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1 Introduction

The AdS/CFT correspondence gives us a non-perturbative formulation of quantum grav-

ity for a class of spacetimes with negative curvature and AdS asymptotic. Despite many

evidences for the validity of the correspondence, it would be desirable to improve our un-

derstanding about how the spacetime geometry emerges out of the quantum field theory

degrees of freedom living in the boundary. Quantum information concepts seem somehow

to encode non trivial geometric properties of the gravitational theory in the bulk. For

example, the area of minimal surface in AdS is dual to the entanglement entropy of the

boundary subregion [1–3]. However, the precise mechanism by which the dual bulk space-

time geometry emerges out of the boundary quantum field theory is still not understood.

Entropy is a crucial quantity in order to describe classical and quantum aspects [4, 5]

of Black Holes (BHs). However, it does not seem the right dual quantity in order to

describe the Einstein-Rosen Bridge (ERB) in the interior of a two-sided Kruskal BH. In

the AdS/CFT correspondence, a two sided eternal BH is dual to a thermofield doublet

state, in which the two conformal field theories living on the left and right boundaries are

entangled [6]. Taking the two boundary times going in the same direction, this entangled

state is time-dependent [7], and the geometry of the ERB connecting the two sides grows

linearly with time. The ERB continues to grow for a much longer timescale compared to
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the thermalization time, and so entropy does not provide us with a good dual quantity for

this process.

Motivated by the need to find a boundary dual to such behavior, recently a new

quantum information tool has joined the discussion: computational complexity [8, 9]. For a

quantum-mechanical system, it is defined as the minimal number of basic unitary operation

which are needed in order to prepare a given state starting from a simple reference state.

A proper definition of complexity in quantum field theory has several subtleties, including

the choice of the reference state and of the allowed set of elementary quantum gates and

the allowed amount of tolerance which is introduced in order to specify the accuracy with

which the state should be produced. Recently, concrete calculations have been performed

in the case of free field theories [10–15]. Another interesting approach to complexity [16, 17]

in quantum field theory uses tensor networks [18] in connection with the Liouville action.

Related papers about general aspects of complexity in field theory include [19, 20].

Two different gravity dual of the quantum complexity of a state have been proposed so

far: the complexity=volume (CV) [8, 9, 21] and the complexity=action (CA) [22, 23] con-

jectures. In the CV conjecture, complexity is proportional to the volume V of a maximal

codimension one sub-manifold hanging from the boundary. In the CA conjecture, com-

plexity C is proportional to the action I evaluated in the causal diamond of a boundary

section at constant time, which is called Wheeler-DeWitt (WDW) patch:

C =
I

π~
, (1.1)

In this case the action has several contributions beyond the traditional bulk Einstein-

Hilbert (EH) and boundary Gibbons-Hawking-York (GHY) terms: in particular surface

joint contributions [24, 25] turn out to be important in order to compute the full time

dependence of the WDW action [13, 25–27]. Moreover, ambiguities due to contributions to

the action from null surfaces [28, 29] are also present; these ambiguities do not affect the

late-time limit of complexity, which can be computed just from the EH and GHY terms in

the action [22, 23].

The CA and CV conjectures have been recently investigated in several AdS/CFT

settings: for example for rotating/charged BHs in several dimensions [30], for spacetime

singularities [31, 32], for the soliton [33], in the Vaidya spacetime [34–37] and in theories

with dilatons [38, 39].

Quantum information has been rather extensively studied for asymptotically AdS

spacetimes; the understanding that we have for other spacetimes, such as the asymp-

totically flat or the de Sitter, is much more limited, because we have so far very little clues

about the dual field theory, if it exists. An interesting ultraviolet deformation of AdS/CFT

where we have a good amount of information about the structure of the field theory dual is

the Warped AdS3/CFT2 correspondence [40–43]. This is a duality between gravitational

theories in 2 + 1 dimensions in a space with Warped AdS3 asymptotic and a conjectured

class of non-relativistic theories in 1 + 1 dimensions, called Warped Conformal Field The-

ories (WCFTs), whose symmetry content includes a copy of the Virasoro and of the U(1)

Kac-Moody current algebras. The conjectured duality is still far from being understood,
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in particular the field theory side is still in its infancy: it is then important to pursue the

study of the subject in order to gain valuable insights when the duality involves non-AdS

asymptotic. Recently, several progresses have been made in order to put this duality on

firmer grounds; for example, an analog of Cardy formula was derived in [41]. The issue

of entanglement entropy was studied by several authors, e.g. [44–48]. The CV conjecture

was recently studied in [49]; in this paper we will instead address the CA conjecture. In

particular, we focus on a Warped AdS3 background in Einstein gravity, which should give

the simplest realization of the Warped AdS3/CFT2 correspondence. Unfortunately, all the

known matter contents that support BHs with Warped AdS3 asymptotic in Einstein grav-

ity have some kind of pathology. Here, for concreteness, we choose to work with a model

(first studied in [50]) which has ghost instabilities in the region without closed timelike

curves. We will see that the CA conjecture seems to be robust enough to work also in this

apparently unphysical situation.

The paper is organized as follows: in section 2 we review general properties of BHs

in WAdS space, realized as a solution of Einstein gravity plus matter, and we discuss

the null coordinates needed to define the WDW patch. In section 3 we consider the

various contributions to the action, following the approach of [25]. In section 4 we compute

the action for both the non-rotating and rotating case. In section 5 we conclude and

we discuss our results. Technical details about the matching with the metric of [50] are

discussed in appendix A. An alternative calculation using the approach of [23] is presented

in appendix B: this is valid just in the late-time limit and agrees with the more general

calculation presented in section 4.

2 Warped Black Holes in Einstein gravity

We consider the following class of BHs with Warped AdS3 asymptotic [40, 51, 52]:

ds2

l2
= dt2 +

dr2

(ν2 + 3)(r − r+)(r − r−)
+
(

2νr −
√
r+r−(ν2 + 3)

)
dtdθ +

r

4
Ψdθ2 , (2.1)

Ψ(r) = 3(ν2 − 1)r + (ν2 + 3)(r+ + r−)− 4ν
√
r+r−(ν2 + 3) . (2.2)

We introduce r̃0 as

r̃0 = max(0, ρ0) , ρ0 =
4ν
√
r+r−(ν2 + 3)− (ν2 + 3)(r+ + r−)

3(ν2 − 1)
, (2.3)

where Ψ(ρ0) = 0 and we take the range of variables as follows: r̃0 ≤ r <∞, −∞ < t <∞,

θ ∼ θ+ 2π and the horizons are located at r = r+, r− with r+ ≥ r−. These metrics can be

obtained by discrete quotients of WAdS3 [40]; we take ν ≥ 1 in order to avoid closed time-

like curves. For ν = 1 the metric (2.1) reduces to the Banados-Teitelboim-Zanelli (BTZ)

black hole [53, 54]. The warping parameter ν is related in the holographic dictionary to the

left and right central charges of the boundary WCFT, which for Einstein gravity are [55]:

cL = cR =
12lν2

G(ν2 + 3)3/2
. (2.4)
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Temperature and angular velocity of horizon are [40]:

T =
ν2 + 3

4πl

r+ − r−
2νr+ −

√
(ν2 + 3)r+r−

, Ω =
2

(2νr+ −
√

(ν2 + 3)r+r−)l
. (2.5)

The metric (2.1) can be obtained as a vacuum solution of Topologically Massive Gravity

(TMG) [51, 52], New Massive Gravity (NMG) [56], general linear combinations of the two

mass terms [57] and also in string theory constructions [58–60]. We will be interested to

WAdS3 BHs realized as solution of Einstein gravity with matter. Unfortunately, all the

known realizations of WAdS3 BHs in Einstein gravity have some pathology in the matter

content: for example, they can be realized as solutions with perfect fluid stress tensor with

spacelike quadrivelocity [61].

We will use for concreteness the model studied in [50, 62], which is Chern-Simons-

Maxwell electrodynamics coupled to Einstein gravity. In order to have solutions without

closed time-like curves, a wrong sign for the kinetic Maxwell term is needed. Solutions with

positive Maxwell kinetic energy have ν2 < 1 and correspond to Gödel spacetimes. We will

see that the CA conjecture is so solid that can survive to unphysical action with ghosts.

In the Einstein gravity case the entropy is given by the area of the horizon:

S =
lπ

4G
(2νr+ −

√
r+r−(ν2 + 3)) . (2.6)

and the conserved charges (mass and angular momentum) are [49, 50, 62]:

M =
1

16G
(ν2 + 3)

(
(r− + r+)−

√
r+r−(ν2 + 3)

ν

)
, (2.7)

J =
l

32G
(ν2 + 3)

(
r−r+(3 + 5ν2)

2ν
− (r+ + r−)

√
(3 + ν2)r+r−

)
. (2.8)

2.1 Null coordinates

The expression of the metric (2.1) in Arnowitt-Deser-Misner (ADM) form is:

ds2 = −N2dt2 +
l4dr2

4R2N2
+ l2R2(dθ +N θdt)2 , (2.9)

where

R2 =
r

4
Ψ , N2 =

l2(ν2 + 3)(r − r+)(r − r−)

4R2
, N θ =

2νr −
√
r+r−(ν2 + 3)

2R2
.

(2.10)

It is useful to use a set of null coordinates which delimit the WDW patch. These coordinates

were introduced in [63]. We consider a set of null geodesics which satisfy (dθ+N θdt) = 0;

then a positive-definite term in the metric (2.9) saturates to zero, and the null geodesics

are given by the constant u and v trajectories:

du = dt− l2

2RN2
dr , dv = dt+

l2

2RN2
dr . (2.11)
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The normal one-forms to the WDW null surfaces are given by du and dv; we introduce two

vectors vα, uα such that

dv = vαdx
α , du = uαdx

α , (2.12)

which are normal and tangent to the null surfaces which delimit the WDW patch. The

corresponding Eddington-Finkelstein coordinates then are:

u = t− r∗(r) , v = t+ r∗(r) , (2.13)

where
dr∗

dr
=

l2

2RN2
=

√
rΨ(r)

(ν2 + 3)(r − r−)(r − r+)
. (2.14)

The non-rotating case is defined by the condition J = 0, and corresponds to the following

values:

r− = 0 ,
r+

r−
=

4ν2

ν2 + 3
. (2.15)

In this case the Penrose diagram is the same as the one for the Schwarzschild BH in four

dimension [63]. In the rotating case, for generic (r+, r−), the Penrose diagram is the same

as the one of the Reissner-Nordström BH.

2.2 An explicit model

In this section we consider an explicit Einstein gravity model which admits the metric

eq. (2.1) as a solution [50]. The matter content is a gauge field with Chern-Simons and

Maxwell terms, and the bulk part of the action is:

IV =
1

16πG

∫
d3x

{
√
g

[(
R+

2

L2

)
− κ

4
FµνFµν

]
− α

2
εµνρAµFνρ

}
=

∫
d3x
√
gS , (2.16)

where εµνρ is the Levi-Civita tensorial density. Here we put a coefficient κ = ±1 in front

of the Maxwell kinetic term.

The equations of motion for the gauge field are

DµF
αµ = −α

κ

εανρ
√
g
Fνρ , (2.17)

while the Einstein equations are

Gµν −
1

L2
gµν =

κ

2
Tµν , Tµν = FµαF

α
ν −

1

4
gµνF

αβFαβ . (2.18)

We consider the set of coordinates (r, t, θ) where the metric assumes the form (2.1), and

we choose a gauge motivated by the ansatz from [50]:

A = adt+ (b+ cr)dθ , F = c dr ∧ dθ , (2.19)

where {a, b, c} is a set of constants. Thus, the Maxwell equations give:

α = κ
ν

l
. (2.20)
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From the Einstein equations, we get, independently from (r+, r−):

L = l

√
2

3− ν2
, c = ±l

√
3

2

1− ν2

κ
. (2.21)

There is conflict between absence of closed time-like curves and presence of ghosts (κ = −1).

Note that the parameters a, b are not constrained by the equations of motion; the

action itself does not depend on the parameter b, but it depends explicitly on the gauge

parameter a through the Chern-Simons term. This parameter is important in order to

properly define the conserved charge which gives the mass M [62]. Only for a particular

value of a the mass is indeed associated to the Killing vector ∂/∂t and is independent

from the U(1) gauge transformations. This corresponds to the ζ = 0 gauge in [50]; in our

notation it corresponds to:

At = a =
l

ν

√
3

2

√
ν2 − 1 . (2.22)

The comparison with the solution of [50] is discussed in appendix A.

3 Evaluating the action

The action in the WDW patch has several contributions:

I = IV + IB + IJ , (3.1)

where IV is the bulk contribution (see eq. (2.16)), IB the boundary term and IJ the joint

term studied in detail in [25].

The bulk action integrand
√
gS in eq. (2.16) evaluated on the background (2.1)

and (2.19) is constant and independent from the parameters (r+, r−):

IV =

∫
drdtdθ

I
16πG

, I = − l
2

(ν2 + 3) +
κc2

l
− αac . (3.2)

The boundary terms can be written as:

IB = IGHY + IN , (3.3)

where IGHY is the contribution for spacelike and timelike boundaries (Gibbons-Hawking-

York (GHY) term) and IN is the contribution for null boundaries. The GHY term is:

IGHY =
ε

8πG

∫
B
d2x

√
|h|K , (3.4)

where B is the appropriate boundary, h the induced metric, K the extrinsic curvature and

ε is equal to +1 if the boundary is timelike and −1 if it is spacelike. For null surface

boundaries the contribution to the action is [25, 28, 29]

IN =
1

8πG

∫
B
κ̃dλdS , (3.5)
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where λ parameterizes the null direction of the surface, dS is the area element of the

spatial cross-section orthogonal to the null direction and κ̃ measures the failure of λ to be

an affine parameter: if we denote by kα the null generator, κ̃ is defined by the relation:

kµDµk
α = κ̃kα. It turns out that the contribution to the action IN is not parameterization-

invariant [25, 29] and it can be set to zero using an affine parameterization for the null

direction of the boundary [25].

In the case of joints between spacelike and timelike surfaces, this contribution was

studied in [24]. The analysis for joints between null and timelike, spacelike or another null

surface were recently studied in [25]. In the CA calculations done in the next sections, we

will use these null joints contributions several times:

IJ =
1

8πG

∫
Σ
dθ
√
σ a , (3.6)

where σab is the induced metric over the joint (in this case, it is 1-dimensional) and a

depends on the kind of joint. Let us denote kα the future directed null normal to a null

surface (which is also tangent to the surface), nα the normal to a spacelike surface and sα
the normal to a timelike surface, both directed outwards the volume of interest. In the

case of intersection of two null surfaces with normals kα1 and kα2 :

a = η log

∣∣∣∣k1 · k2

2

∣∣∣∣ , (3.7)

while in the case of intersection of a null surface with normal kα and a spacelike surface

with normal nα (or a timelike surface with normal sα):

a = η log |k · n| , a = η log |k · s| . (3.8)

In eqs. (3.7)–(3.8) we should set η = +1 if the joint lies in past of the spacetime volume

of interest, and η = −1 if the joint lies in the future of the relevant region. Note that

eqs. (3.7) and (3.8) are slightly ambiguous because the normalization of a null normal kα

is ambiguous. This ambiguity is related to the one due to the null surfaces and does not

affect the late-time limit of the complexity, but just the finite-time behavior.1 As discussed

in [27], we will partially fix this ambiguity by requiring that the null vector kµ has constant

scalar product with the boundary time killing vector ∂/∂t.

4 Complexity=Action

The Penrose diagram for the non-rotating case is shown in figure 1, with some lines at

constant r and t. Both in the rotating and non-rotating cases, for r →∞, the asymptotic

behavior of r∗(r) is

r∗(r) ≈ 3
√
ν2 − 1

ν2 + 3
log r ≡ C log r . (4.1)

1These ambiguities could be related to various ambiguities of the dual circuit complexity of the quantum

state, such as the choice of the reference state, the specific set of elementary gates and the amount of

tolerance that one introduces to describe the accuracy with which the final state should be constructed.

– 7 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
3

Figure 1. Constant r lines (solid) and constant t lines (dashed) of the Penrose diagram in the

non-rotating case.

So we should first fix a cutoff surface at r = Λ to make our calculations finite. The WDW

surface is bounded by lines with constant values of v and u, which in the Penrose diagram

correspond to 45 degrees lines.

On the left and right boundaries, the time coordinate t diverges to ±∞ in the upper

and lower sides, respectively. From eqs. (2.13), a change of cutoff from Λ1 to Λ2, implies a

constant shift in the time coordinate by C log Λ2
Λ1

. For ν = 1 we recover the AdS asymptotic,

r∗(∞) is finite and no shift is needed; the Penrose diagram in this case is different and is

the standard one of the BTZ black hole.

The BH has a left and a right boundary, where two identical copies of a dual entangled

WCFT live. To avoid divergences, the times at the left and right boundaries are evaluated

at the cutoff surface r = Λ, and are respectively denoted by tL and tR. If we take the two

times going in opposite directions:

tL → tL + ∆t , tR → tR −∆t , (4.2)

the entangled thermofield doublet is time-independent, because this time shift corresponds

to the time Killing vector of the BH solution. If instead we take the two boundary times

going in the same direction, i.e.

tL → tL + ∆t , tR → tR + ∆t , (4.3)

the BH solution is dual to a time-dependent thermofield doublet [7]:

|ΨTFD〉 ∝
∑
n

e−Enβ/2−iEn(tL+tR)|En〉R|En〉L . (4.4)

where |En〉L,R denotes the energy eigenstates of left and right boundary theories and β is

the inverse temperature. Without loss of generality, we can choose

tL = tR =
tb
2
. (4.5)

– 8 –
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Figure 2. Penrose diagram for the non-rotating BH, with the WDW patch for tb < tC .

4.1 Non-rotating case

The non-rotating case corresponds to the values in eq. (2.15); for simplicity we focus just

on r− = 0 and we set r+ = r0. The analysis for the other value of r+/r− in eq. (2.15) is

analogous: it can be shown that it can be mapped to r− = 0 by a change of variables [63].

The Penrose diagrams for the non-rotating case are shown in figures 2 and 3.

The structure of the WDW patch in the non-rotating case changes with time; at early

times it looks like in figure 2, while at late times like in figure 3. In particular, there exists

a critical time tC such that the bottom vertex of the patch touches the past singularity.

The critical time is given by

tC = 2(r∗Λ − r∗(0)) , (4.6)

where r∗Λ = r∗(Λ). We will separate the calculation of the action in two cases. At the end

we will express the results in terms of

τ = l(tb − tC) , (4.7)

where τ is the boundary time rescaled with curvature l for dimensional purposes and with

the origin translated at the critical time tC .

4.1.1 Initial times tb < tC

Bulk contributions: we decompose the WDW patch into three regions and we use the

symmetry of the configuration to write the bulk action as

IV = 2
(
I1
V + I2

V + I3
V
)
, (4.8)

where

I1
V =

I
16πG

∫ 2π

0
dθ

∫ r0

ε0

dr

∫ v−r∗(r)

0
dt =

I
8G

∫ r0

ε0

dr

(
tb
2

+ r∗Λ − r∗(r)
)
,

I2
V =

I
16πG

∫ 2π

0
dθ

∫ Λ

r0

dr

∫ v−r∗(r)

u+r∗(r)
dt =

I
4G

∫ Λ

r0

dr (r∗Λ − r∗(r)) ,

I3
V =

I
16πG

∫ 2π

0
dθ

∫ r0

ε0

dr

∫ 0

u+r∗(r)
dt =

I
8G

∫ r0

ε0

dr

(
− tb

2
+ r∗Λ − r∗(r)

)
. (4.9)
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Summing all the contributions, we get the result

IV =
I

2G

∫ Λ

ε0

dr (r∗Λ − r∗(r)) ≡ I0
V . (4.10)

This contribution is time-independent.

GHY surface contributions: the constant r surface, inside the horizon, is a spacelike

surface whose induced metric in the xi = (t, θ) coordinates reads:

hij = l2

(
1 νr

νr r
4Ψ(r)

)
,

√
h =

l2

2

√
(ν2 + 3)r(r0 − r) . (4.11)

The normal vector to these slices is

nµ =

(
0 ,−1

l

√
(ν2 + 3)r(r0 − r) , 0

)
, nαnα = −1 , (4.12)

and the extrinsic curvature is

K =
1

2l

√
ν2 + 3

2r − r0√
r(r0 − r)

. (4.13)

In the GHY we should then use ε = −1 because the surface is spacelike. We are now able

to compute the two contributions to the GHY term coming from the regions near the past

and future singularities:

I1
GHY = − (ν2 + 3)l

16G

[
(2r − r0)

(
tb
2

+ r∗Λ − r∗(r)
)]

r=ε0

, (4.14)

I2
GHY = − (ν2 + 3)l

16G

[
(2r − r0)

(
− tb

2
+ r∗Λ − r∗(r)

)]
r=ε0

. (4.15)

The total GHY contribution then is:

IGHY = 2
(
I1

GHY + I2
GHY

)
= −(ν2 + 3)l

4G
[(2r − r0) (r∗Λ − r∗(r))]r=ε0 ≡ I

0
GHY , (4.16)

which is time-independent.

Joint contributions: there are four joints between null and spacelike surfaces at r = ε0

(nearby the future and past singularities) and two joints at r = Λ. The normal to the

constant r spacelike surfaces is nα given by eq. (4.12), while the normal to the lightlike

surfaces are uα, vα from eq. (2.12). From eq. (3.8), the four joint contributions nearby

the singularities vanish, while the two joint contributions nearby the UV cutoff are time-

independent (see eq. (3.7)).

Total: summing all the terms coming from the bulk, the boundary and the joint contri-

butions, we find that the action of the WDW patch is time-independent.

– 10 –
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Figure 3. Penrose diagram for the non-rotating BH, with the WDW patch for tb > tC .

4.1.2 Later times tb > tC

After the critical time tC , the WDW patch moves and the lower vertex of the diagram does

not reach the past singularity (see figure 3). This vertex is defined via the relation

tb
2
− r∗Λ + r∗(rm) = 0 . (4.17)

The evaluation of the null joint contributions will require the computation of the time

derivative of the tortoise coordinate, which is done by differentiating eq. (4.17):

drm
dtb

= −1

2

(
dr∗(rm)

drm

)−1

. (4.18)

Bulk contributions: the bulk action is the same of the case tb < tC , apart from the last

contribution which becomes

I3
V(tb > tC) =

I
16πG

∫ 2π

0
dθ

∫ r0

rm

dr

∫ 0

u+r∗(r)
dt =

I
8G

∫ r0

rm

dr

(
− tb

2
+ r∗Λ − r∗(r)

)
. (4.19)

We can re-write this contribution in the following way:

I3
V(tb > tC) = I3

V(tb < tC) +
I

8G

∫ rm

ε0

dr

(
tb
2
− r∗Λ + r∗(r)

)
. (4.20)

Since the other contributions to the bulk action are unchanged, the total result is

IV(tb > tC) = I0
V +

I
4G

∫ rm

ε0

dr

(
tb
2
− r∗Λ + r∗(r)

)
, (4.21)

the first term being time-independent. The time derivative of the bulk action then is:

dIV
dtb

(tb > tC) =
I

8G
rm =

1

8G

[
− l

2
(ν2 + 3) +

κc2

l
− αac

]
rm , (4.22)

where the defining relation (4.17) is used in order to obtain a vanishing contribution from

the upper integration extreme.
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GHY surface contributions: after the critical time tC we only have a contribution

from the future singularity, because the lower part of the WDW patch does not reach the

past singularity. We are only left with

IGHY = 2I1
GHY = −(ν2 + 3)l

8G

[
(2r − r0)

(
tb
2

+ r∗Λ − r∗(r)
)]

r=ε0

, (4.23)

which is time-dependent. The time derivative of this term gives:

lim
ε0→0

dIGHY

dtb
(tb > tC) =

(ν2 + 3)l

16G
r0 . (4.24)

Joint contributions: following the same procedure of the case tb < tC , we find that

the null joints at the UV cutoff give time-independent contributions, while the joint at the

future singularity gives a vanishing result. The contribution from the remaining null-null

joint between uα and vα at r = rm is instead time-dependent, because rm is function of

time (see eq. (4.18)). We find that this contribution to the action is given by eq. (3.6),

with a given by eq. (3.7):

a = log

∣∣∣∣A2u
αvα
2

∣∣∣∣ = log

∣∣∣∣A2 1

l2
Ψ(r)

(ν2 + 3)(r − r0)

∣∣∣∣ . (4.25)

The normalization factor A2 corresponds to an ambiguity in the contribution to the action

due to the null joint [25], because the normalization of the two null normals uα and vα which

delimitate the WDW patch is in principle not fixed by the metric (see the discussion at

the end of section 3). The action contribution from eq. (4.25), evaluated for r = rm, gives:

IJ = − l

4G

√
rm
4

Ψ(rm) log

∣∣∣∣ l2A2

(ν2 + 3)(rm − r0)

Ψ(rm)

∣∣∣∣ , (4.26)

whose time derivatives is:

dIJ
dtb

=− l

16G

drm
dtb

6(ν2 − 1)rm + (ν2 + 3)r0√
rm [3(ν2 − 1)rm + (ν2 + 3)r0]

log

∣∣∣∣ l2A2

(ν2 + 3)(rm − r0)

Ψ(rm)

∣∣∣∣
− l

8G

drm
dtb

4ν2r0

√
rm [3(ν2 − 1)rm + (ν2 + 3)r0]

(rm − r0) (3rm(ν2 − 1) + (ν2 + 3)r0)
.

(4.27)

Inserting eq. (4.18) we obtain:

dIJ
dtb

=
l

32G

(ν2 + 3)(rm − r0)
(
6(ν2 − 1)rm + (ν2 + 3)r0

)
3(ν2 − 1)rm + (ν2 + 3)r0

log

∣∣∣∣ l2A2

(ν2 + 3)(rm − r0)

Ψ(rm)

∣∣∣∣
+

l

16G

4ν2(ν2 + 3)rmr0

3rm(ν2 − 1) + (ν2 + 3)r0
. (4.28)

Total: the total time derivative of the action is finally given by

dI

dtb
=

1

8G

[
− l

2
(ν2 + 3) +

κc2

l
− αac

]
rm +

(ν2 + 3)l

16G
r0 +

l

16G

4ν2(ν2 + 3)rmr0

3rm(ν2 − 1) + (ν2 + 3)r0

+
l

32G

(ν2 + 3)(rm − r0)
(
6(ν2 − 1)rm + (ν2 + 3)r0

)
3(ν2 − 1)rm + (ν2 + 3)r0

log

∣∣∣∣ l2A2

(ν2 + 3)(rm − r0)

Ψ(rm)

∣∣∣∣ .
(4.29)
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Figure 4. Time dependence of the WDW action in the non-rotating case for different values of ν.

We set G = 1, l = 1, r0 = 1 and A = 2. The critical time tC corresponds to τ = 0.

We can now perform the late time limit of the previous rate. In this limit rm → r0,

which implies that the term in the second line vanishes and we find:

lim
tb→∞

dI

dtb
=

(ν2 + 3)l

16G
r0 +

1

8G

(κ
l
c2 − αac

)
r0 . (4.30)

Note that the general result (4.29) depends on A2, while its late time limit does not. Using

the value of a given in eq. (2.22), we can now evaluate the combination appearing in the

rate of the action
κ

l
c2 − αac = 0 . (4.31)

We finally obtain:

lim
tb→∞

1

l

dI

dtb
= lim

τ→∞

dI

dτ
=
ν2 + 3

16G
r0 = M = TS . (4.32)

This late-time results can also be recovered using the approach by [23] (see appendix B for

details).

Numerical plots of the time dependence of the action rate (4.29) for different values of

ν are shown in figure 4. The same qualitative structure as for the AdS case [27] is found;

in particular the growth rate of the action is a decreasing function at late times. As in [27],

the late-time limit then overshoots the asymptotic rate, which was previously believed [23]

to be associated to an universal upper bound, conjectured by Lloyd [64]. There is some

dependence at finite time on the parameter A, see figure 5; this is a feature also of the AdS

case [25–27]. The late-time limit is instead independent from A.

4.2 Rotating case

In the rotating case (see figure 6) we do not need to distinguish between initial and later

times, because in this case the form of the WDW patch is the same at any time and the

complexity is already non-vanishing at initial times. We define τ = l tb. We call rm1, rm2

the null joints referring respectively to the top and bottom vertices of the spacetime region

– 13 –
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Figure 5. Time dependence of the WDW action in the non-rotating case for different values of the

parameter A. We set G = 1, l = 1, r0 = 1 and ν = 2.

Figure 6. Penrose diagram for the WDW patch in the rotating case.

of interest. Due to the structure of the Penrose diagram in the rotating case (similar to the

3+1 dimensional diagram for a Reissner-Nordstrom black hole), we do not have boundaries

contributing to the GHY term.

The definition of the null joints in terms of the tortoise coordinates are:

tb
2

+ r∗Λ − r∗(rm1) = 0 ,
tb
2
− r∗Λ + r∗(rm2) = 0 . (4.33)

It will be useful to differentiate with respect to time these expressions to find

drm1

dtb
=

1

2

(
dr∗

drm1

)−1

,
drm2

dtb
= −1

2

(
dr∗

drm2

)−1

. (4.34)
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Bulk contributions: we can still split the WDW patch into three regions covering only

the right half of the diagram, which contribute as

I1
V =

I
8G

∫ r+

rm1

dr

(
tb
2

+ r∗Λ − r∗(r)
)
, I2

V =
I

4G

∫ Λ

r+

dr (r∗Λ − r∗(r)) ,

I3
V =

I
8G

∫ r+

rm2

dr

(
− tb

2
+ r∗Λ − r∗(r)

)
. (4.35)

The whole bulk contribution then amounts to

IV =
I

2G

∫ Λ

r+

dr (r∗Λ − r∗(r))

+
I

4G

[∫ r+

rm1

dr

(
tb
2

+ r∗Λ − r∗(r)
)

+

∫ rm2

r+

dr

(
tb
2
− r∗Λ + r∗(r)

)]
. (4.36)

The rate of the bulk action is

dIV
dtb

=
I

8G
(rm2 − rm1) , (4.37)

where the relations (4.33) are used to obtain a vanishing result when differentiating the ends

of integration. The result simplifies when performing the late time limit, when rm1 → r−
and rm2 → r+, and the bulk action time-derivative becomes

lim
tb→∞

dIV
dtb

= −(ν2 + 3)l

16G
(r+ − r−) +

1

8G

(
κ

l
c2 − αac

)
(r+ − r−) . (4.38)

Null joint contributions: as in the non-rotating case, the joints at r = Λ give a time-

independent contribution, and then they are not of interest to find the rate of complexity.

We have two time-dependent contributions coming from the top and bottom joints.

As a function of r, these contributions are proportional to:

a = η log

∣∣∣∣A2 1

2
uαvα

∣∣∣∣ = η log

∣∣∣∣A2

l2
rΨ(r)

(ν2 + 3)(r − r−)(r − r+)

∣∣∣∣ . (4.39)

For r = rm1 and r = rm2 we have to insert respectively η1 = −1 and η2 = 1.

The action of each joint then is:

IkJ = ± l

4G

√
rk
4

Ψ(rk) log

∣∣∣∣ l2A2
F (rk)

∣∣∣∣ , F (rk) ≡
(ν2 + 3)(rk − r−)(rk − r+)

rkΨ(rk)
, (4.40)

where the + sign is for the joint 1 and the − for the joint 2 and r1 = rm1, r2 = rm2. We

differentiate with respect to time the null joint contributions:

dIkJ
dtb

= ± l

8G

drk
dtb

{√
rkΨ(rk)

d

drk

(
log

∣∣∣∣ l2A2
F (rk)

∣∣∣∣)
+

1

2

6(ν2 − 1)rk + (ν2 + 3)(r+ + r−)− 4ν
√

(ν2 + 3)r+r−√
rkΨ(rk)

log

∣∣∣∣ l2A2
F (rk)

∣∣∣∣
}
, (4.41)

where again the + sign is for the joint 1 and the − for the joint 2. Using eqs. (4.34) in

the previous expression, it is possible to find the complete time dependence of the null

contributions. In the late-time limit, we find:

lim
tb→∞

dIkJ
dtb

=
(ν2 + 3)l

16G
(r+ − r−) , k = 1, 2 . (4.42)
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Total: summing all the previous asymptotic expressions, the late-time limit of the action

growth is:

lim
tb→∞

dI

dtb
=

(ν2 + 3)l

16G
(r+ − r−)− 1

8G

(κ
l
c2 − αac

)
(r+ − r−) . (4.43)

Taking into account eq. (2.22) we finally find:

lim
tb→∞

1

l

dI

dtb
= lim

τ→∞

dI

dτ
=

(ν2 + 3)

16G
(r+ − r−) = TS . (4.44)

The late-time limit can be recovered also with the methods introduced in [23] and the

results agree; details of the explicit calculation can be found in appendix B.

5 Conclusions

In this paper we investigated the CA conjecture for WAdS BHs realized as solutions of

Einstein gravity plus matter. We have found that, both in the rotating and in the non-

rotating cases, the asymptotic limit of the action in the WDW patch is:

lim
τ→∞

dI

dτ
= TS , TS =

(r+ − r−)(3 + ν2)

16G
. (5.1)

In the rotating case, the only terms which contribute are the bulk and the joints term,

while in the non-rotating case there is also a surface GHY contribution. Although the

details of the calculation are quite different, the final result is a continuous function of the

parameters of the solution (r+, r−). A curious feature of the non-rotating case is that there

exists an initial time period (t < tc) in which complexity is constant; this is the same as in

the AdS case [27].

The results can be compared to the ones from the CV conjecture, studied in [49]:

lim
τ→∞

dV

dτ
=
πl

2
(r+ − r−)

√
3 + ν2 = TS

8πGl√
3 + ν2

. (5.2)

Already in the AdS case the CA conjecture is known to be more universal, because no

explicit factor of the curvature l related to the asymptotic of the spacetime is needed. In

the case of WAdS, this behavior is confirmed: the CA gives as a result TS, independently

from the two parameters (l, ν) which determine the space-time asymptotic, while in the CV

a factor
√

3+ν2

8πGl should be inserted in front of the volume in order to match with the CA.

An important remark concerning the physical relevance of WAdS BH solutions dis-

cussed in the paper should be pointed out. The warping parameter ν produces a deforma-

tion of the BTZ BH spacetime, which is attained for ν = 1. However, as we anticipated in

section 2, all the deformations have some pathological behavior: if ν < 1, the spacetime

admits closed timelike curves (like Gödel universe), whereas if ν > 1 the action that we con-

sidered has ghost instabilities, because the Maxwell term in the action has the wrong sign.

These instabilities in the solution may be a symptom that we are studying the theory in a

wrong vacuum. Some kind of pathology in the matter content seems a generic feature of all
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the known realizations of WAdS3 BHs in Einstein gravity: for example, the solution can be

supported by a perfect fluid stress tensor, but it needs to have spacelike quadrivelocity [61],

and this is not consistent with causality. So, strictly speaking, only the ν = 1 result has a

neat physical picture. In spite of this fact, it is very important to study the conjecture for

ν 6= 1, even though it corresponds to unphysical scenarios, as this provides the simplest

case to check the conjecture in a case with non-AdS asymptotic. To this regard, it is quite

impressive that the late time derivative of the complexity still reproduces the universal TS

result. A possible conjecture is that some unknown consistent action supporting WAdS3

BHs in Einstein gravity might exists, and that it coincides on shell with the unstable action

that we study in the present paper. An alternative possibility is that the CA conjecture

may survive also in unstable situations, such as the one studied in the paper. Indeed, in

semiclassical holography we always address the large N limit in the dual boundary theory,

and in this kind of limit quantum fluctuations are suppressed, and so holography, including

the CA conjecture, might be robust enough in order to work also in apparently unphysical

situations. We leave these issues as topics for further investigation.

WAdS BHs can be realized also as solutions of TMG (Topological Massive Gravity)

and NMG (New Massive Gravity). It would be interesting to study both CA and CV

in these examples, in order to get control on both the conjectures in the case of higher

derivatives terms in the gravity action. The CA conjecture for higher derivatives gravity

was already studied by several authors in [65–68], but always in the late-time limit. In

particular, ref. [67] studied the late-time limit of CA conjecture for WAdS BHs in TMG;

the asymptotic growth of the action is not proportional to TS.

Another important open problem is to study complexity from the field theory dual.

In particular, it would be interesting to generalize the Liouville action [16, 17] approach

to WAdS.

A Comparison with ref. [50]

Let us fix the couplings (κ, L, α) in the action (2.16); the field equation determine the

solution parameters (ν, l) as follows:

ν2 +
2κ

αL2
ν − 3 = 0 , ν = − κ

αL2
±
√

κ2

α2L4
+ 3 , l =

κν

α
. (A.1)

Note that the following transformation on the couplings and fields gives an invariance of

the action (2.16):

κ→ −κ , α→ −α , Aµ → iAµ . (A.2)

This is just a formal trick, because the gauge field becomes imaginary. This is useful in

order to match with the results of [50], because they consider just the κ = 1 case.

The metric used in [50] reads:

ds2 = pdt̃2 +
dr̃2

h2 − pq
+ 2hdt̃dθ̃ + qdθ̃2 , (A.3)
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We can put the metric (2.1) in the form (A.3) by means of the coordinate transformations:

t̃ =

√
l3

ω
t , r̃ = r −

√
r+r−(ν2 + 3)

2ν
, θ̃ = −

√
ωl3

2
θ , (A.4)

where

ω =
ν2 + 3

2l

(
(r+ + r−)−

√
r+r−(ν2 + 3)

ν

)
. (A.5)

Let us introduce

γ2 =
l

ω

3(1− ν2)

3− ν2
, µ =

ω

8Gl
,

4GJ = (−κ)
2ν(r+ + r−)

√
r+r−(ν2 + 3)− (5ν2 + 3)r+r−

2l
(
ν(r+ + r−)−

√
r+r−(ν2 + 3)

) . (A.6)

The quantity γ2 is negative for ν > 1. The functions appearing in the metric (A.3) then are:

p(r̃) = 8Gµ , h(r̃) = −2
ν

l
r̃ , q(r̃) = −2

γ2

L2
r̃2 + 2r̃ − 4GJ

α
. (A.7)

Only the linear part in r̃ of the U(1) gauge field Aθ̃ is determined by the equations of

motion:

Aθ̃(r̃) = E ∓ 2γ

L
√
κ
r̃ , (A.8)

The constant part, denoted by E, does not enter both the equations of motion and the

calculation of the action, so we ignore it. Moreover, the ∓ sign in eq. (A.8) should be taken

in correspondence of the ± sign of the second equation in (2.21).

The constant value of At̃ is not determined by the equations of motion, but affects the

value of the bulk part of the action. In the κ = 1 case, it can be extracted from [50]:

At̃(r̃) =
α2L2 − 1

γαL
+ ζ , At =

dt̃

dt
At̃ = − l

ν

√
3

2

√
1− ν2 + ζ

√
l3

ω
. (A.9)

The value of ζ affects the way in which the physical mass is associated to the Killing vector

∂/∂t; gauge invariance of the result is recovered by ζ = 0. For κ = −1, we can use the

symmetry (A.2) to match with [50]. This gives the gauge field At:

At = a =
l

ν

√
3

2

√
ν2 − 1 + ζ

√
l3

ω
, (A.10)

which reduces to eq. (2.22) for ζ = 0.

B Another way to compute the asymptotic growth of action

The asymptotic growth of the action of the WDW patch can be computed also in the way

introduced in [23]. This is a cross-check of our calculation.
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Figure 7. Asymptotic contributions for the non-rotating case.

Figure 8. Asymptotic contributions for the rotating case.

Non-rotating case: the relevant region in the WDW patch is shown in figure 7. The

time derivative of the bulk contribution is given by (4.22). The time derivative of the

GHY term nearby the singularity is given by eq. (4.24). The contribution from the joint

at r = rm is replaced by the GHY term nearby the horizon:

∆Ir0GHY =
(ν2 + 3)l

16G
∆tb [2r − r0]r=r0 , (B.1)

which in the asymptotic limit gives the same contribution as the null joint.

Rotating case: the region is depicted in figure 8. The bulk contribution is still given by

eq. (4.38). The two null joints contributions are replaced by the GHY term evaluated on

two constant-r surfaces, one at r ≈ r− and one at r ≈ r+. The induced metric on these

constant-r surfaces is:

hij = l2

(
1 νr − 1

2

√
(3 + ν2)r+r−

νr − 1
2

√
(3 + ν2)r+r−

r
4Ψ(r)

)
, (B.2)

√
h =

l2

2

√
(ν2 + 3)(r+ − r)(r − r−) . (B.3)

The normal vector to these slices is

nµ =

(
0 ,−1

l

√
(ν2 + 3)(r+ − r)(r − r−) , 0

)
, nαnα = −1 , (B.4)
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and the extrinsic curvature is

K =

√
ν2 + 3

2l

2r − r+ − r−√
(r+ − r)(r − r−)

. (B.5)

The GHY term nearby the inner horizon gives:

dI
r−
GHY

dtb
= − l

4

√
ν2 + 3 [2r − r+ − r−]r=r− , (B.6)

while the term from the outer horizon

dI
r+
GHY

dtb
=
l

4

√
ν2 + 3 [2r − r+ − r−]r=r+ . (B.7)

These two contributions give the same result as the asymptotic contributions from

the joints.
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