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1 Introduction

String theory is perhaps the most promising candidate for a unified theory of physics. As

a quantum theory of gravity that naturally gives rise to general relativity at long distances

and the building blocks for realistic particle and cosmological sectors, it satisfies a number

of non-trivial necessary conditions for any unified theory. In fact, it is the only known

theory that satisfies these necessary conditions. However, its extra dimensions of space

allow for many compactifications to four dimensions, which give rise to a large landscape

of vacua that may realize many different incarnations of particle physics and cosmology.

Taming the landscape is therefore a central problem in theoretical physics, and is critical

to making progress in understanding unification in string theory.

In this paper, we treat the landscape as what it clearly is: a big data problem. In fact,

the data that arise in string theory may be the largest in science. For example, in type
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IIb compactifications there are many possible Ramond-Ramond background fluxes that

depend on the topology of the extra dimensions. This is the context for the oft-quoted

O(10500) type IIb flux vacua [1–3], though in recent years this number has grown to an

estimated O(10272,000) [4] . Recently [5], the number of geometries has grown beyond the

early flux number to 4
3×2.96×10755, which is known to only be a lower bound. Dealing with

these large numbers is exacerbated by the computational complexity of the landscape [6–9],

making it even more clear that sophisticated techniques are required.

How should one treat ensembles so large that they forbid explicit construction? One

analytic technique is algorithmic universality. Rather than deriving universality from ex-

ploration of a constructed ensemble, algorithmic universality is derived instead from a

concrete construction algorithm. This idea, while obvious, was exemplified in [5] and used

to demonstrate universal features in the ensemble of 10755 F-theory geometries. For ex-

ample, knowledge of the construction algorithm demonstrated that the probability PNHC

of having clusters of non-trivial seven-branes is 1 > PNHC ≥ 1 − 1.07 × 10−755, and also

that the probability PG of having a particular minimal geometric gauge group G with

rk(G) ≥ 160 is 1 > PG ≥ .999995. This degree of control over such a large ensemble is

ideal, but in many physically interesting cases such precise construction algorithms are not

yet known. In this case, one must either develop such construction algorithms, which may

not always be possible, or utilize other techniques.

The other possibility is to use numerical techniques from data science, and in some cases

we will see that these numerical techniques can lead to rigorous results. Specifically, we will

employ modern machine learning techniques to study the landscape. Machine learning is

a broad term for a wide variety of techniques that allow a computer to develop prediction

models for complex datasets or to extract features. It has led to veritable revolutions

in a number of fields, from genotyping and gene expression to oceanography and climate

science. We will provide a review of basic machine learning techniques in section 2.

It is easy to imagine a number of broad ways in which machine learning could be of

use in string theory, as well as mathematics and theoretical physics more broadly.

• Deep Data Dives. Via training a model on a subset of an ensemble, it is some-

times feasible to make high accuracy feature predictions that are much faster than

conventional techniques, allowing for far greater exploration of the dataset.

• Conjecture Generation. The decision function of a trained model may naturally lead

to a sharp conjecture that can be rigorously proven.

• Feature Extraction. When input data is of high dimensionality, or exhibits redundant

information, models can identify those properties (features) of the data that are most

correlated with desired outcomes. This is often one of the primary goals of landscape

surveys in string theory.

Many other possibilities may arise as new machine learning techniques are developed by

computer scientists.

In this paper we will present one example of a data dive, and two of conjecture gen-

eration. The data dive and one of the generated conjectures are known results, while the
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other generated conjecture is a genuinely new result that would have been more difficult

to obtain without machine learning.

Summary of results. The layout of our paper and the summary of our results are as

follows.

The data dive is used to study the geometries relevant for certain four dimensional F-

theory compactifications. Specifically, in section 3 we use machine learning to compute the

number of fine regular star triangulations (FRST) of three-dimensional reflexive polytopes,

each of which determines a smooth F-theory compactification to four-dimensions, amongst

other possible applications. These results compare well to known results about the number

of FRST of those polytopes. In the future, similar techniques will be used in the case of

four-dimensional reflexive polytopes, which will provide an upper-bound estimate of the

number of Calabi-Yau threefolds in the Kreuzer-Skarke set.

The conjecture generation arises in the context of the ensemble of 4
3 × 2.96× 10755 F-

theory geometries. We utilize random sampling to generate data that will be used to train

models. In section 4 we train models that accurately predict the rank of the gauge group in

each geometry. Study of the decision function and properties of the data structure give rise

to a sharp conjecture that may be rigorously proven; in fact, the result was known, though

the conjecture was not previously arrived at via machine learning. The general process

by which that conjecture was generated is applicable in other contexts. In section 5 we

use this process to generate a conjecture regarding conditions under which E6 arises in the

ensemble. The conjecture is proven, which leads to a computation of the probability of E6

in the ensemble. Comparing to five independent sets of 2, 000, 000 random samples, the

predictions match quite well.

We find it promising that new rigorous results may arise from conjectures that would

be difficult to arrive at without the help of machine learning. Further areas of promise for

utilizing machine learning in string theory will be suggested in the concluding section.

While we were completing this work, [10] and [11] appeared. Those works also uti-

lize learning to study the landscape, but they differ in specific techniques and physical

applications. [12] used machine learning to find the minimum volumes of Sasaki-Einstein

manifolds.

2 Machine learning for theoretical physicists

Since machine learning is not part of the everyday lexicon of a theoretical physicist, in this

section we would like to review the basics of the subject, including all of the techniques that

we utilized in this paper. The subject has a rich literature; for a more in-depth introduction

we recommend the textbooks [13, 14]. Here, we focus on explaining the basic ideas behind

supervised learning, unsupervised learning, and model evaluation.

2.1 Supervised learning

Machine learning is a set of algorithms that trains on a data set in order to make predictions

on unseen data. As such, simple least-squares regression — a tool with which every scientist
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is familiar — is seen as the most humble form of machine learning. Modern techniques

can be incredibly sophisticated, but it is worth remembering that the output from most

machine learning algorithms is a function (commonly called a model): it takes a specified

set of inputs and produces a unique output value for the characteristic in question.

The procedure described above is commonly referred to as supervised machine learning,

or simply supervised learning. For supervised learning, the training step is performed by

allowing the algorithm to experience a number of input → output pairs. This is the most

common (and generally most successful) form of machine learning. All of the results in

this paper, as well as those that have appeared recently in the literature [10–12], arise from

the application of supervised machine learning.

For physics applications, the input data may be mathematical and abstract. Examples

may include the vertices of a polytope in Z3 or Z4 or the tensor of intersection numbers

of divisors and curves on a Calabi-Yau threefold. The outputs are generally meaningful

physical quantities, such as the presence of an orientifold involution or the rank of a gauge

group.

In order to effectively utilize supervised machine learning, the physicist must have

identified these physically relevant output variables so as to prepare a relevant training

sample in the first place. When no such outputs are identified, we refer to the procedure

as unsupervised machine learning.

2.2 Unsupervised learning

As no particular output is specified in unsupervised learning, the goal of an algorithm is

often more modest. For example, one might employ a clustering algorithm that seeks to

group inputs according to which cases are most ‘similar’ in some fashion. Another common

goal of unsupervised learning is dimensionality reduction, in which a large dataset of high

dimensionality is transformed into a smaller dataset through a form of coarse-graining,

with a goal of retaining the essential global properties of the data. Both clustering and

dimensionality reduction are employed in supervised learning as well, where the latter is

often referred to as factor analysis, or principal component analysis.

The datasets which concern us in string theory are often cases in which the data is itself

constructed through well-defined mathematical algorithms, with a specific physics goal in

mind. As such, there is less need for unsupervised learning in as much as the outcome

of unsupervised machine learning is often merely a step in the direction of more effective

supervised learning. Again, the lack of a specific goal, or output variable, in unsupervised

learning makes it difficult to answer the question of how well the algorithm has performed.

This is called model evaluation.

2.3 Model evaluation

In supervised learning, model evaluation is more straight-forward. An obvious manner in

which to proceed is as follows. Let us take the total set of cases in which input → output

pairs are known, and divide it into a training set and a test set. This is called a train-test

split. The model is then developed through training on the training set. Once created,
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the model is then evaluated on the test set. The performance of the model can then be

evaluated through normal statistical means.

When computational cost is not at issue, a k-fold cross-validation procedure is a better

training method. In this case, the data is divided into k equal subsets. Our model will now

be trained k separate times, in each reserving only one of the k partitions (or ‘folds’) for

testing, and using the other k − 1 folds for training. This method has several advantages.

First, it minimizes training-sample bias, in which our training data happens to be different

qualitatively from our testing data. Second, while a simple train-test split might train on

just 50% of the data, a ten-fold cross-validation (which we use in this paper) will train on

90% of the available data. Finally, we will evaluate the efficacy of our model multiple times

on different independent pieces of our data, thereby giving us a measure of how robust our

model is to perturbations on the data.

The correct model evaluation metric depends on the type of algorithm being employed.

If the goal is one of clustering, such as the binary classification problem, we are usually

concerned with the accuracy of the model. Thus, if the goal is to predict, given the

input data, whether or not a certain number is non-vanishing, then the model will return

a function which varies from zero to one. The accuracy can then be computed from

the fraction of “true” cases in the test data for which the model returns unity. A more

generalized evaluation tool is the confusion matrix, which also returns the number of “false-

positives” and “false-negatives”.

In physics applications, we are more often trying to predict a continuous real number,

which is a form of regression analysis. The evaluation of regression algorithms is typically

a statistical goodness-of-fit variable. We will discuss a number of such algorithms below.

Techniques used in this paper. There are a number of supervised learning algorithms

that we use in this paper: Linear Regression, Logistic Regression, Linear Discriminant

Analysis, k-Nearest Neighbors, Classification and Regression Tree, Naive Bayes, and Sup-

port Vector Machine. In the following we will briefly describe the workings of each algo-

rithm, as well as the pros and cons of each, in cases that they are known.

Linear Regression (LIR) is the analog of least-squares regression for the case of multiple

input variables. If the output quantity is denoted by y, then the model seeks a set

of wi and an intercept b such that y = b+
∑n

i wixi, where n is the number of input

properties, labeled by xi. This method can be generalized to allow for constraints on

the allowed weights — perhaps to reflect known physical requirements.

Logistic Regression (LR) gets its name from its reliance on the logistic function, sometimes

also referred to as the sigmoid function. As this function interpolates between zero

and unity, it is often used by statisticians to represent a probability function. As

such, logistic regression (despite its name) is most often used in binary classification

problems. While a linear method, logistic regression is more general than linear

regression in that predictions are no longer merely linear combinations of inputs. The

advantages of this technique include its relative ease of training and its suitability for

performing factor analysis. In addition, logistic regression is more resistant to the
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peril of overfitting the input data, in which noise (random fluctuations) in the input

data is incorporated into the model itself, thereby limiting its ability to correctly

predict on newly encountered data.

k-Nearest Neighbors (KNN) is an algorithm that develops a prediction for a particular

output by looking at the outputs for the k closest ‘neighbors’ in the input space.

Once a metric on the input parameter space is specified, the k-closest neighbors are

identified. The predicted output may then be as simple as the weighted average of

the values of the neighbors. This method has the advantage of extreme conceptual

simplicity, though it can be computationally costly in practice. The method is thus

best suited to input data with low dimensionality — or where factor analysis reveals

a low effective dimensionality. The method will be less useful in cases where the data

is of high dimensionality, where some data spans a large range of absolute scales,

or where the data cannot be readily expressed in the form of a simple n-tuple of

numbers.

Classification and Regression Tree (CART) is the name given to decision tree approaches

to either classification or regression problems. These algorithms divide up the input

feature space into rectangular regions, then coarse grain the data in these regions

so as to produce “if-then-else” decision rules. In so doing, such methods generally

identify feature importance as an immediate by-product of the approach. Decision

trees are not linear in the parameters: they are able to handle a mix of continuous

and discrete features and the algorithms are invariant to scaling of the data. By their

very nature, however, they are ill-suited to extrapolation to features beyond those of

the training data itself.

Naive Bayes (NB), as the name suggests, seeks to compute the probability of a hypoth-

esis given some prior knowledge of the data. More specifically, we are interested

in the most important features of the data, and we assume that these features are

conditionally independent of one another (hence ‘Naive’ Bayes). A great number of

hypothesis functions are created from the data features, and the one with the max-

imum a posteriori probability is selected. This linear method is generally used in

classification problems, but can be extended to continuous prediction in Gaussian

Naive Bayes. Here, each feature is assigned a distribution in the data; for example, a

Gaussian distribution, which can be classified simply by the mean and the variance of

that feature across the dataset. This makes Gaussian NB very efficient to implement

on data sets in which the input data is effectively continuous in nature, or of high

dimensionality. However, if input data is known to be highly correlated, we should

expect NB algorithms to perform poorly relative to other methods.

Linear Discriminant Analysis (LDA) has similarities to both logistic regression and Gaus-

sian naive Bayes approaches. It assumes that the data has a Gaussian distribution in

each feature, and that the variance for each feature is roughly equivalent. Like NB

methods, it then builds and evaluates a probability function for class membership,

and is thus generally used in classification problems. Despite the name, LDA ap-

proaches can be effectively non-linear, by constructing a feature map that transforms
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the raw input data into a higher-dimensional space associated with feature vectors

(sometimes called the kernel trick). In this, LDA algorithms share many methods

with principal component analysis (PCA). The latter is often described as ‘unsuper-

vised’ in the sense that its goal is to find directions in feature space that maximize

variance in the dataset, while ignoring class labels, while LDA is ‘supervised’ in the

sense that it seeks to find directions in feature space that maximize the distance

between the classes.

Support Vector Machine (SVM) is another technique that involves feature space, and is

often one of the more powerful supervised learning algorithms. The feature space

is partitioned using linear separation hyperplanes in the space of input variables.

The smallest perpendicular distance from this hyperplane to a training data point

is called the margin. The optimal dividing hyperplane is thus the one with the

maximal margin. The training data that lie upon these margins are known as the

support vectors — once these points are identified, the remainder of the training data

becomes irrelevant, thereby reducing the memory cost of the procedure. At this point

we have a support vector classifier (SVC). The method can be generalized by using

the kernel method described above, which is necessary in cases for which the desired

outputs overlap in feature space. In such cases the generalization is referred to as the

support vector machine algorithm. SVM can be adapted to perform regression tasks

as well (support vector regression).

Techniques not used in this paper. In the course of preparing this work, other exam-

ples of using machine learning techniques in string theory have appeared. The techniques

in these cases generally involve the use of neural networks, whose properties we briefly

describe in this subsection.

The basic building block of a neural network is the perceptron, which can be described

as a single binary classification algorithm. These algorithms are generally linear, and thus

each of the techniques described above, and used in this paper, can be thought of as

individual perceptrons. Multi-layer perceptron (MLP) models are generalization of the

linear models described above in that multiple techniques are layered between the input

data and the output predictions. It is these collections of perceptrons that tend to be called

neural networks. The simplest cases are feed-forward neural networks, in that each layer

delivers its output as the input to the subsequent layer. More sophisticated approaches

allow flow of information in both directions, thereby producing feedback. These latter cases

more closely approximate the structure of true biological neural networks.

Like the cases described above, neural networks themselves can be supervised or un-

supervised. That is, neural networks can be trained on data in which input → output

pairs are known, or allowed to perform clustering or dimensionality reduction tasks on

data where no outputs are specified. Furthermore, the individual layers in the MLP can

be chosen by the model-developer in advance, or allowed to evolve through feedback, with

the latter case introducing an element of unsupervised learning into the MLP.1

1It is common to use the phrase “deep learning” to indicate any machine learning technique that involves

a neural network model, though often this phrase is restricted to those cases which involve some element

of unsupervised learning.

– 7 –



J
H
E
P
0
9
(
2
0
1
7
)
1
5
7

Neural networks and single-model methods generally fare comparably, though each

has its place and relative advantages. By adding layers and feedback channels, a neural

network can be designed with a large number of free, tunable parameters. This can lead

to the problem of overfitting, however. On the other hand, such frameworks are generally

suited to many forms of input data, or highly heterogeneous input data. A key disadvantage

is the fact that the output of a neural network training tends to be a ‘black box’, which

makes such techniques less useful for feature extraction or conjecture generation, though

still quite powerful for deep data dives.2 For these various reasons we have chosen to work

with the single-algorithm approach, and will generally use the simplest such approaches to

achieve the goals of this paper.

3 Data dive: the number of smooth F-theory compactifications

In this section we use machine learning to estimate the number of fine regular star triangu-

lations (FRST) of three-dimensional reflexive polytopes [15]. Each such FRST determines

a smooth weak-Fano toric variety. These varieties and their number are interesting for at

least three reasons: their anti-canonical hypersurfaces give rise to K3 surfaces that can be

used for six-dimensional string compactifications, they give rise to smooth F-theory com-

pactifications without non-Higgsable clusters [16], and they serve as a starting point for

topological transitions from which the ensemble of 10755 F-theory geometries arises.

3.1 Learning strategy

Let ∆◦ be a 3d reflexive polytope. Such an object is the convex hull of a set of points

{v} ⊂ Z3 that satisfies the reflexivity condition, i.e. that the dual polytope

∆ := {m ∈ Z3 | m · v ≥ −1 ∀v ∈ ∆◦} (3.1)

is itself a lattice polytope. There are 4319 such polytopes, classified by Kreuzer and

Skarke [15]. A triangulation of ∆◦ is said to be fine, regular, and star if all integral points

of ∆◦ are used, the simplicial cones are projections of cones from an embedding space, and

all simplices have the origin as a vertex. We refer to these as FRSTs.

A weak-Fano toric variety may be associated to each such FRST of a 3d reflexive

polytope, where h11(B) = |{v}| − 3 is the dimension of the Dolbeault cohomology group

H11(B).3 This integer measures the number of independent cohomologically non-trivial

(1, 1)-forms on B, or alternatively (via duality) the number of divisor classes. Such topo-

logical quantities are central to many aspects of the physics of an F-theory compactification

on B.

The number of FRSTs of these polytopes was computed for low h11(B) in [16], where B

is the toric variety associated to the FRST, and estimates were provided for the remainder

based on techniques in the triangulation literature. Here we instead wish to estimate the

number of FRSTs of the 3d reflexive polytopes using machine learning.

2These same criticisms could be leveled against the most sophisticated SVM techniques, which are often

comparable to neural networks in complexity.
3We remind the reader that we employ the notation |{X}| to indicate the cardinality of the set X.
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Our method is to estimate the number of FRSTs of the 3d reflexive polytopes as the

product of the number of fine regulation triangulations (FRTs) of its codimension one faces,

which are known as facets. This was demonstrated to be a good approximation in [16],

and the number of FRTs of the facets was explicitly computed for h11(B) ≤ 22, where all

B arising from FRSTs of 3d reflexive polytopes have h11(B) ≤ 35. In this work, we will

utilize machine learning to train a model to predict the number of FRTs per facet, and

then we will use the trained algorithm to estimate the number of FRSTs of the 3d reflexive

polytopes. We will see that the results are in good agreement with those of [16], though

derived in a different manner.

The vertices of ∆◦ determine ∆◦, and therefore its FRSTs may be computed from this

data. However, for higher h11(B) the number of integral points in ∆◦ also increases, which

increases the number of FRSTs and therefore also the likelihood that the computation

does not finish in a reasonable amount of time. As this occurs, the number of FRTs of

each facet also typically increases. The number of FRTs of a facet F increases with its

number of points np, interior points ni, boundary points nb, and vertices nv, which are of

course related. To each facet, which is a 2d polyhedron, we therefore associate a 4-tuple

(np, ni, nb, nv). Using machine learning we will train a model A to predict the number of

FRTs of each facet given the 4-tuple. This gives a chain of operations

F −→ (np, ni, nb, nv)
A−→ nT , (3.2)

that predicts the nT , the number of FRTs of F . It is obvious that nT will depend on the

4-tuple, but the question is to what extent.

We have attempted to choose the training variables wisely based on knowledge of the

dataset. This is supervised learning.

3.2 Model evaluation with 10-fold cross-validation

We begin by utilizing 10-fold cross-validation to determine which machine learning algo-

rithm gives rise to the model with the best predictions for nT . There are two critical

considerations that will enter into our analysis. First, in order to extrapolate to very high

h11 with reasonable confidence, we would like to train our models for h11 < 19 so that we

can test the trained model on known results for the number of facet FRTs for polytopes

with h11 = 19, 20, 21. We therefore train on data with h11 ≤ h11
max < 19. Second, since

there are very few triangulations for low h11 and this may negatively affect the model, we

will train on data with h11 ≥ h11
min. We take h11

min ∈ {1, 6, 10} and h11
max ∈ {14, 16, 18}, and

therefore we perform a 10-fold cross validation on nine different ranges h11
min ≤ h11 ≤ h11

max.

For each, we test four different algorithms:

• LDA: Linear Discriminant Analysis

• KNNR: k-Nearest Neighbors Regression

• CART: Classification and Regression Trees

• NB: Naive Bayes,
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which are described in section 2. The scoring metric that we use is the mean absolute

percent error, which is defined to be

MAPE :=
100

n
×

n∑
i=1

∣∣∣∣Ai − PiAi

∣∣∣∣ , (3.3)

where n is the number of values, and Pi and Ai are the predicted and actual values for the

output; here nT of the ith facet. In k-fold validation, the scoring is done k times (using

each fold as the validation set once). We then average the MAPE values from each test

to obtain the final scoring metric. Finally, for each algorithm trained on the data with

h11
min ≤ h11 ≤ h11

max, we predict nT for each polytope with h11 = 19, 20, 21 and present the

average MAPE.

The results of this analysis are presented in table 1. The minimal MAPE for the

training set occurs for KNNR with (h11
min, h

11
max) = (1, 14); however, we see that this case

has higher MAPE for nT of facets at higher h11. The lowest MAPE at h11 = 21 occurs

in CART examples with (h11
min, h

11
max) = (6, 18) and (h11

min, h
11
max) = (10, 18), with slightly

better performance in the former case. In table 2 we present the results of a similar analysis

that fixes h11
max and CART while scanning over h11

min. The results are similar in all cases,

though the MAPE is slightly lower in the case h11
min = 4, which seems to be a point at

which the anomalous polytopes at very low h11 are safely discarded.

As a result of this analysis, we choose to model the FRTs of facets F of 3d reflexive

polytopes via a classification and regression tree (CART) with h11
min = 4. We will train the

model on h11
min = 4 ≤ h11 ≤ 21 since the exact number of FRTs at 19 ≤ h11 ≤ 21 should

increase accuracy in the extrapolation to h11 > 21.

Training with these parameters using 10-fold cross validation, we find that the MAPE

is 6.38± 1.04%; this is on par with the results of table 1. For a broader view of the model

predictions, see figure 1. Both of the plots are a measure of the relative factors

Ri :=
Pi
Ai

(3.4)

that determine the factor by which the predicted value Pi for nT of a facet is off from the

actual value Ai. We have computed Ai for all facets in all polytopes up through h11 = 21.

The plot on the left is a box plot of the values of nT that occur at each respective value of

h11. Though a few outlier predictions are off from the actual values by a factor of 5 to 7,

note that the orange band denotes the median which is 1.0, and the would-be boxes of the

box plot are absent since their boundaries would denote the first and third quartile, both

of which are also 1.0. The plot on the right computes the percent with 1
2 < Ri < 2; over

96% of the nT of facets, for all h11, are within a factor of 2 of their actual value.

3.3 Machine learning 3d polytope triangulations

Given the accuracy of this model, we would now like to compute the average number of

FRSTs per polytope as a function of h11(B). This was done in [16], and it will be instructive

to see whether machine learning recovers those results, and also where it has difficulties.
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Extrap. h11 = 19 Extrap. h11 = 20 Extrap. h11 = 21

Alg. h11
min h11

max Train MAPE MAPE STDEV MAPE STDEV MAPE STDEV

LDA 1 14 14.3 28.5 70.0 37.4 85.2 38.0 81.4

KNNR 1 14 4.1 17.4 45.0 19.5 47.2 24.7 53.7

CART 1 14 5.6 18.0 45.3 17.0 39.0 24.3 56.4

NB 1 14 11.2 26.4 58.3 31.9 68.1 35.3 71.7

LDA 1 16 14.5 23.1 68.7 31.9 87.3 30.8 80.4

KNNR 1 16 4.4 15.0 43.9 20.0 63.6 26.6 76.1

CART 1 16 5.6 14.2 42.4 14.5 43.3 20.9 58.5

NB 1 16 10.9 21.3 56.6 28.2 70.7 29.8 70.3

LDA 1 18 15.1 20.9 67.9 28.8 86.8 28.7 79.9

KNNR 1 18 4.7 12.2 33.0 12.0 46.7 19.9 61.0

CART 1 18 6.2 11.7 41.0 11.1 40.5 18.5 53.9

NB 1 18 11.9 19.3 55.6 25.2 69.9 27.4 69.6

LDA 6 14 14.6 26.8 70.0 35.1 85.4 35.7 81.7

KNNR 6 14 4.4 18.4 39.4 21.9 50.1 27.0 59.5

CART 6 14 5.3 18.2 45.6 17.5 40.5 25.0 58.0

NB 6 14 10.7 25.3 58.1 31.6 67.8 34.1 71.5

LDA 6 16 14.8 22.4 68.6 31.1 87.3 30.0 80.3

KNNR 6 16 4.7 13.8 40.7 16.8 55.2 22.9 64.8

CART 6 16 6.0 13.3 41.6 13.4 41.9 19.4 53.3

NB 6 16 11.1 19.9 56.4 27.9 70.7 29.0 70.3

LDA 6 18 14.0 20.4 67.9 28.2 86.7 28.2 80.3

KNNR 6 18 5.1 10.8 38.9 11.1 48.4 18.3 60.0

CART 6 18 6.1 11.8 40.8 10.5 40.0 17.5 54.4

NB 6 18 12.6 18.3 55.6 24.6 69.8 26.0 70.2

LDA 10 14 12.7 16.7 44.1 17.5 47.5 22.8 56.9

KNNR 10 14 5.4 16.9 44.7 19.7 49.1 25.4 58.8

CART 10 14 6.2 16.3 43.9 16.3 44.5 21.6 54.4

NB 10 14 10.3 22.7 58.2 30.7 71.6 32.0 71.9

LDA 10 16 12.9 14.8 42.9 15.6 46.0 21.7 56.4

KNNR 10 16 5.4 14.4 35.5 17.1 59.9 25.1 77.7

CART 10 16 6.3 14.0 42.1 14.2 44.8 21.0 55.2

NB 10 16 10.5 19.8 56.5 28.3 70.7 29.1 70.5

LDA 10 18 12.9 12.6 41.0 12.1 43.5 18.6 54.7

KNNR 10 18 5.9 11.5 38.7 12.4 46.9 19.5 59.2

CART 10 18 7.2 12.4 41.0 11.1 40.4 17.9 53.6

NB 10 18 11.2 17.9 55.5 25.2 69.8 25.9 69.6

Table 1. Model discrimination and higher h11 testing for the number of FRTs of 3d reflexive

polytopes. Train MAPE is the mean average percent error of the algorithm of a given type, averaged

across the ten training runs, trained on the exact number of FRTs for h11min ≤ h11 ≤ h11max. The

STDEV is the standard deviation of the ten training runs about the MAPE value. Both MAPE

and STDEV are presented for model predictions for h11 = 19, 20, 21 > h11max.
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Extrap. h11 = 19 Extrap. h11 = 20 Extrap. h11 = 21

Alg. h11
min h11

max Train MAPE MAPE STDEV MAPE STDEV MAPE STDEV

CART 1 18 6.2 11.9 41.2 11.1 40.5 18.5 53.9

CART 2 18 5.6 11.8 40.5 10.4 39.3 17.7 53.7

CART 3 18 5.7 11.5 40.4 10.3 39.3 17.7 54.5

CART 4 18 5.5 11.2 40.1 10.5 40.0 17.4 54.4

CART 5 18 6.0 12.1 41.0 12.2 41.4 19.3 55.2

CART 6 18 6.2 11.6 40.6 10.5 40.0 17.5 54.4

CART 7 18 5.9 11.5 40.5 10.5 40.0 17.5 54.4

CART 8 18 6.5 11.6 40.5 10.5 40.0 17.6 54.4

CART 9 18 6.8 12.5 41.1 11.6 40.8 18.9 54.2

CART 10 18 7.2 12.1 40.7 11.1 40.4 17.9 53.6

Table 2. Refinement of CART algorithms for final model selection.

Figure 1. Left: box plot for the relative factor Ri, which is the predicted number of FRTs of each

facet over the actual number. The median, first, and third quartiles are precisely at the desired

value 1, though outliers do exist. Right: the percent of facets for which the predicted number of

FRTs is within a factor of two of the action value.

Specifically, letting nT (F ) be the number of FRTs of F computed by our model, we use

the approximation discussed in [16]

nFRST(∆◦) '
∏
F∈∆◦

nT (F ). (3.5)

Summing over all polytopes at a given h11 and averaging, we define

nFRST(h11) :=

∑
∆◦ at h11 nFRST(∆◦)∑

∆◦ at h11 1
. (3.6)

This average number of triangulations per polytope at a fixed value of h11 is presented

in figure 2. The red line, gray stars, and blue dots were obtained in [16], where the gray

stars and blue dots were predicted with different methods. The green dots are the new
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y = 0.5458x− 2.7279

Figure 2. The logarithm of the average number of FRST per polytope. The green dots are

predictions of our learned model, and the rest of the data is from [16]. Note the accuracy of model

in recovering known results represented by the blue dots and grey stars. The erratic behavior for

h11 ≥ 27 correlates with being the tail of the polytope distribution.

predictions of our model. The predictions are so accurate that the green dots are mostly

covering the blue dots, when they exist.

It is also important that our model makes accurate predictions beyond the data on

which it trained. Specifically, it trained on data with h11 ≤ 21 and the predicted values at

h11 = 22, 23, 24, 25 are in good agreement with the results of [16]. The model also makes

good predictions at h11 = 26, 27 when comparing to the extrapolation of the best fit line.

We see that our model made six accurate predictions for nFRST(h11) for h11 values that

it was not trained upon. This demonstrates the power of machine learning to find hidden

dependencies in the data that allow for extrapolation beyond the training set.

Note, however, that the machine learning model predicts erratic behavior for h11 > 27.

While a priori this may be considered a prediction, the data points are inconsistent with

bounds derived in [16] utilizing results in the triangulation literature. Figure 3 demon-

strates that around this h11 value the number of facets and polytopes at a fixed value of

h11 has dropped significantly relative to lower h11. This, together with the violation of the

analytic bound, leads to the conclusion that the erratic behavior for h11 > 27 may be due

to being in the tail of the distribution; see values of h11 > 27 in figure 3.

However, the machine learning model predictions for the bulk of the polytope distri-

bution picks out the correct line for log10(nFRST). This line, when extrapolated to the

highest polytope h11, which is h11 = 35, is in agreement with the bound

5.780× 1014 . nFRST . 1.831× 1017, (3.7)

which was obtained in [16].

In conclusion, our model that used a 10-fold cross-validated and parameter optimized

classification and regression tree accurately predicts the average number of FRSTs in the
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Figure 3. Red (blue) dots are the total number of facets (reflexive polytopes) at a given value of

h11(B). Left: the full plot. Right: magnification of the h11 ≥ 20 region.

bulk of the distribution for the number of polytopes and facets as a function of h11. It

would be interesting in the future to determine methods that minimize the error in the tail

of the distribution, but we emphasize that the extrapolated best fit line of the machine

learning model prediction does give nFRST ∼ O(1015)–O(1016) at h11 = 35 as expected

from the analytic results of [16].

4 Conjecture generation: gauge group rank in F-theory ensembles

In this section, and section 5, we will generate conjectures related to the physics of an

ensemble of 4
3 × 2.96 × 10755 F-theory compactifications that recently appeared in the

literature [5]. This ensemble exhibited algorithmic universality, which is universality de-

rived from a precise construction algorithm rather than a constructed ensemble. Universal

features included non-Higgsable clusters with extremely large and calculable gauge groups.

4.1 F-theory review

F-theory [17, 18] is a non-perturbative formulation of the type IIb superstring in which

the axiodilaton τ = C0 + ie−φ varies holomorphically over extra dimensions of space B.

This variation is conveniently encoded in the geometry of a Calabi-Yau elliptic fibration,

in which τ is the complex structure of the elliptic curve that varies over the base B. By a

theorem of Nakayama [19], every elliptic fibration is birationally equivalent to a Weierstrass

model

y2 = x3 + fx+ g, (4.1)

where x, y are coordinates on the elliptic curve and f ∈ Γ(O(−4K)) and g ∈ Γ(O(−6K))

are global sections of the states line bundles, with −K the anticanonical class on B. Prac-

tically, this simply means that f and g are homogeneous polynomials in appropriate coor-

dinates on B. Seven-branes are localized on the discriminant locus

∆ = 4f3 + 27g2 = 0, (4.2)
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Fi li mi ni Sing. Gi

I0 ≥ 0 ≥ 0 0 none none

In 0 0 n ≥ 2 An−1 SU(n) or Sp(bn/2c)
II ≥ 1 1 2 none none

III 1 ≥ 2 3 A1 SU(2)

IV ≥ 2 2 4 A2 SU(3) or SU(2)

I∗0 ≥ 2 ≥ 3 6 D4 SO(8) or SO(7) or G2

I∗n 2 3 n ≥ 7 Dn−2 SO(2n− 4) or SO(2n− 5)

IV ∗ ≥ 3 4 8 E6 E6 or F4

III∗ 3 ≥ 5 9 E7 E7

II∗ ≥ 4 5 10 E8 E8

Table 3. Kodaira fiber Fi, singularity, and gauge group Gi on the seven-brane at xi = 0.

where the elliptic fiber becomes singular. If xi = 0 is a component of the discriminant locus,

then the multiplicity of vanishing multxi(f, g,∆) = (li,mi, ni) of f, g and ∆ along xi = 0

determines (up to monodromy, see e.g. [20]) the gauge group on xi = 0 according to the

Kodaira classification, which is presented in table 3. These groups can be understood via

smoothings of the geometry and associated Higgs mechanisms; for smoothings via Kähler

resolution and complex structure deformation see e.g. [21–25] and [26–29], respectively.

Typically, the topological structure of the extra spatial dimensions B forces the ex-

istence of non-trivial seven-branes on fixed divisors. Such seven-branes are referred to as

non-Higgsable seven-branes (NH7), as their inability to move obstructs the Higgs mech-

anism that would arise from brane splitting. NH7 usually come in sets, and they may

intersect, forming a non-Higgsable cluster [30] (NHC). Mathematically the origin of this

mechanism is simple: if the polynomials f and g are chosen to have all possible monomial

coefficients non-zero and generic, then there may be components (factors)

f = F
∏
i

xlii g = G
∏

xmii , (4.3)

where F and G may themselves be non-trivial polynomials. If li,mi > 0, then there is a

seven-brane on xi = 0 of a type that can be determined from table 3 and the fact that

ni = min(3li, 2mi). Non-Higgsable clusters are easily exemplified; for example, in a 6d

F-theory compactification on the Hirzebruch surface F3, there is a non-Higgsable SU(3) on

the −3 curve. That theory is non-Higgsable because the SU(3) theory has no matter.

There are a number of interesting recent results about non-Higgsable clusters and

their importance in the 4d F-theory landscape. They exist for generic vacuum expectation

values of the complex structure moduli, and therefore obtaining gauge symmetry does

not require moduli stabilization to fix vacua on subloci in moduli space [31], which can

occur at high codimension [32, 33], though the problem is not as severe [16] as initially

thought. Strong coupling is generic [34], and some of the structures of the standard model
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may arise naturally [31]. They also arise in the particular geometry Bmax with the largest

known number of flux vacua [4], and universally in large ensembles that have been studied

recently [5, 35, 36]. 4dNHC give rise to interesting features [37] (such as loops and branches)

not present in 6d. 6d NHC have also been studied extensively [30, 38–43], in the context

of both 6d string universality and (1, 0) SCFTs.

Non-Higgsable clusters can be studied for general bases B, see e.g. [37], but since

our examples will be in the case that B is a toric variety, we will specialize to that case

immediately. A compact toric variety B is specified by a complete fan that is made up of

rays vi that generate cones whose union determines the fan. For most of what we do in

this paper, the vi will play a starring role and the cone structure will be less important.

For example, for dimC(B) = 3 as in our case, the monomials that may appear in f and g

are determined by integral points of the polyhedra

∆f = {m ∈ Z3 |m · vi + 4 ≥ 0 ∀i} ∆g = {m ∈ Z3 |m · vi + 6 ≥ 0 ∀i} (4.4)

by the correspondence

mf ∈ ∆f 7→
∏
i

x
mf ·vi+4
i mg ∈ ∆g 7→

∏
i

x
mg ·vi+6
i , (4.5)

which may appear in f and g, respectively, and where each xi is a homogeneous coordinate

on B that is in one to one correspondence with vi. The most general f and g are therefore

of the form

f =
∑

mf∈∆f

af
∏
i

x
mf ·vi+4
i g =

∑
mg∈∆g

ag
∏
i

x
mg ·vi+6
i , (4.6)

where no restrictions are made on the monomial coefficients. By studying ∆f and ∆g, it is

a straightforward combinatoric exercise to determine the components (overall factors) of f

and g, and therefore the non-Higgsable clusters. The mentioned example of F3 with a non-

Higgsable SU(3), for example, has {vi} = {(1, 0), (0, 1), (−1, 0), (−1,−3)}. By computing

∆f and ∆g to construct the most general f and g, one will find a factorization that give

the NH7.

4.2 A large ensemble of F-theory geometries

Since it is central to our machine learning analysis, let us review the construction of [5]

that gives rise to 4
3 × 2.96× 10755 F-theory geometries.

The construction performs a large number of topological transitions away from an

initial algebraic threefold Bi, generating a large number of other threefolds, and then

uses them as F-theory bases B. The Calabi-Yau elliptic fibrations over these B form

one connected moduli space with many branches, and all of the B are different algebraic

varieties.

Specifically, the initial threefold Bi is a smooth weak-Fano toric threefold, which can

be specified by a fine regular star triangulation (FRST) of a three-dimensional reflexive

polytope ∆◦; using machine learning to estimate the number of such triangulations was

the subject of section 3. The fan associated to Bi is composed of 2-cones and 3-cones
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that appear as edges and faces (triangles) on the real codimension one faces of ∆◦ in Z3,

which are known as facets. The number of edges and faces in the facet are determined

by the number of boundary and interior points in the facet, and these numbers are trian-

gulation independent. The largest facets which appear in the ensemble of 4319 reflexive

polytopes are

and this is the sort of picture the reader should have in mind when we refer to building

structure on the “ground”; this is the ground.

The topological transitions are smooth blow-ups along curves or points. In the former

case, two 3-cones labeled by their generators (v1, v2, v3) an (v4, v2, v3) are replaced by

(v1, v2, ve), (v1, v3, ve), (v4, v2, ve), (v4, v3, ve), where ve = v2 + v3 lies above the original

facet in which v1, v2, v3, v4 lie. The process can be iterated multiple times, for example doing

a similar subdivision that adds new rays vf = ve+v2 = v1 +2v2 and vg = ve+v1 = 2v1 +v2.

The new structure could be visualized in three dimensions as

v2 v3

0

2
3 3

where the solid line in between v2 and v3 is the edge on the facet, or ground, above which

the new rays have been added; we may refer to edges or faces above which new rays are

added as patches on the ground. This structure is the result of a sequence of blowups, and

rather than continually saying “sequence of blowups” we will instead refer to the rays and

cone structure associated to the sequence of blow-ups as trees, as suggested naturally by

the image, where the dashed green lines denote new edges above the original patch on the

ground. Any new ray v in the fan associated to B may be written as a linear combination

v = av1 + bv2 + cv3 if it is above a face with vertices v1, v2, v3 or as v = av1 + bv2 if it

is above an edge with vertices v1, v2. As the sequence of blow-ups are trees, we will refer

to the new rays v in the tree as its leaves, each of which has a height h = a + b + c or

h = a+ b depending on whether it is above a face or an edge. The numbers in the picture

are the heights of the leaves, and the height measures the distance of the ground. We

will interchangeably refer to h = 1 leaves as roots, or leaves on the ground, as with these

definitions the h = 1 leaves were already in the original reflexive polytope ∆◦. The height

of a tree is defined to be the height of its highest leaf.

Trees built above faces will be referred to as face trees, and those above edges will be

referred to as edge trees. It is possible to classify the number of face trees and edge trees

with a fixed maximal height h ≤ N . It is convenient to view the edges and trees face on,

i.e. with the leaves projected onto the edge from above. In this case the edge on the ground
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appears as
v2 v3

1 1

with the edge vertices and their heights labeled. Adding v1 + v2 subdivides the edge, and

further subdividing, dropping vertex labels, gives

1 1 1 2 1

1 2 3 1

1 23 1

1 3 2 3 1

which are all of the h ≤ 3 edge trees. Similarly, the face trees may be viewed face on, and

beginning with a face the first blowup gives

1

1 1

1

1 1
3

which are the only two h ≤ 3 face trees. The green dotted lines in both pictures denote

edges that are above the original ground, due to at least one of the leaves on the edge

having h > 1, i.e. being above the ground.

Also critical to the construction is a bound h ≤ 6 on all trees. This bound is sufficient,

but not necessary, to avoid a pathology known as a (4, 6) divisor that is not allowed in

a consistent F-theory compactification; see the appendix of [5] for an in-depth discussion.

Given this bound, it is pertinent to classify all h ≤ 6 face trees and edge trees. Their

number, for all 3 ≤ N ≤ 6, is

N # Edge Trees # Face Trees

3 5 2

4 10 17

5 50 4231

6 82 41, 873, 645

and these numbers enter directly into the combinatorics that generate the large ensemble.

The ensemble S∆◦ associated to a 3d reflexive polytope is defined as follows. First,

pick a fine regular star triangulation of ∆◦, denoted T (∆◦). Add one of the 41, 873, 645

face trees to each face of T (∆◦), and one of the 82 edge trees to each edge of T (∆◦). The

size of S∆◦ is

|S∆◦ | = 82#Ẽ on T (∆◦) × (41, 873, 645)#F̃ on T (∆◦) , (4.7)

where #Ẽ and #F̃ are the number of edges and faces on T (∆◦), which are triangulation-

independent and are entirely determined by ∆◦ [44].

Two of the 3d reflexive polytopes give a far larger number |S∆◦ | than all of the others

combined. These polytopes are the convex hulls ∆◦i := Conv(Si), i = 1, 2 of the vertex sets

S1 = {(−1,−1,−1), (−1,−1, 5), (−1, 5,−1), (1,−1,−1)} ,
S2 = {(−1,−1,−1), (−1,−1, 11), (−1, 2,−1), (1,−1,−1)}.
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Surprisingly, T (∆◦1) and T (∆◦2) have the same number of edges and faces. Their largest

facets were the ones previously displayed, and they have #Ẽ = 63 and #F̃ = 36. This

gives

|S∆◦
1
| = 2.96

3
× 10755 |S∆◦

2
| = 2.96× 10755, (4.8)

where the factor of 1/3 is due to a particular Z3 rotation that gives an equivalence of toric

varieties; see the appendix of [5] for a discussion. All of the other polytopes ∆◦ contribute

negligibly, yielding |S∆◦ | ≤ 3.28× 10692 configurations. This gives

# 4d F-theory Geometries ≥ 4

3
× 2.96× 10755, (4.9)

which is a lower bound for a number of reasons discussed in [5].

We end this section with a critical technical point. Previously we described how to

read off the non-Higgsable gauge group for fixed base B by constructing the ∆f and ∆g

polytopes (4.4), their associated monomials (4.5), and from them the most general possible

f and g.

We have just introduced a large number of topological transitions B → B′, and via

these transitions the gauge groups on various leaves may change. The minimal transitions

B → B′ arise as from a single blow-up, which adds an exceptional divisor xe = 0 and new

ray ve = 0 that wasn’t present in the set of rays associated to B. Adding this new ray

means that in (4.4) there is an additional upper half plane condition that must be satisfied.

If these upper half planes slice across ∆f and ∆g, they are changed

∆f 7→ ∆′f ∆g 7→ ∆′g, (4.10)

where ∆′f (∆′g) contains all points of ∆f (∆g) except those removed by the new upper half

plane m · ve + 4 ≥ 0 (m · ve + 6 ≥ 0). In such a case we say that the points mf ∈ ∆f

(mg ∈ ∆g) that are removed by the process are “chopped off”, since the upper half plane

condition forms the new polytope by slicing across the old one and removing those points.

More generally the process B → B′ may be a sequence of transitions, where the full

sequence adds a tree. In that case there will be as many new upper half planes as there

are new leaves in the tree, and each may chop points out of the original ∆f (∆g) to

form ∆′f (∆′g).

The critical physical point is that, in doing transitions B → B′ that chop out monomi-

als from ∆f and ∆g to arrive at ∆′f and ∆′g, one must redo the gauge group analysis, and

the chopping procedure may change the gauge group on vertices present in both B and B′.

This is absolutely central to the physics of the construction, as e.g. for the initial Bi the

v ∈ ∆◦ have no gauge group, but they quickly obtain gauge groups once trees are added.

4.3 Data generation from random samples

In this section and section 5 we will utilize random samples to generate data that is studied

via machine learning. The random samples are generated as follows.

All samples in this paper focus on the ensemble S∆◦
1
, where the B ∈ S∆◦

1
are forests of

trees that are built on the 3d reflexive polytope S∆◦
1
. In future work, it would be interesting

to study similar issues in the other large ensemble, S∆◦
2
.
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Furthermore, all samples in this paper are built on top of a particular triangulation Tp
of ∆◦1, the so-called pushing triangulation, which exists for any reflexive polytope. For a

definition of the pushing triangulation, see [44]. For our purposes it suffices to simply list

the three-dimensional cones of Tp, which are presented in table 4.

A single random sample is defined as follows. Given Tp, we add a face tree at random at

each face of Tp, using an appropriately rescaled version of the SageMath function random().

We then also add an edge tree to each edge at random. In doing so, many leaves are added

to the original rays of ∆◦1, and the complete set of all rays together with the associated

cone structure define an F-theory base B.

This process may be iterated to generate many random samples, and we studied over

10, 000, 000 random samples in this paper.

4.4 Gauge group rank

In this section we study whether machine learning can accurately predict the rank of the

geometric gauge group in the large ensemble of F-theory geometries. We will see that it

naturally leads to a sharp conjecture for the gauge group rank. While a version of the

conjecture was already proven in [5], exemplifying the process leading to the conjecture

will be important for guiding the genesis of a new conjecture and theorem in section 5.

Let Hi be the number of height i leaves in B. We seek to train a model A to predict

the rank of the resulting gauge group rk(G) on the base B

B −→ (H1, H2, H3, H4, H5, H6)
A−→ rk(G) . (4.11)

We perform a 10-fold cross validation with sample size 1000 and algorithms LR, LIR, LDA,

KNN, CART, NB, SVM. The linear regression gave the best results, having a MAPE of

0.013. The decision function is

rk(G) = 302.54− 1.1102× 10−16H1 + 3.9996H2 + 1.9989H3 (4.12)

+ 1.0007H4 + 1.3601× 10−3H5 + 1.1761× 10−3H6.

Since height 1 leaves are facet interior points that are always present, H1 = 38 for all

samples. This is an important observation, since the lack of variance in H1 means that the

coefficient of H1 can be included in the definition of the intercept by the linear regression.

Noting 304 = 38× 8, one can rewrite the above equation equivalently as

rk(G) = −1.46 + 8H1 + 3.9996H2 + 1.9989H3 (4.13)

+ 1.0007H4 + 1.3601× 10−3H5 + 1.1761× 10−3H6.

This is the output of the linear regression.

We wish to turn the output of machine learning into a sharp conjecture given the rest

of the information that we know about the problem. Our choice to redefine the intercept

and the effectively constant H1 term already reflected some underlying knowledge of the

F-theory context, as we shall soon see. To go further, note that any leaf can only contribute

an integer to the rank of the gauge group; we therefore round all coefficients to the nearest
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v1 v2 v3 v1 v2 v3

(−1,−1,−1) (−1,−1, 0) (−1, 0,−1) (−1,−1,−1) (−1,−1, 0) (−1, 0,−1)

(−1,−1,−1) (−1,−1, 0) (0,−1,−1) (−1,−1,−1) (−1, 0,−1) (0,−1,−1)

(−1,−1,−1) (−1, 0,−1) (0,−1,−1) (−1,−1, 5) (−1,−1, 4) (0,−1, 2)

(−1,−1, 5) (−1,−1, 4) (−1, 0, 4) (−1, 5,−1) (−1,−1, 0) (−1, 0, 0)

(−1,−1, 5) (−1,−1, 4) (0,−1, 2) (−1, 5,−1) (−1, 4,−1) (0, 2,−1)

(−1,−1, 5) (−1, 0, 4) (0,−1, 2) (−1, 5,−1) (−1,−1, 4) (−1, 4, 0)

(−1, 5,−1) (−1,−1, 0) (−1, 0, 0) (−1, 5,−1) (−1, 0, 0) (−1, 1, 0)

(−1, 5,−1) (−1,−1, 0) (−1, 4,−1) (−1, 5,−1) (−1, 0, 1) (−1, 3, 0)

(−1, 5,−1) (−1, 4,−1) (0, 2,−1) (−1, 5,−1) (−1, 0, 2) (−1, 3, 0)

(−1, 5,−1) (−1,−1, 4) (−1, 0, 3) (−1, 5,−1) (−1, 1, 0) (−1, 2, 0)

(−1, 5,−1) (−1,−1, 4) (−1, 4, 0) (1,−1,−1) (−1,−1, 0) (0,−1,−1)

(−1, 5,−1) (−1, 4, 0) (0, 2,−1) (1,−1,−1) (−1, 0,−1) (0, 0,−1)

(−1, 5,−1) (−1, 0, 0) (−1, 1, 0) (1,−1,−1) (−1, 2,−1) (0, 0,−1)

(−1, 5,−1) (−1, 0, 1) (−1, 2, 0) (1,−1,−1) (−1, 4,−1) (0, 1,−1)

(−1, 5,−1) (−1, 0, 1) (−1, 3, 0) (−1,−1, 2) (−1, 0, 1) (−1, 1, 1)

(−1, 5,−1) (−1, 0, 2) (−1, 2, 1) (−1,−1, 2) (−1, 0, 2) (−1, 1, 1)

(−1, 5,−1) (−1, 0, 2) (−1, 3, 0) (1,−1,−1) (−1,−1, 4) (0,−1, 1)

(−1, 5,−1) (−1, 0, 3) (−1, 1, 2) (1,−1,−1) (−1, 0, 4) (0,−1, 2)

(−1, 5,−1) (−1, 1, 0) (−1, 2, 0) (1,−1,−1) (−1, 2, 2) (0, 0, 1)

(−1, 5,−1) (−1, 1, 2) (−1, 2, 1) (1,−1,−1) (−1, 4, 0) (0, 1, 0)

(1,−1,−1) (−1,−1, 0) (0,−1,−1) (−1, 0, 1) (−1, 1, 1) (−1, 3, 0)

(1,−1,−1) (−1, 0,−1) (0,−1,−1) (−1,−1, 0) (−1,−1, 1) (−1, 0, 0)

(1,−1,−1) (−1, 0,−1) (0, 0,−1) (−1,−1, 0) (−1, 0,−1) (−1, 1,−1)

(1,−1,−1) (−1,−1, 0) (0,−1, 0) (−1,−1, 0) (−1, 1,−1) (−1, 2,−1)

(1,−1,−1) (−1, 2,−1) (0, 0,−1) (−1,−1, 0) (−1, 2,−1) (−1, 3,−1)

(1,−1,−1) (−1, 2,−1) (0, 1,−1) (−1,−1, 0) (−1, 3,−1) (−1, 4,−1)

(1,−1,−1) (−1, 4,−1) (0, 1,−1) (−1,−1, 1) (−1,−1, 2) (−1, 0, 1)

(1,−1,−1) (−1, 4,−1) (0, 2,−1) (−1,−1, 1) (−1, 0, 0) (−1, 1, 0)

(−1,−1, 2) (−1, 0, 1) (−1, 1, 1) (−1,−1, 1) (−1, 1, 0) (−1, 2, 0)

(1,−1,−1) (−1,−1, 2) (0,−1, 0) (−1,−1, 2) (−1,−1, 3) (0,−1, 1)

(−1,−1, 2) (−1, 0, 2) (−1, 1, 1) (−1,−1, 3) (−1,−1, 4) (0,−1, 1)

(1,−1,−1) (−1,−1, 2) (0,−1, 1) (−1,−1, 3) (−1, 0, 3) (−1, 1, 2)

(1,−1,−1) (−1,−1, 4) (0,−1, 1) (−1,−1, 4) (−1, 0, 4) (−1, 1, 3)

(1,−1,−1) (−1,−1, 4) (0,−1, 2) (−1,−1, 4) (−1, 1, 3) (−1, 2, 2)

(1,−1,−1) (−1, 0, 4) (0,−1, 2) (−1,−1, 4) (−1, 2, 2) (−1, 3, 1)

(1,−1,−1) (−1, 0, 4) (0, 0, 1) (−1,−1, 4) (−1, 3, 1) (−1, 4, 0)

Table 4. The three-dimensional cones of the pushing triangulation Tp of ∆◦
1.
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integer. Second, all divisors in B in our language are given by a leaf with some height.

Since seven-branes are wrapped on divisors, it is natural to expect that with appropriate

variables that capture important properties of divisors, such as Hi, the intercept should

be close to zero; it is −1.46, which is quite close given that typical values of rk(G) are

O(2000). With these considerations taken into account,

rk(G) ' 8H1 + 4H2 + 2H3 + H4. (4.14)

Recalling that each leaf can only have a geometric gauge group contained in the set

G ∈ {E8, E7, E6, F4, D4, B3, G2, A2, A1}, (4.15)

it is natural to make the following conjecture based on this analysis:

Conjecture. With high probability, height 1 leaves have gauge group E8, height 2 leaves

have gauge group F4, height 3 leaves have gauge group G2 or A2, and height 2 leaves have

gauge group A1.

This conjecture is the natural output of the discussed machine learning analysis, linear

regression fit, and basic knowledge of the dataset. The natural questions to ask are what

constitutes high probability, are there important counterexamples that lead to sub-cases of

the conjecture, and how does one go about proving it.

There is one item of critical importance: this conjecture arose out of a set of random

samples, and therefore proving the conjecture may depend on particular properties Pi of the

random samples. In this context, “with high probability” could mean that the conjecture

depends critically on properties with high probability P (Pi). A natural proof method,

then, is to identify those high probability properties, and try to use them to prove the

conjecture.

By studying random samples, it quickly becomes clear that nearly all h = 1 leaves

carry E8, and in particular in all random samples computed to date there are ≥ 36 out of

a possible 38 h = 1 leaves that carry an E8. This means that nearly all leaves are built

“above” E8 roots, meaning that the associated v are linear combinations of vi’s that carry

E8. Since E8 on h = 1 leaves is so probable, this leads to

Refined Conjecture. Let v be a leaf v = av1 + bv2 + cv3 built on roots v1,2,3 whose

associated divisors carry E8. Then if the leaf has height hv = 2, 3, 4 its associated gauge

groups are F4, ∈ {G2, A2}, and A1, respectively.

With this level of refinement, it is possible to do precise calculations leading to the

proof of the conjecture, and a final refinement of the gauge group for height 3 leaves. In

fact, a version of this conjecture has already been proven in [5]. The precise result is

Theorem. Let v be a leaf v = av1 + bv2 + cv3 with vi simplex vertices in F . If the

associated divisors D1,2,3 carry a non-Higgsable E8 seven-brane, and if v has height hv =

1, 2, 3, 4, 5, 6 it also has Kodaira fiber Fv = II∗, IV ∗ns, I
∗
0,ns, IVns, II,− and gauge group

Gv = E8, F4, G2, SU(2),−,−, respectively.

The proof is short and is presented in the appendix of [5].
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At this point the reader is probably wondering why we went through a non-trivial

exercise to lead to the formulation of a conjecture, when a version of that conjecture has

already been proven. It is because in this simple result we see a back and forth process using

machine learning and knowledge of the data that led to the formulation of the conjecture,

and we believe this process is likely to be of broader use. That process is:

1. Variable Selection. Based on knowledge of the data, choose input variables Xi that

are likely to determine some desired output variable Y . In the example, this was

recognizing that Xi = Hi may correlate strongly with gauge group.

2. Machine Learning. Via machine learning, train a model to predict Y given Xi with

high probability. In this example, a 10-fold cross validation was performed, and it

was noted that the highest accuracy came from a linear regression.

3. Conjecture Formulation. Based on how the decision function uses Xi to determine

Y , formulate a first version of the conjecture. In this example, the first version of the

conjecture arose naturally from the linear regression and basic dataset knowledge.

4. Conjecture Refinement. The original conjecture arose from a model that was trained

on a dataset that is subject to sampling assumptions. Those assumptions may lead

to high probability properties critical to proving the conjecture; refine accordingly

based on them. In the example, we used the high frequency of E8 on the ground.

5. Proof. After iterating enough times that the conjecture is precise and natural calcu-

lations or proof steps are obvious, attempt to prove the conjecture.

We will use this procedure to produce new results in section 5.

5 Conjecture generation: E6 sectors in F-theory ensembles

Recently, an ensemble of 4
3 × 2.96 × 10755 F-theory geometries was presented and univer-

sality properties regarding the gauge group were derived. There, it was shown that certain

geometric assumptions lead to the existence of a gauge group G of rank rk(G) ≥ 160 with

certain detailed properties that correlated with the heights of certain “leaves” that corre-

sponded to divisors in an algebraic threefold. The simple factors in the generically semi-

simple group G were Gi ∈ {E8, F4, G2, A1}, which interestingly only have self-conjugate

representations. However, E6 and SU(3) may also exist in this ensemble. In certain random

samples they exist with probability ' 1/1000, but the conditions under which E6 or SU(3)

existed were not identified at that time. In this section we wish to use supervised learning

to study the conditions under which E6 exists in the ensemble. We will name subsections

in this section according to the general process outlined in section 4.

5.1 Variable selection

The results of [5] demonstrate that the gauge group on low lying leaves depends on the

heights of trees placed at various positions around the polytope. Yet for the E6 problem
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that we study, training a model on tree heights did not give as accurate results as we had

expected, and led us to consider other natural variables on which to train the model. This

is the process of variable selection.

The problem at hand, and for which we are developing new variables, is the problem

of determining whether a particular leaf has a particular gauge group on it. This question

has a yes or no answer, and therefore this is a classification problem. We will focus on

leaves on the ground, but with some modifications the basic idea extends to other leaves

as well.

Let v1 be a leaf on the ground. Since multv(f) < 4 or multv(g) < 6 for consistency

of the compactification, the monomials in f and g with minimal multiplicity along v in

f and g satisfy these multiplicity bounds. These must necessarily come from associated

points mf ∈ ∆f and mg ∈ ∆g satisfying −4 ≤ mf · v1 < 0 or −6 ≤ mg · v1 < 0. Therefore,

monomials m with m · v < 0 play a central role in determining the gauge group. On the

other hand, the above bounds on mf and mg are necessary for playing a role in determining

the gauge group on v1, but they are not sufficient, since if mf · v < −4 (mg · v < −6) for

some other v then mf 6∈ ∆f (mg /∈ ∆g), and then it does not play any role in determining

the gauge group. This follows from the definition (4.4) of ∆f and ∆g, since all rays v

associated to B appear, not just v1, i.e. the upper half planes associated with all v may in

principle chop out mf and mg, not just the upper half plane associated to v1.

The task is to determine those v that could cause mf or mg to be chopped off of the

original ∆f or ∆g, since the gauge group depends on whether or not this occurs to the set

of monomials with minimal order of vanishing in f or g. The other fact we have at our

disposal is that at least one of the inequalities mf · v1 < 0 or mg · v1 < 0 must be satisfied.

Let us use the mf inequality, knowing that similar comments hold for the mg inequality.

Then, for any v that is a leaf in a tree above v1, we have v = av1 + bv2 + cv3 and therefore

v chops off mf if

mf · v = amf · v1 + bmf · v2 + cmf · v3 < −4. (5.1)

Since mf ·v1 < 0, it is easy to see that the larger a is the more likely it is that the latter two

terms do not compensate to satisfy the inequality, in which case mf is chopped off. There

may be many such leaves built on v1 in this way, and they could occur above different

simplices, i.e. with v1 fixed but with different v2 and v3. Since whether or not mf ∈ ∆f

depends strongly on leaves vi with associated ai built above v1, the gauge group may also.

With this motivating discussion, let us define the variables on which we train our

models. If v = av1 + bv2 + cv3, then we define a,b,c to be the height above v1, v2, v3,

respectively, which sit on the ground. Let

Sa,v1 := {v ∈ V |v = av1 + bv2 + cv3, b, c ≥ 0} (5.2)

for some fixed value of a > 0, where V is the set of rays in the fan associated to the toric

variety. Note that, depending on the simplex under consideration, there may be several

pairs (v2, v3). This set is easily computed for any B ∈ S∆◦ , i.e. for any B in the ensemble

of [5]. For some amax, S>amax,v1 is empty, and therefore elements of Samax,v1 are the most

likely to chop out an mf or mg relative to elements of Sa<amax,v1 . Furthermore, if the
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cardinality of Samax,v1 is large, there are more chances to chop off mf . To any v ∈ V

satisfying v ∈ ∆◦ (this latter assumption is for simplicity), we therefore have a map

v 7→ (amax, |Samax,v|) ∀v ∈ ∆◦, (5.3)

and these will be the set of training variables that we will use.

In summary, instead of training on the heights of leaves distributed throughout ∆◦,

we will instead train on the number of leaves of maximal height above each v ∈ ∆◦. An

analytical argument was presented above for why these might be relevant for the gauge

group, but due to the complexity of the sets Samax,v it is not obvious how to concretely

extract gauge group information. This is therefore an ideal test case to employ machine

learning techniques.

5.2 Machine learning

Let us now turn specifically to the study of E6 gauge groups that arise in S∆◦
1
. In a million

random samples, E6 only arose on a particular distinguished vertex

vE6 = (1,−1,−1), (5.4)

which is the only vertex of ∆◦1 not in its biggest facet. However, E6 arose on this vertex

with probability ∼ 1/1000, and (due in part to potential phenomenological relevance) it is

of interest to understand this result better. Specifically, one would like to have a better

understanding of the conditions under which E6 arises, and whether the probability is a

general result or something that is specific to assumptions of the random sampling.

Specifically, we will use these variables to train a model to predict whether or not a

given B in a random sample has E6 on vE6 . This model defines a map A

∆◦1 −→ (amax, |Samax,v |) ∀v ∈ ∆◦1
A−→ E6 on vE6 or not, (5.5)

and the goal is to obtain maximal accuracy. For classification problems, such as this

one, accuracy simply means whether A makes the correct prediction amongst a class of

possibilities, which in this case is a binary class.

We will train on 20, 000 samples, but in this particular case it is important to change

the sampling prescription slightly. Under a purely random sample, approximately 20 of

the cases sampled would indeed have E6 on vE6 and the rest would not. In this case,

the trained algorithm will naturally lead to a constant prediction of no E6 for all inputs,

and it would have accuracy .999. This is clearly a sub-optimal outcome with a misleading

accuracy value. To correct for this possibility we will use random sampling to generate

10, 000 samples with E6 and 10, 000 without, training on the combined set.

Using this dataset, we perform a 10-fold cross validation using algorithms LR, LDA,

KNN, CART, SVM, and a validation size of 0.2, which reduces the training set to have

16, 000 samples and the validation set to have 4000. The results are presented in figure 4,

and we see that all of the models achieve high accuracy, with maximal median accuracy of

.995 achieve by the LR and LDA models.
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Figure 4. Model comparison from 10-fold cross validation for E6 sectors. All algorithms perform

quite well, though logistic regression and linear discriminant analyses give the best results.

Though we see high accuracy on the enriched samples with 50% E6 on vE6 and 50%

not, it is also interesting to ask whether the models trained on the 50/50 set can make

predictions on an unenriched set with E6 occurring naturally with probability 1 ' 1000.

We trained the models on the 50/50 training set, and scored them on the 50/50 validation

set of size 4000 and unenriched set of size 20, 000, with accuracy:

LR LDA KNN CART SVM

50/50 Validation Set .994 .994 .982 .987 .989

Unenriched Set .988 .988 .981 .988 .983.

We see that all models accurately predict whether or not there is E6 on vE6 in the unen-

riched data, even though the models were trained on the 50/50 enriched data. We have

done this using (amax, |Smax,v|) for all v in ∆◦1, which is a set of 2× 38 = 76 integers.

It is natural, however, to ask whether the result is ultimately controlled by some

subset of these integers. As discussed in section 2, analyses of this sort are known as

dimensionality reduction. Applied in this case, a particular type of dimensionality re-

duction known as a factor analysis demonstrates that, to high accuracy, the question of

whether or not E6 is on vE6 is determined by (amax, |Samax,vE6 |). Specifically, the factor

analysis identified that a particular linear combination of the original training variables,

which were (amax, |Samax,v|) ∀v ∈ ∆◦, determined whether or not there was an E6 on vE6 .

That linear combination only had non-negligible components along the pair of integers

(amax, |Samax,vE6 |). It is natural to expect this, given our previous discussion that motivated
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the use of these variables in the first place; nevertheless, the factor analysis underscores

the relevance of this feature.

Restricting the training data to (amax, |Samax,vE6 |), we performed identical analyses

to the previous ones with this restricted set of inputs per example, and find even better

accuracy:

LR LDA KNN CART SVM

50/50 Validation Set .994 .994 .994 .994 .994

Unenriched Set .988 .988 .988 .988 .983.

Thus, we see that there is a single pair of variables, (amax, |Smax,vE6 |), that determines to

high accuracy whether or not there is an E6 factor on vE6! Machine learning has validated

the loose ideas as to why (amax, |Smax,v|) might in some cases be relevant variables from

which to predict gauge groups.

5.3 Conjecture formulation

Heartened by the accuracy of the model and the simplicity of the input data, we would

like to use it to formulate a conjecture that can be proven rigorously.

To formulate a conjecture using the machine learned model there are two natural

paths. One is to look under the hood of the algorithm used to fit the model, study the

decision function, and see how it makes predictions given certain inputs. This was the path

taken in section 4. For datasets with low dimensionality (or low effective dimensionality

after dimensionality reduction) it may be possible to directly examine the predictions for

each input and see if there is any obvious trend. For the dimensionally reduced input

data that we just discussed, there are in fact only 32 unique pairs (amax, |Samax,vE6 |) in the

20, 000 samples, suggesting that human input may be feasible at this step in the conjecture-

generating process.

Utilizing a logistic regression to train a model on these 20, 000 samples, the

model makes predictions for whether or not there is an E6 on vE6 as a function of

(amax, |Samax,vE6 |), with the predictions given in table 5. There is an obvious trend: it

always predicts no for amax = 5, and usually predicts yes for amax = 4. This is highly sug-

gestive that whether amax is 4 or 5 for vE6 correlates strongly with whether or not there is

an E6. The hyperplane distance is an intrinsic measure of the confidence of the prediction

based on the logistic regression. The conclusions of this analysis lead to

Conjecture. If amax = 5 for vE6, then vE6 does not carry E6. If amax = 4 for vE6 it may

or may not carry E6, though it is more likely that it does.

The initial conjecture is rough, as was the initial conjecture of section 4.

5.4 Conjecture refinement and proof

We now attempt a conjecture refinement based on the sampling assumptions, the high

probability properties to which they lead, and general knowledge of the problem at hand.

As discussed, e.g., in [20], a necessary condition for vE6 to carry E6 is that

g = x4
E6

(m2 + . . . ), (5.6)
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amax |Samax,vE6 | Pred. for E6 on vE6 Hyperplane Distance

4 5 No 0.88

4 6 No 0.29

4 7 Yes −0.31

4 8 Yes −0.90

4 9 Yes −1.50

4 10 Yes −2.09

4 11 Yes −2.69

4 12 Yes −3.28

4 13 Yes −3.88

4 14 Yes −4.47

4 15 Yes −5.07

4 16 Yes −5.67

4 17 Yes −6.26

4 18 Yes −6.85

4 19 Yes −7.45

4 20 Yes −8.04

4 21 Yes −8.64

4 22 Yes −9.23

4 23 Yes −9.83

4 24 Yes −10.42

5 1 No 7.34

5 2 No 6.75

5 3 No 6.15

5 4 No 5.56

5 5 No 4.96

5 6 No 4.37

5 7 No 3.78

5 8 No 3.18

5 9 No 2.59

5 10 No 1.99

5 11 No 1.40

5 12 No 0.80

Table 5. Predictions of our logistic regression model as a function of (amax, |Smax,vE6
|).
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where xE6 is the homogeneous coordinate associated to vE6 and g4 = m2 is a single mono-

mial if B is toric.4 This single monomial corresponds to a single m̃ ∈ Z3 satisfying

m̃ · vE6 + 6 = 4. (5.7)

In 40, 000 random samples, whenever E6 arose the example had

m̃ = (−2, 0, 0). (5.8)

Henceforth, by m̃ we will mean precisely this vector in Z3. Finally, in random samples

we have empirically only seen the gauge group G on vE6 arising as G ∈ {E6, E7, E8},
suggesting that E6 only arises with high probability if m̃ = (−2, 0, 0). With some hard

work, this probability could be computed, but we leave this for future work and instead

take it as a hypothesis for our refined conjectures.

These valuable pieces of information, together with our model analysis, suggests that

m̃ is critical to obtaining E6, and furthermore that its should correlate strongly with amax

being 4 or 5. This leads to a refined conjecture based on evidence from the samples:

Refined Conjecture. Suppose that with high probability the group G on vE6 is G ∈
{E6, E7, E8} and that E6 may only arise with m̃ = (−2, 0, 0). Then there are two cases

related to determining G.

a) If amax = 5, m̃ cannot exist in ∆g and the group on vE6 is above E6.

b) If amax = 4, m̃ sometimes exists in ∆g. If it does then there is an E6 on vE6, and if

it does not there is an E7 or E8 on vE6.

Attempting to prove this quickly leads to additional realizations that give a final con-

jecture:

Theorem. Suppose that with high probability the group G on vE6 is G ∈ {E6, E7, E8} and

that E6 may only arise with m̃ = (−2, 0, 0). Given these assumptions, there are three cases

that determine whether or not G is E6.

a) If amax ≥ 5, m̃ cannot exist in ∆g and the group on vE6 is above E6.

b) Consider amax = 4. Let vi = aivE6+biv2+civ3 be a leaf built above vE6, and B = m̃·v2

and C = m̃ · v3. Then G is E6 if and only if (B, bi) > 0 or (C, ci) > 0 ∀i. Depending

on the case, G may or may not be E6.

c) If amax ≤ 3, m̃ ∈ ∆g and the group is E6.

4The reason for this form is the following. A necessary condition to have E6 on xE6 = 0 is that

f = x3E6
f3 + . . . and g = x3E6

+ . . . , where the . . . are higher order terms in xE6 ; this ensures a Kodaira

IV ∗ fiber above xE6 = 0. Let X
π−→ B be a crepant resolution of such a Weierstrass model. Then a generic

point p ∈ {xE6 = 0} has π−1(p) being a fiber that is a tree of curves that precisely reproduces the affine

E6 Dynkin diagram. However, if a loop is taken in xE6 = 0 by encircling g4 = 0, there is a Z2 monodromy

that gives a Z2 action on the Dynkin diagram, which reduces the gauge group to F4 rather than E6. The

condition that this doesn’t happen — i.e. that G = E6 — is that g4 is a perfect square g4 = m2. For

this perfect square phenomenon to occur on a toric base for generic complex structure, g4 must be a single

monomial that is a perfect square.
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Proof. We will proceed by a number of direct computations to determine the relationship

between amax and whether m̃ ∈ ∆g. Recall that m̃ ∈ ∆g ↔ m̃ · ṽi + 6 ≥ 0 ∀ṽi, where the

ṽi are any leaves. Direct computation shows that m̃ · ṽi ∈ {−2, 0, 2} for those ṽi ∈ ∆◦1, and

that vE6 is the only p ∈ ∆◦1 satisfying m̃ · vE6 = −2. Therefore, any leaf v that cuts m̃ out

of ∆g, i.e. m̃ · v + 6 < 0, necessarily has a component along vE6 . Let v = avE6 + bv2 + cv3,

with a, b, c ≥ 0; normally we require strict inequality, but do not here so that v may

be a leaf in a face tree or and edge tree. Given the above set {−2, 0, 2}, this yields

−2a + 6 ≤ m̃ · v + 6 ≤ −2a + 2(b + c) + 6. We study cases of this general inequality. If

amax = 5 there is at least one leaf with a = 5, and our bound a+b+c ≤ 6 implies b+c = 1.

Then m̃ · v + 6 ≤ −10 + 2 + 6 < 0 and therefore m̃ /∈ ∆g. This enhances the gauge group

on vE6 beyond E6, proving a). On the other hand, if amax = 3, m̃ · v+ 6 ≥ −6 + 6 = 0 and

m̃ ∈ ∆g, proving c). The case that requires some work is b), which has amax = 4. Let B,C

be m̃ · v2, m̃ · v3. The most constraining leaves are those v with a = amax, in which case

m̃·v+6 = −2+bB+cC. From above, we have B,C ∈ {0, 2} and (b, c) ∈ {(1, 0), (0, 1), (1, 1)}.
Then m̃ · v + 6 ≥ 0↔ b and B are non-zero or c and C are non-zero. This must occur for

all leaves v, in which case G is E6, proving b).

This theorem is a stronger, rigorous version of the basic result from the model we

trained with machine learning, namely that if amax = 5 then the gauge group G on it is

above E6, whereas it may or may not be E6 if amax = 4.

It is interesting that this result does not depend on triangulation, instead only that a

random sampling on some triangulation give G ∈ {E6, E7, E8} with high probability and

that E6 arise with m̃ = (−2, 0, 0). If these assumptions hold in any particular triangulation,

then the likelihood of a), b), or c) occurring can be computed explicitly based on the detailed

cone structure. Any three-dimensional cone containing vE6 is determined by a 3×3 matrix

M = (vE6 , v2, v3) subject to the constraint | det(M)| = 1, and from this data B and C can

be determined. Without loss of generality we can choose B ≥ C, and directly compute

(B,C) ∈ {(2, 2), (2, 0), (0, 0)}. Note that since a leaf in a face tree with height 4 above

E6 is v = 4vE6 + bv1 + cv2 and has b, c > 0, such a leaf can cut out m̃ only in the case

(B,C) = (0, 0). This result is triangulation independent, and we leave the study of other

triangulations to future work.

We would like to study the conditions of the theorem in the triangulation from which

we built our random samples. The three-cones in this triangulation that contain vE6 are

presented in table 6 and all are of (B,C) = (2, 0) type. Therefore in this triangulation

face leaves with amax = 4 cannot cut out m̃. Let us consider edge leaves, v = avE6 + bv2,

which we will refer to as an (a, b) edge leaf. Leaves above edges with amax = 4 have

v = 4vE6 +bv2 may be able to cut out m̃ from ∆g. From part b) of the theorem, this occurs

when B = m̃ · v2 = 0, and the only possibility for b is b = 1. There are 18 two dimensional

cones containing vE6 in our ensemble, 9 with B = 2 and 9 with B = 0.

This theorem and ensuing discussion imply that E6 exists on vE6 in this triangulation

if and only if there are no (5, 1) edge leaves and there are no (4, 1) edge leaves on edges

with B = 0. A pertinent fact is that edge trees with (5, 1) edge leaves always also have

(4, 1) edge leaves, and therefore the stated condition occurs if and only if there are no (5, 1)
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vE6 v2 v3

(1,−1,−1) (−1,−1, 0) (0,−1,−1)

(1,−1,−1) (−1, 0,−1) (0,−1,−1)

(1,−1,−1) (−1, 0,−1) (0, 0,−1)

(1,−1,−1) (−1,−1, 0) (0,−1, 0)

(1,−1,−1) (−1, 2,−1) (0, 0,−1)

(1,−1,−1) (−1, 2,−1) (0, 1,−1)

(1,−1,−1) (−1, 4,−1) (0, 1,−1)

(1,−1,−1) (−1, 4,−1) (0, 2,−1)

(1,−1,−1) (−1,−1, 2) (0,−1, 0)

(1,−1,−1) (−1,−1, 2) (0,−1, 1)

(1,−1,−1) (−1,−1, 4) (0,−1, 1)

(1,−1,−1) (−1,−1, 4) (0,−1, 2)

(1,−1,−1) (−1, 0, 4) (0,−1, 2)

(1,−1,−1) (−1, 0, 4) (0, 0, 1)

(1,−1,−1) (−1, 2, 2) (0, 0, 1)

(1,−1,−1) (−1, 2, 2) (0, 1, 0)

(1,−1,−1) (−1, 4, 0) (0, 1, 0)

(1,−1,−1) (−1, 4, 0) (0, 2,−1)

Table 6. The three-dimensional cones of the pushing triangulation Tp of ∆◦
1 that contain vE6

.

edge leaves on B = 2 edges and no (4, 1) edge leaves on B = 0 edges. Of the 82 possible

edge trees, 36 have (4, 1) leaves, and 18 have (5, 1) leaves. The probability of E6 on this

triangulation T of ∆◦1 should then be

P (E6 on vE6 inT ) =

(
1− 36

82

)9(
1− 18

82

)9

' .00059128. (5.9)

This prediction should be checked against random samples. Performing five independent

sets of two million random samples each, the predicted number of models with E6 using

this theorem and associated probability, compared to the results from random samples, is

From Theorem: .00059128× 2× 106 = 1182.56

From Random Samples: 1183, 1181, 1194, 1125, 1195. (5.10)

Some statistical variance is naturally expected when sampling, but the agreement is excep-

tional. Since the probability is computed from a theorem and is reliable when comparing

to a random sample, we compute the number of models with E6 on vE6 given this trian-

gulation:

Number of E6 Models on T = .00059128× 1

3
× 2.96× 10755 = 5.83× 10751. (5.11)
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It would be interesting to study phenomenological aspects of these models and whether the

probability of E6 changes in different triangulations of ∆◦1. We leave this to future work.

6 Conclusions

In this paper we have utilized machine learning to study the string landscape. We have ex-

emplified two concepts that we believe will be of broad use in understanding the landscape:

deep data dives and conjecture generation.

In a deep data dive, a model trained by machine learning on a subset of a dataset

allows for fast and accurate predictions outside of the training set, allowing for fast explo-

ration of the set. In some cases this exploration would not be possible without the model.

The example of section 3 is a deep data dive that studies triangulations of 3d reflexive

polytopes. There, we used machine learning and 10-fold cross validation to optimize a

model, eventually selecting an optimized decision tree for our study. This decision tree

accurately predicts the average number of fine regular star triangulations per polytope at

a given value of h11 of the associated toric variety, nFRST(h11). These results were already

known, providing a basis for evaluating the machine learning results. We found that the

decision tree accurately predicts nFRST(h11) for five values of h11 beyond the training set,

though the behavior is erratic at higher h11 likely due to being in the tail of the distribu-

tion. However, the extrapolation of reliable machine learned data to higher h11 accurately

predicts the known order of magnitude nFRST(h11 = 35) ∼ 1015–16. In the future machine

learning will be used to study Calabi-Yau threefolds in the Kreuzer-Skarke set.

In conjecture generation, machine learning is used to extract hypotheses regarding

data features that can lead to the formulation of a sharp conjecture. We found a common

procedure that worked for the examples of section 4 and 5: variable selection, machine

learning, conjecture formulation, conjecture refinement, proof. Each of the elements is

described in section 4, and the section headings of section 5 are chosen according to this

procedure. In section 4 we studied the rank of the geometrically non-Higgsable gauge

group in an ensemble of 4
3 × 2.96× 10755 F-theory geometries. We used machine learning

and 10-fold cross validation to optimize a model, and found that a simple linear regression

performed best. This naturally led to a conjecture that the rank of the gauge group depends

critically on the number of leaves of a given height in the geometry, and a version of this

conjecture had already been proven. In section 5 we studied the appearance of an E6 factor

on a distinguished vertex vE6 in the same ensemble. We again utilized machine learning

and 10-fold cross validation to optimize a model, finding that a logistic regression made the

most accurate predictions. This led to the generation of a new conjecture regarding when

E6 occurs on vE6 , which was then proven and compared to 10, 000, 000 random samples,

with good agreement. Both of these sections demonstrated the utility of machine learning

in generating conjectures, and underscore the importance of supervision in supervised

machine learning: variable selection and dataset knowledge were central to improving the

performance of the machine learned models.

We find machine learning a promising way to address big data problems in the string

landscape, and find it particularly encouraging that these numerical techniques may lead

to rigorous results via conjecture generation.
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