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1 Introduction

Gravity and electromagnetism are, as far as we know today, the only macroscopic forces in

nature. Their long-range character can be explained according to the massless character of

the graviton and the photon. This property, in its turn, is usually justified as a result of the

local symmetries of both theories, diffeomorphism and U(1) gauge invariance. Nonetheless,

it is natural to ask whether they are exactly massless or they just have small masses, and,

as a matter of fact, there have been a lot of efforts over the years to test this assumption.

On the experimental side, several bounds have been established for a non-zero mass [1]

while on the theoretical side great efforts have been invested in constructing consistent

models of massive gravity and massive electrodynamics. The starting point of massive

electrodynamics is the Proca Lagrangian. It consists on the usual Maxwell Lagrangian

plus a simple mass term, that explicitly violates the gauge invariance of the theory. This

effective approach can be completed at high energies through the Stuckelberg or the Higgs

mechanisms. On the phenomenological side, one important application of massive elec-

trodynamics has been the proposal of a new hypothetical field, known as hidden photon.

This hidden photon has associated a large amount of potential experimental signatures.

In particular, it constitutes a viable candidate for dark matter, whose effects have been

explored extensively in the literature [2–8].
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On the other hand, massive gravity is usually introduced by using the Fierz-Pauli ac-

tion [9]. It consists on the linearized action from general relativity (GR) plus a suitably

chosen mass term. It is worth noting that both the kinetic and the mass term of this

action can be derived without previous knowledge of GR. They can be constructed as the

most general choices for spin-2 particles, just requiring the absence of ghosts [10]. This

Lagrangian has been thoroughly studied and, today, its properties are well-known and

understood. For example, although the free action is consistent, a paradoxical behaviour

appears when we turn on the interaction. It was discovered independently in [11–13] that

this theory is not continuous in the massless limit, this is the so-called vDVZ discontinuity:

the m = 0 and m → 0 theories are not physically equivalent. The problem of the mass

discontinuity can be traced back to the number of degrees of freedom that both theories

propagate. While a massless spin-2 particle has only two degrees of freedom (two tensor

modes), a massive spin-2 particle has 5 (two tensor modes, two vectors and one scalar).

It can be shown [10, 14] that when we take the m → 0 limit, the scalar mode becomes

strongly coupled, invalidating the linear theory. In fact, when non-linear effects are taken

into account, the zero-mass discontinuity is cured through the so-called Vainshtein mech-

anism [15]. When the problem of the vDVZ discontinuity seemed solved, Boulware and

Deser [16] showed that for a broad range of extensions of the theory, these non-linear effects

also introduce a sixth degree of freedom, that turns out to be a ghost (BD ghost). Con-

structing a fully non-linear, consistent, theory of massive gravity is a big challenge and only

very recently it has been possible to evade the BD ghost. In 2010 de Rham, Gabadadze and

Tolley (dRGT) constructed a ghost-free non-linear completion of the Fierz-Pauli action,

known as ghost-free or dRGT massive gravity [17]. The dRGT action contains parameters

fixing the self-interactions and a reference metric. Shortly after, Hassan and Rosen [18]

reformulated the theory and made this reference metric dynamical. This new formulation

is a bimetric theory of gravity, describing at the linear level the evolution of a standard

massless graviton plus a massive one, with a Fierz-Pauli mass term. This massive graviton

has been proved to be a viable cold-dark-matter candidate in recent works [19–21]. The

linearized version of bimetric gravity coincides with the model we will analyze in this work,

i.e. massless gravity plus a single massive graviton. For a specialized review on bimetric

theory see [22]. Another context where massive gravitons naturally appear is in extra-

dimensional theories of gravity, like the ADD model [23, 24]. In this model, the standard

model fields are confined to a 4-brane, while the gravitons (described by the usual Einstein-

Hilbert action) can explore a number n of extra large dimensions. When duly compactified,

the existence of this new dimensions leads to a tower of Kaluza-Klein (KK) excitations of

the graviton. The weak interaction of this KK modes can be compensated by their huge

multiplicity and lead to significant deviations from usual gravity. A number of ways to test

the model were suggested by the original authors [25] and the experimental constraints

were derived in detail in many references [26–32].

We shall not assume any particular framework for our study. In our model, we will add

a single massive graviton to the known particles (linearized bimetric gravity), explore its

phenomenological consequences and use the observational evidence to constrain its mass

and coupling to other fields. In fact, we will employ methods that have become standard to
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test the impact of new light, weakly interacting particles: fifth-force tests and astrophysical

energy-loss arguments. They have been applied not only to KK gravitons, but also to

hidden photons [33, 34], sterile neutrinos [35, 36] and specially to axions [37–40].

This paper is organized as follows: in section 2 we will present the model, the simple

Fierz-Pauli Lagrangian, and all the relevant results for the subsequent calculations. Sec-

tion 3 explores the simplest observational consequence of the model, the existence of a fifth

force, and use the available experimental data to constrain the mass and coupling of the

hidden gravitons. Section 4 is devoted to astrophysical consequences. It covers some of

the processes that may take place inside the stars and induce a thermal emission of hidden

gravitons. Using astrophysical arguments we can set limits to the efficiency of this novel

form of energy loss. These limits will allow us to set bounds on the mass and coupling of

the hidden gravitons, complementary to those of fifth-force probes. Finally, section 5 col-

lects the main conclusions of the analysis, presents the final exclusion curves and discusses

prospects for future work.

2 Massive gravity. Formalism

We will start with the Fierz-Pauli Lagrangian, with mostly plus metric signature

(−,+,+,+),

L = −1

2
∂αhµν(∂αhµν − 2∂(µhν)α − ∂αhηµν + 2∂(µhην)α)− 1

2
m2(h2

µν − h2) , (2.1)

that describes a spin-2 particle with mass m on a Minkowski geometry. The kinetic term

here is the same appearing in the linearized Einstein-Hilbert action from GR, but in fact

no previous knowledge of GR is needed to build this Lagrangian. As shown for example

in [10], both the kinetic and the mass term are fixed just by requiring the absence of ghosts.

Starting with this Lagrangian, we will construct our free field theory. First, let us

rewrite it as

L =
1

2
hµνOαβµνhαβ , (2.2)

S =

∫
d4x L , (2.3)

where we have integrated by parts and defined the operator

Oαβµν = (δα(µδ
β
ν) − ηµνη

αβ)(�−m2)− 2δ
(α
(µ∂ν)∂

β) + ηαβ∂µ∂ν + ηµν∂
α∂β . (2.4)

The equations of motion are

δS

δhµν
= 0 → Oµναβhαβ = 0 , (2.5)

which after a few manipulations can be cast in the form

(�−m2)hµν = 0 , (2.6)

∂µhµν = 0 , (2.7)

h = hµµ = 0 . (2.8)

– 3 –
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This is the usual Klein-Gordon equation for a symmetric (10 degrees of freedom, dof),

transverse (−4 dof), traceless (−1 dof) tensor field, describing a total of 5 propagating dof.

This naive count of degrees of freedom is supported by a full Hamiltonian analysis [14].

Contrary to what happens in linearized GR, which owing to the linearized diffeomorphism

invariance only propagates 2 tensor modes, in massive gravity we have two tensor modes,

two vector modes and one scalar mode.

The solution of (2.6) can be written as

hµν(x) =

∫
d3p

(2π)32Ep

∑
λ

[
ap,λε

µν(p, λ)eipx + a†p,λε
µν∗(p, λ)e−ipx

]
, (2.9)

where the polarization tensors satisfy

pµε
µν(p, λ) = 0 , (2.10)

ηµνε
µν(p, λ) = 0 , (2.11)

εµν(p, λ)ε∗µν(p, λ′) = δλλ′ , (2.12)∑
λ

εµν(p, λ)εαβ∗(p, λ) =
1

2
(PµαP νβ + PµβP να)− 1

3
PµνPαβ , (2.13)

with Pαβ = ηαβ + pαpβ/m2. Since we will only work with conserved sources ∂T = 0, our

scattering amplitudes will have the property pµAµ··· = 0, so we can make the identification

Pµν → ηµν in (2.13) and work with the sum over polarizations given by

Sµναβ =
1

2
(ηµαηνβ + ηµβηνα)− 1

3
ηµνηαβ , (2.14)

which differs from GR in the factor 1/3, owing to the scalar mode contribution. Next, to

find the propagator we need to solve

Oαβ|σλ(p)Dσλ|µν(p) = iδα(µδ
β
ν) . (2.15)

The solution, as can be checked by direct substitution, is

Dαβ|µν =
−i

p2 +m2

[
Pα(µPν)β −

1

3
PαβPµν

]
, Pµν ≡ ηµν +

pµpν
m2

. (2.16)

Now, we need to turn on the interaction. Although we will be more precise about the form

of the interaction in section 4, for now let us choose a generic source Tµν . The Lagrangian

with a linear interaction with the source is

L =
1

2
hµνOαβµνhαβ + κhµνT

µν , (2.17)

and the equations of motion are

Oµναβhαβ = −κTµν , (2.18)
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with solution

hµν(x) = iκ

∫
d4x′ Dµν|αβ(x− x′)Tαβ(x′) . (2.19)

We have presented here the formal developments and results for a linear theory of massive

gravity. In the next sections we will explore the observational impact of a new massive

spin-2 particle, in addition to the usual massless graviton.

3 Fifth-force constraints

3.1 Theory

The first phenomenological conclusion we can extract from the model above is the existence

of a new force. In order to see the effect of this new force between two matter particles,

e.g. two electrons, one could first compute the one graviton exchange amplitude, then take

the non-relativistic limit and identify the interaction potential via the Born approximation.

A textbook example can be found in [41]. This is the standard procedure when particles

with non-trivial parity, like pseudoscalars, are present and mediate spin-dependent forces.

See [42] for an analysis of the axion case and [43] for a discussion of spin-dependent forces.

However, in our case, to reproduce the results at lowest order it is easier to compute the

classical interaction potential.

In the next section we will discuss how this hidden graviton couples to other fields.

For now, to compute the macroscopic force that it may produce, we will consider the force

mediated between two classical, non-relativistic sources with energy-momentum tensor

Tµν(i) = Miδ
µ
0 δ

ν
0δ

3(x− xi), i = 1, 2 (3.1)

i.e. two lumps of matter sitting at x1 and x2. The interaction potential is

V = −κ
∫

d3x hµν(x)Tµν2 (x) = −iκ2

∫
d3x

∫
d4y Tαβ1 (y)Dαβ|µν(x− y)Tµν2 (x)

= −iκ2M1M2

∫
dy0

∫
d4p

(2π)4
D0000(p)eip0(x0−y0)e−ip(x1−x2)

= −iκ2M1M2

∫
d3p

(2π)3
D0000(p0 = 0,p)e−ip(x1−x2) .

Now, it is worth recalling the form (2.16) of the propagator. For massless gravity one can

also derive the propagator, after properly fixing the gauge, and the result is the same as in

the massive case, save for a factor 1/2 instead of 1/3 [14]. For the moment, we write the

generic form

iD0000(p0 = 0,p) =
1− α

p2 +m2
, (3.2)

where α = 1/2, 1/3 for massless/massive gravitons. After performing the integral, we

obtain what is to be expected from a massive, even spin, boson: a universally attractive

Yukawa force

V = −κ2M1M2
e−mr

4πr
(1− α), r = |x1 − x2| . (3.3)

– 5 –
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The standard Newtonian potential is recovered in the massless case (m = 0, α = 1/2,

κ = 1/MPl =
√

8πG) while in the massive case we have (κ = 1/Mh =
√

8πGh)

V = −4

3
GhM1M2

e−mr

r
. (3.4)

The appearance of the factor 4/3 may seem surprising. In fact, it could be reabsorbed

in the definition of Gh, so that the m = 0 and m → 0 cases will give the same physical

results with the identification G = 4
3Gh. However, this kind of factors reappear when

calculating the deflection of light [10]. In that case, the factors cannot be reabsorbed,

yielding unambiguosly different results. As commented in the introduction, this is the

vDVZ discontinuity in the massless limit.

So we will stick to this definition of the coupling constant, without reabsorbing the

factor 4/3. The total potential produced by standard gravity and this hypothetical new

mediator is

V (r) = −GM1M2

r

(
1 +

4

3

Gh
G

e−mr
)
. (3.5)

With this result, we are ready to constrain the possible values of Gh and m using the

available data.

3.2 Experiments

Over the last decades there has been an ongoing effort to measure possible deviations from

the inverse square law (ISL), without success so far. As a result of this effort, there exists a

good deal of experimental data, ranging from microscopic to solar-system scales, that can

be used to put stringent bounds to our model.

Our interaction potential (3.5) has already been cast in the traditional form for

ISL tests

V (r) = −GM1M2

r

(
1 + αe−r/λ

)
, (3.6)

so we can easily adapt the existing constraints to our case α = 4
3
Gh
G , λ = 1/m. The relevant

bounds are shown in figure 1, for solar-system and laboratory constraints, respectively. We

now briefly summarize the content of the experiments quoted and refer the reader to the

original references and topical reviews [44, 45] for further details.

I) Planetary (109–1013 m). One of the effects produced by a modification of the ISL

over solar-system scales is an anomalous precession of planetary orbits. This fact was

used in [51] to set bounds on possible modifications of Newtonian gravity, analyzing

the orbits of Mercury and Mars.

II) Earth-LAGEOS-Moon (105–1010 m). The first of the curves (LLR) corresponds to a

measure of the anomalous precession of the Moon, which is the same effect as in the

previous point. The other two correspond to measurements of the spatial variation of

G, based on the orbits of the Moon and the LAGEOS satellite (in an orbit of about

1.2× 107 m). More details in [52].

– 6 –
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Figure 1. Constraints on the hidden-graviton mass and coupling Gh, relative to the standard-

graviton coupling. The shadowed region is excluded by fifth-force tests. The curves have been

adapted from the following references: planetary, LLR, LAGEOS-Lunar, LAGEOS-Earth, geo-

physics [44], Irvine [46], Washington, Colorado [47], Stanford [48], Bordag [49], Mostepanenko 1

and 2 [50].

III) Geophysical (1–104 m). There are several experiments halfway between solar-system

and laboratory scales, which aim to measure spatial variations of G within the Earth.

These include measurements in towers, seas, mines and are reviewed in [53].

IV) Cavendish (10 µm–1 cm). In this range lie the laboratory probes of the force of

gravity with torsion balances. For a review, see [44].

V) Casimir (1 nm–10 µm). Although experimentally challenging, it is possible to mea-

sure the Casimir force between two bodies, e.g. using atomic-force microscopes. As

reviewed in [50], these measurements can be used to constrain the existence of a

new force.

The tightest constraints on the interaction strength come from experiments testing

large distances and put, in its turn, strong constraints on the existence of very low mass

particles. The situation is reversed for higher masses. In view of the huge experimental

challenges, the Casimir experiments, that probe the shortest distances, set significantly

looser bounds than its Cavendish counterparts.

The shortest range experiments in the laboratory can only put bounds on masses of

about few eVs, and there are no prospects that they can go much further. It is in this

range of masses where we need the information provided by astrophysical objects.

4 Astrophysical constraints

Stars have become one of the best laboratories to study the impact of new light and

weakly interacting particles. One of the main advantages of stars is that, owing to its

– 7 –
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big size, even really weakly interacting particles can be copiously produced and have a

dramatic impact on the stellar life. Among the disadvantages, the results are never as

statistically significant as in the laboratory experiments, with the errors being dominated

by astrophysical uncertainties.

The work in this section can be thought as three different tasks: i) choose the interac-

tion and identify the relevant processes, ii) compute the matrix element for each process and

the associated energy-loss rate, iii) apply the results to different stellar-medium conditions

and compare with observational data.

4.1 Interaction

The coupling of the hidden graviton is taken to have the same form as the standard graviton,

but suppressed by a different energy scale, κ = 1/Mh =
√

8πGh. It will couple to matter

through the energy-momentum tensor obtained with the usual prescription in GR, as the

functional derivative with respect to the metric of a minimally coupled matter action. It

can be proven [54] that this prescription gives a suitable symmetric, conserved source.

The most relevant coupling in this work is to QED [55]

LQED = −1

4
FµνF

µν + ψ̄(i /D −m)ψ , Dµ = ∂µ + iqAµ , (4.1)

TQED
µν = FµαF

α
ν +

i

2

[
ψ̄γ(µDν)ψ − (D(µψ̄)γν)ψ

]
+ ηµνLQED , (4.2)

where for hidden gravitons on-shell the last term is irrelevant, see (2.8). From this we

can read three kind of vertices. The Feynman rules for these interactions were calculated

in [56, 57].

4.2 Processes

It is important to note that these processes take place in a hot plasma where all kinds of

new effects appear, as summarized in [35] and references therein. The standard vertices and

propagators of quantum field theory (QFT) are modified, new degrees of freedom appear

(like the longitudinal plasmon) and some collective behaviours are relevant. However, as a

first approximation, we will neglect most of these plasma effects, pointing out some cases

where they can suppress decisively some processes. To sum up, we will use the Boltzmann

equation, computing thermally-averaged cross sections with zero temperature QFT.

The Boltzmann equation describes the evolution of the distribution function for dif-

ferent coupled particles [58]

df

dt
= C[f ] , (4.3)

n(t) =
g

(2π)3

∫
f(E, t)d3p , (4.4)

where n(t) is the number density of particles, g is the number of internal degrees of freedom

and C[f ] is the collision term. For instance, for processes ab ↔ cd, the collission term for

– 8 –
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the species a is

C[fa] =
S

2Ea

∫
dΠbdΠcdΠd(2π)4δ4(pa + pb − pc − pd)|M|2

×
[
fcfd(1± fa)(1± fb)︸ ︷︷ ︸

cd→ ab

− fafb(1± fc)(1± fd)︸ ︷︷ ︸
ab→ cd

]{+ bosons

− fermions

where dΠi =
dp3

i
(2π)32Ei

is the Lorentz-invariant phase-space volume and S is the proper

symmetry factor, e.g. S = 1/2 for identical particles in the initial or final state. The

energy-loss rate, i.e. energy released per unit volume and per unit of time, due to emission

of a-particles is

Qa = S

∫
EadΠa

∫
dΠbdΠcdΠd(2π)4δ4(pa + pb − pc − pd)fcfd(1± fb)

∑
spins

|M|2 , (4.5)

assuming that the particles are readily emitted, so we neglect the backreaction ab →
cd and the enhancement/blocking factor (1 ± fa). Of course, we also consider thermal

equilibrium, so the f ’s are the equilibrium Bose-Einstein/Fermi-Dirac distributions. Using

similar arguments, if we have a process with only one particle in the final state cd → a,

the energy released is

Qa = S

∫
fcdΠc

∫
fddΠd

Ea
2
√
s

(2π)δ(ma −
√
s)
∑
spins

|M|2 , (4.6)

where s = −(pc+pd)
2 is associated with the square of the center of mass energy. In general,

the Mandelstam variables are defined as

s = −(pc + pd)
2 , (4.7)

t = −(pc − pa)2 , (4.8)

u = −(pd − pa)2 . (4.9)

Finally, in the presence of an external field, the momentum is conserved without affecting

the conservation of energy. For a process of the type c+ EF→ ab, we have

Qa = nNS

∫
EadΠa

∫
(1± fb)dΠb

∫
fcdΠc(2π)δ(Ea + Eb − Ec)

∑
spins

|M|2 . (4.10)

Now, we will analyze the different processes relevant for the emission of hidden gravitons

in stars.

4.2.1 Photon-photon

The amplitude for this process is

Aβ(k2)

Aα(k1)

hµν = −2iκεα(k1)εβ(k2)V(µν)αβ(k1, k2)εµν(k1 + k2) . (4.11)

– 9 –
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f(p)

Aα(k) hµν(q)

f(p′)

Figure 2. Gravi-Compton process.

where the vertex is

Vµναβ(k1, k2) = − 1

2
ηµν(k1βk2α − ηαβk1 · k2)− ηαβk1µk2ν

− ηµα(ηνβk1 · k2 − k1βk2ν) + ηµβk1νk2α . (4.12)

Summing over initial and final spins, we can easily obtain the matrix element∑
spins

|M|2 = 4κ2Sµνµ
′ν′VµναβV

αβ
µ′ν′ = −8κ2(k1k2)2 = 2κ2s2 . (4.13)

Now we can plug it in our Boltzmann equation (4.6), with the appropiate Bose-Einstein

distributions and a symmetry factor S = 1/2 for identical particles in the initial state, to

compute the energy loss

Qγ =
S

4(2π)3

∫
fcfd pcdEc pddEd dzcd

Ec + Ed
m

δ(m−√s)
∑
spins

|M|2

= −κ
2m4T 3

2(2π)3

∫ ∞
0

ωdω

eω − 1
log
(

1− e−
m2

4T2ω

)
, (4.14)

where s = 2ωcωd(1 − zcd) is the center of mass energy and zcd ≡ cos(θcd) is the cosine of

the angle between the incident photons.

4.2.2 Gravi-Compton

The Gravi-Compton process consists on four diagrams, figure 2. The scattering amplitude is

iM≡ −iκe
(
A(I)

(µν)α +A(II)
(µν)α +A(III)

(µν)α +A(IV)
(µν)α

)
εµν(q)εα(k) , (4.15)

where

A(I)
µνα = ū

pµ + kµ − qµ/2
(p+ k)2 +m2

e

γν(/p+ /k −me)γαu

+ ū
ηµν

(k + p)2 +m2
e

(/k + /p− /q/2 + 2me)(/k + /p−me)γαu ,

A(II)
µνα = ū

pµ − qµ/2
(p− q)2 +m2

e

γα(/p− /q −me)γνu

+ ū
ηµν

(p− q)2 +m2
e

γα(/p− /q −me)(/p− /q/2 + 2me)u ,

A(III)
µνα =

2

(q − k)2
ūγβVµνβα(q − k, k)u ,

A(IV)
µνα = ū(γµηνα − ηµνγα)u .
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The squared matrix element, summing over spins, is∑
spins

|M|2 = (κe)2Sµνµ
′ν′Tr

[
Aµνα(/p−me)Ā α

µ′ν′ (/p′ −me)
]

= (κe)2F (s, t) , (4.16)

where F (s, t) is a fairly lengthy function of the Mandelstam variables s, t and the masses

of the particles, that we will integrate numerically later on.

The final result for the process γ(c) + e(d)→ e(b) +G(a) is

Qcp =
κ2e2

8(2π)5

∫ ∞
0

EcdEc

eEc/T − 1

∫ ∞
me

pddEd
e(Ed−µ)/T + 1

∫ 1

−1
dzcd

∫ 1

−1
dzcm

(
1− fF(Eb)

)
× pcmEa√

s
θ(
√
s−m−me)F (s, t) , (4.17)

where Ec and Ed are the energy of the initial particles, zcd ≡ cos(θcd) is the angle between

these initial particles, zcm ≡ cos(θcm) is the angle between the initial and final particles

in the center of mass (CM) frame and pcm is the momentum of the final particles in this

CM frame

pcm =
1

2
√
s

√
s2 − 2(m2 +m2

e)s+ (m2 −m2
e)

2 . (4.18)

Finally, Ea and Eb are the energies of the final states in an arbitrary frame, that can be

obtained from its CM value Ecm =
√
m2 + p2

cm with a boost.

4.2.3 Electron-positron annihilation

There are two electron-positron processes that are important, e+e− → G and e−e+ → γG.

We will make an important approximation throughout this subsection. Since the amount

of positrons in the red giants and the Sun is negligible, this process will only be important

in supernovas. But, in that case, the electrons are highly relativistic, me � TSN, so we can

safely set me ' 0 in our calculations.

The first process is equivalent to the photon-photon annihilation

f(k1)

f̄(k2)

= − iκ

2
v̄(k2)W(µν)(k1,−k2)u(k1)εµν(k1 + k2) . (4.19)

where the vertex is

Wµν(k1, k2) = (k1 + k2)µγν − ηµν( /k1 + /k2 + 2me) . (4.20)

As in the photon-photon case, the matrix element is easily computed∑
spins

|M|2 =
κ2

4
(k1 − k2)µ(k1 − k2)µ′S

µ′ν′µνTr
[
γν( /k1 −me)γν′( /k2 +me)

]
=
κ2

2

(
s2 +

4

3
m2
es−

32

3
m4
e

)
' κ2

2
s2 , (4.21)
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f(p) Aα(k)

f̄(p′) hµν(q)

Figure 3. Electron-positron annihilation.

f(p) f(p′)

hµν(q)

Figure 4. Gravi-bremsstrahlung process.

and the corresponding energy-loss rate is

Qee1 =
κ2m4T 3

8(2π)3

∫ ∞
0

EdE

eE+µ/T + 1
log
(

1 + e−
m2

4T2E
+µ/T

)
+ (µ→ −µ) . (4.22)

The second process involves a photon and a hidden graviton in the final state, figure 3, so

it can also take place in massless gravity.

The amplitude and cross section for this case can be adapted from the Compton

process (4.16) using the crossing symmetry∑
spins

|M|2 = (κe)2F (t, s) . (4.23)

In the limit me → 0, the function F (t, s) takes a simple form

F (t, s) '

(
M4 − 2M2t+ s2 + 2t(s+ t)

)(
4t(s+ t)−M2(s+ 4t)

)
st(s+ t−M2)

. (4.24)

The final result for the process ē(c) + e(d)→ γ(b) +G(a) is

Qee2 =
κ2e2

8(2π)5

∫ ∞
0

EcdEc

e(Ec+µ)/T + 1

∫ ∞
0

EddEd
e(Ed−µ)/T + 1

∫ 1

−1
dzcd

∫ 1

−1
dzcm

(
1 + fB(Eb)

)
× pcmEa√

s
θ(
√
s−m)F (t, s) . (4.25)

4.2.4 Gravi-bremsstrahlung

For this process we can adapt the result (4.16). Now the photon is off-shell, see figure 4, it

is a Coulomb field produced by a static heavy nucleus.

In the external field approximation, we must substitute the polarization vector εα(k)

with the external Coulomb field Aα = −η0αZe/k2, kµ = (0, q + p′ − p). We are also

– 12 –



J
H
E
P
0
9
(
2
0
1
7
)
1
0
4

neglecting the emission of hidden gravitons from the nucleus, since its contribution is

strongly suppressed by its large mass. The matrix element is∑
spins

|M|2 =
(κZe2)2

k4
Sµνµ

′ν′Tr
[
Aµν0(/p+me)Āµ′ν′0(/p′ +me)

]
= (κZe2)2M(s, t, u) , (4.26)

where M(s, t, u) is a lengthy, rational function of the Mandelstam variables and the masses

of the particles. In the end, the energy-loss rate for the process e(c) + EF→ e(b) +G(a) is

Qgb =
κ2e4

4(2π)5

∑
j

Z2
j nj

∫ ∞
me

dEb

∫ ∞
me

dEcθ(Ec − Eb −m)

∫ 1

−1
dza

∫ 1

−1
dzcpbpc(Ec − Eb)

×
√

(Ec − Eb)2 −m2fF(Ec)(1− fF(Eb))M(s, t, u) , (4.27)

where we have summed over all the different nuclei present in the medium. If we assume

that the star only contains fully ionized hydrogen and helium,∑
j

Z2
j nj =

∑
j

Z2
j

Xjρ

Ajmu
=

ρ

mu
, (4.28)

where Zj is the atomic number of the element j, Xj is the mass fraction, Aj is the atomic

weight and mu is the atomic mass unit. This should be a fair approximation, but it may

underestimate the energy production in stars with appreciable metallicity. The heaviest

nuclei, even in small amounts, can contribute significantly to this mechanism, for they also

have higher charge Z.

4.2.5 Nucleon bremsstrahlung

As mentioned in the introduction, most of the previous work on astrophysical constraints

with massive gravitons was motivated by the ADD proposal [25]. Shortly after, these

authors studied the phenomenological consequences of the model in [23] and, using order-

of-magnitude estimates, pointed out the relevance of two-nucleon processes N + N →
N +N +G, in supernovae.

Since then, considerable efforts have been devoted to detailed calculations of this

energy-loss mechanism. In [27] and [26] the authors adopted a derivative and a Yukawa

coupling for the nucleon-pion interaction, respectively, and computed the energy-loss rate

relying on the one-pion-exchange approximation for the nucleon-nucleon scattering.

An alternative approach was adopted in [28], where the authors dropped the one-pion-

exchange approximation and used some low-energy theorems to set bounds in a model-

independent way. The main assumptions in this case were that the emitted gravitons are

soft and that the emission rate is dominated by two-body collisions. In this soft limit,

the energy of the hidden graviton is much smaller than the other scales and it is possible

to separate the details of the nucleon-nucleon scattering from the emission process. This

result allows to use the measured nucleon-nucleon scattering cross-section and dramatically

simplifies the calculations.

– 13 –



J
H
E
P
0
9
(
2
0
1
7
)
1
0
4

Finally, it is worth mentioning the results obtained in [32], where the authors derived

some semiclassical formulas for the emission and absorption of hidden gravitons in a nuclear

medium, such as a supernova or a neutron star.

For this work, we will quote the results of [28] for a single hidden graviton in a neutron

gas (neutron-proton and proton-proton processes are subdominant). The energy emitted,

in a nuclear bremsstrahlung process in the form of soft hidden gravitons, is

Qnb =S
215/2GhM

9/2T 13/2

5π6

∫ ∞
δ

dur

∫ 1

−1
d(cos(θ))

∫ ∞
0

duP

∫ ur−δ

0
du′r

∫ 1

−1
d(cos θ′)

× u1/2
r u

1/2
P u′1/2r ū2ξ[δ/(ur−u′r)]f1f2(1−f ′1)(1−f ′2)

∫ 2π

0

dφ

2π
sin2 θcm|A(θcm, 2T ū)|2 ,

(4.29)

where S = 1/4 is the symmetry factor in this case, M is the neutron mass, T is the

temperature of the neutron gas, µ = yT is the chemical potential and m = 2Tδ is the

hidden graviton mass. Other definitions are

fi =
1

e(ui−yi) + 1
, u1,2 = uP + ur ± 2

√
uPur cos θ , (4.30)

f ′i =
1

e(u′i−yi) + 1
, u′1,2 = uP + u′r ± 2

√
uPu′r cos θ′ , (4.31)

ū = (ur + u′r)/2 , (4.32)

ξ[x] =
√

1− x2
(19

18
+

11

9
x2 +

2

9
x4
)
, (4.33)

cos θcm = cos θ cos θ′ + sin θ sin θ′ cosφ . (4.34)

Moreover, in the region of interest there is a weak dependence of the neutron-neutron

scattering cross-section on the angle and the energy, so we can use the approximate result

M2|A|2
32π

' σ0 = 25 mb . (4.35)

The formula (4.29) is strictly valid only when the emitted hidden gravitons are soft

(ω � p̄2

M → |ur−u′r|
ur+u′r

� 1). In particular, it is not valid in our whole range of masses, it

works up to m ∼ 100 MeV, but for these high masses the phase-space effects dominate the

energy loss, so the results should not be significantly modified.

4.3 Energy loss argument

If there exists a new type of particle, light enough to be thermally produced in stellar

objects, depending on its coupling strength it can have two effects:

• Energy loss. If the particle interacts weakly enough, so that once produced it can

freely escape, it acts like an energy sink and modifies the stellar evolution.

• Energy transfer. If the particle gets trapped and interacts with the medium, it

contributes to the energy transfer, modifying the stellar structure.
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We will focus here in the energy loss argument. In general terms, the presence of a new

energy sink makes the star burn the nuclear fuel at a higher rate, shortening some phases

of the stellar evolution. The specific examples to be treated here are:

• Sun. In the presence of a new source of energy loss, the Sun would burn its nuclear fuel

faster and shine brighter [59]. This modified luminosity Lx is not directly observable

since the solar models are actually fitted to achieve the observed luminosity L�, e.g.

modifying the amount of helium. However, we can obtain bounds either by imposing

that the solar age is not modified too much or that the initial helium fraction has at

least the primordial value. Both criteria agree to give a bound [60]

Lx < L� → εx < ε� , (4.36)

where ε� = 1 erg g−1 s−1 is the standard emissivity in the Sun and εx is the emissivity

due to the new type of particle. The theoretical luminosities must be evaluated under

the conditions of the solar core

ρ = 156 g cm−3 , ne = 6.3× 1025 cm−3 ,

T = 1.3 keV , X = 0.35 ,

where ρ is the density in the solar core, ne the number density of electrons, T the

temperature and X the mass fraction of hydrogen. The numerical data in this section

come either from [60] or [35].

• Red Giant Branch. After depleting the hydrogen in the inner regions, the low mass

stars (M < 2M�) develop a degenerate, inert, helium core and ascend along the

red giant branch. The red giant branch ends when the helium ignites and the stars

move to the horizontal branch. With additional energy losses the ignition of helium

is delayed (or completely prevented in an extreme case). In the light of observations,

a simple analytical bound for new energy losses is [60]

εx < 10 erg g−1 s−1 , (4.37)

to be evaluated at average conditions for the core of a red giant near the helium flash

ρ = 2× 105 g cm−3 , ne = 6× 1028 cm−3 ,

T = 8.6 keV , Ye = 0.5 ,

where Ye is the inverse of the “mean molecular weight” for the electrons, such that

ne = Yeρ/mu.

• Supernova 1987A. The energy loss argument for the supernova (SN) case is a bit

different from that of standard stars. When a neutron star is born, after a supernova

collapse, it emits a huge amount of energy in the form of neutrinos. This is the main

cooling mechanism in these objects and any novel form of energy loss would reduce

the amount of energy in the form of neutrinos.
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Figure 5. Constraints coming from the processes considered under different astrophysical condi-

tions, along with the combined bounds for each object. The shadowed region is excluded. In the

supernova case, as there is uncertainty about its temperature, we plot the results for two different

temperatures. For the final limits we will use the more conservative estimate of T = 40 MeV.

The SN1987A event is particularly significant, since the neutrino signal was detected

in different observatories around the world. The signal is consistent with the theoreti-

cal models, so it can be used to put constraints on the properties of new particles that

would induce additional energy losses. Raffelt [60], based on numerical simulations

of SN evolution, proposed the following analytical criterium

εx . 1019 erg g−1 s−1 , (4.38)

where it is assumed that the particles escape freely and the energy-loss rate is to be

evaluated under conditions

ρ = 8× 1014 g cm−3 , T ∼ (40− 60) MeV .
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Figure 6. Constraints on the hidden-graviton mass and coupling Gh, relative to the standard-

graviton coupling. The shadowed region is excluded by fifth-force tests and energy-loss restrictions,

derived in this work. The two additional axes represent the distance scale λ = 1/m and the energy

scale Mh = 1/
√

8πGh.

Finally, all we need to do is to compute the emissivity ε = Q/ρ for each pro-

cess (4.14), (4.17), (4.22), (4.25), (4.27), (4.29) under different medium conditions, and

apply the restrictions (4.36), (4.37), (4.38). The main results are collected in figure 5.

5 Conclusions

In this work, we have derived constraints on the mass and coupling strength of an additional

massive graviton. These new spin-2 particles are a generic feature of different extensions of

the gravitational sector. In our analysis, we have introduced hidden gravitons in the sim-

plest way, as an additional field described by a linear Fierz-Pauli Lagrangian. In addition

to the standard fifth-force tests, we have worked out in detail the emission of these hidden

gravitons from different astrophysical objects. The computed emission rates allow us to

place limits on the parameters of the theory, to avoid anomalies in the observed energy-loss

rates. The most important processes in the Sun and red giants are the Compton and the

bremsstrahlung process. In the supernova case, these processes are suppressed, since the

Pauli blocking is very important and in addition the electric field created by the nucleus
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is screened, an effect that we have neglected in our calculations. In this case, there is an

appreciable number of positrons in the medium, but their overall contribution to the en-

ergy loss turns out to be negligible. At these nuclear densities, the dominant process is the

nucleon-nucleon bremsstrahlung, mediated by the strong interaction. In all three cases the

photon-photon process, which is forbidden for massless gravitons, is found to be relevant.

These astrophysical bounds complement the fifth-force constraints and are orders of

magnitude more competitive than other restrictions in the same range of masses, like tests

on atomic systems [61]. Further work in this direction would involve a full numerical

analysis and a modification of the stellar models. This kind of study has already been

carried out in the case of axions and it would help to refine the constraints and clarify

the impact on the stellar structure, as a novel form of energy transfer for large coupling

strengths. Following the analogy with the axion case, another effect that might be relevant

in our range of masses is the mixing of the hidden graviton with photons in electromagnetic

fields [62]. This effect was originally studied for axions and massless gravitons, while

in [63] the analysis was extended to the massive-graviton case. The results of light-shining-

through-walls experiments, that have been already used to place limits on the axion and

hidden-photon properties, could be adapted to our case and may strengthen the constraints

in a small range of masses.
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