scalar fields X;(s) together with the
boundary condition constitute the Nahm data.

In addition to the moduli space, the explicit monopole solution (A;, X) in the SU(2)
Yang-Mills-Higgs system can be constructed from the Nahm data using the reconstruction
procedure [33] in the following fashion. Let us define a linear differential operator

d
A(Z,s) :== e Xi(s) ® oy + 21, @ 04 (3.4)
s
and compute solutions to the equation:
d
AY(Z, s)w(Z, s) = {_d - Xi(s)®o; +xily ® 0| w(z,s) =0, (3.5)
s

where w(Z, s) is a 2m-dimensional vector. Let {wy (7%, s)} denote a basis of normalizable
linearly independent solutions of the above equation with a = 1,2 in the present case.?’
Given these solutions, the Yang-Mills-Higgs fields (A;, X) are given as

X(F) = (w2t wy) = /SO ds sw}(Z,s) wy(Z, s) (3.6)

—5s0
S0

A?b(f) = (wq|pi|wp) = / ds wi(a‘c’, ) (—10;) wy(Z, s) . (3.7)

—so
It can be explicitly shown that the classical field configurations constructed by the above
procedure satisfies the Bogomolnyi equation for an SU(2) Yang-Mills-Higgs system on R3
and gives the correct asymptotic behavior at infinity. We refer the reader to section 4
of [33] for details.

20Tt was shown in [33] that there are precisely N basis vectors labelled by a = 1,...,N for SU(N).
Normalizability of the solution requires that w(Z,s) be regular as s — +s¢. See section 4.4.3 of [33] for
more details.
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3.2 D1-D3-NS5 system for SU(2) singular monopoles and monopole bubbling

We now discuss how singular monopoles on R? can be realized in Type IIB string theory
by introducing NS5-branes in the D1-D3 configuration described above. As mentioned
earlier, the relevant brane set-up is closely related to a U-dual version of the brane con-
figuration studied in [46]. We discuss in detail the case of a product of minimal singu-
lar SU(2) monopoles with total ’t Hooft charge B = diag(—p,p) and asymptotic charge
Ym = diag(—m,m), where p, m are positive integers. The bubbling sectors are labelled
by v = diag(—v,v), where v < p is a positive integer. Also, let 7, = vm + B =
diag(—p — m, p + m). Generalization to the SU(N) case is straightforward, and will be
discussed in the next subsection.

Consider the Type IIB configuration consisting of 2 D3-branes, n = 2p NS5-branes
and (m + p) D1-branes, summarized in the table (and in figure 8):

Type 1IB
01 2 3 4 5 6 7 8 9
D3 - - - -
D1 — —
n-NSb | — - - - = =
As before, — indicates that the corresponding brane extends in that particular direction,

while other directions have Dirichlet boundary conditions.

Specifically, the D3-branes are located at s = 4sy along the compact direction z*
and the 2p NS5-branes are located at points (21,2, 23) in the R? of the D3-brane world
volume. For an SU(2) monopole, we will take the R? positions of the NS5-branes to pairwise
coincide such that there are exactly p independent positions Z, (a = 1,...,p) and each
pair has an NS5-brane located at s = 45 in the z* direction.?! Additionally, we take a
single D1-brane connecting every NS5-brane to the nearest D3-brane and (p + m) other
D1-branes connecting the two D3-branes at points on R? (generically distinct from &,) as
shown in figure 8.

The moduli space of supersymmetric ground states of this Type IIB brane configuration
gives the moduli space of multiple singular SU(2) monopoles?? on R3 with total 't Hooft
charge B and asymptotic charge 7,,. In the limit where all the %, coincide,?? this describes
a configuration with a single magnetic defect of magnetic charge B.

This Type IIB picture admits a nice physical description for monopole bubbling.
Given the D1/D3/NS5-brane configuration, one can check that it corresponds to singular
monopoles by directly constructing the classical solutions for the Yang-Mills-Higgs system
(A;, X) on the D3-brane world volume theory. This can be accomplished by solving Nahm'’s
equations along the compact direction z* and then using the reconstruction procedure as

21For generic positions, we will end up with 2p insertions of minimal SU(2) ‘t Hooft defects.

22Note that each singular monopole is the coincident limit of a pair of singular monopoles which are
S-dual to a Wilson defect in the fundamental representation.

ZNote that in order to take this coincident limit in the brane construction, we require displacing the
NS5-branes in the z*-direction so that they are all at distinct points.
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Figure 8. D1-D3-NS5 brane configuration for singular monopoles in an SU(2) theory. Circles
with crosses, horizontal lines in red, and vertical black lines, denote NS5-branes, D1-branes and
D3-branes respectively. Linking numbers of the two D3 branes are m + p and —m + p respectively,
while the NS5 linking numbers are all equal to 1, as described below.

outlined earlier (a procedure that requires the bow diagram technology [18]). However,
solving Nahm’s equations for arbitrary p,m of course is a technically difficult problem of
computing non-Abelian solutions of the Nahm equation. Our goal in this section is to give
an intuitive D-brane picture of the bubbling locus of singular monopoles. We will see that
this will give a clear, physical interpretation of the space M(B, V).

To begin, consider the D1/D3/NS5-brane configuration shown in figure 8 for p = 1
and m = 0. Here there are two NS5-branes and a single D1-brane stretched between the
D3-branes. This has the interpretation of a single smooth monopole in the presence of an
't Hooft singularity. In order to construct the field configuration of these branes, we want
to solve Nahm’s equations on the interval between the NS5-branes. For this configuration,
the D3- and NSb5-branes introduce boundary conditions to the Nahm equations.

It was shown in [28, 50] that the NS5-branes (located at s = 4s;) impose Dirichlet
boundary conditions while the D3-branes introduce Nahm pole boundary conditions (lo-
cated at s = £sp). Since m 4+ p = 1, the X;’s are 1 x 1 matrices and the Nahm equation
away from the boundaries reduces to its Abelian version, i.e.

dX; i

_l’_

N 2eijk[Xj, X =0, = X, = constant. (3.8)

This implies that the fields X;(s) are piece-wise constant and can jump discontinuously
across a D3-brane.  Explicitly, one can write solution corresponding to an SU(2)
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monopole as:
71 for —s1 <s< —sp
X =4q& for —sp<s<sp (3.9)

1 for sp<s< s

Physically, the solutions simply correspond to the position of the respective D1-brane
segment in the spatial R? of the D3-brane world volume — in particular, ] is the position
of the smooth monopole on R3. Given the above solution, the Yang-Mills-Higgs system
(A;, X) can be obtained by the standard reconstruction procedure of Nahm data. Such
problems have been analyzed in [26, 30], and therefore we can use their results instead of
going through the details of the reconstruction procedure. In the limit |s;| — oo, the Higgs
field X and the gauge connection A are given by [30]

- r+d\D 1\IxdZ [ (7xdZ (K [ (FxdZ) [
A= (SO+ D )c_2z>l_c( r +<D_1>lrl>’

where & are the Pauli matrices, the various relative position vectors and the functions C, £
are given as

F=f-2, I=2-&, d=i-7,

K = ((r 4+ d)? 4 1?) cosh (2s¢l) + 2I(r 4 d) sinh (2s¢l) , (3.11)
L = ((r+d)? +1%)sinh (2s0l) + 2I(r + d) cosh (2s¢l) , ‘
D=((r+d?-1).

To begin with, consider the situation where the D1-brane segment between the pair of
D3-branes is far away from the location of the NS5-branes, i.e. |Z)| — oo, and r = |F]
is finite. From the perspective of the D3 world volume theory, this corresponds to the
smooth monopole being far away from the location of the 't Hooft defect. In this limit,
d= |d_] — 00,1l = |l_] — 00, % ~ 1, L ~ 1?e?%0! which leads to the Dirac monopole solution
at Z = Z1 with t Hooft charge By = diag(—1,1):?*

1\ &l /== 1

Now, let us use this to study monopole bubbling. In this description, monopole bubbling
corresponds to when the position of the D1-brane on R?,Q,?) coincides with that of the NS5
branes. In the D3 world volume theory, this corresponds to a smooth monopole dissolving
in the 't Hooft defect, thereby screening the 't Hooft charge. In the present example, this

24We can apply a constant SU(2) gauge transformation to diagonalize X and A in the neighborhood of
x = x1. Here we are using the convention of [26, 30] to write down the solutions of X, A.
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happens when # — &, which implies ¥ — ﬁ d — 0, and therefore leads to complete
screening of the 't Hooft charge, i.e.

N
X~<so+—>m —  |X|~s0. (3.13)
T T

This monopole bubbling configuration is labelled by the effective 't Hooft charge v = (0, 0).

Now consider the case of arbitrary p, m. In the limit where the D1-branes are far away,
the p-pairs of NS5-branes introduce p Dirac monopoles of 't Hooft charge B, = diag(—1,1)
at positions Z,, a = 1,...,p, on R3 of the D3 world volume. A single Dirac monopole of
't Hooft charge B = diag(—p, p) can be obtained by making the positions &, of the p pairs
NS5-branes coincide, while keeping their positions in the z*-direction unchanged.

Monopole bubbling can be observed in this set-up in the following fashion. Consider
the configuration in which the pairs of NS5-branes are well-separated. Now let us move a
total of (p — v) D1-branes such that their R? positions coincide with that of (p — v) pairs
of NS5-branes, thereby completely screening their 't Hooft charge, as described above.
The 't Hooft charges of the remaining p — (p — v) = v Dirac monopoles are not screened.
Therefore, in taking the limit where R? positions of the p Dirac monopoles coincide, we
obtain a product of 't Hooft defects with effective charge v = (—v, v). This corresponds
to the bubbling configuration labelled by the effective 't Hooft charge v = (—v, v). The
Type IIB description is shown in figure 9.

Now, one can use the Type IIB brane configuration to derive the quiver variety
M(B,v). Recall that M(B,v) is the transversal slice to the smooth space

M(S)(varym;XOO) C M(Bvlym;Xoo) .

Since the smooth space M%) describes the moduli of unbubbled monopoles in the bulk
away from the singular monopole, this means that M(B,v) describes the moduli of the
bubbled monopoles.

Now recall from [50] that, given a Type IIB configuration of D1/D3/NS5-branes, one
can associate a linking number to every D3 and NS5-brane.?> The linking numbers of these
three and five-branes can be read off from the brane configurations in figure 8 or figure 9.
This quantity measures the effective D1-brane number at infinity on the respective D3 or
NS5-brane [50]. We will define a Hanany- Witten frame as a brane configuration obtained
by moving NS5 and D3-branes in the original configuration past each other — creating
or destroying D1-branes in the process — such that the linking numbers of the D3 and
NS5-branes are preserved. Explicitly, using the convention of [27], we have

Lp3, := Nieft (N S5) + Nyight (D1) — niee (D1) = m +p,
Lp3, := Niegt (N S5) + Nright (D1) — niegs(D1) = —m +p, (3.14)

Lnss, := et (D3) + Nyight (D1) — nyege(D1) =1, Va,
where njer (N S5) denotes the number of NS5 to the left of a given D3-brane, njeg (D3)
denotes the number of D3-branes to the left of a given NS5-brane, and nyign (D1), nier: (D1)

denote the number of D1-branes ending on a D3 or an NS5-brane from the right and the
left respectively.

#5Notice that this construction is T-dual to a D3/D5/NS5-brane configuration as studied in [50].
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Figure 9. D1-D3-NS5-brane configuration for bubbling monopole in a SU(2) theory in the sector
v = diag(—v, v). The R3 positions of the p pairs of NS5-branes are distinct. The R? positions of
(p—v) Dl-branes coincide with the R? positions of (p —v) pairs of NS5-branes, thereby completely
screening their 't Hooft charge, as described above. In the figure, the pairs labelled v + 1 through
p are screened, while the pairs labelled 1 through v are not. On taking the limit where the R?
positions coincide, one obtains a single 't Hooft defect with charge v = diag(—v, v).

Consider only D1-branes corresponding to bubbled monopoles. To read off the quiver
gauge theory whose Higgs branch corresponds to M(B,v), we need to go to a specific
Hanany-Witten frame, where these D1-branes begin and end only on NS5 branes.?S The
brane configuration resulting from these transitions is shown in figure 10. The associated
quiver, which arises as the low energy effective theory on the D1 world volume, can be easily
read off from the massless open string spectrum (see figure 11), as summarized in [50]:

1. D1-D1 open strings beginning/ending on k; D1-branes between the i-th and the
(i + 1)-th NS5 branes give a U(k;) vector multiplet.

2. D1-D1 open strings connecting D1-branes in adjacent intervals give bifundamental
hypers.

3. D1-D3 open strings in the interval between the i-th and the (¢ 4+ 1)-th NS5 branes
give w; hypers in the fundamental representation of U(k;), where w; is the number
of D3 branes in the interval.

26This is related to the fact that an NS5-brane imposes Neumann boundary conditions on the (4,4)
vector multiplet and Dirichlet boundary conditions on the adjoint (4,4) hypermultiplet, in the D1-brane
world volume theory. We refer the reader to [27, 28, 50] for details.
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Figure 10. This figure shows the brane configuration of figure 9 in a specific Hanany-Witten frame
where the D1-branes localized at the origin begin and end only on NS5 branes. The number in red
is the number of D1-branes in an interval between two NS5-branes.

@@@ ()OO0

Figure 11. Higgs branch quiver for M(B,v) in a SU(2) theory for B = (—p,p) and v = (—v,v)
as deduced from the D3-D1-NS5-brane system. The quiver is the same as the one given in figure 4
with p — 2p, v — 2v.

As a consistency check, one can see that the quiver agrees with figure 4 in section 2, with
p— 2p,v — 2.

Note that this construction of line defects in the brane description is different from
that studied in [10]. There the authors introduced singular monopoles to the world volume
theory of a stack of D3-branes by taking the limit of a D3-brane with finite D1-branes
(smooth monopoles) attached to infinity, thus creating semi-infinite D1-branes (singular
monopoles). It is not obvious to us if we can derive the description of singular monopoles
and monopole bubbling in [10] from the picture here by a chain of U-dualities. This will
be discussed in more detail in a future paper.

3.3 SU(N) defect SQM for N > 2

In this subsection, we extend the construction above to SU(N) singular monopoles for
N > 2 and discuss a prescription to determine from the defect data in a given bubbling
sector. The defect data associated with a given bubbling sector in the path integral is
specified by the SU(N) cocharacters:

B:diag(plap27"'7p]\f)v V:diag(vlaUQa"'avN)’ (315)

where the diagonal entries are integers arranged in a non-decreasing order.

The Type 1B description for this configuration consists of D1-D3-NS5-branes such that
D1-branes end on N parallel D3-branes. We can then introduce a singular monopole by
adding a certain number of NS5-branes in each chamber defined by consecutive D3-branes
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Figure 12. D1-D3-NS5 configuration for monopole bubbling in a SU(N) theory. The number
of NS5-branes in the é-th chamber is n;. The number of Dl-branes in the i-th chamber (begin-
ning/ending on D3-branes) is the same and denoted by k;, where k;s are defined in (3.18).

1,2

whose positions in R? coincide at the origin: z1%3 = 0. The generic Type IIB configuration

is shown in figure 12, where we only show the D1-branes localized at the origin.?”

Let n; be the number of NS5 branes in the i-th chamber (i.e. the chamber between the
i-th and the i + 1-th D3-brane with ¢ = 1,..., N — 1) and let Lps, be the linking number
of the i-th D3 brane (i increasing left to right). Also, let k; be the number of D1-branes
localized at 21?2 = 0 in the i-th chamber.?®

The data of the integers (n;, Lps,) for all ¢ suffices to determine the entire Type IIB
brane configuration. In order to see this note that for the i-th D3 brane we have

i—1
LD3i:an+Ei_E’ifla 1=1,...,N, (316)
=0

where k; (ki_1) is the number of D1-branes ending on the right (left) of the i-th D3-brane
and kg = 0, ky = 0, and ng = 0. Therefore, one can readily compute {k;} from the data
(ni, Lps,), thereby completely specifying the Type IIB configuration.

The above data also fixes the NS5-brane linking numbers:

i—1 7
LN55a = meft(D?)) + nright(Dl) — nleft(Dl) = i, Where an -+ 1 S (6% S an s (317)
7=0 7=0

wherei=1,...,N—1l,and a=1,..., Z;V:? n; labels the NS5-branes. This condition on
« implies that it is located in the ¢-th chamber.

3

2"There can also be Dl-branes away from z'*® = 0 in each interval. They are related to smooth

monopoles in the presence of the 't Hooft defect.

1,2,3

280nly D1-branes localized at = 0 are relevant for the quiver data. There could be other freely

moving D1-branes, as in figure 9, but their presence (or absence) will not affect our discussion.
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In analogy to the case of an SU(2) defect, the map between the Type IIB data and
the defect data (B, v) is given as

N-—1 ) N_1~
B=> mh', B-v=)>Y kH, (3.18)
i=1 i=1

where the H; are simple coroots? and the h’ are magnetic weights satisfying (h’, H j) = 5 i
These translate to the following relations between the Type IIB data (n;, Lps,) and the
defect data (B, v):

ni:pi+1—p¢,(i:1,...,N—1), LDgi:Ui—pl,(Z'Zl,...,N). (319)

Note that the above map is invariant under an overall shift of p and ¢, which implies
that the Type IIB description is invariant under transformations of the defect data of the
form (2.43). Thus, from the defect data (B,v), we can construct the brane configuration
described above (figure 12).

As before, the quiver can be read off from this configuration after a series of standard
Hanany-Witten moves, such that the D1-branes, associated with monopole bubbling, end
only on NS5-branes. In this Hanany-Witten frame, let n, be the number of D3-branes
between the a-th and the (a + 1)-th NS5-brane, and k, and k,—; be the number of D1-
branes ending on the right and left of the a-th NS5-brane respectively.?® Then, using the
definition of linking number of an NS5-brane, we have

ka—l—l + ka—l - Qka + ﬁa = LNS5Q+1 - LNS5a 5

N
= kay1 + ka1 — 2ka + Z Oa, Lps, = NS5, — LS5, » (3.20)
=1

where ky = 0, and kzii? ny = 0, and we have used the fact that n, = Zf\il 5Q7LD31_. This
equation allows one to compute the ranks of the gauge and flavor symmetry groups of the
Higgs branch quiver from the linking numbers of NS5 and D3-branes.

Note that the condition for the a-th gauge node in the quiver to be balanced (i.e. to
have zero [-function) is that the Lh.s. of the above equation has to vanish. This always
happens if the a-th and the (a + 1)-th NS5-brane are in the same D3 chamber in the
original Hanany-Witten frame (see figure 12), i.e. Lygss, , = Lnss,. However, if there is
a D3-brane between the a-th and the (a + 1)-th NS5-brane, the NS5 linking number has
an aditional contribution so that there is a single unbalanced node.

This makes the general structure of the quiver manifest. It consists of NV — 1 supercon-
formal sub-quivers S; (i = 1,..., N — 1) of length n; where all gauge nodes are balanced
which are connected by a single unbalanced gauge node, as shown in figure 13. For SU(2)
monopoles, the quiver just consists of a single superconformal sub-quiver, as we found ear-
lier, while for SU(/V) monopoles, one generically ends up with a quiver containing exactly
N — 2 unbalanced nodes.

29Tn our convention, H; = —e;; + €i+1,i+1, where e; ; is an N x N matrix with the (ij)-th entry equal
to 1, and all other entries zero.
30The integers {ka} should be identified with the non-zero entries of the KN vector k in section 2.
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wntot

Figure 13. General form for the Higgs branch quiver associated with M(B, v) in a SU(NN) theory.
Each octagon S; denotes a superconformal sub-quiver with precisely n; — 1 balanced nodes. The
circular nodes denote the unbalanced gauge nodes, the total number of such nodes being N — 2.

Note that nyo = Zf\; n; = pn —p1. The precise form of S; and expression for wy,, are given below.

We now derive the detailed form of the superconformal sub-quivers from the Type I11B
data, by performing a sequence of Hanany-Witten moves on the configuration of figure 12,
to obtain a brane configuration from which the ADHM quiver can be read off. We will
refer to the brane configuration in figure 12, where D1-branes end on D3-branes, as the
“electric” Hanany-Witten frame (e). In an intermediate brane configuration (c), let EZ(C)
denote the number of NS5-branes in the it chamber.’ The linking number of the 3"

D3-brane in this configuration is given as by

Lps, = Ly 4 L0, (3.21)
where L?;SS’(C) = Z;;ll EZ(C) and LkDZ.l’(C) denote the contributions from the NS5- and D1-

branes respectively. Note that Ege) = n,; in the electric frame.

We now want to perform a sequence of Hanany-Witten moves — that is move NS5-
branes across adjacent D3-branes — to go to the “magnetic” Hanany-Witten frame (m),
where all the D1-branes end only on the NS5-branes: L,lz; (™) — 0 Vi. The quiver SQM
can then be read off as the D1 world volume theory in this configuration.

Since we have the condition32
| < |B] = n;>2k, (3.22)

this can be achieved by a sequence of HW-moves in which NS5-branes cross at most, a
single D3-brane.

Let us denote the change of a generic linking number L by HW-moves across the it" D3-
brane as A;L. Then in going from the electric to the magnetic frame (where Lg;’(m) =0),

we have the relations>3

AiLDSi = AZ‘L%SE) + Angi =0, AZLE,} = —LkDil’(e) , Al = —Nili_q . (323)

31Here we introduce 62(-6) to account for the fact that in performing Hanany-Witten moves, the number of
NS5-branes in a given chamber will change.

32This condition comes from the fact that each D1-brane screens 2 coincident NS5-branes as we saw in
the last section. Therefore the completely screened condition is when 2l~ci =n,;.

33A¢LD3i denotes the change in the linking number of the i-th D3-brane — there is no sum over i.
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By combining these equations, we can solve for the change in /;:

Afi_1 = Lg;’(e) = ]%z — ];i—l - Nl = ];’i—l — ]%z (3.24)
The sign of A;¥¢; tells us whether NS5-branes cross the D3-brane to the left or right.
Adding contributions from the HW-moves involving the i*" and (i + 1) D3-branes,
gives the total
Al =Nl + Nj_14; = kiv1+ ki—1 — 2k; . (3.25)

Since ng) > 2k;, there always exists a solution to this set of equations so that Egm) >0, Vi.

Now since moving an NS5-brane through a D3-brane changes the D3-brane contribu-
tion to the linking number by +1, the number of D1-branes ending on the left and right
of such an NS5-brane must differ by 1 as well. This means that generically the quiver

describing the SQM on the D1-branes is of the form:

(o) )=

The sub-quiver ¥; is given by

Wi i—1 Wi i+1

where ¥; is of length

i

T

i <Ky
(3.26)

R

- ~ ~ ~ 0
|| =ni + 1 — |kig1 — kilwiiv1 — ki1 — kilwii—1 wij = {1

anli
Vv
<

)

while the sub-quiver I'; ;1; is given by (with ko =0 and ky = 0)

-

when ];51 < l%iﬂ and

-

when 1237, > I%H-l'
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In the expressions above we have a few special cases:

° l;:Z = 12:2-“: there is no I'; ;11 quiver connecting 3; and X;;1, but rather the last node
of ¥; is identified with the first node of ¥;;1. Note that in this case |X; + ;41| =
1Zil + [Zita| - 1.

° l%z = EZ-H +1: I'; ;41 is omitted and ¥; is directly connected to ;4.

e |Z;| = 1: there is a single gauge node of magnitude k; with two fundamental hyper-
multiplets.

Here the subquivers I'; ;41 come from NS5-branes that change chambers in going to
the magnetic Hanany-Witten frame and the subquivers 3; correspond to the NS5-branes
which do not. Moving NS5-branes to the left or right across the D3, ;-brane (determined
by the ordering of ki, /~ci+1) will give rise to an increasing or decreasing I'; ;11 respectively
and additionally endows the ;1 or X; subquiver respectively with a fundamental hy-
permultiplet on the gauge node of the adjacent end. This combination of the ordering of
ki, Ei+1 and k;, k;_1 and their corresponding hypermultiplet nodes give rise to 4 different
types of ¥; subquivers.

One can now write down the superconformal sub-quivers S; (i = 1,..., N — 1) which
appear in figure 13:

1 1
for k; > kiy1, ki1,
1

- (@O -®

for ki1 < k; < kis1,

for kip1 < ki < ki1,

) - O® - ©
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Figure 14. Example of quiver SQMs in an SU(3) theory for (a) B = diag(—6,1,5) and v =
diag(—5,1,4), (b) B = diag(—5,2,3) and v = diag(—3,1,2), and (c) B = diag(—8,3,5) and
v = diag(—5,2,3). Each quiver consists of two superconformal sub-quivers separated by a single
unbalanced gauge node, which is drawn in red.

for when k; > ];ZZ‘_H, ki_1. Here the number of repeated k; nodes (without any fundamental
hyper) are given by Egm) -2, KZ(.m) - 1—]:31‘-1-/;%—1, ¢ _q —l;:l-—i—/;i“, and £§m) —2k;i+ki_q —|—I;:Z~+1

i
respectively and the k,, and w,, are given by

okl

k; i < ki 0 ki # ki1
kni i ~ ~ ) Wny4no+...4n; = > ~ (327)
ki1 ki > kipa 1 ki=kin

() @

in the special case of n; = 2k; — ki1 — kiy1.

and

Now we will consider a few examples of a SU(3) defects. We will consider the ex-
amples: (a) B = diag(pi, p2,ps) = diag(—6,1,5) in the bubbling sector labelled by v =
diag(—5,1,4), (b) B = diag(—5,2,3) in the bubbling sector v = diag(—3,1,2), and (c)
B = diag(—8,3,5) in the bubbling sector v = diag(—5,2,3). The quivers associated with
the corresponding M (B, v) are shown in figure 14.
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3.4 Relation to the character equation

We now show that the quiver obtained from the brane description of monopole bubbling
discussed in this section is indeed the quiver that arises from the character equation (2.23).
Recall that each k; in the KN vector 12, associated to the quiver SQM, contributes a term
k;jz? to the trace Try zX (where x = ¢*™), up to some overall monomial which can be
absorbed by a shifting (B, v, K) (see equation (2.43) and subsequent discussion). Since
generically, the k; vary by at most one, multiplying Try X by (z + 271 — 2) cancels all
contributions except for the terms of degree s;, where s; is the eigenvalue of K associated
with the first or the last node of the ¥; subquiver (additionally one must include a term

from the first and last node of the full quiver) which will lead to a contribution of terms

2N
(42! =2)Try 2% =D (-1)%a™, (3.28)
=1

where o; = 0,1 mody determines the sign of each contribution.

Note first that in the case where INW = INQH, the prefactor (x + x 1 — 2) will cancel
all contributions from the last and first nodes of the ¥; and X1 subquiver respectively.
However, I;:[ = ];71+1 implies there is a zero in the matrix

k=v—B=)Y kiH =diag(k,...,kn), (3.29)
I

and hence pr11 = vry1. Therefore, these terms will themselves cancel and thus should not
appear in the term (x + =1 — 2)Try z. Therefore, without loss of generality, we will
consider the generic case I;:[ % k J-

By careful analysis (see appendix E) of the boundary cases where ¥, ¥ joins to
I'7,7+1, one can show that the contribution to the character equation will be of the form

(x4 2z =2)Try &

N—-2
=1- 1:];1 — gPn—p1- kn-1) s (pn—p1) + ( (pry1—p1) _ x(p1+1—p1+l~€1+1—l~ﬂ)> ) (3-30)

I=1

Now we can fix the overall factor (that is by shifting K so that it is traceless) by multiplying
by a factor of xP', we find the contribution to be

(z+x 1 —2)Try &

) ] N-2 (3.31)
S x(l’1+k1) _ x(pN_k?N—l) + PN 4 <xp1+1 — P1+1+k1+1—k1)) )
I=1
Now by using the identity
. 1 (< N 5 .
kr= (b k)= B (; KJ — J;l HJ) = ki1 — kr = K141 = V141 — Pr+1, (3.32)
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we can see that priq + INf]H — l;:I = vry1. Therefore, we see that the contribution to the
character equation determined by the brane configuration can in fact be reduced
N—2
(z + P - 2)Try 2B = gPl gVl gVUN 4 PN Z (xPTH1 — V1) |

=1 (3.33)

N
= E (zPT — 2%7) = Trya® — TryaV,
I=1

and thus solves the character equation.
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A 5d, N =1* instanton partition function and Witten index of
ADHM QM

Consider a 4d N' = 2* Lagrangian theory with gauge group G (and maximal torus T¢) on
C?. With the same data, one can define a 5d N' = 1* SYM on C? x Sé with the same
gauge group and matter content. One can now define a supersymmetric index in 5d w.r.t.

to the supercharges Q = @1 = —@12, Qf = @3 = @21 (where Qﬁ,@é are the supercharges

of the 4d/5d theory):

(_1)Fe—5{Q,QT}€—(el(J1+JR)+e2(J2+JR)+2m Jr+>, aiOi)7
(A.1)

where the trace is over the Hilbert space HQFT((CQ) getting contributions only from states

Z5d(€1, €2, aj, m) = TTHQFT(CQ)

which are invariant under @Q-supersymmetry. Additionally, Ji, Jo are the Cartans of the
spatial SO(4) rotating two orthogonal C = R2?s which we denote as SO(4);. Writing
so(4)1 = su(2); @ su(2),, the Cartan generators of SU(2); and SU(2), are given in terms of
Ji, o as: Jp = Jl;‘h I = ‘]1;“]2. Another SO(4) symmetry arises as the subgroup of the
SO(5) R-symmetry which is unbroken by a single non-zero scalar vev (see below), which

we denote as SO(4)2. Writing so(4)2 = su(2)g @ su(2) s, we denote the Cartan generators
of SU(2)g and SU(2)s as Jr and Jy respectively. {O;} denotes the Cartan generators of
the gauge group.

Geometrically, the twists introduced by Jp, J2 in the definition of the index above can be
realized by replacing the flat 5d spacetime by a C? bundle over S, i.e. C?> x R coordinatized
by (21, z2,7) € C? x S', with the following identification (Melvin identification):

(2152257-) ~ (6612176622277——’_/8)7 (A2)
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so that we can take 0 < 7 < . The metric on the fiber bundle is chosen such that the
monodromy along S* is an element (g, r) € SO(4); x SU(2)g. Explicitly, parametrizing
R* as a circle fibration over R? and defining e4 = %, the 5d metric is

1

ds3(Q)= -

~ 2 ~ 2
(dr2+r2d92+r2sin29 <d¢+V¢dT> >+Z (d¢+w+v¢d7> vdr?, (A.3)
where the vector field V is given as follows:
o _ % _ e
Vr=v?=0, V¢=—%, Vw:_lg . (A.4a)

The resulting space-time is called an )-background. Note that the 2-deformed action for

the 4d, N' = 2* theory can be obtained by using this metric to write the 5d theory on the
bundle and then dimensionally reducing along the circle (which amounts to setting the Lie
derivatives of all fields along the circle to zero).

The index can be written as a path integral with the following boundary condition at
the infinity of R*:

FW 50, (A, +iY)—a, ac (tG ®(C) Aer . (A.5)

The standard 5d A/ = 1* SYM action has to be deformed to accommodate the various
twists in the index. For generic values of the parameters €1,€s, and appropriate back-
ground fields turned on, the Q2-deformed theory preserves a supercharge ), which squares
to a U(1)2 ., X Tg x U(1)p-transformation on the fields. The Q-fixed locus of the path
integral consists of a set of isolated fixed points on the moduli space of G-instantons on R*
under the combined U(1)? ., x T x U(1),, action [34, 44]. For G = SU(N), these fixed
points are labelled by N-tuples of Young diagrams consisting of k£ boxes, where k is the
instanton number.

The path integral can then be evaluated from the one-loop determinant arising from
fluctuations of fields around these fixed points. The universal part of the determinant is
denoted as Zi_jo0p, While the part dependent on the fixed points is denoted as Zjns. The

localized 5d index can therefore be written as3*

ATES Zl—loop- Zinst s

__ r7vec adj.hyper
Zl—lOOP - Zlfloop' Zlfloop

- (<uv;u,v>gznk<6> 11 <uvea<a>;u,v>m) ( 11 <mea<a>+m;u,v>o;),

a€roots a€roots

o _sn?8
Z k inst €l € o _ 92,
inst — Cl k> (U—e ,V=2¢€ 7q_e )
k=0

where {u;} are chemical potentials associated to the global symmetry of the theory.

Now consider the instanton part of the 5d path integral. A saddle point of the path
integral at a given 7-slice corresponds to a 4d instanton localized at the origin. These sad-
dle points can therefore be visualized as k-instantons whose parameters slowly vary with .

34The function (z;y, 2)eo is defined as (;y, 2)oo = [I5—0(1 = zy' 7).
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This implies that one can approximate the path integral with that of a quantum mechanical
particle moving in the moduli space of instantons — this is called the moduli space approx-
imation, and it becomes exact in computing certain quantities in theories with supersym-
metry. Using the moduli space approximation, the instanton part of the 5d index can be
written in terms of the Witten index of a (4, 4) supersymmetric quantum mechanics (SQM):

Z (e1,2,a5,m) = TrHSQM(*1)Fe_B{Q’QT}e_(51(J1+JR)+62(J2+JR)+2mJf+2i “O) (A.6)
k

where HiQM is the Hilbert space of the supersymmetric quantum mechanics on k-instanton
moduli space. The bosonic part of H:QM has complex dimension 2hY(G)k (where hY(G) is
the dual Coxeter number) which is the dimension of k-instanton moduli space M¥ .. The
fermionic part also has complex dimension 2hY(G) — this is the dimension of a fiber of
the vector bundle V(R,q;) on M¥

inst associated with fermionic zero modes from the adjoint

hypermultiplet.

k

st Similarly,

The natural action of U(1), x U(1),, on C? induces an action on M
there are natural actions of Tg and U(1),,. Therefore, the Witten index is given by a
U(1)2 x Tg x U(1),, equivariant integral over anst with an appropriate characteristic
class on the manifold as integrand (such integrals were first considered in [45] and then

shown to be related to the instanton partition function in [44]). If ME

inst Were a smooth

compact space with isolated U(1)? x Tg x U(1),, fixed points, the integral would be well-
defined and then one could use a generalization of the Atiyah-Bott localization formula to

k

write the integral formally as a sum over fixed points. However, M;

, is noncompact and

has singularities due to small instantons, and therefore one has to be careful in defining

k
inst

such equivariant integrals. A standard alternative is to replace M by the smooth space
ME 5 via the ADHM construction with a non-zero real stability/FI parameter and
regularize the infinite volume with a moment map [45]. The ADHM construction has a
clear interpretation in the string theory embedding, where the SQM is realized as a world
volume gauge theory on a stack of DO-branes probing a stack of D4-branes which engineers
the 5d gauge theory. The group action as well as the characteristic classes can be extended
to MIZDHM and the equivariant integral is well-defined. In the case of the N = 2* theory
studied in this paper the resulting Witten index is independent of the FI parameter. For
more general hypermultiplet representations this will not be the case.

We discuss some basic properties of the (4,4) Witten index in appendix B. We review

the related equivariant integral in appendix D.

B Basic properties of the Witten index

In this section, we will focus on ADHM SQMs associated with instantons in an N = 1*
SU(N) theory on S x C2?/Z,,. Consider a (4,4) SQM living on a circle of radius 8 with a
gauge group Ggauge and a flavor symmetry group Gayvor- These are quiver gauge theories
with Ggauge = [ U(k;), where >, k; = k, with fundamental and bifundamental matter.
For n = 1, we have a single U(k) gauge group with a single adjoint hypermultiplet and
fundamental matter.
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The full global symmetry of the theory, including the R-symmetry, is
Gglobal = SU(Q)l X SU(Q)T X SU(2)R X SU(2)f X Gﬂavora

where SU(2); x SU(2), x SU(2)g is the R-symmetry associated with (4,4) supersymmetry.
Let J;, Jr,Jr, J¢ be the Cartan generators of SU(2);, SU(2),,SU(2)r and SU(2)s respec-
tively, while the flavor symmetry generators are collectively labelled as {O;}. The Witten
index of the theory is then formally written as

Zsom (€1, €2, ai,m) = TrHSQM(—1)Fe_'8{Q’QT}e_(€1(J1+JR)+€2(J2+JR)+2m J5+32;ai05) , (B.1)

where the generators Jp, Js are related to J;, J, as Jj, = #
B.1 (4,4) multiplets in terms of (0,2) multiplets

Let us first list the (4,4) multiplets and their global symmetries, which can be effectively
read off from a Type IIA description. Recall that the ADHM SQMs are realized as DO
world volume theories in a D0-D4-brane system where the D4-branes wrap the orbifold
C2?/Z,,. The massless modes of the open string spectrum in the DO-D4-brane system can
be assembled in (4, 4) multiplets on the DO-brane as follows:

DO0-DO :  vector multiplet (Ar, 0, 040), (A4, )
adjoint /bifundamental hyper (ans), (A2 ) (B.2)
D0-D4 : fundamental hyper (ga), (W™, ).

where the indices correspond to the different global symmetries: «, &, A, a € {1,2} label the
indices of SU(2);,SU(2),, SU(2)r and SU(2) respectively. Note that we have suppressed
all gauge indices for the fields listed above.

Here ¢ is a “real” scalar in the sense that it is valued in the Lie algebra of the compact
gauge group, while ¢4, and a,, j are complex scalars satisfying a natural reality constraint,
namely, they define quaternions.

The localization formula for the Witten index is given in terms of (0,2) supermultiplets
(see below). Therefore, we need to write the various (4,4) supermultiplets in our theory
in terms of (0,2) supermultiplets. To do this, it is convenient to first split up (4,4) mul-
tiplets into (0,4) multiplets, and then split them further into (0,2) constituents. This is
summarized in table 1. We refer the reader to [8] for more details.

B.2 Localization formula

For the index to be computable using standard localization techniques, the space of super-
symmetric vacua should not have any flat directions. The global symmetry twists in the
definition of the Witten index ensure that the flat directions coming from various hyper-
multiplet scalars are lifted. However, one of the adjoint scalars ¢, which lives in a (0,2)
vector multiplet inside the (4,4) vector multiplet, is neutral under these symmetries and
therefore flat directions associated with it cannot be lifted by the above twists. For unitary
gauge groups, one can turn on FI parameters which lift the flat directions for ¢. In this
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(4,4) multiplets | (0,4) constituents (0,2) constituents (re,r—, f)
Vector (A¢, ¢, A4) Vector + Adj. Fermi (0,0,0) + (1,0,0)
Vector _
Twisted adj. hyper (¢ aq, %) (Adj. +Adj.) Chiral (3,0, 3) +(-3,0,3)
Adj./Bif Hyper Adj./Bif Hyper (a,4,A2) | (Adj./Bif. + Adj./Bif.) Chiral | (3, % 0) + (3, -3, 0)
Adj./Bif. Fermi (\%) (Adj./Bif. + Adj./Bif.) Fermi | (0,3,3) + (0,-1,3)
Fund. H s A Fund. + Fund.) Chiral 1.0,0) + (3,00
Fund. Hyper un yper (ga, ™) (Fun und.) Chira (3.0,0) + (5,0,0)
Fund. Fermi (¢?) (Fund. + Fund.) Fermi (0,0, 2) 4+ (0,0, %)

Table 1. (4,4) mutiplets in terms of (0,4) and (0,2) multiplets. The last column lists the charges
(r4,r—, f) for the various chiral and fermi multiplets that constitute the (4,4) multiplets. Note that
the m-dependent terms in (B.10) and (2.48) arise from the fields charged under the SU(2).

paper, we will only consider SQMs which arise as ADHM QM of instantons associated
with 5d /' = 1* SU(NV) gauge theories. The gauge groups Ggauge for these ADHM QM
are products of unitary factors so that one can always turn on appropriate FI parameters.
Following the approach in [7, 8], we will only turn on real FI parameters {¢;}. For our study
of Witten indices associated with 5d instanton partition functions, it will be sufficient to
take (; = ¢, for all 1.

The path integral associated with the index can then be computed in the weak gauge
coupling limit €232 — 0 using standard localization techniques [7, 8]. The answer generi-
cally depends on the FI parameter {. In the present problem, we are interested in computing
a bd instanton partition function, which is given by an equivariant integral of trigonometric
characteristic classes over the Higgs branch of the SQM. Therefore, we should compute the
associated Witten index in a region of the parameter space of ( such that the index has
support only on the Higgs branch. The relevant limit of the Witten index is the Higgs
scaling limit [7] where we take €233 — 0 holding ¢/ = B2%€%¢ fixed to a non-zero value.
In this limit, the vector multiplet and the chiral adjoint multiplet become massive with
a mass of the order of My = e\/m , and can be integrated out so that the low energy
effective theory is well approximated by the theory on the Higgs branch. The Witten index
computed in the Higgs scaling limit is piecewise constant in ¢/, and undergoes wall-crossing
at ¢’ = 0 where the effective Higgs masses My vanish.

We now present the localization formula for a (4,4) quiver ADHM SQM (associated
with instantons in an A" = 1* SU(N) theory on S x C?/Z,,) with Ggauge = [ U(ks)
with Y7 | k; = k - we refer the reader to [7, 8] for details. The Witten index can be
written in terms of the (0,2) multiplets, i.e. (0,2) vector multiplets and (0,2) chiral and
fermi multiplets transforming in a representation R of Ggauge X Gavor- The path integral
in (B.1) can be reduced to an integral over the space 9 of bosonic zero modes from the
vector multiplets, given by the holonomy of the gauge field around S' and the adjoint scalar
¢ (neutral under the global symmetry twists), which by constant gauge transformations
can be put in the Cartan subalgebra of the SQM gauge group. Given the eigenvalues apiI
and Ail (such that Ail + 27 ~ Ail), with I = 1,2,...,k; and 7 = 1,2,...,n, the k
variables ¢} = @3 + iAi ; define complex coordinates on 9. Therefore, the space of bosonic
zero modes can be identified as M = tg,,.,. ® C/Acoroot = (C*)*.

43 —



The integral on 9t can be further reduced to a contour integral over k complex variables
géﬁ—. In the Higgs scaling limit, the contour integral is explicitly given as

Z(44)(M et C % [d¢l] Z11
bl ) - —100Dp »
sQM - lkl JKC)z L4 2 P (B.3)
0,2 (0,2 0,2
A loop * Z\(zect?)r : Zch1re)xl Zf(erm)l ’

The various contributions to Zi_jop are given as:

Z(O,Q) — H 2ginh Ck(¢) ’

vector
a€Eroots
2e1 1+ 217 +2 o
Zégfil: H 2 sinh pléa) + 2err ;_ cr T mf) ) (B.4)
peweights(Rehiral)
2e rt +2e_r 42
e | 25inn A0 20T ; vt md,

peweights(Reermi)

where r*, 7, f denote the charges of the respective fields under the Cartan generators
Jr + JRr, Ji, J§ respectively.

The integrand diverges along certain hyperplanes H; in 90, where non-zero modes
arising from chiral multiplets become massless. Such a hyperplane is of the form:

Hi={¢ € MQi(d) +2res +2r7e_ +2m f +QF (a) =0}, (B.5)

where Q; € tGgaugerz‘F € tg,.. .. are charge covectors associated to the gauge and flavor
symmetry respectively. Let e be a collection of points in 9 where at least £ such
linearly independent hyperplanes intersect. Following [7, 8], the integral in (B.3) should
be evaluated on a compact contour which is a given by a collection of infinitesimal com-
pact contours around a certain subset of points in 9Mg,,. The appropriate subset and
the resultant sum of residues can be conveniently stated using the Jeffrey-Kirwan residue
prescription [42, 57] which we will describe momentarily.

Let {Q; € t*} be a collection of charge covectors, with [ = 1,..., L, for some L, such
that {H;} defines a collection of L hyperplanes in 9 intersecting at ¢ = ¢, i.e.

H, = {6 € MQuo - 6.) = 0} (B.6)

For notational simplicity, let us take ¢, = 0 — for generic ¢, one has to shift the variables
¢1 appropriately. The contour integral of & complex variables has a pole at ¢ =0if L > k
hyperplanes intersect at that point. This hyperplane arrangement is called projective [4, 42]
when the L charge covectors are contained in a half-space of t*. In all ADHM SQMs
associated with instantons in 5d N' = 1* SYM, the projective condition is satisfied.

Now, let us compute the JK residue of the above integrand at ¢ = ¢, = 0. On
Laurent-expanding the integrand around ¢ = 0, the non-zero residues are obtained from
simple poles. Near the singularity, the relevant denominator takes the form:

1
Qu(9)...Qu ()’
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where @Q,,- -+, Qi (¢) are k independent covectors. The definition of the JK residue also
depends on a covector n € t*. For a projective arrangement, the JK residue at ¢ = 0 is
then defined as

IR Res({ Q) g oy 00 0)

dey -~ doy {]det(Qll Q)| 7Y, if neCone(Qy, ... Qu) (B.7)

0, otherwise,

where n € Cone(Q, ...Qy,) if n = Zle a;Q; with strictly positive coefficients a; (1 should
be in the interior of the cone). Finally, to complete the contour prescription given in (B.3),
we set n =(’(1,...,1). It was shown in [7, 8|, that this choice sets the residues of all poles
coming from the asymptotic region of 91 to zero. We denote this contour prescription as
JK(¢) in (B.3).

As an illustrative example, consider the case of an Abelian quiver gauge theory. The
singular hyperplanes are of the form:

HPP = {6 € M|Qigp + 2rf ey +2r e +2m f + Qf (a) = 0}, (B.8)

In this case, one can choose r;r > 0, for all chiral multiplets, using shifts by gauge and/or
flavor charges. Therefore, a given pole ¢ = ¢,, can either correspond to a set of singular
hyperplanes with Q; > 0 or a set with @Q; < 0, but never both. Let A®) denote the set
of poles of the contour integral corresponding to singular hyperplanes with @; > 0 for all
i, and @; < 0 with all i respectively. Then, applying the definition (B.7) for » = 1 to the
formula (B.3), we get [4]:

{%

27

Zgéf\}[(a’ m, €] gl) = % :| Zl*loop
JK({')
Z¢*€A+ Resg—s. [Zl—loop%] if¢’ >0,

. (B.9)
- ZmeA* Resg—g, [Zl—loop%} if¢’ <0.

B.3 ADHM SQM for 5d /' = 1* SU(N) SYM on S! x C?

As an illustrative example, consider the Witten index for the (4,4) ADHM SQM associated
with k-instantons in a 5d U(N) or SU(N) N = 1* SYM on S! x C? — this corresponds
to the n = 1 quiver in the notation of appendix B.2. The SQM consists of a single U(k)
vector multiplet with a single adjoint hyper and N fundamental hypers. The Witten index

for this theory could be written from the general equation (B.3) and table 1 as follows:3°
Zéﬁ-;ﬂ(a, m, e1.2;¢")
o 1 d¢1 vector ad]j fund
T K o | ks (4,4)(¢a m,€12) - Zk7 (474)(¢7 m,€12) - Zk7 (4,4)(¢7 a,€12), (B.10)

35Tn all Witten index formulae, we adopt the notation: 2sinh (z +y) = 2sinh (2 + y) 2sinh (z — y).
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where the contribution of different (4,4) multiplets to the index

vec (<Z57a €1,2) = H 2s1nh (Gr + 2¢+) H2smh
281nh ¢1J+m:i:e+

1,J=1 I#J
2y (Gaman) = ] 5 tailon tmte) B.1)
k, (4,4)\ P 1.2) IJ:12smh ¢1J+el)2sinh%(¢u+e2)’ '

N 2sinh L (+(¢r — ;) +m)
2sinh 3 (E(dr — a;) +e1)

k
qund (¢7CL m, €1 2) H
I=1:=1

can be computed from the decomposition of (4,4) multiplets into (0,2) multiplets, and then
using the prescription in (B.3).

The contour integral should be evaluated using the JK prescription. Let us write down
the formula (B.10) explicitly in the chamber ¢’ > 0. The ¢’ < 0 formula can be worked out
in an analogous fashion. For the (4,4) ADHM SQM under consideration, it was explicitly
shown [8] that the JK prescription leads to the Young diagram formula, such that the poles
of the above contour integral are labelled by N-tuples of Young diagrams (Y7, Ys,...,Yy)
with the total number of boxes |Y| = PO Y.,| = k. The resultant Witten index, which
is usually written in terms of the 5d A/ = 1* vector- and adjoint hyper-multiplets, can be
expressed as:

14 v '
Z, sch(a, m,e12;¢ > 0) = ZZ;CM(Q, 62,G)Z;dj5d(61a €2,a,m), (B.12)
Y

where z"ec5 J and z;dJM are contributions of the 5d vector multiplet and the 5d hypermulti-

)

plet at the pole labelled by Y — the explicit expressions are discussed below. In order to
write these we note that for a given 17, each box in a given N-tuple is labelled by a ¢ for
some I (we choose a rule where the count of I starts at the box at the leftmost corner of
the first non-empty Young diagram) and the corresponding poles in ¢; are given by?3°

1 = ¢s == aa + €4 — ia€1 — Ja€2, (B.13)
where I = 1,...,kand « = 1,..., N, with s = (in, jo) denoting a box in the a-th Young
diagram in Y .37

The 5d vector multiplet contribution to the residue at Y is
1
H(aﬁﬁey&) sinh %Eaﬁ(s) sinh %(—2@ + Eqp(s)) ' (B.14)
Eop(s) := E(aa — ag,Ya,Yp,8) = aa — ag — €1Ly,(s) + e2(Ay, (s) + 1),

e end) =

36Tt is a special feature of 5d N=1* U(N) partition function that the residues arising from the other
poles (i.e. the ones which depend on the adjoint mass m) are zero. This was already noted in the original
paper of Nekrasov [44] and proved carefully in later papers — we refer the reader to section 3.1 of [8] for
a detailed proof.

370ur convention for Young diagrams is to draw them in the first quadrant with ¢ and j labelling the
horizontal and vertical axes respectively, with ¢ and j increasing away from the origin.
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where Ly, (s) is the distance of the box s from the rightmost edge of the Young diagram
in the same row, and Ay, (s) is the distance of the box s from the bottom of the diagram
in the same row.

The 5d adjoint hypermultiplet contributes as follows:

a - .1 L1
Z;,JM(EI’ €2,d,m) = H sinh §(Ea5(s) +m — €4) X sinh i(Ea’ﬁ(S) —m—ey).
(OL,B,SGYQ)
(B.15)
Combining all the residues, the k instanton partition for a given N-tuple Young dia-
grams Y = {V1,Ya,--- Yy} is

N a1 S|
ins sinh 5 (Fq,8(s) +m — €4)sinh 5 (Eq g(s) —m — €4)
zZ=t=>"1] II 2 BEA— . (B.16)
sinh 5E, g(s) sinh 5(Eq g(s) — 2€4)

D7|:k a,f=1s€Y,

C Computation of Z,,,,, from the defect SQM

In this section, we compute explicit expressions for Z,ono associated with 't Hooft operators
in /' = 2* SU(2) SYM using the Witten index formula (2.48)—(2.49) of the related SQMs
discussed in section 2.3. The function Zj,op0 is labelled by the following defect data:

1 1
B = leag(pa _p)a V= §diag(v, —’U), (Cl)

where p is a positive integer, and v = p,p — 2,p — 4,...,—p. We will compute Zono
for a few small values of p and v below — the SQMs, along with the defect data and
the instanton data, associated with Zj,ono in these examples are listed in table 2. The
resultant expressions are identical to those assembled from the IOT expressions summarized

in (G.13)-(G.14), if we identify the equivariant parameters in the following fashion:3®

a:=2ira, m:=2mm, ey:=inA, e_:=0. (C.2)

The Witten indices are even functions of e, indicating that they are invariant under wall-
crossing w.r.t. the FI parameters. We will use the pole prescription corresponding to the
chamber ¢’ > 0 to evaluate them.

e (p=3,v=1). The defect data is given as B = diag(3, —3) and v = diag3(1, —1).

From equation (2.23), we obtain K = diag(—1,1). Using the shift transformation as
discussed in section 2.4, we have K = diag(1,2) and v = diag(2,1), which leads to

the following U(2) instanton data on a C2/Z,, orbifold (n > 3):
k=(0,1,1,0,...,0) @ =(0,1,1,0,...,0) v = diag(2, 1). (C.3)

The associated (4,4) SQM has a U(1) x U(1) gauge group with one bifundamental
hyper and one fundamental hyper at each node, as given in table 2. The Witten

38Here a a complex number.
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Defect Data (B,v) | KN Data (k, &) Quiver SQM
B=13-3 r
=5(3,-3), k=(0,1,1,0,...,0),
1 o
_1a @ = (0,1,1,0,...,0).
v 2(’ ) 1
B=l(-4 T
=544, k=(0,1,2,1,...,0),
1 o
_1 @ = (0,0,2,0,...,0).
v 2(0,0) 5
B—2l(4-4 T
=54 -4), k=(0,1,1,1,...,0),
1 o
v=2(2,-2 @ =(0,1,0,1,0...,0).
3 1 1

Table 2. Summary table for examples of quiver SQMs associated with the monopole bubbling
indices of 't Hooft operators in N' = 2* SU(2) SYM.

index in the Higgs scaling limit can be written as

dor

ZSQM(aa m, 61,2) = f |:27TZ

vec bif fund
}ZE ZE LR o

2sinh(eq) ’
2sinh §(m & e+)> ’
sinh 1(63 — 6} + e ) sinh 16k — 83+ m — )
sinh 1(¢? — ¢} + ey +e_)sinh (¢l — p2 + ey —e_)’
sinh 2(¢} — ap +m) sinh (=} + ag +m)
sinh £(¢} — az + €1) sinh 3(—¢1 + az + €;)
y sinh 3 (¢3 — a1 +m)sinh £(—¢? + a1 + m)
sinh 3(¢% — a1 + €4 ) sinh 3(—¢? + a1 +€;)

Z%ec(¢> m, 61,2) - (

ZEif(¢7m, 61,2) =

ZE5 (9, a,m, e12) =

(C.4)

From the residue prescription following (2.48)—(2.49) in section 2.3, the poles are
labelled by the following doublets of colored Young diagrams:

.| [2].p H.(,) HI.(@,) (C.5)

where the (7, j)-th box in the ¢-th Young diagram is labelled by its Z,-charge, i.e
s = ry + 1 — j, such that the total number of boxes with charge s is k5. The pole
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associated with a box with coordinates (i, j) and Z,-charge s in the ¢** Young diagram

of a given doublet is:

OF = ap+ €4 —ieg — jeg. (C.6)
Explicitly, the poles of the contour integral are given by our residue prescription
as follows:
1 _ 2 _
L. Pp1 =01 —2e4 +e_, p7 = a1 — €4,
Il ¢ =ag—ey, i =ar—ey, (C.7)
I ¢l =as—ep, ¢ =as — 26, —€_.
Computing residues at the three poles, with a; = —as = a, we obtain

Zmono(a,m,ex;p=3,v=1) = Zsqm(a, m;eq,e_)|c_—o
sinh £(2a +m — 2e; ) sinh 2 (2a — m — 2e)
sinh §(2a — €4 ) sinh £(2a — 3e)
sinh £ (2a + m + 2e4 ) sinh 1 (2a — m + 2¢4)
sinh £(2a + €4 ) sinh 2 (2a + 3e)

sinh 1 (2a + m) sinh 3 (2a — m)

sinh %(2@ +€4)sinh $(2a —€;) (C8)
e (p=4,v =0). The defect data, after the usual shift, is given as:
B = diag(4,0), v = diag(2,2), (C.9)
with the associated KN data:
k=(01,2,1,0,...), w=1(0,0,2,00,..), r=v=dag22). (C.10)

The defect SQM is given by the A/ = (4,4) quiver in table 2. This has contributions
from the vector, fundamental chiral, and bifundamental chiral multiplets:

vec _ 2sinh (e, ) sinh £ (£¢7,) sinh 1 (£¢7,+2¢4)
k 2sinh 1 (m=+e;) ) sinh (g3, +m=tey)sinhi(¢3,+mtey)’

2
qund _ H sinh %((ﬁ—ai—&—m) sinh %((b%—ai—i—m) sinh %(—gﬁ?—l—ai—l—m) sinh%(—qb%—kai—&—m)
ka : sinh(¢?—ai+€4 )sinh 3 (¢3 —ai+ey)sinh 2 (—¢3+ai+ey)sinh i (—¢3+ai+m)’

i=

bif _ sinh £ (471 +m+e_)sinh (417 +m—e_)sinh 1 (¢31 +m+e_)sinh 3 (p15+m—e_)
ko sinh 5 (421 +e€1)sinh 1 (412 +€2) sinh £ (¢31 +€1) sinh 5 (¢12+e2)
« (sinh;(dﬁ’%—l—m—&—e)sinh;(qﬁ‘;’—i—m—e)sinhé(qb‘;’%—l—m—l—e)sinhé(qﬁ%%—i—m—e))
)

sinh 1 (¢32+€1)sinh £ (¢33 +e2) sinh 3 (¢33 4€1) sinh £ (¢33 +e2)

(C.11)

where ¢} ; = ¢} — ¢ and ¢}, = ¢} — ¢7,.
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From the residue prescription following (2.48)—(2.49) in section 2.3, the poles are
labelled by the following doublets of colored Young diagrams and their symmetric
pairs (i.e. doublets of Young diagrams I, II and III, with Y] <> Y3):

12 1

1]
| 23], 9] 1w | [2IB]2]] , (C.12)

where the (7,j)-th box in the ¢-th Young diagram is labelled by its Z,-charge, i.e
s = ry + 1 — j, such that the total number of boxes with charge s is k5. The pole
associated with a box with coordinates (i, j) and Z,-charge s in the /" Young diagram
of a given doublet is:

OF = ap+ €4 —iep — jeo. (C.13)

Explicitly the poles can be listed as follows:

L) ¢%:a+e+—61—262 I1.) ¢%:a+6+—61—262 I1I.) ¢%:—a+6+—61—2€2

Pr=a+es—e1—e P =a+es—e1—e P =a+esr—e1—e

¢%:a+6+—261—262 ¢%:—a+€+—61—62 ¢§:—a+e+—el—62

¢:{’:a+e+—261—62 ?:CL+€+—261—62 ¢:13:a+6+—261—62
(C.14)

Plugging these into (C.11), we get the contributions:

sinh §(2a £ m — €} ) sinh §(2a £ m — 3e,)

I. ,
sinh(a) sinh?(a — €4 ) sinh(a — 2¢, )
inh? §(2a +m —
IL. o 3(2a il &) (C.15)
sinh(a) sinh*(a — €4)
1 sinh £(2a £ m + €} ) sinh £(2a £ m — €;.)

sinh(a =+ €, ) sinh?(a)

The symmetric pair for each of these diagrams leads to poles for which the contribu-
tion to Zmeno is given by I, II or III, with a — —a. This gives us the final result:

sinh 3 (2a &= m — e, ) sinh 3 (2a £ m — 3e;.)

sinh(a) sinh?(a — €4 ) sinh(a — 2¢)

Zmono(a7m76+;p = 477) = 0) = [

sinh®3(2a+m —e;)  sinh3(2a£m+e;)sinh(2a £m — ;) (C.16)
sinh?(a) sinh?(a — €4 sinh(a + €, ) sinh?(a)

+ [a — —a} .
e (p=4,v=2). The KN data of this contribution is described by the vectors:

k=(0,1,1,1,0,...), @=(0,1,0,1,0,...), r=v=diag(3,1). (C.17)
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The SQM is given by the N/ = (4,4) quiver given in table 2. This has contributions
from the vector, fundamental chiral, and bifundamental chiral multiplets:

. 3
e _ 2sinh(e)
k 2sinh £ (m=+ey) )

bif _ sinh 1 (¢11+m+e_)sinh 1 (p17+m—e_)sinh (417 +m+e_)sinhi(pi?+m—e_)

k sinh 1 (¢3 +€1)sinh £ (¢13+e2) sinh 5 (432 +€1) sinh 2 (¢33 +€2) ’
fund __ sinh (¢} —az+m)sinh 2 (—¢1 +az+m)sinh 1
ki sinh (¢l —az+ey)sinh3(—¢l+az+eq)sinh 3

(

(¢ —a1+m)sinh L (—¢+a1+m)

(¢ —ar +€+)sinh%(—¢;§+a1+e+) )
(C.18)

where (;5% = ¢, — ¢?'] ]

The poles for the contour integral are labelled by the following doublets of Young
diagrams:

.| B gl w |3 [ 111.(,) IV.(@,)

(C.19)
Explicitly, these poles are of the form:

I. ¢1=a+6+—61—362 II. ¢1=—a+6+—61—62 II1. ¢1=—a+6+—61—62
¢2:a+6+—61—262 ¢2:a+6+—61—262

¢2 == —a+6+—261—62
Ps=a+er—€1—€

¢3:a+6 — €] —€9 ¢3:a+6+—61—62
N (C.20)
IV. ¢1 = —a+teLr—€1—€
P2 =—a+e;—2€1—€
¢3=—a+eL—3e1—€

From (C.18), we get the following residues (setting e_ = 0):

sinh §(2a£m—3e;)

I sinh §(2a£m+e,)
sinh(a—ey)sinh(a—2e4)’ sinh(a)sinh(a+ey)’ (C.21)
I sinh §(2am—e,) v sinh £ (2a£m+3e;.)
’ sinh(a)sinh(a—e4 )’ '

sinh(a+e)sinh(a+2e;)
This leads to the result

Duona (.4 p—dv—=2) = sinh 3 (2atm—3e; ) sinh §(2am—e,)
e sinh(a—e4)sinh(a—2e4)  sinh(a)sinh(a—ey)
sinh 3 (2am+e,) sinh £ (2a£m+3e;)
sinh(a)sinh(a+e;)  sinh(a+e)sinh(a+2e)
(C.22)
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D Bubbling index as an equivariant integral

The five dimensional instanton partition function of a 5d N = 1 theory on S! x R?* is given
by an equivariant integral of certain trigonometric characteristic classes over the moduli
space of instantons on R* [44]. Similarly, the instanton partition function of a 5d N = 1
theory on S' xR*/Z,, is given by an equivariant integral with the same characteristic classes
as above, and the domain of integration is an appropriate KN moduli space. Since instanton
moduli spaces on R* as well as KN moduli spaces have small instanton singularities, these
equivariant integrals are not well-defined in general. However, in both cases, there exist
resolutions of the moduli spaces obtained by introducing suitable stability parameters (FI
parameters). The group action lifts naturally such that the equivariant characteristic
classes can be extended to these resolved spaces, and therefore one can unambiguously
define these integrals.

In both cases, the equivariant integral may be reduced to a contour integral. For
instanton partition functions on R* and S x R?*, such contour integrals were studied in
detail by Nekrasov and Shadchin [38, 40, 41]. In the 5d case, these contour integrals
coincide with the Witten index of the ADHM quiver SQM in the Higgs scaling limit, i.e. in
the limit of €2 — 0 with the FI parameter |¢| — oo such that ¢’ = €2( is held fixed [8, 20].
The instanton partition function then depends only on the sign of the FI parameter. In
a pure N = 2 or N = 2* SU(N) SYM, the instanton partition function is completely
independent of the FI parameter, but this is not true if we include hypermultiplets in
general representations.

In section D.1, we discuss the equivariant integral formula for 5d instanton partition
functions on S! x R* together with the relevant characteristic classes. In section D.2, we
write down the analogous expressions for S' x R*/Z,.

D.1 Equivariant integrals for 5d instanton partition function on S! x R
D.1.1 4d partition function

Let us first review the equivariant integral formula for a 4d instanton partition function
of a pure N' = 2 U(N) SYM on R?* and how it reduces to a contour integral. Let M¥*
be the affine space of ADHM data, and MXDHM is the ADHM moduli space with fixed
framing at infinity (i.e. choice of a basis of the vector space W) obtained as a non-compact
hyperkihler quotient M*////U(k) implemented via the ADHM equations:

pe = [B1, By + 1T =0, pg=|Bl, B+ (B}, By +1I' —JfJ=0.

Note that by splitting the moment maps into real and complex, we are implicitly choosing
a complex structure on R*. Let w be the symplectic (1,1) form w.r.t. the chosen complex
structure. As discussed in [44, 45], the 4d instanton partition function involves computation
of a T-equivariant volume, associated with the torus action of T = U(1)?|, ., x U(1)¥ |3, i.e.

Zinst(617 €2, (_i) = Z qk/ et ) (Dl)

k>0 MEpa=ME/// /U (k)

where pr is the T-moment map so that we have an equivariant 2-form.
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The smooth locus of the moduli space M’ZDHM is metrically incomplete as a hy-
perkdhler manifold and this can be addressed by adding point/ideal instantons (in the
Uhlenbeck compactification):

——k _ —
M = ME pn U (MESh X RY) U (ME G x Sym?(RY) U...USymF(RY). (D.2)

The resultant space ﬂk is a singular manifold and one cannot apply the standard theorems
of localization directly to such spaces. However, the Uhlenbeck compactification ﬂk admits
a smooth resolution MVIXDHM(C), which is the moduli space of torsion free sheaves on
CP? with fixed framing of the line at infinity, with rank N and second Chern class c3 =
k [36, 37, 58]. MVXDHM(C) is a hyperkéhler manifold and can be shown to be isomorphic
to the hyperkéhler quotient [36]:

ME b (€) = {(31,B2J,J)

pc = 0
L } JUk,©), (D.3)
where ( is a fixed positive real number. In terms of the string theory picture of Dp-D(p+4)
branes, where the ADHM construction can be understood as the Higgs branch of the Dp
world volume gauge theory, this amounts to turning on an FI parameter for the U(1) factor
of the U(k) gauge group.

In addition, the T-action lifts to M’XDHM(C ), so that one can now unambiguously de-
fine the equivariant volume of the resolved moduli space. As explained in [31, 44], the
equivariant volume relevant for the original gauge theory problem of instanton counting is
the one computed with respect to the pull back of the symplectic 2-form on the Uhlenbeck
compactified moduli space ﬂk. The resulting 2-form on MVIZDHM(C ) vanishes on the excep-
tional set M@DHM(C ) — M" and reduces to the original 2-form on M iy C M@DHM(C ).
Thinking of the equivariant integral as an integral of a function with respect to a volume
form, and noting that /{/IVIXDHM(C ) \MIXDHM has measure zero, one can attempt to define
the singular integral on M’ZDHM by:

J.

where we have used the same symbol for the symplectic (1,1)-form and its pull back. Of

et /~ gt (D.4)
M

k k
ADHM ADHM (C)

course this definition only makes sense if the right hand side is (-independent.

Integrals of equivariant characteristic classes over M’XDHM can be similarly written as
integrals over the resolved space with pulled back equivariant classes as integrands. For
the special case of a pure N =2 SYM (and N' = 2* SYM), it turns out that the volume
integral /instanton partition function defined above is (-independent.

Computing the integral [ M s e“THT can be done in two steps: firstly, consider the
integral on the level set u='(0) N ugp'(¢) and write it as an integral over M* which can
be computed using the Duistarmaat-Heckman theorem of equivariant localization for a
non-compact space.® Finally, integrate over the group G = U(k).

39The extension of the Duistarmaat-Heckman theorem to non-compact hyperkahler quotients was derived
in [45]. More rigorous treatment of the problem can be found in [31, 59].
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Schematically, one has
ewthr+iTg

D¢
wpr — w+pT+pT, — D.5
//\’;[/k € Vol(G) /Mk € ‘ Vol Z/F erxre(Vr)’ (D-5)

ADHM

where ¢ lives in the Cartan subalgebra of G = U(k) and T = U(1)*. F denotes the fixed
point set under the T' x Tg-action on MF¥, and erxT, (Vr) is the equivariant Euler class of

the normal bundle at F. Since MPF is non-compact, there is an additional restriction on
the quantity on the r.h.s. of the last equality i.e. the equivariant parameters lie in a open
cone C' — this is precisely the set of all parameters for which the r.h.s. converges [31, 59].
The choice of this cone C' depends on the sign of the FI parameter.

We specialize to the case relevant for the Nekrasov partition function, where F' consists
of a single point since only the origin is preserved under the full T" x T-action, and the
denominator then is a product of weights of the T x Tz-action on the tangent space at the
origin. It is useful to describe the integral over M¥ in the cohomological QFT approach
of [38, 45] (see [56] for more background) where the above integral is written in terms of
the ADHM variables {Bj, B2, I, J} (and their superpartners) as well as certain auxiliary
multiplets (xr, Hr) and (xc, Hc) (with x fermionic and H bosonic) which implement
restriction of the fields to the level set ,u(El 0)n u@l(c ). In this language, the above integral
can be packaged into a contour integral, i.e.

k @
+ o H’:l d¢l 1
/ﬂ eXTHT = = H <waTc((I)) |0e{B1, B2, T oxm xc)

]XDHM JK(O k! b PYpP
_ [15, do ,JwTXTG(XR)ijXTG(XC)
k@) R imnwi ¢ (Bryw] "¢ (Ba)wi e (Iywy "¢ (J) )|
(D.6)

where the integrand involves the weights w?XTG (®) of the ADHM variables and constraints
under the torus action T x T at the origin, with P labelling the individual weights of an
ADHM variable ® under the torus action (see equation (D.8) below). Also, es € {£1}
denotes the fermionic parity, and in writing the second equality we have used the fact that
{By,Bs, I, J} are bosonic while {xg, xc} are fermionic. In the second equality, the indices
1,7, k,l,m,n run over the non-zero weights of the respective ADHM fields and constraints
as indicated.

The residues of the contour integral should be computed using the Jeffrey-Kirwan (JK)
prescription [53] (reviewed in appendix B.2)— this is inherited from the restriction of the set
of equivariant parameters to a cone C' [31, 59]. It can be shown that the JK prescription
is equivalent to the standard Young diagram rule for computing these integrals [8].
TXTG( ®). Given u = dal’ ¢ Ty(ny and

g= 9" ¢ Te the action of T x T on the ADHM variables and constraints is*®

F 1na11y7 one needs to compute the weights w

Bi— g Bigt,  T—éd“glul,  xc— @ gyegh

1 1

i ) D.7
By —€“?gByg J—=etudJg YR = GXRG L, (D7)

40The following is that action on the ADHM variables defining M%&pmy(¢). In order to define the
resolution of singularities one uses geometric invariant theory and hence the lifting of the T-action under
the resolution of singularities is not simple in terms of ADHM variables defining the hyperkahler quotient.
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and the weights wTXTG (®) can be read off as follows:

B : €s+¢i*¢ja Vi,j, (52172)7
I: e —ap+ ¢y, Vi, VI, XCc: € +ée+o;— ¢j, Vi, g, (D.S)
Jioert+ap— i, Vi, VI, XR: Qi — @5, ViF ]

Putting everything together, we get the final expression for the T-equivariant volume

w+pT
Zk inst - /,V €
Mk

[T5, d¢s [Tis; (91— 07) [T; ;(di— 6 +€1+e2)
gk Kk Tl (di—gi+e)(@i—dj+e) [ (di—artes)(er +ar—i)
(D.9)

where the residues are given by the JK prescription, or equivalently by the Young
diagram rule.

D.1.2 5d partition function

Instanton partition functions of theories (with or without matter) on S x C? are given by
integrals of T-equivariant characteristic classes, and can be similarly expressed as contour
integrals. Consider a T-equivariant characteristic class Fr(T M5 ) given as a function
of Chern roots {z1,...,zq}, i.e. Fr(TMEpmg) = T1%, F(z), where chp(TMKpy) =
Zle e’ and d = dim(//\ZIZDHM). Proceeding in the same fashion as before, the corre-
sponding contour integral is of the following form:

/N et FT(TMIXDHM(O)
M

QDHM(C)
_ Hi-“ldcmn(np F(wp "¢ (9))

. (D.10)
JK(C) k' HP TXTG( ) ) ’¢6{31732717J7XR7XC} ’

where, as before, the statistics of the field has to be taken into account while unpacking
the integrand.

In an N = 1 theory on S' x C? with hypermultiplets in a representation R, the BPS
equations of the (2-deformed path integral consists of the self-duality equation for the gauge
fields on R?* as well as a Dirac equation in the instanton background, where the connection
transforms in the representation R of the gauge group. Let V(R) be a vector bundle over
Mk ApmM such that the fiber at a given point m € Mk Apm 18 the index of the Dirac operator
in the instanton background (labelled by m) with the connection transforming in the repre-
sentation R. The instanton partition function therefore involves equivariant characteristic
classes of these vector bundles V(R), and we will write the corresponding equivariant in-
tegral momentarily. The weights of the torus action on these bundles can be read off from
the equivariant index of the Dirac operator, which in turn can be computed from the Chern
character of the universal bundle — we refer the reader to the papers [38, 41, 43, 47, 51]
for details.
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The equivariant integral formula for the partition function is most conveniently read
off from the contour integral formula of the Witten index of the associated SQM. For a
hyper in an arbitrary representation R of a U(NN) gauge group, we have

23 (c12.dm:¢) = q* / T Ap(TMEpi)-Crxre (V(R))

k>0 MADHM

_Zq Hz lldgblH <HP (TZXTZG(q)))) XH <Hs1nthXTGXTF(K)> )

k>0 ’ ] P P (é) K P’

(D.11)

where ® € {By, By, I, J, xr, xc} is the set of ADHM variables and constraints for a pure
SYM, K denotes ADHM variables which parametrize the hypermultiplet zero modes, and
ep € {£1}, ex € {£1} denote the fermionic parity of the set of fields {®} and {K}
respectively. Additionally, T indicates that we also work equivariantly with respect to
flavor symmetry.

The equivariant characteristic classes XT(TMVIXDHM) and Crxr, (V(R)), and the func-
tion A(x), are defined as

d d
AT(TMA’XDHM) = H W HA l’z 5 ChT TMADHM Z eIi ,
' - (D.12)

dr . R
Crorp (V(R)) = [ 25inh % hper, (V(R) = 3 e

where T is the maximal torus of the flavor symmetry group associated with the hyper-
multiplet, d = dim(TM&% p15y) and dg = dim(V(R)).
For a pure 5d N’ =1 SYM, the integral involves the T-equivariant A-roof genus:

Zin@ =Y [ et A M), (D.13)

k>0 MADHM

From the general formula (D.10), we have

/ _ ethT ET (TM ]KDHM)
M

k
ADHM
k €p TxTg €
:% [1;_,d¢: H 1 H wp (D)
sk M LEITpwp @) ) A\ edur 0@ =y 0@ | loeBBy Lz}
[1;_,d¢: €
:% 1 HH( 1wl T (g 1 wh TG (g )
JK(C —e” (®) ®c{B1,B2,I,J,xr,xc}

_jg Hi:1d¢i H#Jsmh (¢ _d)j)Hi,jSinh%(d)i_@sj"‘el"‘Q)
o TK(C) kU T1, , sinh § (¢i—j+e1)sinh § (s —dj+e2) [T, sinh § (£(¢s —ar) +e4)

g,XTGXTF (K) from the Chern

character chrur,x1.(V(R)), and these were computed for various representations and

For matter multiplets, one can read off the weights w
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gauge groups in [38]. For example, in A/ = 1* theory, one can show that

chrsr, (V(R =adj)) = e™chy (T M pgn) = Z elrtm),

(D.14)

d
:>chTF(V(R:adj))ZH%mh(“"Z;m), where chy(TMApyy) =Y e .

=1 )

Therefore the integrand in (D.11) can be combined to give T-equivariant X, genus

Ziki(er2,@,m; () = Zq / TRy (TMpi) »
k>0 MADHM
(=il ) /2y (D.15)
- ~ _ yeti/ s —yT e i)y,
Xy, 7(T Mipmv) = 1_[1 T R— )
1=
where y = ¢"/2 and {z1,...,24} are Chern roots as before. Again using the general

formula (D.10), we get

/ e’ Ry 7 (TMEK i)
M

iDHM
Hz 1 do; ez (wTXTG (®)+m) _e_%(”LUzXTG (<I>)+m)) -
= JK(¢ ! HH % G(é)—e*%w£XTG(<D) ’(I)G{Bl’B2’IvJvXR7X<C}

_ Hizldqai [1;z;2sinh 5(¢i— ;) [1;;2sinh 5(¢i— ¢ +e1+e2)

JK(C) k! Hi,j25inh%<¢i_¢j+61)251nh%(¢i_¢j+62) Hi’ZQSinh%(i(gbi—al)—i—q_)

Hi’j 28inh%(¢i_¢j —l—m—i—&l)QSinh%(@—(bj—l—m—i—eQ) Hi’l QSinh%(ﬂ:(@—al)—l-m—i—e_,_)
Hi,j 2sinh %(¢i_¢j +m) H” 2sinh %(Cbi—%’ +m-+ei+er)

)

(D.16)
The expression matches with (B.10) after a redefinition of the adjoint mass m — m — e;..

D.1.3 Transformation of the equivariant integrals under { — —( and
wall-crossing

We now describe how the contour integral expressions for 4d/5d instanton partition func-
tion change under a change in the sign of the real FI parameter ¢ in (D.3). The moment
maps in the ADHM construction are then given as:

pc = [B1,Ba] +1J =0,

i i (D.17)
pr = [B], Bi] + [B), Bo] + 11T — J'J = —(, (>0.
Define a new set of ADHM variables: (f, j, /351, §2>, such that
Bi=B), T=Jf,
(D.18)

By=Bl, J=Jt
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In terms of the variables (f, J. , E, E;), the moment maps can be written as:

ﬁC:M(EE[EIaEQ]—FTj:O:

B s s e e s (D.19)
fir = —pur = [Bl, Bi] + [BY, Bo) + TTT — JTT=¢.

The T x T group action on the ADHM variables and constraints is then given as:

By — e ie2g By g ', I— e ietg Tu™t , Xc — e_i(€1+62)g xcg b, D20
By e gByg7t,  Joe“udgt, X gxrg . (020
Comparison with (D.7) shows that the group action above is identical, with €4 — —e.
Therefore, a change of sign in ¢ in the ADHM moduli space (D.3) leads to exactly the same
manifold with an almost identical group action — the only difference being a change of sign
in the equivariant parameter e,. The equivariant weights of the ADHM variables can be
obtained from those in (D.8) after the transformation e, — —ey. The equivariant weights
associated to the matter multiplets can be read off from the original ones after substituting
€4 — —€4.

The integrand of the contour integral for a 5d partition function in the —(-chamber
can be obtained from the (-chamber integrand by substituting e, — —ey, while the JK-
residue should be taken w.r.t. ¢ (and not —(). As an example, consider the 5d instanton
partition function for a pure N'=1 SU(N) SYM:

Bl alersens@imQ)= [ e AT )
M]ZDHM(7<)
Hle dg; Hi;éj sinh %(@ — ;) H'L] sinh %(ﬁbz —¢j—€1—€2)
JK(C) k! Hm-Sinh%(qﬁi—@—ez)sinh%(@—@-—q)H“Sinh%(:l:(qﬁi—al)—@r)
= 73 s (—e4,e2,@:0). (D.21)

On evaluating the contour integral, one can check that Zﬁd_inst is an even function of
€, ie.

Zl?iinst(ieJra €—, 6; C) = Zléd—inst(eJra €—, 6; C) ) (D22)
which implies that it is wall-crossing invariant.

For an N/ = 1* SU(N) theory, equation (D.14) implies that the equivariant weights
associated with the adjoint hypermultiplet are related to those of the vector multiplet
by an overall shift of the adjoint mass m. As discussed above, the partition function is
then obtained from (D.16) after shifting the adjoint mass m: m — m — e4. Under a
transformation ¢ — —(, the instanton partition function is given as:

Zléd—inst(&r? €, d,m; _C) = /N ew—HLT;(\y, T(TMIXDHM)
M pan (=0 (D.23)

5d —
= Zk—inst(_GJrv €—,a,m; C) :

As before, on computing the contour integral explicitly, one can check that Zf;)d_ for

inst

N = 1* SU(N) theory is invariant under wall-crossing.
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Wall-crossing invariance of the 5d instanton partition function for the AN/ = 1* theory
and the pure N' =1 SYM can be checked (without actually performing the contour inte-
grals) as follows. Consider first the A/ = 1* theory in the instanton sector & = 1 which
is associated with an Abelian SQM. In this case, the wall-crossing formula of the Witten
index can be read off from (B.9):

Zg(ljﬁ(aa m, €+ C/ < 0) - Zégzll\aj(avm7 €+; C/ > 0)

d d
== Z Res¢:¢* [leoopzfi] - Z Res(b:qb* l:leOOPQ;fi] (D.24)
P EA~ P EAT
= R—oo + Roo )

where R4, are the residues of [Zl_loop%} at ¢ = +00. The sum (R_o + Rs) vanishes
for the (4,4) ADHM SQMs associated with instanton particles in 5d N/ = 1* SU(N) SYM
on S xC? or S! x C?/Z,, which can be directly checked from the Abelian version of (B.10)
and (2.48) respectively. For generic k, the change in the Witten index as ( — —( is similarly
given by a sum over the various asympototic residues (i.e. when one or more of the ¢;s or

ts go to +0o). However, from equation (B.10) and (2.48), one can directly check that the
residues for a given ¢; (or ¢%) from +oo (with other integration variables generic) cancel
against each other. Therefore, the sum over the asymptotic residues vanish as in the case
of k =1 leading to a wall-crossing invariant Witten index.

For the pure N/ = 1 SYM, in the instanton sector k=1, the residues R_,, and R
vanish individually. For generic k, the asymptotic residues also vanish individually since
the residues associated with any ¢; — +oo or QS’I — 400, with other integration variables
generic, is zero. Therefore, we also have a wall-crossing invariant Witten index in this case.

D.2 Equivariant integrals for Zono and 5d instantons on S! x C2 Yy’

Let us review the equivariant integral formula for the 4d instanton partition function of
a pure N = 2 U(N) SYM on an orbifold C?/Z, and show how it reduces to a contour
integral using the cohomological QFT approach [45]. The moduli space of instantons on
C2/7Z,, can be constructed as a hyperkihler quotient of the Z,-invariant ADHM data, as
reviewed in section 2.1. As in the case of the ADHM construction of instanton moduli
space on C?, the Uhlenbeck compactification of the moduli space Mg is singular. The
smooth resolution in this case is the moduli space of Z,-equivariant torsion free sheaves
on CP? with fixed framing at the line at infinity [5, 35, 37]. The resolved space Mkn (Ck)
can again be described as a hyperkéhler quotient after introducing stability /FI parameters
which deform the real moment map as follows:

Vi i\ A =0
Mgn(Cg) = {(31732717 Dz, | 1€ . }/U(kuc)7 (D.25)
pr = CR
where we only consider (g in the set*!
Co:={Cr = (k) €R™¢t <0, Vi=1,...,n}. (D.26)

41 The cone associated to the other chamber for (g discussed above corresponds to taking ¢& > 0, Vi.
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Given the above definition, equivariant integrals on M KN(CI@ can be written as Z,-
invariant projections of equivariant integrals on the moduli space of instantons on C2.
Similar to the case of instantons on C2, such equivariant integrals may be written as con-
tour integrals using the cohomological QFT prescription discussed before. These contour
integrals coincide with the Witten index formula for the ADHM SQM in the Higgs scaling
limit, i.e. e — 0 and |¢| — oo (after setting the gauge couplings e; = e, and ¢ = ¢, for all
i) holding ¢’ = €2 fixed. The instanton partition function therefore depends only on the
sign of ¢ or (.

The contour integral can be constructed using the orbifold-invariant ADHM variables

Qmax_]- Qmax
Bie @ Hom(Vj;1,Vj), Ie P Hom(V;, W),

j:;min jZQmin (D27)
Bye P Hom(V;1,Vj), Je @ Hom(W;,Vj).

J=qmin+1 J=qmin

and the fields imposing the moment map equations

dmax

(x&. xc) € P (Hom(vj, V;), Hom(V;, V;)) . (D.28)

J=Qmin

The generating function for 5d instanton partition functions on S! x C?/Z,, with a mon-
odromy vector w at spatial infinity can be written as

dmax

23 X C ey 9, ¢ | ) = Zq [T w0 zo S/ % aam ¢),  (D.29)

inst inst
] qmln

where the sum is over k such that quij‘]m kj =k, Bj = wj+ kj_1 + kj;1 — 2k; (these Bjs
are the beta functions of j-th gauge node of the quiver), q is the fugacity associated with
the instanton number, and u; are fugacities associated with the second Chern class of the
instanton bundle (see (2.14)). The instanton partition function labelled by the KN vector

k and the monodromy vector w is

1 2 — o~ —~ .
78 SO (K, s, ¢) = /~ T Ap(T M (k) -Crxry (Vien (R))
Mgn(¢)

}{ qux _ qﬁx chliin< TxTG > H<H51nh wTXTGXTF(K>>7

T i gmin I=1
(D.30)

where, as before, {®} runs over the Z,, invariant ADHM variables { By, Ba, I, J} while {K'}
parametrizes the Z,, invariant zero modes arising from the hypermutiplets in representation
R in the ADHM construction. Ap(TMgn(Ck)) is the A-roof genus and Cryr, (Vi n(R))
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is the characteristic class associated with the matter bundle:

d
AT(TMKN(C&)) H m . HA .’,Ul s ChT(TMKN C]R Zexz
=1 (D.31)
Crxrpy(Vkn(R HSlnh 5&i; chrxr, (Ven (R Z s,

where T is the maximal torus of the flavor symmetry group associated with the hyper-
multiplet, d = dim(T/(/viN(Cﬁé)) and dg = dim(Vxn(R)). In particular, for the case of a
5d N = 1* theory where R is adjoint, the characteristic classes in the integrand can be
combined to give a T-equivariant x,-genus of the KN moduli space, which can be written
as a contour integral, i.e.

SUXC2 T (7 = n
Zist (ki d,mi; C)= | _ e Xy
Mgn(¢)
qmax (62<wPXTG<<1>>+m),e—%< P @)4m)
. I 112111 et el
- qu | WwI*T  TXT, €1b51,52,4,J,XR\XC 1 Z,
JK(C) IL:= q“““k i=Qmin [= 127” e3vp C(®) _emzwp C(®)
gmax i Qmax
ey 1T 1T 11 i H 3
- TT0max k! 271 251nh +m:|:e 1J
JK(C) Hl 9min 1=Qmin [=1 1=qmin I,J=1 +

dmax — 1k]+1 k

o H HH 2sinh £ ¢7]+1—¢j+m+6 )2sinh1(¢j P m—e_)
2sinh 3 (¢7 "' — ¢/ +eq+e_)2sinh 1 (¢ — )" +ep—eo)

] dmin I=1J

% qﬁ( H H QSlnh aH—m)Zsinh 1 ( ¢§+al+m) (D 32)
i 2sinh § al+e+)2smh (—¢t+ai+ey) ’
J=4min =

The last line of the above formula is precisely the same as equation (2.48)—(2.49) above.
From (2.44), we can therefore write down a formula for ZEOIXIO as an equivariant integral

on a resolved KN moduli space:
3 1
Zaono (B, via,m, A|G = SU(N)) = /~ X Ek (B ) = (B.v) (D.33)
MgnN ()

where the equivariant parameters on the two sides of the equation are related as in (2.45).

The formula for these contour integrals under a change of sign of all the FI param-
eters, i.e. ( = —( (or ¢’ = —(’), can be obtained in a similar fashion as discussed in
appendix D.1.3 in the context of partition functions on S' x R*. The resultant contour
integral can be obtained from the original one by substituting e, — —e4. One can check
that the expressions in (D.32) and (D.33) are even functions of e, and therefore invariant
under ¢ — —(.

E Character equation analysis

In this appendix we will derive equation (3.30). Let us introduce the notation

K = diag(K1, Ko, ..., K}), z =¥V (E.1)
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where the entries can be repeated. In the character equation we will want to reduce the term
k n—1

(o' =2)Try a¥ =@+ =2)) 2 =(w+27' —2)) ko, (E.2)
s=1 s=1

where k = (ko, ..., kn_1). Note that generically
ki = kz‘+1 +1 or ki = ki+1 . (E3)

This means that the factor of (z + 27! — 2) will actually eliminate most of the terms.
Consider two sequence of k's: (a) (ks — 1, ks, ks + 1) and (b) (ks, ks, ks). In the case of (a),
we have the terms of degree 2™ will cancel:

z- [(ks - 1)m“} -2 [(ks):z:ﬂ +a [(ks + 1)a:s+1]

(E.4)
= (ks — )a® — 2ksa® + (ks + 1)2° = 0.
Similarly for the case of (b) the terms of degree z* will cancel:
. s—1| _ o s -1 s+1
z [(ks)x } 2 [(ks)x } +a [(ks)x } -

= (ks)x® — 2ksx® + (ks)z® = 0.

This means that the product (z + z~! — 2)Tr;, ¥ will cancel order by order along the
sequences of purely increasing, decreasing, or constant kg’s respectively. Therefore, the
only sequences where there is not a complete cancellation is at the connection between the
quivers of type ¥X; and I'; ;1.

Now let us compute the terms which contribute to the character equation. There are
4 such sequences

L) (ks —1,ks ks), IL) (ks ks ks — 1),

(E.6)
IL) (ks + 1, kg, ks) IV.) (ks ks ks +1),
where we have taken the middle term to be the s-th term in the vector k.
Computing the terms of degree s we see
L) (ks — 1)a® — 2ksa® + koa® = —a°,
II. ksx® — 2ksx® + (ks — 1)a® = —a®
) ; ; (ks = 1) (E.7)

I1L.) (ks + 1)z° — 2ksa® + kga® = 2* |
Iv.) ksx® — 2ksa® + (ks + 1) = 2.
Note that each term is (+1) or (—1) times a simple power of x. Therefore, we see that
there will be a sum of monomials with positive or negative coeflicient whose degree is the
position along the full quiver of the beginning and end nodes of the ¥; subquivers.
Now to determine the contribution to the character equation, we must determine the
generic positions of all of the 3; quivers. Let us use the notation

B = diag(p1,...,pN), v = diag(vy,...,uN),

n:v—B:Zqu]:diag(m,...,nN),
I

(E.8)

where the p; and v; are non-decreasing.
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First, note that in the case l;:I = ];7[+1, we have that there will be no I'; ;41 subquiver,
and consequently there will be no contribution from the pair of edges connection X; to
Y7+1. This is okay though, because it means that there is a zero in the matrix x and
hence there is a value of p; = v; and hence the terms drop from the character equation. So
therefore we will consider the generic case where ky # ky for I # J.

Second, it is particularly insightful to consider the contributions from the terms sur-
rounding a given I'z ;1 for I #0, N — 1:

Note that the length of I'y 741 and X7 (denoted |I'; ;41| and || respectively) are given by
Trri1] = kron — kil =1, |27 =nr+1— |k — krlwrrp — [kr — kr—1|wrr—1, (E.9)

where again
0 kr<k
wr,J = = (E.10)
1 kr>ky
Let us assume for simplicity that l;:I < 1231,1 and IE:IH < l;:prg. Additionally let us assume

that the first node of ¥ is at the position m + 1 in the vector k. Then using (E.7), we see
that the terms contributing from the above subquivers is given by

=™ 4 (_1)w1,1+1$m+n17|’~61+1*’~61\w1,1+1 + (_1)w1+1,1$m+n1+|’~€1+1*’~€1\w1+1,1 4+ gmnrtnra

(E.11)
So, no matter what the sign of (l::l — l;:prl) is, there will always be the contribution of

the form*? ) )
xm + xm+n1 o xm+n1+(k1+1—k1) + xm+n1+n[+1 . (E12)

Now once we solve the beginning (and end) couple contributions, we can iterate on the
above formula, and compute the entire contribution to the character equation. Using the

fact that [To1| = |k1| — ¢, [Cn_1.n] = [kn| — ¢, we have that the first two contributions are
of the form i
1 -zl (E.13)
Now by iterating, we see that the full contribution to the character equation is of the form
~ ~ N_2 ~ ~
1 — gkt — gpn—pi—kn-1 4 gpN—PL Z <mpl+1—p1 _ xp1+1—p1+(k1+1—k1)> ) (E.14)
I=1
Here we used the relations
I
nr=pra—pr, Y Mg =Ppra—Di, (E.15)
J=1
where here I = 1,..., N — 1 and we extend the definition of n; to ny = 0.

42Note that this also holds for the special cases Egm) =0 and \l%l — l;i+1| =1.
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F Q-fixed point equations and 't Hooft defect

In this section, we discuss the Q-fixed locus of the 4d path integral associated with an
't Hooft defect. For the sake of brevity, we focus on vector multiplets — including hy-
permultiplets in an arbitrary representation will involve an obvious generalization of the
procedure presented here. We choose to write the Q-fixed equations in Minkowskian signa-
ture, with the metric ds? = Z?Zl(dxi)Q —(d7)? on R3 x S, to match conventions of recent
papers [2, 10, 11] on monopole moduli spaces. The Euclidean versions of these equations
can be obtained by Wick rotating appropriate bosonic fields.

The bosonic part of an N' = 2 vector multiplet in four dimensions consists of a gauge
field A = (A,, A;), with ¢ = 1,2,3, and a complex scalar field ¢ (or a pair of real scalars
X,Y), while the fermionic part consists of a pair of Weyl spinor doublets ), 4, 1]1?{, with
A = 1,2 being the SU(2)g index, and («, &) labelling the SU(2); x SU(2), Lorentz spinor
indices respectively. The Weyl spinor doublets obey reality conditions: (1 4)* = —Q;:XA.
We adopt the following convention for the o-matrices:

0o=(1,3), Ga=(,—-5), a=0,1,2,3, (F.1)

where [ is the 2 x 2 unit matrix and & are the Pauli matrices. While writing multilinear
expressions in terms of the scalar fields, we will often suppress the Lorentz spinor indices —
the undotted indices will be contracted in the “northwest to southeast” convention while
the dotted ones will follow the “southwest to northeast” convention.

F.1 Q-fixed point equations of the undeformed 4d path integral

Let us first discuss the Q-fixed point equations for an 't Hooft defect on the undeformed
space R3 x S! (i.e. when A = 0 in (1.1)). Given the field content described above, the
action of an N = 2 vector multiplet with an 't Hooft defect at the origin, is

S = Svector + Sboundary )

1 1 1
Svector = 2/ d4l‘ Tr <FMVFlLV + D,LLQODMSE - 7[907 95]2)
g~ JrR3xS1 2 4
1 A . _ .- -
to [T (=200 Daia — vl + 100 0al) (g
g7 JR3xS1 ’

+19/ Tr (F/\F)
87'('2 R3xS1
—1

Sboundary = 2/ Tr((SO - 95) F+ (30 + 95) *(4) F) A dTa
g 23:{$“ | 7‘:5}

where Syector is the standard action for an N = 2 vector multiplet, and Spoundary is a

3

boundary term*? necessary to regularize the classical action in the "t Hooft background [2].

The N = 2 supersymmetry transformations for the vector multiplet fields are generated

43The boundary term as written in [2] is dependent on the complex structure ¢ associated with the line
operator L¢. Here we have chosen ¢ = 1.
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by the parameters &, 4, @4 (we take these to be bosonic) which are solutions of the Killing
spinor equations:

Viéa = (8 +4w# Uab) Ea=0,
. ) (F.3)
Viéa = (8 4@)# oab> €a=0,

where we have suppressed the Lorentz spinor indices. In the case of undeformed R3 x S?,
we have wzb = 0, which implies that the supersymmetry parameters &, 4, 5;; are constants.
Explicitly, the supersymmetry transformation rules for the bosonic fields are

0A; = Eloba + E%iba,  6p=26%y,

N . , T (F.4)
0A; = El00a + E%0ba, 0 =26M4,
while variation of the fermionic fields are
. . = i _
0pa = 10" Fiu€a + 10" Dugpla + S€ale, ¢l (F.5)
- o - . _ iz _
dha = i0" Fa — ic" Dy@éa + 5&1[% @l (F.6)

For treating line defects, it is more convenient to work with the following redefined
fields:

1 _ 1 _
Y=S(+9),  pa=;5@ato’da), (F.7)
1 _ 1 0
:5(30_@)7 )\AZEWA—U wA)a (F8)
where X,Y are real scalar fields and pa, A4 are symplectic Majorana Weyl spinors —
pt = %4, M = G924, Similarly, one redefines the supersymmetry parameters in the

following fashion:
1 _
ea= 5t 0¢a),
1 0 -
where €4,n4 are symplectic Majorana Weyl spinors. Supersymmetry transformation gen-

(F.9)
na =

erated by the parameter € 4, generating R-supersymmetry [2], may be explicitly written as
0A; = QEAO'OO_'Z‘,OA, oY = QEApA,
§A, = —2ie a2t 6X = 2e40y,
op? = [(DoX — [V, X]) + 0% (E; — D;Y)]|e?
oM = [DoY +i0%5%(B; — D; X))

(F.10)

while supersymmetry generated by the parameter n4, generating 7 -supersymmetry, has
the following form:

8A; = 2na0’ai 24, 6X = 2nart,
§A; = 2inap™, 8Y = —2nap™,
5p = [DyY — 0% (B; + D; X)n?

M = [(DoX +[Y, X)) + 1aoa’5A(E7; + DY)t

(F.11)
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Various derivatives of vector multiplet fields appearing in the above equations are
defined as follows:

1 .
D;X =0, X +[A;,X], Bi= ieiijJk, (F.12)
In the undeformed background R3 x S! i.e. for A\ = 0, an 't Hooft operator insertion at
the origin, specified by the boundary condition (1.2), only preserves four supercharges
generated by €4, with na = 0. Therefore, setting 6p? = 0 and dA* = 0 for a generic

symplectic-Majorana-Weyl spinor e, the BPS equations for the undeformed background
with a line defect are

Bi—D;X=0, D.X-[V,X]=0,

(F.14)
E,—D;Y=0,, DY =0,

of which the last three equations impose Q-invariance on the bosonic fields. Note that the
Dirac monopole configuration in (1.2) is an exact solution of the above equations.
F.2 Q-fixed point equations of the deformed 4d path integral

Now consider the 2-deformed background with A # 0. The metric in terms of the local
coordinates is given as

A 2
ds? = dr? + r2d6? + r?sin® 0 <d¢ + Rdr) —dr?,

. \ \ (F.15)
Z: dz: + VZdT —dr?, vi= Ez2,V2 = —Eaz:l,V3 =0,
while all the fields in the theory are understood to be periodic under 7-direction.

One can choose the following orthonormal basis (and its inverse):
1 000 1 0 00
0 100 0 1 00

a _ E H= F.16

K 0 010/’ a 0 0 10 (F-16)
vivzol vi-v2o1

Let us comment on the supersymmetry preserved by the line defect in this deformed
background. Preserving part of the supersymmetry of the undeformed background requires
turning on a background gauge field which lives in the Cartan subalgebra of the SU(2) g
symmetry. The supersymmetry parameters are solutions of a more general Killing spinor

equation: 44

1 .
Dyuga = <0 + Wﬁbaab> Ea+1iViiép =0,
X (F.17)
Dqu = <8 +4 " O'ab>§A+1V AfB—O

where VMBA is the background SU(2) gauge field.

“TFor the most general form, see [15].
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It is convenient to write the supersymmetry in the Donaldson-Witten twisted form, i.e.
let SU(2), = SU(2) g, which implies that the supersymmetry parameters may be written as

€5 = &f = 006+ ()™,
gaA — goaA = (Ua)aAé-a .

where a,b = 0, 1, 2, 3 label the vierbeins.
The R and T supersymmetry parameters can also be written in terms of the twisted

(F.18)

supersymmetry parameters:

EaA = (00>ocAg+ (O—a)aAé.a + (JO)aB((_Tab)aEab, (F 19)
nNA = (UO)OAAE_ (O-a)aAfa - (UO)aB(aab)igab . .

Setting the background SU(2)r gauge field to cancel the self-dual part of the spin connec-
tion, i.e.

. 1 s
Vi + Wi (0an) 3 =0, (F.20)

one obtains the following solution of the Killing spinor equations in the deformed
background:

g=¢"=0, o€ = Bﬂfo =0 = & €% =constant, (F.21)

The deformed background therefore preserves only two supercharges, with associated pa-
rameters ¢ and £°. In terms of the R and 7 supersymmetry parameters, we have

CaA = (UO)aA(_§O + E) ) NaA = _(UO)aA(fo + 5) . (F.22)

Now, a line defect in this deformed background, specified by the boundary conditions
at r — 0, preserves a single supercharge: the condition n4 = 0 sets a linear combination
of € and &9 to zero. More explicitly,

Naa=0 = 46=0, eqa=2(0"0xt.. (F.23)
The transformation of the bosonic fields under this supercharge are:

0X = 2isApA, 0A; = 25A006ip14,

, F.24
§Y = —2ie 4 \?, §A; = —2ie AN + 2Vie 4005 p2 . (F-24)

Note that the supersymmetry preserves a Wilson loop at the origin where V¢ = 0, so that
dsusy (A7 —Y) = 0. The fermionic fields transform as:

opt = [—-(D, X — [V, X] = VD; X) +i0°5"(E; — D;Y — VIF;)]e, (F.25)
M = [(D,Y = VDY) +i0°5(B; — D; X)]e?, ’

Therefore, BPS equations in the deformed background with the 't Hooft operator
insertion are then given as follows:
Bi-D;X=0, D,X-[Y,X]|-V'D;X=0,

. . (F.26)
Ei—D;Y —VIF; =0, D.Y —V'D;Y =0.
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Note that the last three equations give the Q?-invariance of the fields (X, Y, 4;),*> where
Q? = L + gauge transformation, with L being a covariant Lie derivative w.r.t. a vector
field G. In the vierbein basis, the vector field is defined as

G = £45% 4 = (1,0,0,0), a=0,1,2,3. (F.27)
where ¢ is appropriately normalized. Therefore, in the coordinate basis, G is given as
G'=EG" = G =1, G'=-V' i=1,23, (F.28)

leading to the above Q?-invariance equations. Therefore, ) generates the following group
action

Q*A; = 7 — translation + rotation + gauge transformation . (F.29)

The BPS equations imply that the 4d path integral localizes on a sublocus of the moduli
space of singular monopoles on R? which is invariant under the group action generated by
Q?. Kronheimer’s correspondence [63] states that moduli space of singular monopoles on
R? is isomorphic to the moduli space of U(1)-invariant instantons on a Taub-NUT space.
IOT/GOP argued that, for studying the monopole bubbling locus, it is sufficient to consider
instantons localized at the tip of the Taub-NUT which is locally R*. In addition, the group
action generated by Q2 can be lifted to an appropriate group action on the moduli space of
instantons. Therefore, the Q-fixed locus of the 4d path integral can also be thought of as a
sublocus of the moduli space of U(1)-invariant instantons on R*, which is invariant under
the above group action. In analogy to Nekrasov’s original computation [44], the Q-fixed
locus is given by a set of isolated fixed points on the U(1)-invariant instanton moduli space.

G IOT result: Z,n, from 5d instanton partition function

In this subsection, we show that IOT formula [16] for Z,on, for pure 't Hooft operators on
S x R? may be derived from Nekrasov’s partition function for instantons on S' x R* by
imposing the constraint of U(1) g invariance. In a 4d N’ =2 SU(N) SYM with matter in
representation R, the monopole bubbling contribution Z,on for an 't Hooft defect labelled
by B, in the bubbling sector labelled by v, has the following form:

Zmono(aa my, )‘; B7V) = Z Z;/;"e/c(aa )\; B,v)zg,(a, mg; B,V) ) (Gl)
v

The sum in (G.1) is over a U(1)g-constrained set of fixed points on the moduli space of
instantons on R*, which are labelled by U(1)g-invariant N-tuples of Young diagrams Y’
The one-loop determinants z;;ef, zg,

U(1) g-invariant weights, as we discuss below. We would like to emphasize that the above

at a given fixed point are obtained by restricting to

formula gives the complete answer for Zyono only for an AN/ = 2* SU(N) theory.

45Q%-invariance of A, is obtained as a linear combination of the other equations and is therefore identically
satisfied. Explicitly, 6?4, = —V*'F;, + D,Y = 0, using (F.26).
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One can derive the above formula using two standard ingredients: the ADHM con-
struction of U(1) g invariant instantons on C? [32] and Nekrasov’s formula for the instanton
partition function of 5d NV = 1 theories on S! x C? [44].

G.1 Ziono from 5d instanton partition function

The Q-fixed locus of the 5d G = SU(N) instanton partition function on S x C2 (defined as
the non-perturbative part of the 5d supersymmetric index in (A.1)) is given by a finite set of
fixed points on the moduli space of SU(N) instantons on C? under the U(1), x U(1),, x Tz
equivariant action.*6

Using the standard ADHM description of a k-instanton moduli space, the sub-locus
invariant under the U(1), x U(1), x T action is given by the ADHM data (B, Be, I, J)

that satisfy

€181 + [¢, B1]

0, ¢l —Ia =0,
(G.2)
62B2 + [¢7BQ] =Y,

(61+62)J+CLJ—J¢:O,

for generic equivariant parameters (€1, €2, a) (where a is an element of the Cartan subalgebra
of SU(N)), and for some ¢ = diag(¢1, . . ., ¢r) parametrizing the Cartan subalgebra of U(k).
The invariant sub-locus consists of a finite set of isolated points if the above equations are
satisfied only for discrete choices of ¢, which turns out to be the case [44]. A fixed point is
then labelled by a particular value of ¢, which in turn could be read off from an N-tuple of
Young diagrams Y consisting of a total of k£ boxes. Explicitly, the solution for ¢ associated
with a fixed point labelled by a given N-tuple of Young diagrams is:

¢s=aq+er+elisy, —1)+e(sy, —1), s=1,....,k, a=1,...,N, (G.3)

where (isy,, js,v, ) denotes the s-th box (out of the total k) which belongs to the diagram Y.

Now, consider the case of U(1)g-invariant instantons as discussed in section 2.2. For
e ¢ U(1)g, the U(1) g-invariance imposes a set of constraints on the ADHM variables
— summarized in (2.19). Invariance under an infinitesimal U(1) i transformation therefore
leads to the following constraints on the ADHM variables:

—Bi+[K,Bi]=0, KI-Iv=0,
1+ K B . (G.4)

By + [K, By| = vJ—-JK =0,
where K is a cocharacter which is determined by the defect data (B, v) via (2.23).
To derive the U(1)g-invariant fixed points we proceed as follows. We multiply the

equations (G.4) by v and add them to the corresponding equation in the set (G.2), which
leads to

QB +[6,B1] =0, ¢I —Ia=0, @)
=0, '

€Bs + [, Bs) (eL+&)J+aJ—Jp=0,

46The structure of fixed points remains the same for SU(N) theory with hypermultiplets in arbitrary
representation R. The one-loop determinant at a given fixed point is obtained from the weights of the
U(1)e, X U(1)e, X T X T action (Tr being the maximal torus of the flavor symmetry group) on the vector
bundle V(R) on the instanton moduli space, associated with fermion zero modes of the hypermultiplet.
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where the new parameters are simply

Os = Qs + Ksv, €~1:61_7/7

Uy = Ao + VoV, € =€+ 1.

(G.6)

Since the equations (G.5) are of the same form as the equations (G.2), the solution for
¢ is given by equation (G.3) with the equivariant parameters (ei,€2,a,) replaced by
(El,Eg,Eia), i.e.

Qgs — aa+€+ +g1 (iS,Ya - ]') +€2(j57Ya - 1)7 (G7)
_— ¢S — aa+€++61(is,Ya —1)—|—62(js7ya — 1)+ (—K5+Va+(,js7ya _is7Ya)> V. (GS)

The U(1) g-invariant fixed points must be independent of v, and therefore correspond
to the following N-tuple of Young diagrams

—

Y =M,Y2,...,YNn) suchthat Ks;=v,+ (Jsv, —isv.), (G.9)

up to a permutation of s € {1,...,k}, witha=1,..., N and (isy,, Js,v, ) representing s-th
box in the a-th Young diagram. This gives a clear recipe for determining the fixed points
on the U(1)g invariant instanton moduli space under the U(1),, x U(1),, X T action.

For computing the one-loop determinants in equation (G.1), one should restrict to
U(1l)e X U(l)e, X Tz x Tr weights (T being the maximal torus of the flavor symmetry
group) that contribute to the index at a given fixed point are the ones that are U(1) k-
invariant. Consider the vector multiplet contribution to the instanton partition function
in the standard case [44]:47:48

~1

Z}?ﬁ\lek.: H <2sinh B (aa—a5+(Aya(s)—Lyﬂ(s)il)q—(Aya(s)—l-Lyﬁ(s)-l-l)e_)}> )
(e.B,5)

(G.10)

where the products are over the triples (a, f,s) with s € Y,. In the present case, we
should only include in the product those triples (a, 3, s) in the above product for which
the argument of the sinh function is invariant under the transformation of the equivariant
parameters (a, €1, €2) — (a, €1, €2), with (a, €1, €2) given in (G.6). From (G.6), the argument
of the sinh function transforms as

(aa—as-+(Ay, ()~ Ly, ()£ 1)es — (Ay, (5)+ Ly, (5)+ 1)e_)

— (aa+Var—a5—Vsv-+(Ay, (5)— Ly, ()£ 1)es — (Ay, (8)+ Ly, (8)+1) (- 1))

— (au—ag-+(Ay, (5)~ Ly, ()£ 1)es — (Ay, ()+ Ly, (5)+ 1)e_)

+(va—vgt+Ay, (s)+ Ly, (s)+1)v,

(G.11)

1"We adopt the notation
2isin(zx + y) = 2isin(z + y) 2isin(z — y) .

“8The arm and leg-lengths of a given Young diagram w.r.t. a box s = (4,7) (not necessarily inside the
diagram) are defined as Ay (s) = A\i —j, Ly(s) = A] — i, where \; and A] are the numbers of boxes in
the i-th row and column of Y, respectively. Note that Ay, Ly can be negative if s is outside the diagram.
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which implies that the argument is invariant under the U(1) x-action for a triple (a, 3, s) if

Vo — Vg + Ay, (s) + Ly,(s) + 1 =0. (G.12)
Therefore, using the identification a, = 2ima,, €4 = iwA, and e_ = 0, the function z;;ec

in the U(1)g-invariant case is

2o ] <21 sin {Tr <aa —as+ %(Aya(s) CLy,(s) % 1)>\>]>1 (G.13)

(a,f,8)

where the products are over the triples (o, 3, s), with s € Y, satisfying (G.12).

This reproduces the IOT formula for a vector multiplet.*

Similarly, proceeding as above and defining m = 2imm, contribution of the adjoint
hyper is given as:

i (ags) <21 sin {w (aa _ag+ %(Aya(s) Ly, () m)]) (G.14)

where the products are over the same triples («, 3, s) as given in (G.12).

Contribution of fundamental hypers to the instanton partition function is given by:

2imd T 2sinh (aa —my+ep +elis — 1)+ ea(fs — 1)) , (G.15)

(a,8)

where the product is over the pairs («, s) with s € Y. Under the U(1)g-action (G.6), the
argument of the sinh function transforms as:

(@a —mys+ ey +elis — 1)+ e(js — 1))

, . o (G.16)
— (aoc —my+ e + 61(Zs - 1) + 62(]8 - 1)) + (Va — s +]8)V‘

Invariance under the U(1)x-action requires restricting the product over the pairs («, s)
with s € Y,, such that

Va —is + js = 0. (G.17)

Therefore, proceeding as before and defining m; = 2wimy, the contribution of the
fundamental hyper to Zono is given as

1
ngd(a,mf’)\;B”U) = H 21sin |:’7T <aa—mf+2(is +js_1) A):| (G]'S)

where the product is over the pairs («, s) satisfying (G.17).

49The formula, for 25¢ is identical to equation 5.25 in IOT up to some overall factors of i. These factors

of i are needed to produce the correct overall sign of Zmono, which IOT ignored in their expressions. See

j fund

discussion after equation 6.11 in [16]. The same is true for z;d and 23"
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G.2 One-loop contribution to the ’t Hooft defect vev

For a monopole bubbling sector with effective 't Hooft charge v = diag(0,...,0), we have
Zioop(@,mp, \;v=0) =1.

For a non-zero v, the one-loop contribution to the 't Hooft defect expectation value was
explicitly computed in [16] and can be written as,

Zl-loop(av my, )‘a V) = Zil-lmoop(a> )\7 V)Z{I-Il?)op(av myg, )‘a V) ; (Glg)

where the contribution of the vector multiplet is

a-v|—1 ol -1/2
ZNoop (8, A5 V) = HH H [na+ A ta- a+(|aV2|1—k>)\]
nezZ a k=0
|ov|—1 ‘O{-V‘
—H H Hsm 1/2 |:7T<O['Cl:|:< 5 —l{:))\>], (G.20)
a>0 k=0

and the contribution of the hypermultiplets are
[w-v|-1 "U}V’—l 1/2
Z1 Joop (@M 7, A5 v) H H H H [n€+w-a—mf+ <2—k> /\}
n€Z f=1weR k=0
|w-v|—1 ‘ ’ 1
w-v|—
= H H H sin'/? [ <w-a—mf+<2—k> A)] ,  (G.21)
f=lweR k=0
where w represents a weight of the representation R of the gauge group in which the
hypermultiplet transforms.
The one-loop contribution can also be derived from the one-loop factor of a five-
dimensional supersymmetric index — we refer the reader to [13] for details.

G.3 10T formula: (Lpo) in N = 2*,SU(2) SYM
For N/ = 2* SU(2) SYM, B and v can be parametrized as:

1 1
B = idlag(pa _p)7 V= idiag(vv _U)v (G22)

where p is a positive integer, and v = p,p — 2,p — 4, ..., —p. To illustrate the IOT pre-
scription, let us compute the monopole bubbling contribution to (L2o). In this case,
we have B = %diag(Z, —2), and the possible values of v are %diag(Z, -2), —%diag(2, —2)
and diag(0,0). From (2.23), it is clear that K has no solution (for generic v) for v =
:l:%diag(2, —2) which implies that there are no monopole bubbling contributions in these
cases. For v = diag(0,0), there is a solution for K — a 1 x 1 matrix with entry 0. The
fixed points therefore correspond to doublets of Young diagrams with total number of boxes
equal to one:

1): vi=LJ, va=0,

(G.23)
2): vi=0, Y,=0L1
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In the first case, for the only box s = (1,1) € Y1: Ay,(s) =0, Ly,(s) = 0, Ay,(s) = —1,
Ly,(s) = —1. The triple (1,2, s € Y1) satisfies (G.12) and therefore using (G.13) and (G.14)

; 1
25°(1) = ( — sin7(2a) sin w(2a + )\)) , z;dj(l) = —sinm (Qa + 5)\ + m) . (G.24)

In the second case, for the only box s = (1,1) € Ya: Ay, (s) = —1, Ly, (s) = —1, Ay,(s) =0,
Ly,(s) = 0. The triple (2,1, s € Y3) satisfies (G.12) and therefore using (G.13) and (G.14)

205¢(2) = ( — sin7(2a) sin 7(2a — )\)>_1,

Y
) ) (G.25)
adj oy _ o _ -
Zz (2) = —sinm (2a 2)\j:m> .
Putting together (1) and (2), we have
Zrnono(aa m,A\;p=2v= O)
= 20°(1)259(1) + 257°(2)229(2)

sin7r(2a—|—%)\:|:m) sinw(2a—%)\:|:m)
(sin 7(2a) sin7(2a + )\)) (sin 7(2a) sin7(2a — )\)) .

The configurations v = :I:%diag(?, —2) receive classical and one-loop contributions. Putting
those together with Zpono computed above, we obtain the final answer for (L ).

HSI’SFi sin7(2a + sym + F )
sin7(2a + ) sin7(2a — $) sin 27a

sinw(?a—l—%)\:tm) sinﬂ(2a—%/\im)
<sin m(2a) sin7(2a + )\)) (sin 7(2a) sin7(2a — /\)) '

(Lao) = <e47rib i 6747rib>
(G.27)
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