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pactification of the 4d N = 2 theories of type Ha, D4, Fg, F7 and Eg (and their higher rank
generalizations), where the 6d instanton number is mapped to the rank of the correspond-
ing 4d SCFT. This determines their anomaly polynomials and, via topological strings,
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1 Introduction

Recently, many new results have been obtained in the context of 6d (1,0) theories [1-25];
nonetheless, many of their properties remain rather mysterious. A distinctive feature of
these theories is that among their excitations they have self-dual BPS strings preserving
2d (0,4) supersymmetry on their worldsheet (see e.g. [26]). The 2d (0,4) theories on the
worldsheets of the BPS strings give an interesting perspective on the physics of the 6d
(1,0) models [27-43]. Often, such 2d worldsheet theories can be determined using brane
engineerings in ITA or IIB superstrings [44-47]; however, these perturbative brane engineer-
ings are less helpful in the case of 6d (1,0) systems with exceptional gauge groups, a fact
which is related to the absence of an ADHM construction for exceptional instanton moduli
spaces [48-51].1 On the other hand, it is well-known that systems with exceptional gauge
symmetries are ubiquitous in the landscape of 6d (1,0) models realized within F-theory [53],
which rely upon the gauge symmetries of non-perturbative seven-brane stacks [54-57]. The
main aim of this paper is to begin filling this gap, shedding some light on the 2d (0,4)
sigma models with target space the exceptional instanton moduli spaces.

The rank of a 6d SCFT is defined to be the dimension of its tensor branch, i.e. the
number of independent abelian tensor fields. Each tensor field is paired up with a BPS
string which sources it. As our aim is to characterize the exceptional instanton strings, we
prefer to avoid the complications arising from bound states of strings of different types, and
we choose to work with rank one theories. The list of 6d (1,0) rank one theories realized
within F-theory can be found in section 6.1 of [8]. It is rather interesting to remark that
there are only six “pure” gauge theories of rank one which can be completed to SCFTs. The
corresponding gauge groups are SU(3),SO(8), Fy, Eg, E7 and Eg, while the Dirac pairing
of the corresponding strings is n = 3,4,5,6,8,12.

One of the most intriguing features of the 6d (1,0) theories which arise in F-theory is
that some gauge groups are “non-Higgsable” [58, 59|, which is the case for the exceptional
models above. These models arise, for instance, in the context of the Heterotic Fg x Ejg
superstring compactified on K3 with instanton numbers (12 — n,12 + n) for the two Eg
factors. Whenever n # 0, the Heterotic string has a strong coupling singularity [26, 60, 61],
which for 3 < n < 12 supports a 6d (1,0) SCFT of rank one with non-Higgsable gauge
symmetries [55, 56, 62]. For n = 7,9, 10, 11, the non-Higgsable models include some extra
degrees of freedom.

It is interesting to remark that the rank one models with n = 3,4, 6, 8, 12 are realized in
F-theory as orbifold singularities of the form X,, = (C? x T?)/Z, [55, 62]: such models are
precisely the rank one 6d SCFTs with pure simply-laced gauge group and no additional
matter. In what follows we are going to argue that the 2d (0,4) worldsheet theories
describing a bound state of k& BPS instantonic strings for such theories arise from well-
known 4D N = 2 theories compactified on P! with Kapustin’s B-twist [63]: for n =
3,4,6,8,12 we obtain (respectively) the -twisted rank k version of the 4d N' = 2 theories
Hs, Dy, Eg, Er, Eg with flavor symmetry SU(3), SO(8), Eg¢, E7, Eg respectively, plus a

For a review, see [52].



decoupled free hypermultiplet. In what follows we are going to denote these 4d N = 2
theories simply by IT[gC ),

Let us denote by Ei(X) the elliptic genus of the 2d (0,4) worldsheet theories for
a bound state of k strings of the 6d SCF'T engineered by F-theory on the local elliptic
threefold X.2 The topological string partition function Zip(X) of the elliptic threefold

has an expansion in terms of the Ej(X) [34] which takes the schematic form

Ziop(X) = Zo(X) | 14+ > Ex(X)Q* | (1.1)

Let )Z'n be a crepant resolution of X,, within the moduli space of M-theory on X,. From
our simple geometric engineering argument it follows, in particular, that

, (1.2)
G=SU(3),S0(8),Es,7.3

Eg ()N(n) = Z(52x72), (ﬁc(;k))

n=3,4,6,8,12

where the r.h.s. denotes the partition function of the 4d A/ = 2 theory H (Gk) on the back-
ground S? x T2, with Kapustin’s B-twist on S? [63-68]. This gives a rather intriguing
relation among the B-twisted S? x T2 partition function for the 4d N' = 2 theories ﬁék)
and the topological strings on )Zn One of the main consequences of this relation is that the
Hilbert series [69] for the moduli spaces of instantons, also known as the Hall-Littlewood
limit [70] of the superconformal index [71] for the H, g ) theories [72, 73], arise in the limit

2mi 7, and the complex structure mod-

q — 0 of the Z(s2xT12), Partition function, where ¢ = e
ulus of the T2 is 7.3 This is because the topological string partition function is equivalent
to a 5d BPS count [75-77] that, in the limit where the elliptic fiber grows to infinite size, re-
duces to a 5d Nekrasov partition function [78, 79], which, for pure gauge theories, coincides
with the Hilbert series of the instanton moduli spaces (see section 2.1 of [80] for a simple
derivation of this fact). This interesting property, combined with the key remark that the

4 can be used to “bootstrap”

elliptic genera are Jacobi forms of fixed index and weight zero,
the elliptic genus by modularity. The index is determined by the anomaly of the elliptic
genus under a modular transformation S : 7 — —1/7; this modular anomaly is captured by
the ‘t Hooft anomalies for the 2d theories, which one can read off from their 4-form anomaly
polynomials. The latter have been computed recently for all strings of 6d (1,0) theories by
means of anomaly inflow [42, 43]. Our geometric engineering argument gives an alternative
derivation for G simply-laced. Using the knowledge of the anomaly polynomial coefficients

for the 2d theories and their ¢ — 0 limits, one can formulate an Ansatz in the appropriate

2In general k is a vector of integers labeling various possible bound states of different types of BPS
strings. For rank one theories, however, it is a single integer, which coincides with the instanton number
for the models we are considering.

3This fact was remarked in [67, 74] for the ﬁgg and the ﬁég(s)

putation. Our geometric engineering argument predicts that must be the case for all the H (Gk) theories.
4Jacobi forms of given type are elements of bi-graded rings, whose grading is governed by two integers,

theories respectively by a direct com-

the weight and the index [81, 82]. These rings are, in particular, finitely generated. For fixed weight and
index therefore, each Jacobi form is determined by a finite expansion in the generators.



ring of weak Jacobi forms which allows to bootstrap the elliptic genera for the 2d (0,4)
models of interest — including the case G = F;.5 In this paper we determine the modular
anomaly for all G and for any number k of strings; for the case k£ = 1, we uniquely determine
the elliptic genera for all G by modularity, which is one of the main results of this paper.

The modular bootstrap approach outlined above is inspired by recent progress in topo-
logical string theory, where modularity, in combination with other geometric considerations,
provides a very powerful approach for solving topological string theory on elliptic Calabi-
Yau threefolds.® In that context, the modular anomaly of the elliptic genera translates to
the holomorphic anomaly equation of topological string theory. By using modularity and
the holomorphic anomaly equation and making an Ansatz for the topological string parti-
tion analogous to equation (1.1), the authors of [86, 87] were able to solve topological string
theory on various compact elliptic Calabi-Yau threefolds to all genus, for very large num-
bers of curve classes in the base of the elliptically-fibered Calabi-Yau and arbitrary degree
in the fiber class, for geometries where the elliptic fibers are allowed to develop degenera-
tions of Kodaira type I;. From the topological string theory perspective, our approach for
computing elliptic genera of 6d SCFTs with gauge group corresponds to a generalization
of the techniques developed in [86, 87] to a particular class of non-compact Calabi-Yau
threefolds with more singular degenerations of the elliptic fiber. An interesting question is
to further extend this approach to generic elliptic Calabi-Yau threefolds, which one may
take to be either compact or non-compact (in which case the refined topological string
partition function can be computed), corresponding respectively to 6d (1,0) theories with
or without gravity, with a variety of allowed spectra of tensor, vector, and hypermultiplets;
this wider class of theories is currently under study and will be discussed elsewhere [88].

Remarkably, we find also a connection between the explicit expressions for the (72 x
5?) 5 partition functions and the Schur indices of the Hg ) theories. For G = SU(3), the
Schur index can be obtained as a specific limit of Z g2, 72) 5 for other choices of G the
relation is more involved, but nonetheless we find that both the Schur index and Z g2 . 72) 5
can be computed out of an auxiliary function, Lg(v,q). Naively it would be tempting to
identify this function with the Macdonald limit of the index, especially because 1) it reduces
to the Hall-Littlewood index in the limit ¢ — 0 and 2) in an appropriate limit it specializes
to the Schur index. However, it is easy to check that this is not the case. We find that
the function Lg (v, q) is a power series in v, ¢ whose coefficients are sums of dimensions of
representations of the global symmetry group G with positive multiplicities. It would be
very interesting to relate these results to BPS spectroscopy along the lines of [89-92].

We leave open the problem of determining the 2d SCFTs corresponding to n = 5,7.
This is related to the fact that the corresponding geometries involve pointwise singularities

®The 2d (0,4) worldvolume theory of the BPS instanton strings for the 6d (1,0) pure G = Fs gauge
theory can be determined by a generalization of the methods of [83], by inserting two appropriate surface
defects for the Hg? theories on P*. A detailed study of this model (and other models obtained by similar
techniques) goes beyond the scope of the present work and will be discussed elsewhere [84]. Nevertheless,
in this paper we will compute the elliptic genus for one Fj string by using modular bootstrap and basic
properties of this 2d CFT.

5Tn fact, at the level of genus-zero invariants, a similar approach was used to study the topological string
partition function for the local half-K3 surface already in [85].



of higher order [59], which generate non-trivial monodromies for 7. This entails in par-
ticular that these theories are not simple S-twists of the type considered above. Another
line of investigation which we leave open is the computation of the elliptic genera for our
models from the 2d TQFT of [67].

This paper is organized as follows: in section 2 we briefly review some salient features
of the F-theory backgrounds that engineer the 6d SCFTs we study in this paper; section 3
contains a review of the main properties of the 4d N’ = 2 theories of type H((;k) and the
geometric engineering argument identifying the twisted compactification leading to the
2d (0,4) worldsheet theories; in section 4 we discuss general properties of the 2d SCFTs
which follow from the engineering: the central charges, the anomaly polynomial, and the
elliptic genera; in section 5 we review the topological string argument sketched above;
in section 6 we derive our Ansatz from the modularity properties of the elliptic genera;
finally, in section 7 we remark on an intriguing relation among the elliptic genera derived
in section 6 and the Schur index of the corresponding N' = 2 theories.

2 Minimal 6d (1,0) SCFTs

2.1 F-theory engineering of 6d SCFTs in a nutshell

In this section we quickly review the geometric setup of [1], which provides the geometric
engineering of 6d (1,0) SCFTs from F-theory, including the minimal ones which are the
focus of this paper. For our purposes, an F-theory background can be viewed either as
M-theory on an elliptically fibered Calabi-Yau X with section:

F— X

1 (2.1)
B

in the limit where the elliptic fiber E has shrunk to zero size or, dually, as a compactification
of Type IIB string theory on a Kéhler internal manifold B which is stable and supersym-
metric thanks to non-trivial axio-dilaton monodromies sourced by seven-branes [54]. In
particular, the IIB seven-branes are dual to shrunken singular elliptic fibers in the M-
theory realization and the complex structure parameter of the elliptic curve 75 is dual to
the axio-dilaton field in IIB. In order to engineer a 6d system, one takes B to have complex
dimension 2. As the system is decoupled from gravity, its volume has to be infinite, and
hence X must be a local Calabi-Yau threefold.” Consider a local Weierstrass model for the
elliptic fibration of X,

V=x+ frtg (2.2)
where f and g are sections of O(—4Kp) and O(—6Kp) respectively. The discriminant of
the fibration is A = 4f3 + 27¢g?> € O(-12Kp), and A = 0 is the locus where the fiber
degenerates, which is dual to the position of the IIB seven-branes. To engineer a minimal
6d SCFT one needs a geometry which has no intrinsic scale and an isolated special point
p € B such that at least one of the following holds

"The infinite-volume limit has to be taken with care, see the discussion in [19, 93].



a.) The order of vanishing of (f,g,A) > (4,6,12) at p € B;

b.) The Kihler base of the Calabi-Yau 3-fold is an orbifold of type C?/T gy where
Ty is a discrete subgroup of U(2) of HMV type [1] and the point p is fixed by the
orbifold group action.

Examples where the point p is smooth in the base B but a.) is satisfied are provided by
the theories on the worldvolumes of a stack of N Heterotic Eg instantonic 5-branes [53]
which corresponds in F-theory to a point p with a singular fiber with order of vanishing of
(f,9,A) = (4N,6N,12N). Examples where the fiber at p is smooth but b.) is satisfied are
the (2,0) theories engineered in IIB as orbifolds by discrete subgroups of SU(2). For most
(1,0) SCFTs realized in F-theory both a.) and b.) occur [1, 8]. The Calabi-Yau condition
on X imposes rather strong constraints on the allowed discrete subgroups I' gy C U(2)
in b.) — see [1]. In particular, to each allowed I'frpry corresponds a minimal model of non-
Higgsable type [1]. The models so obtained are minimal in the sense that they sit at the
end of a chain of gauge-group Higgsings and the corresponding gauge symmetries cannot
be Higgsed further [59]. If the SCFT has a non-Abelian flavor symmetry, this is engineered
by a flavor divisor through p, i.e. a non-compact divisor belonging to the discriminant A
which contains p along which the order of vanishing of (f, g, A) in the Weierstrass model
are strictly less than (4,6,12) [4, 53]. Abelian flavor symmetries are more subtle, being
related to the Mordell-Weyl group of the elliptic fibration [94].%

Resolving the singularity in the base by blow-ups, removing all points where the order
of vanishing of (f,g,A) in the Weierstrass model is > (4,6, 12) while keeping the elliptic
fiber shrunk to zero size, corresponds to flowing along the tensor branch of the 6d model,
which is parametrized by the vevs of the tensor multiplet scalars dual to the Kéhler classes
of the divisors of the resolution. On the tensor branch the 6d theories develop a sector
of BPS strings, which are engineered by D3-branes wrapping the divisors resolving the
singularity at the point p in the base. For the geometries corresponding to SCFT tensor
branches, the resolution divisors have always the topology of P!'s [1].” The Kihler volume
of each such divisor is proportional to the tension of the corresponding BPS string. In
particular, such strings become tensionless at the singularity. Whenever one such divisor
C' is also an irreducible component of the discriminant of the elliptic fibration, this signals
that in the IIB picture we have a wrapped seven-brane along it. The seven-brane topology
isRYS xC cRYS x B , where B is the resolved base corresponding to the 6d tensor branch.
Along the flat RY directions the strings on the seven-brane give rise to a gauge SYM
sector with gauge coupling 1/g? ~ vol C. The precise form of the gauge group is encoded
in the corresponding singularity for the elliptic fiber along C' — see e.g. table 4 of [95] for a
coincise review. If this is the case the wrapped D3-branes have the dual role of instantons
for the 6d gauge group induced by the wrapped seven-brane.

8In some cases it is possible to determine the abelian factors of the flavor groups by means of Higgs
branch RG flows, see [21].
9For the geometries corresponding to tensor branches of LSTs this does not always occur [19].



2.2 Minimal 6d (1,0) SCFTs from F-theory orbifolds

In order to avoid complications with threshold bound states among BPS strings of different
types, we focus on 6d theories of rank one. Consider a resolution of the singularity at
p € B. As the model is of rank one, the corresponding resolution is based on a single
compact divisor of the base B with negative self-intersection. Let us call such curve 3.
It is easy to see that ¥ must have the topology of a P! (see the appendix B of [1] for a
derivation). The negative of the self-intersection number of ¥ gives the Dirac pairing of the
BPS string obtained by wrapping a D3-brane on ¥, which distinguishes between different
“flavors” of BPS strings. Naively, one would expect that all possible self Dirac pairings are
allowed, but this is not the case [59]. First of all, whenever the irreducible divisor ¥ in the
resolution of p € B has self-intersection < —3 the Calabi-Yau condition on X forces the
elliptic fiber to degenerate along . Moreover, this also puts a bound X - ¥ > —12: a more
negative self-intersection number would lead to fibers which are too singular, so that ¢;(X)
cannot vanish. In the IIB picture, this has the interpretation that the backreaction on the
geometry arising from too many wrapped seven-branes destabilizes the background [96].
For —12 < -3 < —3, 3 is necessarily an irreducible component of the discriminant of the
elliptic fibration, hence in the engineering it corresponds to a non-Higgsable coupled tensor-
gauge system and the wrapped D3-branes gives rise to BPS instanton strings. The field
content of the six-dimensional theories obtained via geometric engineering is such that the
6d gauge anomalies are automatically canceled via the Green-Schwarz mechanism [97-99].
For ¥ -3 = —9,—-10,—11, the corresponding models needs respectively 3,2,1 further blow-
ups to flow on the tensor branch, so these models map respectively to rank 4,3,2 SCFTs.
In all these cases, shrinking 3 to a point gives rise to a Hirzebruch-Jung singularity in
the Kihler base. Recall that an H.J, , singularity is the Kihler orbifold of C? corresponding
to the action
HJpg - (21,22) = (wz1,w22) wP =1. (2.3)

The rank one theories correspond to bases with Hirzebruch-Jung orbifold singularity of
types (p,q) = (n,1) with n = 1,2,3,4,5,6,7,8,12 [1, 100]: these singularities can indeed
be resolved with a single blow up in the base, leading to a single divisor of self-intersection
—n. The resolved base is

B="Tot (O(-n) =P 1<n<12 (2.4)

where the Kihler class of the base P! corresponds to the vev of the tensor multiplet scalar
parametrizing the 6d tensor branch. In table 1 we list the minimal non-Higgsable gauge
groups corresponding to such singularities [59].

In most of this paper we focus on the models corresponding to n = 3,4,6, 8,12 which
can be realized as orbifolds in F-theory of the form [1, 56, 62]

X,=(T**xC»/Z,, n=2346,812. (2.5)
Denoting by A the T? coordinate and (z1, 22) the C? coordinates the orbifold action is

(A, 21, 22) = (W 2\ w21, w20) w" =1. (2.6)



HJ,n | HJin HJyy HJsy HJyn HJsn HJgn  HJrn  HJgy HJigg
fiber Iy Iy IV I 1V, Iv* IIT* II7r* Ir*

Ymin none  none suU3 508 fa 6 e7 %56 e7 es

Table 1. Minimal gauge groups for the 6d theories of rank 1. For n = 1 one obtains the E-string
theory, the theory describing a single heterotic Eg instanton that has shrunk to zero size. As Hj ; is
a Du Val singularity of type A;, the surface is a local CY 2-fold and one obtains the A; (2,0) SCFT.
The model corresponding to H.J7; contains some charged matter in the %56 representation of e;.

(Cﬁ C? C.

o 1 2 3 4 5 6 7 8 9

seven-brane | X X X X X X X X
D3 - - - - X X X X - -

Figure 1. IIB brane engineering of the }NI(Gk) models.

The models with n = 3,6, 8,12 deserve special attention as they correspond, respectively,
to the gauge groups SU(3) and Eg7g in 6d: the naive ADHM quiver for SU(3) gives rise
to an anomalous 2d (0,4) system [42], while it is well-known that there is no ADHM
construction for the instanton worldsheet theories of the Eg 7 g theories.

—(k
3 Instanton strings and HG( ) theories

3.1 A lightning review of ﬁ((;k) models

The 4d N = 2 theories of type H(Gk) can be constructed in a variety of ways (see e.g. [101—
110]). In F-theory these models (and their higher rank generalization) arise as the worldvol-
ume theories of a stack of D3-branes probing a stack of exotic seven-branes. In M-theory
such exotic seven-branes correspond to local elliptic K3s, with shrunk fibers of Kodaira
type respectively IV, I5,IV*, 111", and II*. The corresponding seven-branes have gauge
symmetries respectively of types G = SU(3),SO(8), Es7 3.

Let us consider for the moment the Type IIB picture (see figure 1). The low energy
worldvolume theory on the seven-brane is an 8d SYM gauge theory. The instantons of
such eight-dimensional gauge theories are identified with D3 branes which are parallel to
the seven-branes.

Consider the case of a single D3 brane probe. The transverse geometry to the stack of
seven-branes is identified with the Coulomb branch of the probe theory [102, 111], which
has a nontrivial deficit angle encoding the axio-dilaton monodromy induced by the seven-
branes. The Higgs branch of the probe D3 brane theory corresponds to dissolving the D3
brane into a gauge flux on the seven-brane. With a single D3-brane probe one obtains rank-



G - SU(2) | SU(B) SO(8)  Eg Er Ex
Kodaira fiber II IIr | I1v I Iv* 117 I
Ag 6/5 4/3 | 3/2 2 3 4 6
g, — 6k/5—1 2k—1|3k—1 6k—1 12k—1 18k—1 30k—1

Table 2. Properties of H, (Gk) theories. The type of Kodaira fiber associated to the H, (Gk) theory is
listed, as well as the scaling dimension A¢ of the lowest dimensional Coulomb branch operator and
the difference between the effective numbers of hyper and vector multiplets.

1 SCF'Ts with flavor symmetries corresponding to the gauge algebras on the seven-branes
worldvolumes and Higgs branch which equals the reduced moduli space of one G instanton.

Traditionally, these models have been denoted as Hs, Dy, Eg, E7 and Eg, but we prefer
to denote them as H, (Gl ), since all these models arise from 7% compactifications of the theory
of one Heterotic Fg instanton with Wilson lines for the flavor symmetry [104, 106].'0

Corresponding to £ > 1 instantons on the seven-branes are stacks of k parallel D3
branes, whose worldvolume support rank % generalizations of the rank one 4d N = 2
models above which we denote Hg ). We summarize some of their properties in table 2.
The k-dimensional Coulomb branches of the Héf ) models are symmetric products of the
Coulomb branches of the Hg ) theories, while the Higgs branches of the Hék) theories
are given by the reduced moduli spaces of k G-instantons [107-109]. In particular, the
Coulomb branch operators of the H, ék) theories have dimensions {jAg};=12, %, Where Ag
is the dimension of the Coulomb branch operator of the rank one model H g ) (cfr. table 2).

To be more precise, for any k > 1 the D3 worldvolume theory also includes a decoupled
free hypermultiplet associated to the center of mass motion of the instantons in Cﬁ. Let

H g ) denote the 4d N = 2 SCFT corresponding to the direct sum of the H, (Gk) SCFT with
the SCFT of a decoupled free hyper. The Higgs branch of the H ék) theory is the moduli
space of k G-instantons, which is going to play an important role in what follows.

The global symmetries of the ﬁék) theories can be read off from figure 1. The strings
stretched between the stack of D3 branes and the seven-branes give rise to a G-type flavor
symmetry which couples the H ék) theory to the seven-brane gauge theory. The motion of
the stack of D3 branes in the (Cﬁ directions endows the system with an SU(2);, x SU(2)r
global symmetry, while C; gives a U(1), symmetry. The group SU(2)g x U(1), is identified
with the R-symmetry of the 4d A/ = 2 superalgebra, while SU(2)/, is an additional flavor
symmetry of the system. For k = 1 only the center of mass free hypermultiplet transforms
under SU(2)y, and the flavor symmetry of the H(G1 ) factor is just G. For k > 1 the flavor
symmetry of the H((;k) models is SU(2), x G.

0There are two additional types of exotic seven-branes corresponding to the Kodaira fibers of type IT
and III, which give rise to the models H, ék) and Hé%)@). These branes however cannot be consistently
compactified on a P! unless they intersect other seven-branes. For this reason they do not play a role in
the construction of the 6d minimal models we are considering in this paper — cf. footnote 12.



1,5 n
1IB HS _/\—B

Ct R P' O(-n)
—_— = A=

o1 2 3 4 5 6 7 8 9

background

seven-brane | X X X X X X X X - -

D3 - - - - X X X X - -

Figure 2. IIB description of the tensor branch of the 6d (1,0) theory.

3.2 The B-twisted ﬁgc) models and 6d instanton strings

Compactification of the seven-brane worldvolume theory on P! gives rise to a six dimen-
sional (1,0) SYM sector, with 1/g%,, ~ vol P!. Furthermore, from the reduction of Type
I1IB fields on the P! one obtains a tensor multiplet with scalar vev (¢) ~ vol P!, coupled to
the SYM sector @ la Green-Schwarz [97, 98|, automatically cancelling the anomalies. To
this tensor multiplet are coupled strings of tension t ~ (¢) which arise by wrapping the
D3 branes on the P'. From such engineering it is clear that the worldsheet theories of the
6d instantonic strings for the minimal models with n = 3,4,6,8,12 are just given by an

appropriate twisted compactification on P! of the H g )

theories (see figure 2). There are
several possible twists for an N = 2 theory on a P!; the twist which is relevant for us can
be determined by the structure of the ambient geometry. Consider the case of a single D3
brane probe. The normal direction to the 7 branes is identified with the Coulomb branch
of the probe D3 brane [102, 111]. In wrapping the P!, the normal direction to the seven-
brane becomes the fiber of a nontrivial line bundle over it of the form in equation (2.4),
and therefore the Coulomb branch of the probe D3 brane supporting the f]g ) theory also

becomes non-trivially fibered over the P'. This suggest to choose a twist for which
n = —RG = —QA(;. (3.1)

Moreover, the D3 branes engineer instantons for the same gauge groups in 8d and 6d:
dissolving the D3s into flux must give rise to identical Higgs branches, i.e. the instanton
moduli space for the corresponding gauge group. This signals that the SU(2)z symmetry
is left untouched by the twist. These two facts together with the requirement of 2d (0,4)
symmetry, fix the twist to be just an embedding of the U(1), R-symmetry group of the
4d N = 2 SCFTs in the holonomy of P'. Supersymmetric twistings of 4d N = 2 theories
on four manifolds which are products of Riemann surfaces are well known [63, 112]: the
twisting above is precisely a Kapustin S-twist on the four manifold RY x P! [63]. Let us
proceed by briefly reviewing such construction.

Recall that an A/ = 2 SCFT has a global R-symmetry U(1), x SU(2)g. Consider a four-
manifold of the form ¥ x C, with ¥ a two dimensional flat Lorentzian or Euclidean manifold
and C a Riemann surface with holonomy group U(1)c. To preserve some supersymmetry
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on ¥, one needs to identify U(1)c with a U(1) subgroup of the R-symmetry. There are
two canonical choices: the a-twist identifies U(1)c with a Cartan subgroup of SU(2)g, the
B-twist identifies it with U(1),. Fixing complex structures on ¥ and C, left handed spinors
are sections of

S =Ky e K+ Ko K;'? (3.2)

while right handed spinors are sections of
Sy =Ki'"P o K2+ K o kY2 (3.3)

The 8 supercharges of the 4d A/ = 2 superalgebra transform as an SU(2) g doublet of left-
handed spinors with U(1), charge +1 and an SU(2)z doublet of right handed spinors with
U(1), charge —1. By the (-twist, these become sections of

S @K =K;"? e Ko+ K{*©0c  U(1), charge + 1,

(3.4)
Sy @K =Ko P oK'+ KY? @ O¢ U(1), charge — 1.

Of the 8 supercharges, only 4 transform as scalars along C. All four supercharges have
the same chirality on ¥, leading to 2d (0,4) supersymmetry. In the language of [64, 113—
115], the S-twist can be viewed as a curved rigid supersymmetry background preserving
four supercharges. In particular, we are interested in backgrounds of the form R x S?
or T? x S2 for theories with a U(1) R-symmetry [65, 66, 68, 116, 117]. One starts with a
background for the new minimal N' = 1 supergravity that has a non-trivial unit background
U(1) R-symmetry flux on the S? [64-66, 116], and identifies the R-symmetry background
gauge field of the supergravity with the U(1), symmetry of the A" = 2 theory.!! In presence
of this R-symmetry monopole one obtains consistent geometries only if the U(1), charges
are quantized over the integers [64, 65].12 Another interesting comment is that the two-
dimensional theory does not have a Coulomb branch. This is consistent with the fact that
under the S-twist the degrees of freedom that correspond to moving the D3 brane within
B are projected out.

Notice that this very same reasoning applies straightforwardly to higher instantonic
charge k, mutatis mutandis. In the case of a D3 brane stack, the vevs of the Coulomb branch

operators for the H, ék)

theories, being symmetric products of the transverse direction to the
7 branes, also become fibers of nontrivial bundles over P! of the form @;?:1 O(-2jAq).
Moreover, the Higgs branches of the theory on a stack of k wrapped D3 branes are still
given by dissolving instanton into flux, and therefore coincide with k-instanton moduli
spaces for the corresponding gauge groups. Following the same argument as for the £ = 1
case, this forces the theories on the worldsheet of the wrapped D3 branes to be S-twisted
fIgC) theories on RU! x P!, More precisely, the S-twist of the flék) models on RU! x P!

gives rise to the 2d (0,4) theories which flow in the IR to the worldsheet theories for the

"Tn section 4 of [68] the B-twist is referred to as the Higgs reduction. See also appendix F of [67] for
more details.

12Notice that the theories H( ) and Hét)(z)
12/5 and 8/3, hence if B-twisted these would not lead to consistent geometries and in order to compactify

have Coulomb branch operators with R-charges respectively

them on spheres a different background is necessary — cf. footnote 10.
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6d BPS instantons of charge k. In what follows we denote the latter 2d (0,4) IR SCFTs

by E(éf), and we also denote by h(Gk)

the same theories with the decoupled center of mass
(0,4) hypermultiplet removed.

By construction, in the limit in which the volume of the P! goes to zero, a S-twisted
4d N = 2 theory gives a (0,4) sigma model into its Higgs branch [63, 67, 68]. Of course,
the Higgs branches of the H((;) models are precisely the hyperkédhler moduli spaces of k
G instantons Mg ;. The condition for obtaining a gauge anomaly free (0,4) SCFT are
equivalent to the condition for having a non-anomalous U(1), symmetry for the 4d N = 2

theory we began with [63].

4 Some generalities about the 2d (0,4) E(Gk) SCFTs

Typically, the models obtained by the procedure outlined in section 3.2 are not 2d (0,4)
SCETs. As the BPS instanton strings arise at low energies on the tensor branch of the
6d theory, the D3 branes are wrapping a P! of finite size. Sending the volume of the
P! to zero (and hence sending the 6d gauge coupling to infinity) corresponds to reaching
the 6d superconformal point; this simultaneously captures an RG flow of the worldsheet
theories of the strings to an IR fixed point. A crucial consequence of this fact is that whole
equivalence classes of 2d theories which flow to the same IR fixed point can correspond
to the same BPS worldsheet theory, which in a certain way mimics what happens in the
context of the supersymmetric quantum mechanics description of BPS states in 4d N = 2
theories [118, 119]. In particular, whenever the ?Lgf) models have different dual descriptions
we can use that to our advantage. Recently, progress in this direction has been achieved
on two fronts: on one hand it was shown that 4d N' = 2 S-dualities [120] induce 2d
(0,4) Seiberg-like dualities [67], and on the other hand it was shown that there are 4d
N = 1 Lagrangian theories which flow to 4d N' = 2 fixed points, with supersymmetry
enhancements at the fixed point [74, 121, 122]. Using these novel 2d dualities, we can

reconstruct some protected properties of the IR 2d (0,4) SCFTs of type ﬁ(éf)

13

from their
geometric engineering discussed above.

The global symmetry of a 2d (0, 4) theory of type E(Cl;) is SU(2) xSU(2)g xSU(2), x G,
where SU(2);, x SU(2)g combine to the SO(4) isometry of a transverse (Cﬁ to the 2d
worldsheet, SU(2), is the superconformal R-symmetry for the small N' = 4 SCA of the
supersymmetric chiral sector, and G is a global symmetry [51]. From our engineering, we
see clearly the contribution of SU(2), x SU(2)gr x G (see figure 2), however we do not see
directly the SU(2), symmetry which has a geometrical origin and emerges when we shrink
the P! to zero size (i.e. at the 6d conformal point).

4.1 Central charges (cr,cr)

The p-twisted compactification provides a relation between the central charges of the 2d
theory (cr,cr) and the 4d conformal anomalies (a, ¢) [67]. In particular, for the models we

13Understanding the geometric counterparts of such flows is an extremely interesting question, but is also
outside the scope of the present paper. We plan to return to this issue in the future.
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consider in this paper, one has [67]:
(cr,cr) = (4,6) x 24(c — a) (4.1)

The superconformal central charges (a,c) have been determined for all H, (Gk) theories [123,
124]:

1 1 1
a=-k*Aq + —k(bg —1) — —
4 2 24 (4.2)
1.5 3 1 '
= —k°A - -1) - —=
& 4k G+ 4]{3(50 ) 19
which gives
24(c — a)| ;o = kha — 1, (4.3)
G

where hg is the Coxeter number of the group G = SU(3),SO(8), E¢7s. Including the
contribution of a center of mass hypermultiplet, for which ¢ = 1/12, a = 1/24 and 24(c —
a) = 1, one obtains

(cr,cr) = (4,6) khg = (4,6) dimg Mgk, (4.4)
where M i, is the moduli space of k instantons for the group G, or equivalently the Higgs
branch of the theory ﬁg ),

4.2 Anomaly polynomial
The anomaly polynomials for the 2d (0,4) theories on the worldsheets of the BPS in-

stanton strings of 6d (1,0) theories have been computed elegantly by an anomaly inflow
argument [42, 43]. For the h(éf ) theories one obtains, in particular:

En—k(n—2 En+k(n—2 kn
Agg = 2( ) c2(Fgu(2),) — 2( ) c2(Fsu),) + 7 F&

(4.5)

1
i (G5 T + eaFu,)).

Alternatively, the central charges ¢y, and cg of the 2d theory we computed in the previous
section determine the contribution of the gravitational anomaly as follows:

CL —CR _ khg ~ k(n—2)

and moreover one also determines the coefficient of ca(Fgy2),) from a (0,4) Ward iden-

1 (T%) (4.6)

tity [67]. The remaining parts of the 2d anomaly polynomial also match against the known
‘t Hooft anomalies of the 4d HE theories [123, 124]. In particular, the 4d ‘t Hooft anomaly
coefficients for the SU(2);, x G global symmetries k7, and k¢ are

kg = 2kAg = kn
kL:szg—k(Ag—l):%—k(%—l).

These correspond respectively to the global anomaly terms for the flavor symmetries SU(2) 1,
and G in equation (4.5). Similarly, the ‘t Hooft anomaly for the SU(2)r symmetry of the
4d N = 2 theory is given by n, = 8a — 4c. For the models at hand

]{32
nv:8a—4c:k2AG+k(Ag—1):TH—i—k(g—l), (4.8)
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which matches the SU(2)r term of equation (4.5). This follows because the SU(2); x
SU(2)r x G contributions to the anomaly polynomial can be determined directly from
the 4d anomaly polynomial by integrating it on the P!, following the same ideology of
e.g. [125, 126], which gives an alternative derivation for Asg.

4.3 Elliptic genus

Another interesting BPS property of the 2d (0,4) IR SCFTs of k instantonic strings which
can be reconstructed from our engineering argument is their (flavored) elliptic genus. Fol-
lowing [64], we realize the T? x S? background as a quotient of C x P! with metric

2

ds* = dwdw + sdzdz, (4.9)

4r
(14 2%2)
where w and z are coordinates on C and on P! respectively, while 7 is the P! radius. We
identify
(w,2) ~ (w+ 1, 2e") ~ (w + T, zeP), (4.10)

where 7 is complex and « and S are real angles with periodicity 27w. The identification of
w gives rise to a torus T2 with complex structure 7, while the identification on z indicates
how the P! rotates as we go around the two cycles of the torus. As we mentioned in the
previous section, we have a unit monopole R-symmetry flux though P!, which implies the
quantization of the U(1), charges. The complex structure moduli for this background are
related to (7, «, ) and have been determined by [64]: these are 7, the complex structure
of T?, and 0 = ar — B (with fixed 7). The partition function on such background depends
locally holomorphically on 7,0 [64]. On top of this, the partition function can depend
on fugacities and fluxes for the other global symmetries of the theory: indeed, one can
easily add Abelian background gauge fields for the Cartan of the global symmetry group
of the model. The gauge field must be flat on T2 [64]. The corresponding holomorphic
line bundles are labeled by their first Chern class ¢; € Z (= flux through P!) and a single
holomorphic modulus, whose real and imaginary parts correspond to Wilson lines wrapping
the cycles of the torus. Only the U(1), R-symmetry has a flux through the P'; on the other
hand, we can turn on fugacities for the other global symmetries along the cycles of the T2.

The T? x S? backgrounds discussed above are 1/2 BPS and defined for any 4d super-
symmetric theory with at least four supercharges and a U(1) R-symmetry. In general such
partition functions on T2 x S? localize over (infinite) sums over distinct elliptic genera [66],
labeled by gauge flux sectors on the two sphere.'* Under favorable circumstances, however,
such infinite sums can truncate to finite sums [68]. In particular, for backgrounds without
global symmetry fluxes (other than the U(1) R-symmetry monopole) and with a choice
of U(1) R-symmetry such that all the elementary fields have non-negative R-charges, this
sum turns out to consist of a single term [68], which one can identify with a RR elliptic
genus for a 2d (0, 2) theory, of the kind defined in [127, 128]. This is precisely the case for

MMore precisely by triples given by flat connections on 72 commuting with a given gauge flux through

5?2 [66].
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SO(8)

Figure 3. 2d quiver corresponding to the Hélg(s) theory.

the Kapustin S-twist of the H ék) theories discussed above, where the amount of supersym-
metry is doubled and the (T2 x S?)g partition function of the ffék) theory localizes to an

elliptic genus for the ﬁ(éf ) model. Schematically

~(k
By = Zrxst), (HC(;)> : (4.11)

where E-() is the (flavored) RR elliptic genus [127, 128] of the ﬁgc ) theory. The leading
G

/24 and therefore, in cases

order term in the g—expansion of EEE;’“) is proportional to ¢~ °C
where elliptic genera are effectively computable, one can read off the left central charge cr,
of the CFT directly from them and verify (4.4).

Furthermore, the 8 twist behaves particularly nicely with respect to the 2d (0,4) dual-
ities [67], and this gives rise to a strategy for computing the elliptic genera of the E(Gk) (0,4)
models, even when they do not have a Lagrangian formulation. In order to fix the precise
map among the elliptic genus fugacities and the 3-twisted 72 x S? partition function of the
ﬁék) theories, it is helpful to consider the Lagrangian case corresponding to G = SO(8).
In particular, this case gives an interesting consistency check for our geometric engineering
argument as the corresponding 2d BPS worldsheet theories have already been determined

from a different perspective in [34].

4.3.1 Strings of the SO(8) 6d (1,0) minimal SCFT revisited
It is well known that the H, élg(g) theories, which correspond to D3 branes probing the seven-

brane associated to a I} singularity, are Lagrangian SCFTs [102, 107]. In particular, H, ég(s)

is just SU(2) SYM with four hypermultiplets in the fundamental representation, while the
Hélg(g) theories for k > 1 are given by an USp(2k) gauge theory with four hypermultiplets
in the fundamental representation and one hypermultiplet in the antisymmetric. In the
B-twisted reduction on P! of any Lagrangian theory, each vector (resp. hyper) multiplet in
4d leads to a (0,4) vector (hyper) multiplet in 2d [63]. From this it follows at once that the
2d (0,4) quiver gauge theory describing the strings consists of an USp(2k) vector multiplet
T, a hypermultiplet B transforming in the anti-symmetric representation of USp(2k), and a
USp(2k) x SO(8) bifundamental hypermultiplet ), as summarized by the quiver in figure 3,
which indeed coincides with the one obtained in [34] from a different brane engineering
in Type IIB string theory. This serves as a first consistency check for our claim. The
elliptic genus of the theory can be computed from the results of [65-67, 116]. For k =1

we obtain the Jeffrey-Kirwan residue of the following 1-form one-loop determinant that
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matches exactly with equation (3.21) of [34]:

) 7)? 1 7)4 01 (22; 7)01 (v2 212 7)01 (V2 T
s (i) < (M) < (MG )

01 (v 2 T)
(4.12)

where the first term in parentheses comes from the decoupled center of mass hyper of the

4d N = 2 system, the second corresponds to the four hypermultiplets in the fundamental
which, having U(1), charge zero, contribute as (0,4) hypers, while the third term corre-
sponds to the contribution of the SU(2) vector multiplet. The parameters z = >~ and
v = e2™+ are exponentiated fugacities for SU(2), and SU(2)g respectively; ¢ is the ex-
ponential of the holonomy of the gauge field; finally, u1, ... g are exponentiated fugacities
for the SO(8) flavor symmetry.

4.3.2 The Eg case: k=1

According to our geometric engineering argument, the elliptic genus for one BPS istantonic
string of the minimal (1,0) SCFT with Eg gauge symmetry coincides with the S-twisted
partition function of the Hgﬁ) 4d N = 2 SCFT, which is the well-known rank one Fjg

Minahan-Nemeschansky theory Hg)

6’

B-twisted partition function for the Eg MN theory has been computed recently, with two

plus a decoupled free hypermultiplet. Luckily, the

different insightful methods [67, 74]. In one approach, the Eg MN theory is realized as
a fixed point with enhanced supersymmetry of a Lagrangian 4d N = 1 theory. Upon
compactification on S? the 4d A/ = 1 model gives rise to a 2d (0,2) theory which flows
in the IR to a fixed point with enhanced (0,4) supersymmetry. The elliptic genus in this
case has been computed in [74] by localization from the (0,2) matter content. The second
approach involves the 2d (0,4) avatar of Gaiotto N' = 2 dualities developed in [67]: the
elliptic genera of the theories compactified on T2 x S? are captured by correlators of a
TQFT on the Gaiotto curve of the 4d parent theory ﬁgf )15 In particular, the elliptic
genus of the Hgg theory has been computed in [67] by exploiting the duality of this theory
with the SU(3), Ny = 6 theory [129].

Let us briefly review the computation of the H{ elliptic genus performed in [67]. The
elliptic genus of the SU(3), Ny = 6 theory can be obtained starting with the ng) elliptic
genus. This theory has a manifest SU(3)% C Eg global symmetry group; one can weakly
gauge an SU(2) subgroup of a SU(3) factor and couple a hypermultiplet to this gauge
group, as in figure 4. This implies the following relation at the level of elliptic genera:

| [ PO,

EsU(3),Nf:6(a,b,x,y) =5 2ic O(0sECE) hgg

(a,b,c). (4.13)

Here, the integration is performed by picking up the Jeffrey-Kirwan residues of the inte-
grand, and a,b,c are SU(3)a X SU(3)p x SU(3). fugacities. Moreover ¢ is the fugacity
for the gauged SU(2) subgroup of SU(3)¢; the hypermultiplet is also charged under an

15This provides in principle a way to compute elliptic genera of all the H gc) theories. However, the tools
required to compute generic TQFT correlators are not yet available. We leave this to future work.
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Figure 4. Gaiotto T3 theory from degeneration of the SU(3), Ny = 6 curve.
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Figure 5. Schematic IIB description of the 6d (1,0) © background.

additional SU(2) whose fugacity is denoted by s. The z,y fugacities associated to the
U(1) x U(1) global symmetry of the SU(3), Ny = 6 theory are determined in terms of c
and s as follows:

(c1,¢0,¢3) = (r¢,r¢ 1 r2); x = 51/3/r; y= 571/3/7“. (4.14)
Following [67], this formula can be inverted to give the hgg elliptic genus in terms of the
known elliptic genus for SU(3), Ny = 6, according to the following formula:

1 ds 0(st2)0(v2)
Ehgé (aa b) C) = 29(’[}2<i2) / Oris G(Usigi) ESU(3),Nf:6 (av ba z, y) (415)

This results in a sum of a somewhat large number of terms, but it can be shown that it
can be expressed in terms of Eg characters as the following expansion:

E, & = ol g 1H/e ((1 +xaev® 4 xpovt +..)

Eg

—|—q((1—|—x%6)—1—(1—1—2X17E§3 +X§f30+X2E§25)U2+...)+...>. (4.16)

5 Topological strings and elliptic genera

5.1 6d BPS strings and topological strings

Combining the geometric engineering picture in F-theory with the duality between F-theory
and M-theory [54] and the Gopakumar-Vafa formula [75-77] gives a canonical relation
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among the spectrum BPS states of 6d (1,0) theories and the closed topological string
partition function [27, 28, 34]. In the present context, this relation reads

Ziop ()?n) = Zao |1+ i @ . (5.)

n=3,4,6,8,12 k>1 G=SU(3),50(8),Es,7,8

where X, is a resolution of X,, the orbifold singularity in equations (2.5)-(2.6), Q is a
fugacity proportional to e~ where ¢ is the Kihler class of the base P!, and Z¢  is a factor
that encodes the spectrum of BPS particles arising from KK reduction of the 6d hyper-,
tensor, and vector multiplets, and crucially is independent of ¢.16 The topological string
free energy admits a genus expansion

1
log Zuop(X) = = —— 3 (~e12/(e1 + £2) "y n(X), (5.2)
g:n>0

and in [34] B-model techniques were used to compute Fyo(X,) for 3 < n < 12. In
particular, for rank one models Fj has the following expansion

Foo(Xa) = Y e MBS (rymy), (5.3)
k>0

where t is the Kéhler class of the base P! in )an, 7 is the Kahler class of the elliptic fiber
of )Z'n, and m; correspond to the Kéahler classes resolving the singular elliptic fibers of X,..
This gives nontrivial relations among the genus zero invariants Fé’%) and elliptic genera of
BPS strings [34]. An especially simple one is the following:

1 .
F(SO)(X”) = lim £1€2 Eﬁ(l) . (5.4)
’ €1,e2—0 el
n=3,4,6,8,12 G=SU(3),SO(8),EGV7,8

This has been checked for G = SO(8) in [34]; we have checked that analogous results hold
for G = FE§ at one string. See also [42] for G = SU(3).

5.2 Elliptic genera and Hilbert series

The elliptic genera of the 2d (0,4) SCFTs that were obtained above display some interesting
properties which have a natural explanation in light of geometry. For instance, it was first

observed in [68] for one Fg string and in [67] for SO(8) strings that the leading order term
(1)
SO(8)

of the 4d HJ(EIG) or Hég(g) theories respectively, or alternatively with the Hilbert series of

in the elliptic genus of the hgg and h theories coincides with the Hall-Littlewood index

the reduced moduli space of one Eg or SO(8) instanton. The connection with topological
string theory can be used to derive and generalize such relation between the elliptic genera
and the Hall-Littlewood index from geometry.

From the perspective of the 6d (1, 0) theories, the computations outlined in section 5 are
suggestive of a localization computation in 6d on an Q-background of the form (T?xR*) 1,627

16Some details about the geometry of X,, can be found in [34] and references therein.
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where 1 and e9 are identified with the Cartan generators of the SO(4) isometries of R%,
as in figure 5. Similar to what happens for 4d N/ = 2 and 5d N/ = 1 theories, the
partition function of the 6d (1,0) theory on the 2-background localizes on generalized
elliptic equivariant characters of the instanton moduli spaces, which are computed precisely
by the elliptic genera of the BPS instanton strings [78, 79]. This Q-background lifts to an
F-theory background of the form

F/(X X Séd X Séd X R4)€1782 — M/(X X 851d X R4)€1,€2 (5'5)

where the F/M theory duality exchanges the radius Rgq of Séd on the F-theory side with
the volume Im 7 ~ 1/Rg, of the elliptic fiber of X.

In the limit Im 7 — oo, all the KK modes in the reduction from 6d to 5d decouple
and one is left with a genuine 5d A/ = 1 theory. In the case of the )Z' models with
n = 3,4,6,8,12, the geometry of the 2-cycles is given by an affine Dynkin graph of type
AQ,D4,E678 respectively, and one can take the limit Im 7 — oo in such a way that
only one 2-cycle with Coxeter-Dynkin label 1 in the affine diagram is sent to infinite size,
while the others are kept of finite size. Proceeding this way, one obtains an M-theory
geometry corresponding to pure 5d N' = 1 gauge theory, with gauge groups respectively
SU(3),S0(8), Es,7,8 (as well as a U(1) vector multiplet coming from compactification of
the tensor multiplet, which decouples since gy(1) >~ Ry / — 0).17 In particular, in this
limit the topological string partition function reduces to the 5d N =1 Nekrasov partition
function for a pure SYM theory with gauge group G, which we denote by Z3% (G), times
a perturbative contribution coming from the G vector multiplet and the decoupled free
abelian vector multiplet which is independent of the base Kéhler parameter ¢:

> Im 7
Ztop(Xn) m T—00

e 734G X U(1)) - Z3(C) .56

G=SU(3),50(8),E¢,7,8
The instantonic piece Zb%, can be written as [80, 130, 131]:

Z(G) =1+ Q" H(May) (5.7)

k>1

where H(Mg ) is the Hilbert series of the moduli space of k G-instantons. Combining
equations (5.1), (5.6) and (5.7), we obtain

lim E~<k>Q H(Map) Q" (5.8)

Im 7—o0

This explains and generalizes the results of [67] for the SU(2), Ny = 4 theory (corre-
sponding to one SO(8) instanton) and [67, 74] for the h( ) theory (corresponding to one
Eg instanton). With the results already available in the hterature, we can check that this
relation extends to other cases as well. For instance, from the expression for the elliptic

"Notice that there is a leftover contribution from the Green-Schwarz term in six dimensions, which gives
rise to a 5d Cern-Simons coupling of the form Ay@) A Tr(Fg A Fg). This term, however, upon reduction
on S%, can be absorbed by a shift in the 6 angle for the gauge group G in the resulting 4d effective theory.
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genus of two SO(8) instantons in section 3.1 of [34], taking the ¢ — 0 limit and setting
x = 1 for simplicity, one finds:

1
1; 2E~ — 25
qg%q hg(g) (e4,7)=v (1—02)24 (14+02)12(1+ 024011

+841010 42435012 4611604 +1429001° +297000'8 + 55947020 +96519022 41527490

4220408026 4293226028 + 359742030 + 406014032 +-4219600°4 440601406 + 359742038

4293226010 + 22040802 +1527490* + 9651906 +559470* +-297000°° + 14290052
1

(1—v)*’

where the term in square brackets agrees with the Hilbert series of the reduced moduli

<1+v2+20v4+65v6+254v8

+6116v54+2435v56+841v58+254v60+65v62+20v64+066+v68>] : (5.9)

space of two SO(8) instantons (see equation (5.20) of [73], where their parameter ¢ is to be
identified with v2), and ﬁ is the contribution of the center of mass hypermultiplet in
the limit z — 1.

Likewise, we find that in the same limit the elliptic genera for one and two SU(3)

instantons, computed using the results of [42], are given respectively by:

1+ 402 + 04 1
lim ¢Y/2 E- =? : 5.10
qlg%q hélu)(g) (e4,7) =v (1 —02)4 (1 —v)? ( )
and
1
lim qE~ =3 1+ 0%+ 60t + 170° + 3108
a0 hg}(3)(5+77) v (1 — v2)12(1 + v2)5(1 + 02 + vh)5 ( T ot bvn A Lren 4 dlo
+ 52019 + 92012 + 1100 + 112010 + 1100 + 92020 + 52022
1
+310* + 17020 + 60%8 + 030 + 03 ) | ———; (5.11)
(1—-w)?

the expressions in square brackets agree respectively with the Hilbert series of the reduced
moduli space of one and two SU(3) instantons (which can be read off from equations (3.12)
of [132] and (3.21) of [73]).

An alternative field theoretical derivation of this relation would go as follows. The
elliptic genus corresponds to the partition function of the 4d A/ = 2 theory on T2 x S2. Let
us write T2 = 511%1 X S}%Q. Taking Im 7 to infinity is equivalent to sending R; — 0, thus
reducing to a partition function on S* x S? for the corresponding 3d A/ = 4 theory. For an
St reduction, the Higgs branch does not receive corrections [133]. From the results above,
it is tempting to conjecture that the corresponding partition function for the 3d N/ = 4
theory computes the Higgs limit of the superconformal index, which is the Hilbert series
of the Higgs branch [134].

6 Modular bootstrap of the elliptic genera

6.1 From anomaly four-form to modular transformation

In this section we explain the relation between the anomaly four-form polynomial of the
2d SCFTs and the modular transformation of their flavored elliptic genus, a result which
will be useful in section 6.2 for determining the elliptic genera of instanton strings.
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In our computation of the elliptic genus we keep track of the dependence on the fu-
gacities of the global symmetry group F, which for the theories at hand we can write
schematically as the product of various non-Abelian factors:

F=]]F. (6.1)

We denote by {Z,} the fugacities associated to the Cartan of the non-Abelian factors.
Under a modular transformation 7 — —1/7, the elliptic genus transforms as a weight-
zero Jacobi form of several elliptic variables:

E(Z, /7, —1/7) = e 7 {GIE(Z,, 7). (6.2)

We refer to the phase f(2,) as the modular anomaly of the elliptic genus. This is a quadratic
form of the various fugacities:

f(ga) = % Z ka (Za|5a)a7 (63)

where the k, have the physical interpretations as coefficients in the OPE of the cur-
rents associated to the various global symmetries, as in [135, 136], while (z|y), =
ng > wcr{e”, z)(a”,y) is the Weyl-invariant symmetric bilinear form on the root lattice
of the group F, normalized such that the short roots have length 2 [137].

The modular anomaly can be read off directly from the anomaly four-form 44, which
includes terms of the form [138]:

> kacha(Fa). (6.4)

We find that for the ﬁg) theory the modular anomaly for the elliptic genus can be
determined from equation (4.5), by the following replacements:

ca(Fsu(),) = —€4 eo(Fsu),) = —¢5  e(Fsup),) » <2 (6.5)
1 1
“trFA — —— Z (1M0)* p1 — 0, (6.6)
2 2h,
aEAg
where m = (my,...,m,) are the fugacities associated to the global symmetry group G,

and, for a root o« = niay + -+ + npo € A, mg = Y, nym;. To make contact with the
literature about Jacobi forms, it is useful to switch to the root lattice, which amounts to
the change of variables m; = (Cg)s;y;, where Cg is the Cartan matrix of G. Then,

(ma)? = (¥19)c (6.7)

where h/, is the dual Coxeter number. It follows that the modular anomaly can be
expressed as

hé h’é 2 2 2 hé 2 2
f%g) (My, €4,€6-) = —k (6 + 1) (7] J)G—k?(f)e_‘_—e_)—i-k (6 + 1) (e1—€2). (6.8)
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6.2 Constraining one-string elliptic genera with modularity

In this section we determine the elliptic genera of all the theories ng) corresponding to

one instanton string for G = SU(3),SO(8), Fy, Egs, E7, Es. In order to achieve this we
rely heavily on the modular properties of the elliptic genera, as well as their relation to
the Hilbert series of one-instanton moduli spaces. We begin this section with a general
discussion of our approach, which applies for any number & of strings, and then employ
these techniques to determine the elliptic genera of all the rank 1 theories. This approach
closely parallels the one undertaken in [86-88] in the context of topological string theory
on compact elliptic Calabi-Yau threefolds.

The Hilbert series of the moduli space of k G-instantons is a ratio of two factors,

NG,k(Ua z, ma)

H(Mar) = (6.9)

DG,k(Uv z, ma)’

where the denominator is a product of factors associated to the generators of the moduli
space of k G-instantons [139]; the set of such generators is provided explicitly in section
8.5 of [139], and from that one obtains the following expression:

Da (v, 2,my) = ﬁ ( H (1— vixﬂ‘)> < 1:[1 IT - vi“xﬂ'e?”ma)>, (6.10)

=1 j=—1 Jj=—1+1 cA
j—1i even Jj—1i odd e8¢

where AG includes the positive and negative roots of G, as well as its Cartan vectors, and

we denote by x = e?™¢~ v = ™+ the exponentials of the SU(2);, x SU(2)g fugacities.
However, the way it is written equation (6.10) contains too many factors. To see this,

recall that the topological string partition function in the limit ¢ — 0 takes the form

Ziop(Xa) = Zo | 1+ ) Q"H(May) | - (6.11)
E>1
Note that a term of the form

(1 — vigd) = 1 — em{(iDa+i-je) (6.12)

in the denominator of the Hilbert series, equation (6.10), would lead to a singularity in the
topological string free energy Fiop = log(Ziop) at

(i+j)er+ (i — j)ea = 0. (6.13)
However, from the genus expansion of the topological string free energy,

Frop(X) = Z (—e162)97 ey + €2)"Fym(X), (6.14)

g,n=>0
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one sees that only poles at €e; = 0 or €5 = 0 are allowed to occur. This implies that all the
terms in the denominator of (6.10) for which ¢ # +j must cancel against analogous factors
in the numerator.'®:19

This leads to a somewhat leaner expression for the denominator:

Dl (0,2, ma) = HH( VTI T« _Ui+1$a‘e2mma>>, (6.15)

i=1s=+1 j=—itlacAy
j—1i odd
where the label o now runs only over the positive roots of G.

As discussed in section 5.2, the elliptic genus is expected to reduce to the Hilbert
series in the 5d limit ¢ — 0, as in equation (5.8). Using ideas similar to the ones developed
in [30, 87, 141], we now formulate an Ansatz for the elliptic genus which matches the form
of the Hilbert series in the 5d limit. We begin by noting that it is natural to interpret each
factor of the form

(1 — ™) (6.16)

in (6.15) as the contribution of a zero mode of a bosonic field on the BPS string, and to
also include in the elliptic genus the contributions of its excitations. In other words, in
order to pass to the elliptic genus one would like to replace any such factor by a factor
of (1 — e27i%) [T72,(1 - @ e?™?)(1 — ¢/272™%) | where ¢ = €2™7. It is in fact convenient to
express the denominator in a modular covariant fashion, so we instead make the following
replacement as in [86, 87, 141]:

727riz)

; 01(z,7) = (1 — ¢7e?™) (1 — ¢z
2miz — J1\% _ —mz 27rzz
(1 =€) = p_11/2(2,7) = W_Ze H 01— g)2 ;

(6.17)

which is a weak Jacobi form of modular weight —1 and index 1/2. Furthermore, in order

to account for the leading order behavior of the elliptic genus

e _khg
Ej g L2 Y=g (L) (6.18)

we also include a factor of

o akRY,
n(r)*he = (qlm [Ta- qk)) (6.19)
k=1

in our expression for the denominator.

18Indeed, such cancelations occur for all the examples we have checked. It would be interesting to find a
satisfactory gauge-theoretic explanation for this fact.

'9An analogous argument has been used by M.-X. Huang, S. Katz, and A. Klemm to formulate an
Ansatz for the topological string theory partition function for compact elliptic Calabi-Yau threefolds; we
are grateful to them for sharing a copy of the draft of their upcoming paper [140], and refer to the slides of
A. Klemm’s talk ‘BPS states on elliptic Calabi-Yau, Jacobi-forms and 6d theories’ at the “F-theory at 20”
conference, Caltech, February 2016 for a sketch of their argument.
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We are therefore led to the following Ansatz for the elliptic genus:

E~(k)(617527m0n )= (6.20)

Ne i (€e1,€2,mq,T)

7)RhG HH o_1,1/2(i(e4+se) H HSO 11/2(s((i+1)er+je-))+ma,T)

s=+1li=1 j—*’L+10¢€A+
j—i odd
The numerator should be a weak Jacobi form of several elliptic variables and integer Fourier
coefficients. Considerations based on modularity and topological string theory significantly
constrain its form. First of all, the requirement that the elliptic genus be a Jacobi form of
weight zero implies that the numerator is a holomorphic Jacobi form of weight

k(k+1
2kns — 2k — FEED (@) - rk(@), (6.21)
which for G simply laced reduces to
1
2k(hY — 1) — Mhérk(G). (6.22)

Furthermore, the modular anomaly of the denominator can be easily read off from the
modular transformation of the Jacobi theta function,

T 22
01(z/7,—1/71) = \/—7'76277 01(z,7), (6.23)
and is given by:
1 - k(k+1
fﬁng)(mmG-I—af_) = §k(k + l)hé(y ’ y)G + (6) [(2]{ + 1)(63_ + 62_)

+ (dim(G) — tk(G))(2 + k) ((3k + 5)et + (k — 1)e2)].  (6.24)

The modular anomaly of the elliptic genus (6.8) is simply the difference between the
modular anomaly of the numerator (fV) and that of the denominator (6.24). Therefore

f’z\(fk) (ma’ €4, 6*) = ﬁ(’f) (mou €ty 67) + f’gk)(mav €4, 67)
e G hg

= Cllavor (G, k) <37|237 ) +Ce, (G k)R +Ce (G, k)2, (6.25)

where
Chavor (G, k) = % k (h&(2+3k) —6), (6.26)
Ce, (G,k) = % (2(2 + 5dim(G) — 10k — 5rk(G)) + k(21(dim(G) — rk(G)) + 4(9 + b))

+2k2 (4 + 7(dim(G) — tk(G))) + 3k3(dim(G) — k(G ) (6.27)
Co (G k) = % (202 dim(@) + 20 +1K(G)) + k(rk(G) — dim(@) — (3 + h))

+2k%(4 + dim(G) — 1k(Q)) + K3 (dim(Q) — rk(G)), (6.28)
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capture the anomaly with respect to G,SU(2)g, and SU(2), respectively. One sees by
inspection that for all the choices of G that arise for (1,0) 6d SCFTs with no matter and for
any number £ of strings the coefficient Cg is an integer, while C.__ are either integers or half-
integers. These coefficients also play the role of weights for the corresponding Jacobi form.

We remark that in the case of one G-instanton the modular anomaly of the numerator
simplifies to

(5hé —6) (F19)a + %(2@2 (1 + dim(G) — rk(G) — hf) . (6.29)

[N

In other words, the dependence on the SU(2); fugacity e_ drops out. This is indeed
consistent with the fact that for a single instanton the SU(2);, flavor symmetry only acts
on the decoupled hypermultiplet (whose contribution to the elliptic genus is confined to
denominator terms). Furthermore, it turns out that the elliptic genus can be expressed in
terms of Jacobi forms with elliptic variable 2e; and index

% <1 +dim(G) — k(G) — h’;‘) : (6.30)

which always belongs to Z/2. This is a useful fact, since the dimension of the space of Jacobi
forms grows rapidly with the index. On a related note, one indeed observes that the Hilbert

series of one-instanton moduli spaces only depends on the square of the variable v = e+,

To make further progress, we express the numerator in terms of the appropriate basis
of Jacobi forms, which should capture the invariance of the elliptic genus under the Weyl
group of the global symmetry G x SU(2); x SU(2)r. The natural set of Jacobi forms to
use are therefore the Weyl-invariant Jacobi forms for G, SU(2);, and SU(2)r whose theory
has been developed in [142]. We refer to those papers for the precise definition of this
class of functions, but we remark here that under a modular transformation 7 — —1/7, a
Weyl[G]-invariant Jacobi form ®(z,7) of weight ¢ and index m transforms as follows:

¢ 2mim (2]2)

O(z/m,—1/T) =7 = 2 P(z,7). (6.31)

Comparing with equation (6.25), one sees that the numerator has integral index with
respect to G, and half-integral with respect to SU(2)r, r. Using a slight generalization of
corollary 3 to Theorem 8 of Chapter III of [81], we write the numerator schematically as a
finite sum

Zai gi(€+,€_,ma,7_), (632)
i

where each g; is a product of powers of Weyl[SU(2)]-, Weyl[SU(2)g]-, and Weyl[G]- in-
variant Jacobi forms and Eisenstein series F4(7) and Eg(7), such that g; has the correct
modular weight and indices.

— 95—



For SU(2), the algebra of Weyl-invariant Jacobi forms of integer index is generated by
the two well-known functions [81]

4

por(zr) =43 TS (6.33)
’ ’ =2 6k(0,7’)2 ‘
01(z,7)?
w_21(2,T) = 177((7)6)’ (6.34)

where the labels k,m in ¢y ,,, denote respectively the weight and the index of the Jacobi
form.

In what follows will also need to make use of half-integral Jacobi forms for SU(2). By a
lemma of Gritsenko [143], any Jacobi form with integral Fourier coefficients, of even weight
2k and half-integral index m + 1/2, can be written as

91(22’, 7')

¥0,3/2 = 01(2, 7_)

(6.35)

times a Jacobi form of weight 2k and integral index m — 1. Likewise, a Jacobi form with
integral Fourier coefficients, of odd weight 2k + 1 and half-integral index m + 1/2, can be

written as
91('27 T)
¥Y-1,1/2 = 777(7_)3 (6'36)

times a Jacobi form of weight 2k 4+ 2 and integral index m.

For G simple, the Weyl[G]-invariant Jacobi forms of integer index form a polynomial
algebra over the ring of modular forms; a set of rk(G) + 1 generators for this algebra has
been constructed in all cases except G = FEg [82]. For any G, of these generators, one has
modular weight zero, while the others all have negative weight (we refer to [82] for details).
In practice, we find that keeping the dependence on the fugacities m, for G significantly
complicates the task of determining the elliptic genus by modularity arguments alone. This
is due to the fact that Jacobi forms of high index arise in the numerators. In this paper,
therefore, for simplicity we set m, — 0, and leave the dependence of the elliptic genus on
the G fugacities for future work. In this limit, all the negative weight Weyl[G]-invariant
Jacobi forms vanish, while the weight zero Jacobi form reduces to a constant.

The approach outlined here is general and leads to an Ansatz for all of the 71'& theories.
In the remainder of this section, we demonstrate the efficiency of this method in the case
k = 1. In all cases, we match our Ansatz in the ¢ — 0 limit against the Hilbert series,
which has the known expansion [132]

1

H(Ma) = (1 —vx)(1 —vz—

= dim(£- Adjg)o*, (6.37)
) >0

where ¢ - Adj, denotes the representation whose highest weight is ¢ times the highest root
in the adjoint representation of G. As we explain in the rest of this section, we will also
need to further impose the vanishing of certain coefficients in the Fourier expansion of the
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elliptic genus at higher orders in ¢. In all cases, we will find that such constraints are
sufficient to fix all the unknown coefficients in our Ansatz for the numerator.?°

6.3 Elliptic genus of one SU(3) string

In this section we apply the techniques discussed above to uniquely determine the elliptic
genus for one SU(3) instanton. We make the following Ansatz:

N 2€4,T
Ero) (e4,62) = 5U()a (264 7) (6.38)

SU) ()20 _11/2(€1)0-1,1/2(€2) HaeAiU<3) ¢_1,1/2(2e4,7)%

The modularity constraints discussed in section 6.2 imply that the numerator is a Jacobi
form of modular weight —2 and index 3 with respect to 2¢,. This fixes its form up to two
unknown coefficients ay, as:

Nsue)a(2e4,.7) = a1¢—2,1 (261, 7)do,1 (264, 7)* + azd—2.1(2e4,7)° Ey(7). (6.39)
We next impose the equality?!
) hg (3 BV
lim g™ 21 Erq) (eq,e-) =0 5V H(Msy) 1) (6.40)
q—0 SU(3) ’

between the elliptic genus and the Hilbert series of one SU(3) instanton, where the latter
quantity is given by
1
(1 —vx)(1 —vz~l)

> " dim(¢ - Adjgy)v*, (6.41)
>0

where dim(¢ - Adj;) = 3. Imposing equation (6.40) uniquely fixes the coefficients of the
numerator, and one finds:

L _ 1
2’ T oy
This completely determines the elliptic genus of one SU(3) instanton string. We have

a; = — (6.42)

checked that our result is in agreement with the genus-zero topological string data given
in [34]. Furthermore, we can remove from the elliptic genus the contribution of the center

of mass hypermultiplet,

B n(r)?
Eem. = g roren 5 (6.43)

to obtain the elliptic genus of the hgg theory; we have verified up to O(q7/ 2) that this

matches with the expression which was recently obtained in [42] by gauge-theoretic tech-
niques. We observe here that
1—hY 4(h\S/U(3)_1)
v

SUBg—2i B ) (e4,e-)|  =9=dim(SU(3)) + 1, (6.44)

SU(3) quO

20Tt is natural to ask whether also for k > 1 one can completely determine the elliptic genus by imposing
a sufficient number of constraints on the Ansatz; this question will be addressed elsewhere [88].
21'We find it always necessary to multiply the Hilbert series by a factor of vhé, which makes it symmetric

under v — v~ !. We view such factor as being part of the relative normalization between Q and Q in

equations (5.1) and (5.7).
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and we will see later on that a similar statement holds for the other choices of G. In order
to efficiently display the numerical coefficients appearing in the elliptic genus, we find it
convenient for all G to define a rescaled elliptic genus,

hg—1 Y,

h
Ealp.p) =4 5 v E,m (26, 7), (6.45)
which we can expand in terms of variables p = v? and p = ¢/v? as:

Ea(p,p) = > b0 (6.46)
k>0

The coefficients bz?@ in the series expansion of the elliptic genus of one SU(3) instanton
are displayed in table 6 of appendix A.

6.4 Elliptic genus of one SO(8) string

Next, we use modularity to fix the elliptic genus of one SO(8) string (with fugacities mg
set to zero for simplicity). From our discussion in section 6.2 it follows that the numerator
has modular weight —14 and index 23/2 with respect to 2e;.. We can therefore write the
numerator as

Nsos),1(264,0,7) = ¢o3/2(264,7)¢" 51 (2e4,7) (a1¢0,1(26+7 7)? (6.47)

+ a2 By (1) p—2,1(264,7)2p0.1 (264, 7) + agEg(T)do 1 (2¢4, 7’)3> ;

which depends on just three undetermined coefficients. Imposing

_ Mo BY
lim ¢ 21 Egog),1 = v 5°® H(Msgo(s),1); (6.48)
q—0 ’ ’
where [132]
(v2+1) (08 4+ 170° 4 480" +170* + 1) 1
H(M = . , 6.49
( SO(S),I) (1 _ 02)10 (1 — ,U)Q ( )
is sufficient to fix all the undetermined coefficients. We find:
7 1 1
al—m, GQ—_E7 a3_5- (650)

We have verified that under this choice of coefficient the elliptic genus agrees with the
known expression in [34] to high powers in gq. Analogously to the SU(3) case, we observe
that:

_RY 408y~ )
v So®gT 2 R, 1) (Ma,€q,e-)| =29 =dim(SO(8)) + 1. (6.51)

SO(8) quO
6.5 Elliptic genera of exceptional instanton strings

In this section we determine the elliptic genera of the one instanton theories E(Gl) for G =
F4, Eﬁ, E7, and Eg.
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6.5.1 G=Fy

We begin by looking at G = Fy. Although in this case we do not have a geometric
engineering construction for this theory, we can still use the anomaly polynomial (6.8),
which based on the derivation of [42, 43] is also valid for the Fy strings, to fix the form
of the elliptic genus. The numerator of our Ansatz has modular weight —32 and index 23
with respect to 2e;. This leads to an expression which is determined up to 9 coefficients.
In this case, comparing with the Hilbert series,

anY.
Fy

lim ¢ 20 By = o"F1 H(Mp, 1), (6.52)
q—0 Fy

only fixes 8 out of the 9 coefficients.
In order to fix the remaining coefficient a, we now factor out the center of mass hy-
permultiplet contribution E.,, and look at the subleading order in the ¢ expansion of the

—4/3+1

elliptic genus Eh(l). This is given by v8¢ times
Fy

1 (7 98 357
o <v6a +Ja 5t (2862 + 868a) + O(v2)> : (6.53)

Notice that if we set @ = 0 all the terms with negative powers of v drop out. Furthermore,
one finds that the v° coefficient is

53 = dim(Fy) + 1, (6.54)

analogously to the cases G = SU(3) and SO(8). We find that the numerator of our Ansatz
for the theory of one Fj instanton is given by:

1 ‘ . ]
Np, 1= 716496 562,1 <¢62,1¢0,1 (56E§ —81EZ) +45EEE6¢7,271 +486E2¢f2,1¢8,1 (6.55)

—366E4E60° 5 1051 —453E40° 5 160 1 +209E6¢° 5 1601 + 104¢(7),1> ;

where we have omitted the elliptic and modular arguments (2e4,7) of the Jacobi and
modular forms for brevity.

In appendix A we also provide the series expansion coefficients of the elliptic genus.
One can verify that the coefficients can be written in terms of sums of dimensions of small
numbers of representations of Fy with positive coefficients. We view these facts as a strong
indication that the choice a = 0 gives the elliptic genus of one F} instanton string.

6.5.2 G =Eg

The theory of one Eg instanton string is the 72 x S? compactification of Gaiotto’s T3
theory, whose elliptic genus has been computed via (0,4) dualities [67] (see the overview in
section 4.3.2). We now recover the same result (with fugacities m,, turned off) by resorting
to modularity. The numerator of our Ansatz has modular weight —50 and index 69/2 with
respect to 2e;. There is a 10-dimensional space of Jacobi forms of such weight and index,
and matching against the Hilbert series fixes 8 of the coefficients. We fix the remaining
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additional coefficient by requiring the v=2#¢! terms (with k& > 0) of the expression for Eh<1)
Eg

to vanish. This completely fixes the elliptic genus (and in fact gives an over-determined
set of constraints on the coefficients), and we again observe that the ¢'v® term is:

1 + dim(Eg) = 79, (6.56)

analogously to the G = SU(3),SO(8), and Fj cases.
The explicit expression for the numerator of the elliptic genus is:

1

Nes 1= 5357872

¢*% 100,32 (9<z>8_271 (23E] —64E,Ef) +4¢° 5 165, (5125 —1845E3)
+4656 B Eo" o 1 d0,1+23010E70 5 163 1 —14880E4 B¢ 5 107

—18564E40° 5 16 1 +7280E66° 5 1001 +4199¢8,1> . (6.57)

In appendix A we also provide the series expansion coefficients of the elliptic genus. One
can verify that the coefficients can be written in terms of sums of dimensions of small
numbers of representations of Fg with positive coefficients.

We can compare the expression we find with the elliptic genus of the T3 theory; we
have checked up to O(g¢*) that the two expressions match, which serves as a check of both
our Ansatz and of our geometric engineering argument. In all the cases discussed so far we
notice that all the coefficients b, with k < h;/3 — 1 and I < h;/3 — 1 vanish.*> We will
assume this to also hold true for G = F; and G = Ejg, which will be crucial for uniquely
fixing the elliptic genera.

6.5.3 G =Er

In this case, the modular weight of the numerator is -92, and the index with respect to
2¢e, is % This fixes the Ansatz for the numerator up to 21 undetermined coefficients.
Comparing the leading order terms in the g-expansion with the Hilbert series of the moduli
space of one E7 instanton fixes 13 coefficients, leaving 8 undetermined. We fix these by
imposing the vanishing of coefficients bkEg for £ < 5,1 < 5. This is an overdetermined set

of constraints that leads to a unique solution, which is given by:

1
2972033482752

+(1472256 B3 5 — 151875 E§ —60416 Eg ) ¢'% 1 0,1 — 180 E4 B (26739 53 —8T04E¢ )¢ 1 5
+18E3 (258993 E7 —627040E5)$'% | ¢ | +280E6(106623E3 —5680E3)¢” 5 1 6 1
—567E4(45667E; —2905653)¢° 5 1 ¢5 1 —51471000E7 Egd™ 5 16§

+228(217503E — 25648 E5 )¢° 5 1 ¢ 1 +31668516 B4 Egd” 5 1 05 1

N1 0% 16032 (12(6399E2E6—10528E2E3) 1 (6.58)

—40739325E3¢" 5 16 1 —6249100E6¢° 5 1 93"y + 14827410 Es %, 1 gy — 1964315¢5?1> .

22We refer the reader to appendix A for our notation. It would be desirable to find a physical argument
for why these coefficients should vanish.
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We display the series expansion coefficients of the elliptic genus thus obtained in ap-
pendix A. Again, we verify that the ¢'v? coefficient is given by

dim(E7) +1 =134 (6.59)

6.5.4 G = Eg

Finally, we proceed in the same manner for the case of one Fg instanton. The modular

weight of the numerator is -182 and the index with respect to 2¢; is % This determines

the Ansatz up to 56 coefficients, of which 23 are fixed by matching with the Hilbert series.
As for the F; case, we impose the vanishing of b,f? for K <9 and ! <9. This again gives an

overdetermined set of constraints on the series coefficients bf? which uniquely determines
the form of our Ansatz. We provide the expression for the numerator, which is rather
unwieldy, in appendix A, along with the series expansion coefficients of the elliptic genus.
We also verify in this example that the ¢'v° coefficient is given by dim(Eg) + 1 = 249.

7 Relation with the Schur index of HS

In this section we comment on a surprising relation between the elliptic genus of one
instanton string Eh(”’ which is the S-twisted partition function on 72 x S2, and the Schur
G

index of the H, g ) theory, which is a partition function on S* x S3.

7.1 The case G = SU(3)

We begin by discussing the G = SU(3) theory, which is the same as the (A, Dy) Argyres-
Douglas theory. More precisely, we remove the contribution of a free hypermultiplet

77((])4¢71,1/2(61)¢71,1/2(62) (7.1)

from the denominator of equation (6.38), so we consider

Nai1(2€e4,7)
Eq (e4,7)= : , 7.2
hgslU(a)( +7) n(r)® HaeAiU@) ©-1,1/2(2e4,7)° (r2)
and make the specialization
e =71/4. (7.3)
In this limit, one has:
$-21(2¢4,7) = -840, 7)° $01(2¢1,7) > 4g /1 92(0,7)° , 95(0,7)° (7.4)
—2,1 +5 q 77(7')6 ) 0,1 =+ q 93(0’7_)2 02(077_)2 ) .
and
1 94(2’, 7')
¢—1,1/2(2€+ + ZvT) = emqu/g 77(7_)3 : (75)
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e

2 3 4 ) 6

8 27 64 125 216
9 64 216 512 1000
0 93 360 1188 2816
27 64 53 0 245 1600 5211
64 216 360 245 O 971 6168
125 512 1188 1600 971 O 3435
216 1000 2816 5211 6168 3435 O

0 1
0 1
1 0
8 9

S Ot s W NN = O

Table 3. Expansion coefficients billjw) for one SU(3) instanton.

We then expand the elliptic genus as a g-series and find the following result:
E q (7/4,7)=2¢" (1 + 8¢"/? + 36¢ + 128¢%/% + 3944> + 1088¢°/2 + 27764° + 65564/
SU(3)

+ 15155¢" + 3305642 4 69508¢° + 141568¢"/% + 280382¢° (7.6)

+541696¢'%/%2+1023512¢" + 18954244 "%/ 2+3446617q8+(9(q17/2)) ,

or in other words, up to O(¢'"/?),

E.o (r/4,7)=2¢"T, 0 (¢"7), (7.7)

SU(3) SU(3)

where IH“) (¢) is the Schur limit of the superconformal index of the H&J)@) theory (in
SU3)

the limit m, — 0). This theory coincides with the (A, D) Argyres-Douglas theory, and
the explicit expression for its Schur index has been obtained in [90, 144].

The factor of 2 can be accounted for by looking at the data in table 6. We reproduce a
small region of that table in table 3. The spectrum of states that contribute to the elliptic
genus consists of two identical sets, whose degeneracies are captured by the coefficients
bi}i(?’): those for £ > [ and those for & < [. Let us denote by

SU(3
Lsue(v.0) = D > by Vv (g/v?)? (7.8)
>0 k>l
the half of the elliptic genus expansion associated to the upper right half of the table. In
other words,

Lsu@) (v,q) = (1+ 80" + 270" +...) + q(9+ 640> +...) + ... (7.9)

Our prescription for matching with the Schur index requires setting v = ¢'/4. In this
limit, the coefficients of the ¢ expansion are obtained by summing along the anti-diagonals
in table 6, and it is clear that each of the two sets of states contributes an identical term

Leue) (@, q) = (1 +8¢2+ (27 +9) g+ (64+64) 6% + .. ) =Z,0 (¢"*). (7.10)
SU(3)

to the elliptic genus.
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7.2 Generalization to other G

It is natural to ask whether a similar relation between elliptic genus and Schur index
continues to hold for other G (at least for the simply laced cases, which have a clear four-
dimensional origin as discussed in section 3). A first hint that the relation might not just
be a coincidence comes by comparing the elliptic genus of a free 2d (0,4) hypermultiplet,
which is given by

n(7)
O1(ex +€e_,7)01(ex —€_,7)’

Ehm. (64,6-,7) = — (7.11)

to the Schur index of a 4d hypermultiplet,

> 1 qn/Q

Thom.(e—,T) = exp ( o (2" + z")) , (7.12)

n=1
where z = e?™¢-_ Setting ¢, = 7/4, one indeed finds that
Eh.m.(7/4v €—, T) = Ih.m.(efa 7-/2) (713)

Furthermore, the same relation also holds between the elliptic genus of a free 2d (0,4)
vector multiplet,

61 (26+7 7-)
Eym.(e4,7) = n(r)?———2=, 7.14
(cnm) = nlr R (7.14)
and the Schur index of a 4d vector multiplet:
Ty (T) = n(1)*% (7.15)
In other words, we find:
Eym (7/4,7) =Ly (7/2). (7.16)

At first glance, however, for other H, g ) theories this relation seems to fail: the states
under the diagonal in tables 7 and 9-11 contribute to the elliptic genus with an opposite sign
compared to the ones above the diagonal, and therefore the elliptic genus vanishes when

1/2

we set v2 — ¢'/2. However, a closer look at the expansion coefficients hints at a possible

relation. For example, if we isolate the coefficients bz(l)(g) with £ > [ + 1 in the coefficient

table for G = SO(8) (shown in red in table 4), and sum along anti-diagonals (that is, set

v = ¢"* in the sum v 2 D150 2kslil bzg(s)v%(q/UQ)zl), we find the following expression:

14 28¢"/2 +329¢ + 2632 ¢%/ + 16381 ¢* + 85764 ¢°/% + 393674 ¢°> + O(¢"/?),  (7.17)
which disagrees from the Schur index of Hég(g) 92, 145] (with ¢ — ¢'/?)
1+28¢"2 + 329 g + 2632 ¢/ + 16380 ¢ + 85764 ¢°/% + 393589 ¢° + O(¢"/?)  (7.18)
by a small subleading correction
1-¢2+85¢ +0((?). (7.19)

One also notices the existence of another sequence of coefficients, marked in blue in
table 4, which is given by:

2.1, 2.2,  2-464, ... (7.20)
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1 k|0 1 2 3 4 ) 6

0 0 0 1 28 300 1925 8918

1 0 0 0 29 707 6999 42889

2 -1 0 0 2 464 9947 92391

3 -28 -29 -2 0 o8 5365 101850
4 -300 -707 -464 -58 0 928 49775

) -1925 -6999 -9947 -5365 -928 0 10646

6 -8918 -42889  -92391 -101850  -49775 -10646 0

7 -32928  -193102 -544786  -894198  -843165  -391587  -97429

8 -102816  -699762 -2392663 -5096487 -7032993 -5965996 -2702949

Table 4. Series coefficients bifl)(8) for the elliptic genus of one SO(8) instanton.

which is essentially a repetition of the coefficients bf’g(g), bgg(g), bgg(s), ..., multiplied by

a factor of 2.
A similar pattern holds for the case G = Fjg: if we isolate the terms bkE? with k > 1+3

in table 9 and sum over anti-diagonals, we obtain:

quz Z bi,(l)(S)q(Hl)/z: (7.21)

>0 k>1+1
=1+78¢"2+2509¢+49270¢% > +698426 ¢*> + 7815106 ¢*/ > +72903429 > + O (¢"/?),

which is again very close to the Schur index of the 4d Hgg = T3 SCFT:?3

T, (q"/?) =1478¢"7+2509¢+49270¢% 2 +698425 4>+ 78151064 *+729033504°+O(q"/?).
Eg
(7.22)
We recognize the difference between the two series expansions,

1-¢24+79¢3+0("?) (7.23)

as consisting of the diagonal coefficients byy3 1. As in the G = SO(8) case, here we also
notice that there are additional sequences of coefficients

E E
b5£n,5+n =2 b4£n,n (724)
and
E E
b5—|6—n,4+n =-1- b4—|6—n,n7 (725)

as well as analogous sequences in the bottom left half of the table.
In the E; and Ejg cases (tables 10 and 11) we see a similar pattern of repeating
sequences; for example, zooming into a small region in the table of bkE§ coefficients

ZWe are grateful to Wenbin Yan for providing us with code to compute the Schur index of the T3 theory
to high orders in q.
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[a—
=
—_
o
—
—_

12 13 14 15

0 1 248 27000 1763125 79143000 2642777280
1 0 249 57877 5943753 368338125 15776893240
2 0 0 31374 6815877 659761497 38811914750
3 0 -1 0 2666375 539686750 49211333622
4 0 0 -249 0 171756125 32299833875
) 0 0 0 -31374 0 8931266291
6 0 0 0 -248 -2666375 0

7 0 0 0 0 -o7877 -171756125
8 0 0 0 0 0 -6815877

9 0 0 0 0 0 -27000

Table 5. Series expansion coefficients bkEﬁ for one Fg instanton.

(table 5), we see that the additional sequences of coefficients (such as the one starting
with b113 = —1 in this example) consist of additional copies of the same sequences of

coefficients as in the top sequence,

{1,249, 31374, 2666375, 171756125 ... }, (7.26)
{248, 57877, 6815877... }, (7.27)
{27000, ...} (7.28)

By inspection, we find from the data at hand that all the properties discussed above
are simultaneously satisfied if we make the following conjecture: the elliptic genus of the
theory h(Gl,), for G = SU(3),S0(8), Fy, Eg, Er, Eg can be written as

hé 1 2 v % h\/ q1/4 % +1/2
e =0 () e 0% (T5) T teta 2 e (7.29)
2

+(1+(—1)hé)q%(%+l> ((JL)QLG(CJ”“”U’Q)—(T) Lc(q"“/v,q))

. q1/4 4*2hTG 4o
La(g™ v,q)+() La(q"3% v.q) ]

where
Lg(v,q) = Z hglv%ql (7.30)
k,1>0
s a series involving only positive powers of v, q.
The coefficients thJ are uniquely determined by requiring that it satisfies (7.29), where
Epg)(€4,7) is the elliptic genus determined by modularity in section 6.2. We find that
the function Lg(v, q) thus obtained satisfies the following additional properties:
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1. The coefficients thl are positive integers, which can be expressed as linear combina-
tions of dimensions of irreducible representations of G with positive coefficients.

2. Lg(v,0) is the Hilbert series of the reduced moduli space of one G-instanton (that
is, the Hall-Littlewood index of the H, g ) theory).

3. h§, = dim(G) + 1.
Remarkably, for the cases G = SU(3),SO(8), E¢ for which a series expansion of the
Schur index is known, we also find that Lg(¢*/*,q) coincides with IH(l)(q1/2), where
G
Z,,1)(q) is the Schur index of the 4d SCFT H((;l)! We discuss the various cases in turn.
G

G = SU(3). In this case, setting h\S/U(:S) = 3 in equation (7.29) one finds that the right
hand side collapses to just two terms, and one has the relation

Eh(slg(g) <€+7 T) = q_1/2v2LSU(3) (’U, Q) + q1/2 2LS ( l/Q/U Q) (731)
Using
Lsys)(v, q) Z h v, (7.32)
k>0
one sees that
SU(3
B @ = by e7 (7.33)

are just the coefficients appearing in the upper right half of table 6. The two terms in
equation (7.31) correspond respectively to the upper right and bottom left halves of the
table, and we recover the results of section 7.1. In particular, equation (7.7), which we have
verified to hold for the first 15 coefficients in the g-expansion, is equivalent to the statement

Lsu) (@ 9) =Z,0) (¢"?). (7.34)

SU(3)

We note that H(v,q) is has an extremely simple form:
Lsu) (v,q) = (4,9) <(1 + 80 + 270 + O(0%)) + ¢ + (1 + 8v?)g® + (1 + 27v*)¢?
+ (14 802 + 640%)¢* 4 (1 + 1250%)¢° + O(q6)>, (7.35)

where (¢,q)00 = gV 245(q) is the g-Pochhammer symbol. This infinite series is an
expansion of the following sum:

n3v2n72

Lyue)(v:9) = (.05 [ DY —— | , (7.36)

_an
nzll q

which also gives the following formula for the Schur index of the (A4, D4) Argyres-Douglas

theory:
n—1

_ n3q
I(A11D4)(q) = (q2a q2)008 Z 1 om | - (7.37)

o1 4
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Note that the ¢ term in equation (7.36) coincides with the Hilbert series of one SU(3)
instanton, since
n® = dim(n - Adjgy(s))- (7.38)

We have also been able to resum equation (7.36) into the following closed form:

I TR [Py o
LSU(g)(v,Q)=—(q,q)008q8fqlog H(q 91— 2qﬂ)ﬂ) : (7.39)
=0

It would be interesting to find a field theoretic interpretation for this formula.
G = SO(8). We use equation (7.29) with

hé =6, (7.40)
to solve for Lgo(s)(v, q), and find:

Lsos) = (1+280*+300v" +19250°+8918v°+-32928v '+ 102816v'*+2821500 4O (v'®) )+
+ (29470702 +6999v* +428891° 419310208 +6997620' 04215699402+ O (v1%) ) g+
+ (463 +9947v? 4923910 454478600 +23926630° 4852604200 + O (v!*) >+
+ (5280410185002 +894198v* 4509648705 + 218885290 + O (v'?)) ¢+
+ (4789748425371 +7032993v* + 3886931405 + O (v19)) ¢* +
+0(¢%). (7.41)

We have not been able to resum this series as in equation (7.36) for the G = SU(3) case.

In the following table 12 we display how the various copies of Lgos) (v,q) are intertwined

to give the coeflicients bi?(s) of the elliptic genus of table 7.

If we now take the limit v — q1/4, we obtain
Lsos) (¢"*,q) =1+28¢"/+329¢+2632¢*/? +16380¢°+85764¢” *+393589¢° +1628548¢"/2
+6190527¢*+21921900¢°/%+73070291¢° +231118384¢" /% +698128389¢°
+2024433460¢%/2 +5659730075¢" 4153097035004 "%/% +40191125219¢°
+0(¢'"?), (7.42)

in perfect agreement with the expression for the vacuum character of the so(8)_, algebra

given in appendix C of [92], which captures the Schur index of the Hég(& theory with

q— q'/2.
G = Eg. Proceeding as above for G = Fjg, using h%ﬁ = 12 we find:

L (v,q) = (1478024243001 +437580° +5379660° 4496910700 4+-366855060 24O (v1?))
+ (794551202 +1572210* +26447070° 4-30843384v° +273370383v 0+ O (v'?)) ¢
+ (3238420129207 + 52835490 + 8352628705 +92876841208+ O (v10)) ¢
+(90911 4504857602 +-122611239v1 4183073416505+ 0O (v®)) ¢
+ (1956516 +9761650602 422051331460+ O (v°)) ¢* + O(¢°). (7.43)
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We display the contribution of the various copies of Lg,(v,q) to the elliptic genus of one
FEg string in table 14 of the appendix.

In the limit v — ¢'/* we find:

Le,(¢"*,q) = 1+ 78¢"/? 4 2509q + 49270¢°/% + 698425¢> + 7815106¢°/ + 729033504°
+ 587906696¢"/% + 4204567965¢* + 27174694560¢"/% 4+ 1610167440704°
+ 8845472018504 /2 + 4545922103619¢° + 220171190360404'3/2
+ 101105788757675¢" + 442470577988634¢"%/2 + 1853392626320950¢°
+0O(¢'7/?), (7.44)

in perfect agreement with the first 17 terms in the expansion of the Schur index of the T3
theory.

G = E;. We set hy, = 18 in equation (7.29) and find:

L, (v,q) = (14 1330v% + 7371v* 4 23860205 + 52487500% + 85709988010 4 O(v'?)
+ (134 + 1628302 + 8355620* 4 2535342905 + 5282712500° + O(v'0))q
+ (9178 + 1014581v? + 48250384v* + 13759967580 + O(v®))¢?
+ (426533 + 428148090 + 1890508984v* + O(v°))¢?
+ (15077814 4 13747317950% + O(v*))¢*
+O°). (7.45)

We display the contribution of the various copies of Lg,(v,q) to the elliptic genus of one
FE; string in table 15 of the appendix.

In the limit v — ¢/4, this gives:

Li. (¢"*,q) = 1+133¢"/% +7505¢4254885¢>/ > +60934904¢> + 112077998/
+1678245091¢° +21264679635¢7/2 +234433785700¢* +2296105563465¢"/
+20303111086038¢° +164158274895703¢" /% +12261922580647454°
+8533333787379775¢"%/? +557187149736523004" + 343388965671840483¢5/2
+2007596030844978734¢% +O(¢'7/?). (7.46)

The Schur index of the HS) theory can be computed by the techniques of [146, 147]. It is
natural to conjecture that Lp, (q'/4,q) coincides with the Schur index I, (¢*/?); we have
Er

verified this up to O(q"/?).2

24We thank Wenbin Yan for providing us with code for computing the Schur index of the H %17) theory.
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G = Eg. We set hy = 30 in equation (7.29) and find:

L, (v,q) = (14 248v% + 270000 + 17631250° + 791430000° 4 26427772800 + O(v'?))
+ (249 + 57877v? + 5943753v" + 3683381250° + 157768932400 4+ +0O(v1%))q
+ (31373 4 681587702 4 6597614970 + 388119147500° + O(v®))¢?
+ (2666126 + 53968675002 + 492113336220 + O(v%))¢
+ (171724751 + 32299833627v% + O(v*))¢* + O(¢%). (7.47)

We display the contribution of the various copies of Lg,(v,q) to the elliptic genus of one
FEjg string in table 16 of the appendix.

In the limit v — ¢'/4, we find:

L, (¢"*,q) =1+248¢"/2 4272499 +1821002¢%/? +85118126¢> +3017931282¢°/2
+85616292063¢° +2018221136220¢/2 +40655908880933¢"
+715118758926278¢%/2 +111716132239004514¢° +1571407685543666604 /2
+2012705625856030235¢° +23694966834840175472¢%/2
+258431445654249301583¢" + 2628885836402784435498¢%/2
+25087207661618093562092¢% +0(¢'7/?) (7.48)

We conjecture that this expression agrees with the Schur index 7 ) (ql/ 2); we have checked
Eg

up to O(¢°/?) that the two quantities agree.?

G = F4. Weset hy, =9 in equation (7.29) and find:

L, (v,q) = (1 4+ 520 + 1053v* 4 1237605 4+ 1007760 + 627912010 + 31870410v'% 4 O(v'?)
+ (53 + 243207 + 449800 + 49587205 + 38567220° + 2323532800 + O(v'?))q
+ (1483 + 599960 + 1023464v* + 106706600° 4 79721160v° + O(v'?))¢*+
+ (28771 + 103488002 + 164106020* + 16274419205 + O (%)) P+
+ (432526 + 1397922802 + 207409930v* 4+ O(v9))g*+
+ O(g%). (7.49)

We display the contribution of the various copies of Lg,(v,q) to the elliptic genus of
one Fj string in table 13 of the appendix.
In the limit v — ¢'/* we find:

L, (g%, q) = 14 52¢"/% 4+ 1106¢ + 14808¢%/% 4 147239 + 1183780¢°/% 4 8095998¢°
+ 486888884/ + 263508351¢* + 1305275544¢°/% + 59939065704°
+ 25771913376¢""/2 + 104583612240¢° + 403149160444¢"3/2 (7.50)
+ 1484121980708¢" + 5241010219736¢"%/2 + 17821566681691¢° + O(¢'7/?).

25We thank Wenbin Yan for providing us with code to compute the Schur index of the H 5318) theory.
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It is interesting to remark that Schur indices can be identified with vacuum characters
of chiral algebras [145]. The properties of the functions L¢ (v, ¢) hint at a similar relation
among (non-supersymmetric) chiral algebras and 2d (0,4) BPS strings of 6d (1, 0) theories.
Understanding the details of such relation goes beyond the scope of the present work and
we leave it to future work [84].

Acknowledgments

We thank C. Cordova, A. Gadde, A. Hanany, J.J. Heckman, S. Kim, K. Lee, E. Looijenga,
N. Mekareeya, D. R. Morrison, L. Rastelli, S. Shakirov, S.-H. Shao, J. Song, W. Yan, A.
Zaffaroni and especially T. Dumitrescu, A. Klemm and C. Vafa for many enlightening
discussions. We gratefully acknowledge support from the Simons Center for Geometry and
Physics, Stony Brook University at which part of the research for this paper was performed.
We also thank the Institute Henri Poincaré and the ENS (Paris) for hospitality at different
stages of this work. MdZ also thanks the organizers of the 2016 Amsterdam String
Workshop for hospitality. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No 708045. The work of MdZ is supported by NSF grant PHY-1067976.

A Explicit expressions for the elliptic genera

In this appendix we collect the results of our computations for the elliptic genera of one
G-instanton, for G = SU(3),SO(8), Fy, Eg, E7, Es, as fixed by the modularity constraints
discussed in section 6.2. In the first part of the appendix we provide the explicit expressions
for the numerator of

~ Nei(2e4,mq, T)

E (1)(26+7m 77_) =
ho " n(r)4he=Y H ©_11/2(264 + Ma, T)p_11/2(264 — Ma, T)
CMEAJr

. (A1)

in the limit my, — 0. In the second part of the appendix we provide extensive tables

of series coefficients of the elliptic genus (A.1), expanded in powers of v? = e*™+ and
q’U_2 — e2mi(T—2ey)

A.1 Explicit form of the numerator terms

We write the expressions for the numerators of the Ansatz in terms of the Jacobi forms
$—21(264,7),00,1(2¢4,7), ¢o3/2(2¢4+,7) and of the Eisenstein series Ey(7), E(T).

For conciseness, in what follows we drop the arguments of these functions and also
write Ng1(2¢4,0,7) = Ng,1. We find the following results:

1

NSU(3),1:ﬂ¢—2,1(E4¢2—2,1—¢3,1)~ (A-Q)
1 7 3 2 3

Nsos)1= m¢’2‘1¢0’3/2(2E6¢’2’1 —9E4¢Z 5 1¢0,14+7¢0,1)- (A.3)
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NF4,1:

NEGJZ

NE7,1=

NE8,1:

In tables

1
746496

T (¢52,1¢O,1 (56E2—81EY) 1453 o 51 +4S6E3 6 5 1 65n

—366E4F6¢° 51001 —453E1¢° 5 1¢0.1+209E66" 5 160 1 +104¢571) : (A.4)

1
23887872

+4656 B Es¢” 5.100,1+23010E5¢% 5 1651 — 14880 E4 B 5.1 b 1

6*%100.3/2 <9¢8_2,1 (23E1 —64E4F5) +4¢° 5 165 1 (512E5 — 1845E%)

—18564E4¢° 5 1061 +T280E66° 5160 1 +4199¢8,1> . (A.5)
1
2972033482752
+ (1472256 B E¢ —151875E5 —60416 B )% 1 ¢o,1 — 1804 B¢ (26T39E5 —8T04Eg )¢5 1 6.1
+18E3 (258993 EF — 6270403 ) ™% 1 65,1 +280E (106623 5 —5680E3 )¢ 5.1 o1

—567F4 (456673 —29056 E¢ ) ¢° 5.1 ¢p0.1 — 51471000 Ef Es " 5 160 1

+228(217503 B3 — 25648 E8)¢° 5 1 66,1 +31668516 E4 Es¢” 5 1 66 1

¢f62,1¢>0,3/2(12(6399E§E6710528E3E§’) A

—40739325E3 ¢ 5 1 00 1 —6249100E6¢° 5 1 o s + 14827410 Eap® 5 1 o6y — 1964315¢3?1> : (A.6)
¢9—12,1¢0,3/2
92010239818739402932224
+29638480E66” 5 1 90 1 (481040 E5 —23057271 E3) +820244934E4¢° 5 1 61 (539755 E5 —134912E7 )

—115263177¢% 5 1 661 (1982439 E7 — 108880 E7 ) +278766529364394E3 Es ™ 5 1 b0 1
+71015153903967 E; 6% 5 1 o1 —33264E4 Fe¢p™ 1 0.1 (2345906637 B — 3740993360 3 Eg
+159614976 B4 ) +1716 B¢, 1 ¢p 1 (202247657541 B — 142801148160 3 B3 +1237560320E¢ )
—858E40"% 1 60,1 (193760793603 £ — 715814423280 3 E +41243970560 5 )

+8064'% 1 do1 (481766368221 B — 828424091520 B 5 +10039040000E; )

—531960E3 Esp' ™ 1 poon (1457598645 5 — 4188115525

—12284370E3 6" 1 6071 (43165017 E5 — 31257376 E¢ ) +6 B4 Es ™ 1 (73362915 E%
—1968261120E5 E3 +2153134080 5 E¢ — 80478208 E§)

+4Es¢y 1 d5 1 (—47714905305 E3 +408586 731840 E5 F§

— 158043820032 E Eg +1049559040E¢) +3E4¢%, 1 6§ 1 (46391070465 E

— 1684505859840 E5 E3 + 1886854717440 E E¢ — 69807374336 E§)

—T¢"% 1601 (568895485455 £ —9050573631168 E§ B3 +4143604654080 E5 Eg — 29575086080 E¢ )
+18E; Esd'% 1 60,1 (405308228085 E5 — 1442655164160 E3 £ +199133118464E; )

+99E5 "% 1 60,1 (384852307779 ES — 2932139934720 5 E¢ +519389409280 5 )

+3E35 0™ 1 ¢0,1 (—258037569 B3 +28032966000 E§ E§ —80889477120 5 E¢+10505617408 E¢ )
—60306155259108 E4 E b 5 1 b1 —12164845368165 Eap” 5 1 g1 +5355592300450 g b° 5 1 o s

(2877420E4E6¢£12,1¢3?1 (333172971 B3 — 32233088 E% ) +

+881510533925¢3?1). (A.7)

A.2 Tables of coefficients

6-11 we display several numerical coefficients of the series expansion of the elliptic

genera of the theories h(Gl) for G = SU(3),S0O(8), Eg, E7, Eg. For G = SU(3), Fy, the elliptic
genera display the following symmetry:

1hG _h&
E, (1 — 2eq,7) = q203 D277 )Ehg>(2€+,7); (A.8)

(1)
h‘G

_41 -



while on the other for G = SO(8), Eg, E7, Eg one has:
LM 1) 201
Ehg)(T —2¢4,7)=—q2'3 o 3 Ehg)(2€+,7). (A.9)

hY,—1
Also, the leading order term in the g-expansion of Eh(l) (2¢,,7) is proportional to g% %

We therefore find it convenient to rescale the elliptic genus and rewrite it in terms of

2

the variables p = v2,p = qv~2 as follows:

vV Vv
hg-1 he
3

E, (26, 7) = Ea(p.0) = q 5 ' 5 E, (265, 7). (A.10)
G G

The rescaled elliptic genus then has the following expansion:

Ea(p.p) = Y b0, (A.11)
k, >0

where
b, = b for G=SU(3),Fy, and bf, = —bf} for G =SO(8), By, Br, Bs.  (A.12)
For instance,
Esua) (0, D) = (p+8p° +OP)) +p(1+9p° + O(p°)) + P> (8+9p+ O(p*)) + O(5°). (A.13)

In tables 6-11 we display the expansion coefficients bg,l for all G.

Finally, in tables 12-16 we display portions of tables 7-11, now including information
about how the series coefficients kaJ arise as sum of contributions from the different terms
in equation (7.29), which we repeat here for convenience:

2nY, 2hé
RV

Y, 3 v 1/4\ “3
Ehg>(6+ﬁ)—v31zq2nl<f4) La(g"viq)—(=1)"e <q> He(q" % Jusq) (A14)

v

q
ra gt () ((qf’M)ZLG<q”H/%,q><qZ4) Lc<q"+1/v,q>)

4-2lg 1/4 4—2%
2 ny (Y ° nt1 q
—q [ —=(=1)"¢ (ql/‘l) La(q ’U,(I)ﬂL(U)

La(q" " /v,q) ]

Each entry in tables 1216 is schematically written as a sum of integers with subscripts;
the two subscripts m,n indicate that the integer arises from the m-th occurrence of the
function Lg (v, q) in the n-th term of the sum in equation (A.14). Thus, for example, the
k =5,1 = 6 entry in table 12 for G = SO(8),

2. 52803,0 +2- 29371 + 285’0 (A15)

indicates that bgfg(g) = 10646 arises as the sum of three terms: 2 - 52803 comes from

the Lgo(s) (¢"t/%v,q) term in equation (A.14), with n = 0; 2 - 2931 also comes from the

n+1

same term, with n = 1; and 285 ¢y comes from the LSO(S)(q v,q) term, with v = 5.
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