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1 Introduction

Recently, many new results have been obtained in the context of 6d (1, 0) theories [1–25];

nonetheless, many of their properties remain rather mysterious. A distinctive feature of

these theories is that among their excitations they have self-dual BPS strings preserving

2d (0, 4) supersymmetry on their worldsheet (see e.g. [26]). The 2d (0, 4) theories on the

worldsheets of the BPS strings give an interesting perspective on the physics of the 6d

(1, 0) models [27–43]. Often, such 2d worldsheet theories can be determined using brane

engineerings in IIA or IIB superstrings [44–47]; however, these perturbative brane engineer-

ings are less helpful in the case of 6d (1,0) systems with exceptional gauge groups, a fact

which is related to the absence of an ADHM construction for exceptional instanton moduli

spaces [48–51].1 On the other hand, it is well-known that systems with exceptional gauge

symmetries are ubiquitous in the landscape of 6d (1, 0) models realized within F-theory [53],

which rely upon the gauge symmetries of non-perturbative seven-brane stacks [54–57]. The

main aim of this paper is to begin filling this gap, shedding some light on the 2d (0, 4)

sigma models with target space the exceptional instanton moduli spaces.

The rank of a 6d SCFT is defined to be the dimension of its tensor branch, i.e. the

number of independent abelian tensor fields. Each tensor field is paired up with a BPS

string which sources it. As our aim is to characterize the exceptional instanton strings, we

prefer to avoid the complications arising from bound states of strings of different types, and

we choose to work with rank one theories. The list of 6d (1, 0) rank one theories realized

within F-theory can be found in section 6.1 of [8]. It is rather interesting to remark that

there are only six “pure” gauge theories of rank one which can be completed to SCFTs. The

corresponding gauge groups are SU(3), SO(8), F4, E6, E7 and E8, while the Dirac pairing

of the corresponding strings is n = 3, 4, 5, 6, 8, 12.

One of the most intriguing features of the 6d (1, 0) theories which arise in F-theory is

that some gauge groups are “non-Higgsable” [58, 59], which is the case for the exceptional

models above. These models arise, for instance, in the context of the Heterotic E8 × E8

superstring compactified on K3 with instanton numbers (12 − n, 12 + n) for the two E8

factors. Whenever n 6= 0, the Heterotic string has a strong coupling singularity [26, 60, 61],

which for 3 ≤ n ≤ 12 supports a 6d (1,0) SCFT of rank one with non-Higgsable gauge

symmetries [55, 56, 62]. For n = 7, 9, 10, 11, the non-Higgsable models include some extra

degrees of freedom.

It is interesting to remark that the rank one models with n = 3, 4, 6, 8, 12 are realized in

F-theory as orbifold singularities of the form Xn ≡ (C2×T2)/Zn [55, 62]: such models are

precisely the rank one 6d SCFTs with pure simply-laced gauge group and no additional

matter. In what follows we are going to argue that the 2d (0, 4) worldsheet theories

describing a bound state of k BPS instantonic strings for such theories arise from well-

known 4D N = 2 theories compactified on P1 with Kapustin’s β-twist [63]: for n =

3, 4, 6, 8, 12 we obtain (respectively) the β-twisted rank k version of the 4d N = 2 theories

H2, D4, E6, E7, E8 with flavor symmetry SU(3), SO(8), E6, E7, E8 respectively, plus a

1For a review, see [52].
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decoupled free hypermultiplet. In what follows we are going to denote these 4d N = 2

theories simply by H̃
(k)
G .

Let us denote by Ek(X) the elliptic genus of the 2d (0, 4) worldsheet theories for

a bound state of k strings of the 6d SCFT engineered by F-theory on the local elliptic

threefold X.2 The topological string partition function Ztop(X) of the elliptic threefold

has an expansion in terms of the Ek(X) [34] which takes the schematic form

Ztop(X) = Z0(X)

1 +
∑
k≥1

Ek(X)Qk

 . (1.1)

Let X̃n be a crepant resolution of Xn within the moduli space of M-theory on Xn. From

our simple geometric engineering argument it follows, in particular, that

Ek
(
X̃n

) ∣∣∣∣∣
n=3,4,6,8,12

= Z(S2×T 2)β

(
H̃

(k)
G

) ∣∣∣∣∣
G=SU(3),SO(8),E6,7,8

, (1.2)

where the r.h.s. denotes the partition function of the 4d N = 2 theory H̃
(k)
G on the back-

ground S2 × T 2, with Kapustin’s β-twist on S2 [63–68]. This gives a rather intriguing

relation among the β-twisted S2 × T 2 partition function for the 4d N = 2 theories H̃
(k)
G

and the topological strings on X̃n. One of the main consequences of this relation is that the

Hilbert series [69] for the moduli spaces of instantons, also known as the Hall-Littlewood

limit [70] of the superconformal index [71] for the H̃
(k)
G theories [72, 73], arise in the limit

q → 0 of the Z(S2×T 2)β partition function, where q = e2πi τ , and the complex structure mod-

ulus of the T 2 is τ .3 This is because the topological string partition function is equivalent

to a 5d BPS count [75–77] that, in the limit where the elliptic fiber grows to infinite size, re-

duces to a 5d Nekrasov partition function [78, 79], which, for pure gauge theories, coincides

with the Hilbert series of the instanton moduli spaces (see section 2.1 of [80] for a simple

derivation of this fact). This interesting property, combined with the key remark that the

elliptic genera are Jacobi forms of fixed index and weight zero,4 can be used to “bootstrap”

the elliptic genus by modularity. The index is determined by the anomaly of the elliptic

genus under a modular transformation S : τ → −1/τ ; this modular anomaly is captured by

the ‘t Hooft anomalies for the 2d theories, which one can read off from their 4-form anomaly

polynomials. The latter have been computed recently for all strings of 6d (1, 0) theories by

means of anomaly inflow [42, 43]. Our geometric engineering argument gives an alternative

derivation for G simply-laced. Using the knowledge of the anomaly polynomial coefficients

for the 2d theories and their q → 0 limits, one can formulate an Ansatz in the appropriate

2In general k is a vector of integers labeling various possible bound states of different types of BPS

strings. For rank one theories, however, it is a single integer, which coincides with the instanton number

for the models we are considering.
3This fact was remarked in [67, 74] for the H̃

(1)
E6

and the H̃
(1)

SO(8) theories respectively by a direct com-

putation. Our geometric engineering argument predicts that must be the case for all the H̃
(k)
G theories.

4Jacobi forms of given type are elements of bi-graded rings, whose grading is governed by two integers,

the weight and the index [81, 82]. These rings are, in particular, finitely generated. For fixed weight and

index therefore, each Jacobi form is determined by a finite expansion in the generators.

– 3 –
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ring of weak Jacobi forms which allows to bootstrap the elliptic genera for the 2d (0, 4)

models of interest — including the case G = F4.5 In this paper we determine the modular

anomaly for all G and for any number k of strings; for the case k = 1, we uniquely determine

the elliptic genera for all G by modularity, which is one of the main results of this paper.

The modular bootstrap approach outlined above is inspired by recent progress in topo-

logical string theory, where modularity, in combination with other geometric considerations,

provides a very powerful approach for solving topological string theory on elliptic Calabi-

Yau threefolds.6 In that context, the modular anomaly of the elliptic genera translates to

the holomorphic anomaly equation of topological string theory. By using modularity and

the holomorphic anomaly equation and making an Ansatz for the topological string parti-

tion analogous to equation (1.1), the authors of [86, 87] were able to solve topological string

theory on various compact elliptic Calabi-Yau threefolds to all genus, for very large num-

bers of curve classes in the base of the elliptically-fibered Calabi-Yau and arbitrary degree

in the fiber class, for geometries where the elliptic fibers are allowed to develop degenera-

tions of Kodaira type I1. From the topological string theory perspective, our approach for

computing elliptic genera of 6d SCFTs with gauge group corresponds to a generalization

of the techniques developed in [86, 87] to a particular class of non-compact Calabi-Yau

threefolds with more singular degenerations of the elliptic fiber. An interesting question is

to further extend this approach to generic elliptic Calabi-Yau threefolds, which one may

take to be either compact or non-compact (in which case the refined topological string

partition function can be computed), corresponding respectively to 6d (1, 0) theories with

or without gravity, with a variety of allowed spectra of tensor, vector, and hypermultiplets;

this wider class of theories is currently under study and will be discussed elsewhere [88].

Remarkably, we find also a connection between the explicit expressions for the (T 2 ×
S2)β partition functions and the Schur indices of the H

(1)
G theories. For G = SU(3), the

Schur index can be obtained as a specific limit of Z(S2×T 2)β ; for other choices of G the

relation is more involved, but nonetheless we find that both the Schur index and Z(S2×T 2)β

can be computed out of an auxiliary function, LG(v, q). Naively it would be tempting to

identify this function with the Macdonald limit of the index, especially because 1) it reduces

to the Hall-Littlewood index in the limit q → 0 and 2) in an appropriate limit it specializes

to the Schur index. However, it is easy to check that this is not the case. We find that

the function LG(v, q) is a power series in v, q whose coefficients are sums of dimensions of

representations of the global symmetry group G with positive multiplicities. It would be

very interesting to relate these results to BPS spectroscopy along the lines of [89–92].

We leave open the problem of determining the 2d SCFTs corresponding to n = 5, 7.

This is related to the fact that the corresponding geometries involve pointwise singularities

5The 2d (0, 4) worldvolume theory of the BPS instanton strings for the 6d (1, 0) pure G = F4 gauge

theory can be determined by a generalization of the methods of [83], by inserting two appropriate surface

defects for the H
(k)
E6

theories on P1. A detailed study of this model (and other models obtained by similar

techniques) goes beyond the scope of the present work and will be discussed elsewhere [84]. Nevertheless,

in this paper we will compute the elliptic genus for one F4 string by using modular bootstrap and basic

properties of this 2d CFT.
6In fact, at the level of genus-zero invariants, a similar approach was used to study the topological string

partition function for the local half-K3 surface already in [85].
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of higher order [59], which generate non-trivial monodromies for τE . This entails in par-

ticular that these theories are not simple β-twists of the type considered above. Another

line of investigation which we leave open is the computation of the elliptic genera for our

models from the 2d TQFT of [67].

This paper is organized as follows: in section 2 we briefly review some salient features

of the F-theory backgrounds that engineer the 6d SCFTs we study in this paper; section 3

contains a review of the main properties of the 4d N = 2 theories of type H
(k)
G and the

geometric engineering argument identifying the twisted compactification leading to the

2d (0, 4) worldsheet theories; in section 4 we discuss general properties of the 2d SCFTs

which follow from the engineering: the central charges, the anomaly polynomial, and the

elliptic genera; in section 5 we review the topological string argument sketched above;

in section 6 we derive our Ansatz from the modularity properties of the elliptic genera;

finally, in section 7 we remark on an intriguing relation among the elliptic genera derived

in section 6 and the Schur index of the corresponding N = 2 theories.

2 Minimal 6d (1,0) SCFTs

2.1 F-theory engineering of 6d SCFTs in a nutshell

In this section we quickly review the geometric setup of [1], which provides the geometric

engineering of 6d (1,0) SCFTs from F-theory, including the minimal ones which are the

focus of this paper. For our purposes, an F-theory background can be viewed either as

M-theory on an elliptically fibered Calabi-Yau X with section:

E ↪→ X

↓

B

(2.1)

in the limit where the elliptic fiber E has shrunk to zero size or, dually, as a compactification

of Type IIB string theory on a Kähler internal manifold B which is stable and supersym-

metric thanks to non-trivial axio-dilaton monodromies sourced by seven-branes [54]. In

particular, the IIB seven-branes are dual to shrunken singular elliptic fibers in the M-

theory realization and the complex structure parameter of the elliptic curve τE is dual to

the axio-dilaton field in IIB. In order to engineer a 6d system, one takes B to have complex

dimension 2. As the system is decoupled from gravity, its volume has to be infinite, and

hence X must be a local Calabi-Yau threefold.7 Consider a local Weierstrass model for the

elliptic fibration of X,

y2 = x3 + fx+ g (2.2)

where f and g are sections of O(−4KB) and O(−6KB) respectively. The discriminant of

the fibration is ∆ ≡ 4f3 + 27g2 ∈ O(−12KB), and ∆ = 0 is the locus where the fiber

degenerates, which is dual to the position of the IIB seven-branes. To engineer a minimal

6d SCFT one needs a geometry which has no intrinsic scale and an isolated special point

p ∈ B such that at least one of the following holds

7The infinite-volume limit has to be taken with care, see the discussion in [19, 93].
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a.) The order of vanishing of (f, g,∆) ≥ (4, 6, 12) at p ∈ B;

b.) The Kähler base of the Calabi-Yau 3-fold is an orbifold of type C2/ΓHMV where

ΓHMV is a discrete subgroup of U(2) of HMV type [1] and the point p is fixed by the

orbifold group action.

Examples where the point p is smooth in the base B but a.) is satisfied are provided by

the theories on the worldvolumes of a stack of N Heterotic E8 instantonic 5-branes [53]

which corresponds in F-theory to a point p with a singular fiber with order of vanishing of

(f, g,∆) ≡ (4N, 6N, 12N). Examples where the fiber at p is smooth but b.) is satisfied are

the (2, 0) theories engineered in IIB as orbifolds by discrete subgroups of SU(2). For most

(1, 0) SCFTs realized in F-theory both a.) and b.) occur [1, 8]. The Calabi-Yau condition

on X imposes rather strong constraints on the allowed discrete subgroups ΓHMV ⊂ U(2)

in b.) — see [1]. In particular, to each allowed ΓHMV corresponds a minimal model of non-

Higgsable type [1]. The models so obtained are minimal in the sense that they sit at the

end of a chain of gauge-group Higgsings and the corresponding gauge symmetries cannot

be Higgsed further [59]. If the SCFT has a non-Abelian flavor symmetry, this is engineered

by a flavor divisor through p, i.e. a non-compact divisor belonging to the discriminant ∆

which contains p along which the order of vanishing of (f, g,∆) in the Weierstrass model

are strictly less than (4, 6, 12) [4, 53]. Abelian flavor symmetries are more subtle, being

related to the Mordell-Weyl group of the elliptic fibration [94].8

Resolving the singularity in the base by blow-ups, removing all points where the order

of vanishing of (f, g,∆) in the Weierstrass model is ≥ (4, 6, 12) while keeping the elliptic

fiber shrunk to zero size, corresponds to flowing along the tensor branch of the 6d model,

which is parametrized by the vevs of the tensor multiplet scalars dual to the Kähler classes

of the divisors of the resolution. On the tensor branch the 6d theories develop a sector

of BPS strings, which are engineered by D3-branes wrapping the divisors resolving the

singularity at the point p in the base. For the geometries corresponding to SCFT tensor

branches, the resolution divisors have always the topology of P1s [1].9 The Kähler volume

of each such divisor is proportional to the tension of the corresponding BPS string. In

particular, such strings become tensionless at the singularity. Whenever one such divisor

C is also an irreducible component of the discriminant of the elliptic fibration, this signals

that in the IIB picture we have a wrapped seven-brane along it. The seven-brane topology

is R1,5×C ⊂ R1,5× B̃, where B̃ is the resolved base corresponding to the 6d tensor branch.

Along the flat R1,5 directions the strings on the seven-brane give rise to a gauge SYM

sector with gauge coupling 1/g2 ∼ vol C. The precise form of the gauge group is encoded

in the corresponding singularity for the elliptic fiber along C — see e.g. table 4 of [95] for a

coincise review. If this is the case the wrapped D3-branes have the dual rôle of instantons

for the 6d gauge group induced by the wrapped seven-brane.

8In some cases it is possible to determine the abelian factors of the flavor groups by means of Higgs

branch RG flows, see [21].
9For the geometries corresponding to tensor branches of LSTs this does not always occur [19].
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2.2 Minimal 6d (1,0) SCFTs from F-theory orbifolds

In order to avoid complications with threshold bound states among BPS strings of different

types, we focus on 6d theories of rank one. Consider a resolution of the singularity at

p ∈ B. As the model is of rank one, the corresponding resolution is based on a single

compact divisor of the base B with negative self-intersection. Let us call such curve Σ.

It is easy to see that Σ must have the topology of a P1 (see the appendix B of [1] for a

derivation). The negative of the self-intersection number of Σ gives the Dirac pairing of the

BPS string obtained by wrapping a D3-brane on Σ, which distinguishes between different

“flavors” of BPS strings. Naively, one would expect that all possible self Dirac pairings are

allowed, but this is not the case [59]. First of all, whenever the irreducible divisor Σ in the

resolution of p ∈ B has self-intersection ≤ −3 the Calabi-Yau condition on X forces the

elliptic fiber to degenerate along Σ. Moreover, this also puts a bound Σ ·Σ ≥ −12: a more

negative self-intersection number would lead to fibers which are too singular, so that c1(X)

cannot vanish. In the IIB picture, this has the interpretation that the backreaction on the

geometry arising from too many wrapped seven-branes destabilizes the background [96].

For −12 ≤ Σ ·Σ ≤ −3, Σ is necessarily an irreducible component of the discriminant of the

elliptic fibration, hence in the engineering it corresponds to a non-Higgsable coupled tensor-

gauge system and the wrapped D3-branes gives rise to BPS instanton strings. The field

content of the six-dimensional theories obtained via geometric engineering is such that the

6d gauge anomalies are automatically canceled via the Green-Schwarz mechanism [97–99].

For Σ ·Σ = −9,−10,−11, the corresponding models needs respectively 3,2,1 further blow-

ups to flow on the tensor branch, so these models map respectively to rank 4,3,2 SCFTs.

In all these cases, shrinking Σ to a point gives rise to a Hirzebruch-Jung singularity in

the Kähler base. Recall that an HJp,q singularity is the Kähler orbifold of C2 corresponding

to the action

HJp,q : (z1, z2)→ (ωz1, ω
qz2) ωp = 1. (2.3)

The rank one theories correspond to bases with Hirzebruch-Jung orbifold singularity of

types (p, q) = (n, 1) with n = 1, 2, 3, 4, 5, 6, 7, 8, 12 [1, 100]: these singularities can indeed

be resolved with a single blow up in the base, leading to a single divisor of self-intersection

−n. The resolved base is

B̃ = Tot
(
O(−n)→ P1

)
1 ≤ n ≤ 12, (2.4)

where the Kähler class of the base P1 corresponds to the vev of the tensor multiplet scalar

parametrizing the 6d tensor branch. In table 1 we list the minimal non-Higgsable gauge

groups corresponding to such singularities [59].

In most of this paper we focus on the models corresponding to n = 3, 4, 6, 8, 12 which

can be realized as orbifolds in F-theory of the form [1, 56, 62]

Xn ≡ (T 2 × C2)/Zn, n = 3, 4, 6, 8, 12. (2.5)

Denoting by λ the T 2 coordinate and (z1, z2) the C2 coordinates the orbifold action is

(λ, z1, z2)→ (ω−2 λ, ω z1, ω z2) ωn = 1. (2.6)

– 7 –
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HJn,1 HJ1,1 HJ2,1 HJ3,1 HJ4,1 HJ5,1 HJ6,1 HJ7,1 HJ8,1 HJ12,1

fiber I0 I0 IV I∗0 IV ∗ns IV ∗ III∗ III∗ II∗

gmin none none su3 so8 f4 e6 e7 ⊕ 1
256 e7 e8

Table 1. Minimal gauge groups for the 6d theories of rank 1. For n = 1 one obtains the E-string

theory, the theory describing a single heterotic E8 instanton that has shrunk to zero size. As H2,1 is

a Du Val singularity of type A1, the surface is a local CY 2-fold and one obtains the A1 (2,0) SCFT.

The model corresponding to HJ7,1 contains some charged matter in the 1
256 representation of e7.

C2
‖︷ ︸︸ ︷ C2︷ ︸︸ ︷ C⊥︷︸︸︷

0 1 2 3 4 5 6 7 8 9

seven-brane X X X X X X X X - -

D3 - - - - X X X X - -

Figure 1. IIB brane engineering of the H̃
(k)
G models.

The models with n = 3, 6, 8, 12 deserve special attention as they correspond, respectively,

to the gauge groups SU(3) and E6,7,8 in 6d: the naive ADHM quiver for SU(3) gives rise

to an anomalous 2d (0, 4) system [42], while it is well-known that there is no ADHM

construction for the instanton worldsheet theories of the E6,7,8 theories.

3 Instanton strings and H̃G

(k)
theories

3.1 A lightning review of H̃
(k)
G models

The 4d N = 2 theories of type H
(k)
G can be constructed in a variety of ways (see e.g. [101–

110]). In F-theory these models (and their higher rank generalization) arise as the worldvol-

ume theories of a stack of D3-branes probing a stack of exotic seven-branes. In M-theory

such exotic seven-branes correspond to local elliptic K3s, with shrunk fibers of Kodaira

type respectively IV, I∗0 , IV
∗, III∗, and II∗. The corresponding seven-branes have gauge

symmetries respectively of types G = SU(3), SO(8), E6,7,8.

Let us consider for the moment the Type IIB picture (see figure 1). The low energy

worldvolume theory on the seven-brane is an 8d SYM gauge theory. The instantons of

such eight-dimensional gauge theories are identified with D3 branes which are parallel to

the seven-branes.

Consider the case of a single D3 brane probe. The transverse geometry to the stack of

seven-branes is identified with the Coulomb branch of the probe theory [102, 111], which

has a nontrivial deficit angle encoding the axio-dilaton monodromy induced by the seven-

branes. The Higgs branch of the probe D3 brane theory corresponds to dissolving the D3

brane into a gauge flux on the seven-brane. With a single D3-brane probe one obtains rank-

– 8 –
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G − SU(2) SU(3) SO(8) E6 E7 E8

Kodaira fiber II III IV I∗0 IV ∗ III∗ II∗

∆G 6/5 4/3 3/2 2 3 4 6

nh − nv 6k/5− 1 2k − 1 3k − 1 6k − 1 12k − 1 18k − 1 30k − 1

Table 2. Properties of H
(k)
G theories. The type of Kodaira fiber associated to the H

(k)
G theory is

listed, as well as the scaling dimension ∆G of the lowest dimensional Coulomb branch operator and

the difference between the effective numbers of hyper and vector multiplets.

1 SCFTs with flavor symmetries corresponding to the gauge algebras on the seven-branes

worldvolumes and Higgs branch which equals the reduced moduli space of one G instanton.

Traditionally, these models have been denoted as H2, D4, E6, E7 and E8, but we prefer

to denote them as H
(1)
G , since all these models arise from T 2 compactifications of the theory

of one Heterotic E8 instanton with Wilson lines for the flavor symmetry [104, 106].10

Corresponding to k > 1 instantons on the seven-branes are stacks of k parallel D3

branes, whose worldvolume support rank k generalizations of the rank one 4d N = 2

models above which we denote H
(k)
G . We summarize some of their properties in table 2.

The k-dimensional Coulomb branches of the H
(k)
G models are symmetric products of the

Coulomb branches of the H
(1)
G theories, while the Higgs branches of the H

(k)
G theories

are given by the reduced moduli spaces of k G-instantons [107–109]. In particular, the

Coulomb branch operators of the H
(k)
G theories have dimensions {j∆G}j=1,2,...,k, where ∆G

is the dimension of the Coulomb branch operator of the rank one model H
(1)
G (cfr. table 2).

To be more precise, for any k ≥ 1 the D3 worldvolume theory also includes a decoupled

free hypermultiplet associated to the center of mass motion of the instantons in C2
‖. Let

H̃
(k)
G denote the 4d N = 2 SCFT corresponding to the direct sum of the H

(k)
G SCFT with

the SCFT of a decoupled free hyper. The Higgs branch of the H̃
(k)
G theory is the moduli

space of k G-instantons, which is going to play an important role in what follows.

The global symmetries of the H̃
(k)
G theories can be read off from figure 1. The strings

stretched between the stack of D3 branes and the seven-branes give rise to a G-type flavor

symmetry which couples the H̃
(k)
G theory to the seven-brane gauge theory. The motion of

the stack of D3 branes in the C2
‖ directions endows the system with an SU(2)L × SU(2)R

global symmetry, while C⊥ gives a U(1)r symmetry. The group SU(2)R×U(1)r is identified

with the R-symmetry of the 4d N = 2 superalgebra, while SU(2)L is an additional flavor

symmetry of the system. For k = 1 only the center of mass free hypermultiplet transforms

under SU(2)L, and the flavor symmetry of the H
(1)
G factor is just G. For k > 1 the flavor

symmetry of the H
(k)
G models is SU(2)L ×G.

10There are two additional types of exotic seven-branes corresponding to the Kodaira fibers of type II

and III, which give rise to the models H
(k)
∅ and H

(k)

SU(2). These branes however cannot be consistently

compactified on a P1 unless they intersect other seven-branes. For this reason they do not play a role in

the construction of the 6d minimal models we are considering in this paper — cf. footnote 12.
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IIB
R1,5︷ ︸︸ ︷ B̃︷ ︸︸ ︷

background C2
‖︷ ︸︸ ︷ R1,1︷ ︸︸ ︷ P1︷ ︸︸ ︷ O(−n)︷ ︸︸ ︷

0 1 2 3 4 5 6 7 8 9

seven-brane X X X X X X X X - -

D3 - - - - X X X X - -

Figure 2. IIB description of the tensor branch of the 6d (1,0) theory.

3.2 The β-twisted H̃
(k)
G models and 6d instanton strings

Compactification of the seven-brane worldvolume theory on P1 gives rise to a six dimen-

sional (1, 0) SYM sector, with 1/g2
YM ∼ vol P1. Furthermore, from the reduction of Type

IIB fields on the P1 one obtains a tensor multiplet with scalar vev 〈φ〉 ∼ vol P1, coupled to

the SYM sector à la Green-Schwarz [97, 98], automatically cancelling the anomalies. To

this tensor multiplet are coupled strings of tension t ∼ 〈φ〉 which arise by wrapping the

D3 branes on the P1. From such engineering it is clear that the worldsheet theories of the

6d instantonic strings for the minimal models with n = 3, 4, 6, 8, 12 are just given by an

appropriate twisted compactification on P1 of the H̃
(k)
G theories (see figure 2). There are

several possible twists for an N = 2 theory on a P1; the twist which is relevant for us can

be determined by the structure of the ambient geometry. Consider the case of a single D3

brane probe. The normal direction to the 7 branes is identified with the Coulomb branch

of the probe D3 brane [102, 111]. In wrapping the P1, the normal direction to the seven-

brane becomes the fiber of a nontrivial line bundle over it of the form in equation (2.4),

and therefore the Coulomb branch of the probe D3 brane supporting the H̃
(1)
G theory also

becomes non-trivially fibered over the P1. This suggest to choose a twist for which

n = −RG = −2∆G. (3.1)

Moreover, the D3 branes engineer instantons for the same gauge groups in 8d and 6d:

dissolving the D3s into flux must give rise to identical Higgs branches, i.e. the instanton

moduli space for the corresponding gauge group. This signals that the SU(2)R symmetry

is left untouched by the twist. These two facts together with the requirement of 2d (0, 4)

symmetry, fix the twist to be just an embedding of the U(1)r R-symmetry group of the

4d N = 2 SCFTs in the holonomy of P1. Supersymmetric twistings of 4d N = 2 theories

on four manifolds which are products of Riemann surfaces are well known [63, 112]: the

twisting above is precisely a Kapustin β-twist on the four manifold R1,1 × P1 [63]. Let us

proceed by briefly reviewing such construction.

Recall that an N = 2 SCFT has a global R-symmetry U(1)r×SU(2)R. Consider a four-

manifold of the form Σ×C, with Σ a two dimensional flat Lorentzian or Euclidean manifold

and C a Riemann surface with holonomy group U(1)C . To preserve some supersymmetry
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on Σ, one needs to identify U(1)C with a U(1) subgroup of the R-symmetry. There are

two canonical choices: the α-twist identifies U(1)C with a Cartan subgroup of SU(2)R, the

β-twist identifies it with U(1)r. Fixing complex structures on Σ and C, left handed spinors

are sections of

S− = K
−1/2
Σ ⊗K1/2

C +K
1/2
Σ ⊗K−1/2

C (3.2)

while right handed spinors are sections of

S+ = K
−1/2
Σ ⊗K−1/2

C +K
1/2
Σ ⊗K1/2

C . (3.3)

The 8 supercharges of the 4d N = 2 superalgebra transform as an SU(2)R doublet of left-

handed spinors with U(1)r charge +1 and an SU(2)R doublet of right handed spinors with

U(1)r charge −1. By the β-twist, these become sections of

S− ⊗K1/2
C = K

−1/2
Σ ⊗KC +K

1/2
Σ ⊗OC U(1)r charge + 1,

S+ ⊗K−1/2
C = K

−1/2
Σ ⊗K−1

C +K
1/2
Σ ⊗OC U(1)r charge − 1.

(3.4)

Of the 8 supercharges, only 4 transform as scalars along C. All four supercharges have

the same chirality on Σ, leading to 2d (0, 4) supersymmetry. In the language of [64, 113–

115], the β-twist can be viewed as a curved rigid supersymmetry background preserving

four supercharges. In particular, we are interested in backgrounds of the form R1,1 × S2

or T 2 × S2 for theories with a U(1) R-symmetry [65, 66, 68, 116, 117]. One starts with a

background for the new minimal N = 1 supergravity that has a non-trivial unit background

U(1) R-symmetry flux on the S2 [64–66, 116], and identifies the R-symmetry background

gauge field of the supergravity with the U(1)r symmetry of the N = 2 theory.11 In presence

of this R-symmetry monopole one obtains consistent geometries only if the U(1)r charges

are quantized over the integers [64, 65].12 Another interesting comment is that the two-

dimensional theory does not have a Coulomb branch. This is consistent with the fact that

under the β-twist the degrees of freedom that correspond to moving the D3 brane within

B̃ are projected out.

Notice that this very same reasoning applies straightforwardly to higher instantonic

charge k, mutatis mutandis. In the case of a D3 brane stack, the vevs of the Coulomb branch

operators for the H
(k)
G theories, being symmetric products of the transverse direction to the

7 branes, also become fibers of nontrivial bundles over P1 of the form
⊕k

j=1O(−2j∆G).

Moreover, the Higgs branches of the theory on a stack of k wrapped D3 branes are still

given by dissolving instanton into flux, and therefore coincide with k-instanton moduli

spaces for the corresponding gauge groups. Following the same argument as for the k = 1

case, this forces the theories on the worldsheet of the wrapped D3 branes to be β-twisted

H̃
(k)
G theories on R1,1 × P1. More precisely, the β-twist of the H̃

(k)
G models on R1,1 × P1

gives rise to the 2d (0, 4) theories which flow in the IR to the worldsheet theories for the

11In section 4 of [68] the β-twist is referred to as the Higgs reduction. See also appendix F of [67] for

more details.
12Notice that the theories H

(1)
∅ and H

(1)

SU(2) have Coulomb branch operators with R-charges respectively

12/5 and 8/3, hence if β-twisted these would not lead to consistent geometries and in order to compactify

them on spheres a different background is necessary — cf. footnote 10.
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6d BPS instantons of charge k. In what follows we denote the latter 2d (0, 4) IR SCFTs

by h̃
(k)
G , and we also denote by h

(k)
G the same theories with the decoupled center of mass

(0,4) hypermultiplet removed.

By construction, in the limit in which the volume of the P1 goes to zero, a β-twisted

4d N = 2 theory gives a (0, 4) sigma model into its Higgs branch [63, 67, 68]. Of course,

the Higgs branches of the H̃
(k)
G models are precisely the hyperkähler moduli spaces of k

G instantons MG,k. The condition for obtaining a gauge anomaly free (0, 4) SCFT are

equivalent to the condition for having a non-anomalous U(1)r symmetry for the 4d N = 2

theory we began with [63].

4 Some generalities about the 2d (0, 4) h̃
(k)
G SCFTs

Typically, the models obtained by the procedure outlined in section 3.2 are not 2d (0,4)

SCFTs. As the BPS instanton strings arise at low energies on the tensor branch of the

6d theory, the D3 branes are wrapping a P1 of finite size. Sending the volume of the

P1 to zero (and hence sending the 6d gauge coupling to infinity) corresponds to reaching

the 6d superconformal point; this simultaneously captures an RG flow of the worldsheet

theories of the strings to an IR fixed point. A crucial consequence of this fact is that whole

equivalence classes of 2d theories which flow to the same IR fixed point can correspond

to the same BPS worldsheet theory, which in a certain way mimics what happens in the

context of the supersymmetric quantum mechanics description of BPS states in 4d N = 2

theories [118, 119]. In particular, whenever the h̃
(k)
G models have different dual descriptions

we can use that to our advantage. Recently, progress in this direction has been achieved

on two fronts: on one hand it was shown that 4d N = 2 S-dualities [120] induce 2d

(0, 4) Seiberg-like dualities [67], and on the other hand it was shown that there are 4d

N = 1 Lagrangian theories which flow to 4d N = 2 fixed points, with supersymmetry

enhancements at the fixed point [74, 121, 122]. Using these novel 2d dualities, we can

reconstruct some protected properties of the IR 2d (0, 4) SCFTs of type h̃
(k)
G from their

geometric engineering discussed above.13

The global symmetry of a 2d (0, 4) theory of type h̃
(k)
G is SU(2)L×SU(2)R×SU(2)r×G,

where SU(2)L × SU(2)R combine to the SO(4) isometry of a transverse C2
‖ to the 2d

worldsheet, SU(2)r is the superconformal R-symmetry for the small N = 4 SCA of the

supersymmetric chiral sector, and G is a global symmetry [51]. From our engineering, we

see clearly the contribution of SU(2)L × SU(2)R ×G (see figure 2), however we do not see

directly the SU(2)r symmetry which has a geometrical origin and emerges when we shrink

the P1 to zero size (i.e. at the 6d conformal point).

4.1 Central charges (cL, cR)

The β-twisted compactification provides a relation between the central charges of the 2d

theory (cL, cR) and the 4d conformal anomalies (a, c) [67]. In particular, for the models we

13Understanding the geometric counterparts of such flows is an extremely interesting question, but is also

outside the scope of the present paper. We plan to return to this issue in the future.
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consider in this paper, one has [67]:

(cL, cR) = (4, 6)× 24(c− a) (4.1)

The superconformal central charges (a, c) have been determined for all H
(k)
G theories [123,

124]:

a =
1

4
k2∆G +

1

2
k(δG − 1)− 1

24

c =
1

4
k2∆G +

3

4
k(δG − 1)− 1

12

(4.2)

which gives

24(c− a)
∣∣
H

(k)
G

= khG − 1, (4.3)

where hG is the Coxeter number of the group G = SU(3), SO(8), E6,7,8. Including the

contribution of a center of mass hypermultiplet, for which c = 1/12, a = 1/24 and 24(c−
a) = 1, one obtains

(cL, cR) = (4, 6) k hG = (4, 6) dimHMG,k, (4.4)

whereMG,k is the moduli space of k instantons for the group G, or equivalently the Higgs

branch of the theory H̃
(k)
G .

4.2 Anomaly polynomial

The anomaly polynomials for the 2d (0, 4) theories on the worldsheets of the BPS in-

stanton strings of 6d (1, 0) theories have been computed elegantly by an anomaly inflow

argument [42, 43]. For the h̃
(k)
G theories one obtains, in particular:

A2d =
k2n− k (n− 2)

2
c2(FSU(2)L)− k2n+ k (n− 2)

2
c2(FSU(2)R) +

kn

4
trF 2

G

+ kh∨G

(
1

12
p1(TΣ) + c2(FSU(2)r)

)
.

(4.5)

Alternatively, the central charges cL and cR of the 2d theory we computed in the previous

section determine the contribution of the gravitational anomaly as follows:

− cL − cR
24

p1(TΣ) =
kh∨G
12

p1(TΣ) =
k(n− 2)

4
p1(TΣ) (4.6)

and moreover one also determines the coefficient of c2(FSU(2)r) from a (0, 4) Ward iden-

tity [67]. The remaining parts of the 2d anomaly polynomial also match against the known

‘t Hooft anomalies of the 4d H̃k
G theories [123, 124]. In particular, the 4d ‘t Hooft anomaly

coefficients for the SU(2)L ×G global symmetries kL and kG are

kG = 2k∆G = kn

kL = k2∆G − k(∆G − 1) =
k2n

2
− k

(n
2
− 1
)
.

(4.7)

These correspond respectively to the global anomaly terms for the flavor symmetries SU(2)L
and G in equation (4.5). Similarly, the ‘t Hooft anomaly for the SU(2)R symmetry of the

4d N = 2 theory is given by nv ≡ 8a− 4c. For the models at hand

nv = 8a− 4c = k2∆G + k(∆G − 1) =
k2n

2
+ k

(n
2
− 1
)
, (4.8)
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which matches the SU(2)R term of equation (4.5). This follows because the SU(2)L ×
SU(2)R × G contributions to the anomaly polynomial can be determined directly from

the 4d anomaly polynomial by integrating it on the P1, following the same ideology of

e.g. [125, 126], which gives an alternative derivation for A2d.

4.3 Elliptic genus

Another interesting BPS property of the 2d (0, 4) IR SCFTs of k instantonic strings which

can be reconstructed from our engineering argument is their (flavored) elliptic genus. Fol-

lowing [64], we realize the T 2 × S2 background as a quotient of C× P1 with metric

ds2 = dwdw̄ +
4r2

(1 + zz̄)2
dzdz̄, (4.9)

where w and z are coordinates on C and on P1 respectively, while r is the P1 radius. We

identify

(w, z) ∼ (w + 1, zeiα) ∼ (w + τ, zeiβ), (4.10)

where τ is complex and α and β are real angles with periodicity 2π. The identification of

w gives rise to a torus T 2 with complex structure τ , while the identification on z indicates

how the P1 rotates as we go around the two cycles of the torus. As we mentioned in the

previous section, we have a unit monopole R-symmetry flux though P1, which implies the

quantization of the U(1)r charges. The complex structure moduli for this background are

related to (τ, α, β) and have been determined by [64]: these are τ , the complex structure

of T 2, and σ ≡ ατ − β (with fixed τ). The partition function on such background depends

locally holomorphically on τ, σ [64]. On top of this, the partition function can depend

on fugacities and fluxes for the other global symmetries of the theory: indeed, one can

easily add Abelian background gauge fields for the Cartan of the global symmetry group

of the model. The gauge field must be flat on T 2 [64]. The corresponding holomorphic

line bundles are labeled by their first Chern class c1 ∈ Z (≡ flux through P1) and a single

holomorphic modulus, whose real and imaginary parts correspond to Wilson lines wrapping

the cycles of the torus. Only the U(1)r R-symmetry has a flux through the P1; on the other

hand, we can turn on fugacities for the other global symmetries along the cycles of the T 2.

The T 2 × S2 backgrounds discussed above are 1/2 BPS and defined for any 4d super-

symmetric theory with at least four supercharges and a U(1) R-symmetry. In general such

partition functions on T 2×S2 localize over (infinite) sums over distinct elliptic genera [66],

labeled by gauge flux sectors on the two sphere.14 Under favorable circumstances, however,

such infinite sums can truncate to finite sums [68]. In particular, for backgrounds without

global symmetry fluxes (other than the U(1) R-symmetry monopole) and with a choice

of U(1) R-symmetry such that all the elementary fields have non-negative R-charges, this

sum turns out to consist of a single term [68], which one can identify with a RR elliptic

genus for a 2d (0, 2) theory, of the kind defined in [127, 128]. This is precisely the case for

14More precisely by triples given by flat connections on T 2 commuting with a given gauge flux through

S2 [66].
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USp(2k)B SO(8)
Q

Figure 3. 2d quiver corresponding to the H
(k)
SO(8) theory.

the Kapustin β-twist of the H̃
(k)
G theories discussed above, where the amount of supersym-

metry is doubled and the (T 2 × S2)β partition function of the H̃
(k)
G theory localizes to an

elliptic genus for the h̃
(k)
G model. Schematically

E
h̃
(k)
G

= Z(T 2×S2)β

(
H̃

(k)
G

)
, (4.11)

where E
h̃
(k)
G

is the (flavored) RR elliptic genus [127, 128] of the h̃
(k)
G theory. The leading

order term in the q−expansion of E
h̃
(k)
G

is proportional to q−cL/24, and therefore, in cases

where elliptic genera are effectively computable, one can read off the left central charge cL
of the CFT directly from them and verify (4.4).

Furthermore, the β twist behaves particularly nicely with respect to the 2d (0,4) dual-

ities [67], and this gives rise to a strategy for computing the elliptic genera of the h̃
(k)
G (0, 4)

models, even when they do not have a Lagrangian formulation. In order to fix the precise

map among the elliptic genus fugacities and the β-twisted T 2×S2 partition function of the

H̃
(k)
G theories, it is helpful to consider the Lagrangian case corresponding to G = SO(8).

In particular, this case gives an interesting consistency check for our geometric engineering

argument as the corresponding 2d BPS worldsheet theories have already been determined

from a different perspective in [34].

4.3.1 Strings of the SO(8) 6d (1, 0) minimal SCFT revisited

It is well known that the H
(k)
SO(8) theories, which correspond to D3 branes probing the seven-

brane associated to a I∗0 singularity, are Lagrangian SCFTs [102, 107]. In particular, H
(1)
SO(8)

is just SU(2) SYM with four hypermultiplets in the fundamental representation, while the

H
(k)
SO(8) theories for k > 1 are given by an USp(2k) gauge theory with four hypermultiplets

in the fundamental representation and one hypermultiplet in the antisymmetric. In the

β-twisted reduction on P1 of any Lagrangian theory, each vector (resp. hyper) multiplet in

4d leads to a (0,4) vector (hyper) multiplet in 2d [63]. From this it follows at once that the

2d (0,4) quiver gauge theory describing the strings consists of an USp(2k) vector multiplet

Υ, a hypermultiplet B transforming in the anti-symmetric representation of USp(2k), and a

USp(2k)×SO(8) bifundamental hypermultiplet Q, as summarized by the quiver in figure 3,

which indeed coincides with the one obtained in [34] from a different brane engineering

in Type IIB string theory. This serves as a first consistency check for our claim. The

elliptic genus of the theory can be computed from the results of [65–67, 116]. For k = 1

we obtain the Jeffrey-Kirwan residue of the following 1-form one-loop determinant that
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matches exactly with equation (3.21) of [34]:

dζ(2πi)

(
η(τ)2

θ1(v x±; τ)

)
×

(
4∏
i=1

η(τ)4

θ1(v µ±i z
±; τ)

)

)
×
(
θ1(z±2; τ)θ1(v2 z±2; τ)θ1(v2; τ)

η(τ)3

)
,

(4.12)

where the first term in parentheses comes from the decoupled center of mass hyper of the

4d N = 2 system, the second corresponds to the four hypermultiplets in the fundamental

which, having U(1)r charge zero, contribute as (0, 4) hypers, while the third term corre-

sponds to the contribution of the SU(2) vector multiplet. The parameters x = e2πε− and

v = e2πiε+ are exponentiated fugacities for SU(2)L and SU(2)R respectively; ζ is the ex-

ponential of the holonomy of the gauge field; finally, µ1, . . . µ4 are exponentiated fugacities

for the SO(8) flavor symmetry.

4.3.2 The E6 case: k = 1

According to our geometric engineering argument, the elliptic genus for one BPS istantonic

string of the minimal (1, 0) SCFT with E6 gauge symmetry coincides with the β-twisted

partition function of the H̃
(1)
E6

4d N = 2 SCFT, which is the well-known rank one E6

Minahan-Nemeschansky theory H
(1)
E6

, plus a decoupled free hypermultiplet. Luckily, the

β-twisted partition function for the E6 MN theory has been computed recently, with two

different insightful methods [67, 74]. In one approach, the E6 MN theory is realized as

a fixed point with enhanced supersymmetry of a Lagrangian 4d N = 1 theory. Upon

compactification on S2 the 4d N = 1 model gives rise to a 2d (0, 2) theory which flows

in the IR to a fixed point with enhanced (0, 4) supersymmetry. The elliptic genus in this

case has been computed in [74] by localization from the (0, 2) matter content. The second

approach involves the 2d (0, 4) avatar of Gaiotto N = 2 dualities developed in [67]: the

elliptic genera of the theories compactified on T 2 × S2 are captured by correlators of a

TQFT on the Gaiotto curve of the 4d parent theory H̃
(k)
G .15 In particular, the elliptic

genus of the H
(1)
E6

theory has been computed in [67] by exploiting the duality of this theory

with the SU(3), Nf = 6 theory [129].

Let us briefly review the computation of the H1
6 elliptic genus performed in [67]. The

elliptic genus of the SU(3), Nf = 6 theory can be obtained starting with the H
(1)
E6

elliptic

genus. This theory has a manifest SU(3)3 ⊂ E6 global symmetry group; one can weakly

gauge an SU(2) subgroup of a SU(3) factor and couple a hypermultiplet to this gauge

group, as in figure 4. This implies the following relation at the level of elliptic genera:

ESU(3),Nf=6(a,b, x, y) =
1

2

∫
dζ

2πiζ

η2θ(ζ±2)θ(v2)θ(v2ζ±2)

θ(vs±ζ±)
E
h
(1)
E6

(a,b, c). (4.13)

Here, the integration is performed by picking up the Jeffrey-Kirwan residues of the inte-

grand, and a,b, c are SU(3)a × SU(3)b × SU(3)c fugacities. Moreover ζ is the fugacity

for the gauged SU(2) subgroup of SU(3)c; the hypermultiplet is also charged under an

15This provides in principle a way to compute elliptic genera of all the H̃
(k)
G theories. However, the tools

required to compute generic TQFT correlators are not yet available. We leave this to future work.
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Figure 4. Gaiotto T3 theory from degeneration of the SU(3), Nf = 6 curve.

IIB
(T2 × R4)ε1,ε2︷ ︸︸ ︷ B̃︷ ︸︸ ︷

background R4
ε1,ε2︷ ︸︸ ︷ T 2︷ ︸︸ ︷ P1︷ ︸︸ ︷ O(−n)︷ ︸︸ ︷

0 1 2 3 4 5 6 7 8 9

seven-brane X X X X X X X X - -

D3 - - - - X X X X - -

Figure 5. Schematic IIB description of the 6d (1,0) Ω background.

additional SU(2) whose fugacity is denoted by s. The x, y fugacities associated to the

U(1) × U(1) global symmetry of the SU(3), Nf = 6 theory are determined in terms of c

and s as follows:

(c1, c2, c3) = (rζ, rζ−1, r−2); x = s1/3/r; y = s−1/3/r. (4.14)

Following [67], this formula can be inverted to give the h
(1)
E6

elliptic genus in terms of the

known elliptic genus for SU(3), Nf = 6, according to the following formula:

E
h
(1)
E6

(a,b, c) =
1

2θ(v2ζ±2)

∫
ds

2πis

θ(s±2)θ(v−2)

θ(vs±ζ±)
ESU(3),Nf=6(a,b, x, y). (4.15)

This results in a sum of a somewhat large number of terms, but it can be shown that it

can be expressed in terms of E6 characters as the following expansion:

E
h
(k)
E6

= v11 q−11/6

(
(1 + χE6

78 v
2 + χE6

2430v
4 + . . . )

+ q ((1 + χE6
78 ) + (1 + 2χE6

78 + χE6
2430 + χE6

2925)v2 + . . . ) + . . .

)
. (4.16)

5 Topological strings and elliptic genera

5.1 6d BPS strings and topological strings

Combining the geometric engineering picture in F-theory with the duality between F-theory

and M-theory [54] and the Gopakumar-Vafa formula [75–77] gives a canonical relation
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among the spectrum BPS states of 6d (1, 0) theories and the closed topological string

partition function [27, 28, 34]. In the present context, this relation reads

Ztop

(
X̃n

) ∣∣∣∣∣
n=3,4,6,8,12

= ZG,0

1 +
∑
k≥1

E
h̃
(k)
G

Qk

∣∣∣∣∣
G=SU(3),SO(8),E6,7,8

. (5.1)

where X̃n is a resolution of Xn, the orbifold singularity in equations (2.5)–(2.6), Q is a

fugacity proportional to e−t where t is the Kähler class of the base P1, and ZG,0 is a factor

that encodes the spectrum of BPS particles arising from KK reduction of the 6d hyper-,

tensor, and vector multiplets, and crucially is independent of t.16 The topological string

free energy admits a genus expansion

log Ztop(X) = − 1

ε1ε2

∑
g,n≥0

(−ε1ε2)g(ε1 + ε2)mFg,m(X), (5.2)

and in [34] B-model techniques were used to compute F0,0(X̃n) for 3 ≤ n ≤ 12. In

particular, for rank one models F0,0 has the following expansion

F0,0(X̃n) =
∑
k≥0

e−k tF
(k)
0,0 (τ,mi), (5.3)

where t is the Kähler class of the base P1 in X̃n, τ is the Kähler class of the elliptic fiber

of X̃n, and mi correspond to the Kähler classes resolving the singular elliptic fibers of X̃n.

This gives nontrivial relations among the genus zero invariants F
(k)
0,0 and elliptic genera of

BPS strings [34]. An especially simple one is the following:

F
(1)
0,0 (X̃n)

∣∣∣∣∣
n=3,4,6,8,12

= lim
ε1,ε2→0

ε1ε2 Eh̃(1)G

∣∣∣∣∣
G=SU(3),SO(8),E6,7,8

. (5.4)

This has been checked for G = SO(8) in [34]; we have checked that analogous results hold

for G = E6 at one string. See also [42] for G = SU(3).

5.2 Elliptic genera and Hilbert series

The elliptic genera of the 2d (0,4) SCFTs that were obtained above display some interesting

properties which have a natural explanation in light of geometry. For instance, it was first

observed in [68] for one E6 string and in [67] for SO(8) strings that the leading order term

in the elliptic genus of the h
(1)
E6

and h
(1)
SO(8) theories coincides with the Hall-Littlewood index

of the 4d H
(1)
E6

or H
(1)
SO(8) theories respectively, or alternatively with the Hilbert series of

the reduced moduli space of one E6 or SO(8) instanton. The connection with topological

string theory can be used to derive and generalize such relation between the elliptic genera

and the Hall-Littlewood index from geometry.

From the perspective of the 6d (1, 0) theories, the computations outlined in section 5 are

suggestive of a localization computation in 6d on an Ω-background of the form (T2×R4)ε1,ε2 ,

16Some details about the geometry of X̃n can be found in [34] and references therein.
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where ε1 and ε2 are identified with the Cartan generators of the SO(4) isometries of R4,

as in figure 5. Similar to what happens for 4d N = 2 and 5d N = 1 theories, the

partition function of the 6d (1, 0) theory on the Ω-background localizes on generalized

elliptic equivariant characters of the instanton moduli spaces, which are computed precisely

by the elliptic genera of the BPS instanton strings [78, 79]. This Ω-background lifts to an

F-theory background of the form

F/(X × S1
6d × S1

5d × R4)ε1,ε2 ←→ M/(X × S1
5d × R4)ε1,ε2 (5.5)

where the F/M theory duality exchanges the radius R6d of S1
6d on the F-theory side with

the volume Im τ ∼ 1/R6d of the elliptic fiber of X.

In the limit Im τ → ∞, all the KK modes in the reduction from 6d to 5d decouple

and one is left with a genuine 5d N = 1 theory. In the case of the X̃n models with

n = 3, 4, 6, 8, 12, the geometry of the 2-cycles is given by an affine Dynkin graph of type

Â2, D̂4, Ê6,7,8 respectively, and one can take the limit Im τ → ∞ in such a way that

only one 2-cycle with Coxeter-Dynkin label 1 in the affine diagram is sent to infinite size,

while the others are kept of finite size. Proceeding this way, one obtains an M-theory

geometry corresponding to pure 5d N = 1 gauge theory, with gauge groups respectively

SU(3), SO(8), E6,7,8 (as well as a U(1) vector multiplet coming from compactification of

the tensor multiplet, which decouples since gU(1) ' R
1/2
6d → 0).17 In particular, in this

limit the topological string partition function reduces to the 5d N = 1 Nekrasov partition

function for a pure SYM theory with gauge group G, which we denote by Z5d
inst(G), times

a perturbative contribution coming from the G vector multiplet and the decoupled free

abelian vector multiplet which is independent of the base Kähler parameter t:

Ztop(X̃n)
∣∣∣
n=3,4,6,8,12

Im τ→∞−−−−−→ Z5d
pert(G×U(1)) · Z5d

inst(G)
∣∣∣
G=SU(3),SO(8),E6,7,8

. (5.6)

The instantonic piece Z5d
inst can be written as [80, 130, 131]:

Z5d
inst(G) = 1 +

∑
k≥1

Q̃kH(MG,k), (5.7)

where H(MG,k) is the Hilbert series of the moduli space of k G-instantons. Combining

equations (5.1), (5.6) and (5.7), we obtain

lim
Im τ→∞

E
h̃
(k)
G

Qk = H(MG,k) Q̃
k. (5.8)

This explains and generalizes the results of [67] for the SU(2), Nf = 4 theory (corre-

sponding to one SO(8) instanton) and [67, 74] for the h
(1)
E6

theory (corresponding to one

E6 instanton). With the results already available in the literature, we can check that this

relation extends to other cases as well. For instance, from the expression for the elliptic

17Notice that there is a leftover contribution from the Green-Schwarz term in six dimensions, which gives

rise to a 5d Cern-Simons coupling of the form AU(1) ∧ Tr(FG ∧ FG). This term, however, upon reduction

on S1
5d can be absorbed by a shift in the θ angle for the gauge group G in the resulting 4d effective theory.
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genus of two SO(8) instantons in section 3.1 of [34], taking the q → 0 limit and setting

x = 1 for simplicity, one finds:

lim
q→0

q2E
h̃
(2)
SO(8)

(ε+,τ)=v25

[
1

(1−v2)24(1+v2)12(1+v2+v4)11

(
1+v2+20v4+65v6+254v8

+841v10+2435v12+6116v14+14290v16+29700v18+55947v20+96519v22+152749v24

+220408v26+293226v28+359742v30+406014v32+421960v34+406014v36+359742v38

+293226v40+220408v42+152749v44+96519v46+55947v48+29700v50+14290v52

+6116v54+2435v56+841v58+254v60+65v62+20v64+v66+v68

)]
· 1

(1−v)2
, (5.9)

where the term in square brackets agrees with the Hilbert series of the reduced moduli

space of two SO(8) instantons (see equation (5.20) of [73], where their parameter t is to be

identified with v2), and 1
(1−v)2

is the contribution of the center of mass hypermultiplet in

the limit x→ 1.

Likewise, we find that in the same limit the elliptic genera for one and two SU(3)

instantons, computed using the results of [42], are given respectively by:

lim
q→0

q1/2 E
h̃
(1)
SU(3)

(ε+, τ) = v3

[
1 + 4v2 + v4

(1− v2)4

]
· 1

(1− v)2
(5.10)

and

lim
q→0

q E
h̃
(2)
SU(3)

(ε+, τ) = v13

[
1

(1− v2)12(1 + v2)6(1 + v2 + v4)5

(
1 + v2 + 6v4 + 17v6 + 31v8

+ 52v10 + 92v12 + 110v14 + 112v16 + 110v18 + 92v20 + 52v22

+ 31v24 + 17v26 + 6v28 + v30 + v32

)]
· 1

(1− v)2
; (5.11)

the expressions in square brackets agree respectively with the Hilbert series of the reduced

moduli space of one and two SU(3) instantons (which can be read off from equations (3.12)

of [132] and (3.21) of [73]).

An alternative field theoretical derivation of this relation would go as follows. The

elliptic genus corresponds to the partition function of the 4d N = 2 theory on T 2×S2. Let

us write T 2 = S1
R1
× S1

R2
. Taking Im τ to infinity is equivalent to sending R1 → 0, thus

reducing to a partition function on S1×S2 for the corresponding 3d N = 4 theory. For an

S1 reduction, the Higgs branch does not receive corrections [133]. From the results above,

it is tempting to conjecture that the corresponding partition function for the 3d N = 4

theory computes the Higgs limit of the superconformal index, which is the Hilbert series

of the Higgs branch [134].

6 Modular bootstrap of the elliptic genera

6.1 From anomaly four-form to modular transformation

In this section we explain the relation between the anomaly four-form polynomial of the

2d SCFTs and the modular transformation of their flavored elliptic genus, a result which

will be useful in section 6.2 for determining the elliptic genera of instanton strings.

– 20 –



J
H
E
P
0
9
(
2
0
1
7
)
0
8
1

In our computation of the elliptic genus we keep track of the dependence on the fu-

gacities of the global symmetry group F , which for the theories at hand we can write

schematically as the product of various non-Abelian factors:

F =
∏
a

Fa. (6.1)

We denote by {~za} the fugacities associated to the Cartan of the non-Abelian factors.

Under a modular transformation τ → −1/τ , the elliptic genus transforms as a weight-

zero Jacobi form of several elliptic variables:

E(~za/τ,−1/τ) = e
2πi
τ
f(~za)E(~za, τ). (6.2)

We refer to the phase f(~za) as the modular anomaly of the elliptic genus. This is a quadratic

form of the various fugacities:

f(~za) =
1

2

∑
a

ka (~za|~za)a, (6.3)

where the ka have the physical interpretations as coefficients in the OPE of the cur-

rents associated to the various global symmetries, as in [135, 136], while (x|y)a ≡
1

2h∨G

∑
α∈R〈α∨, x〉〈α∨, y〉 is the Weyl-invariant symmetric bilinear form on the root lattice

of the group Fa normalized such that the short roots have length 2 [137].

The modular anomaly can be read off directly from the anomaly four-form A4, which

includes terms of the form [138]: ∑
a

kach2(Fa). (6.4)

We find that for the h̃
(k)
G theory the modular anomaly for the elliptic genus can be

determined from equation (4.5), by the following replacements:

c2(FSU(2)R)→ −ε2
+ c2(FSU(2)r)→ −ε

2
+ c2(FSU(2)L)→ −ε2

− (6.5)

1

2
trF 2

G → −
1

2h∨G

∑
α∈∆G

(mα)2 p1 → 0, (6.6)

where ~m ≡ (m1, . . . ,mr) are the fugacities associated to the global symmetry group G,

and, for a root α = n1α1 + · · · + nrαr ∈ ∆, mα ≡
∑

i nimi. To make contact with the

literature about Jacobi forms, it is useful to switch to the root lattice, which amounts to

the change of variables mi = (CG)ijyj , where CG is the Cartan matrix of G. Then,

1

2h∨G

∑
α∈∆G

(mα)2 ≡ ( ~y | ~y )G, (6.7)

where h∨G is the dual Coxeter number. It follows that the modular anomaly can be

expressed as

f
h̃
(k)
G

(mα, ε+, ε−) = −k
(
h∨G
6

+ 1

)
( ~y | ~y )G−k

h∨G
6

(5ε2+−ε2−)+k2

(
h∨G
6

+ 1

)
(ε2+−ε2−). (6.8)
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6.2 Constraining one-string elliptic genera with modularity

In this section we determine the elliptic genera of all the theories h̃
(1)
G corresponding to

one instanton string for G = SU(3), SO(8), F4, E6, E7, E8. In order to achieve this we

rely heavily on the modular properties of the elliptic genera, as well as their relation to

the Hilbert series of one-instanton moduli spaces. We begin this section with a general

discussion of our approach, which applies for any number k of strings, and then employ

these techniques to determine the elliptic genera of all the rank 1 theories. This approach

closely parallels the one undertaken in [86–88] in the context of topological string theory

on compact elliptic Calabi-Yau threefolds.

The Hilbert series of the moduli space of k G-instantons is a ratio of two factors,

H(MG,k) =
NG,k(v, x,mα)

DG,k(v, x,mα)
, (6.9)

where the denominator is a product of factors associated to the generators of the moduli

space of k G-instantons [139]; the set of such generators is provided explicitly in section

8.5 of [139], and from that one obtains the following expression:

DG,k(v, x,mα) =
k∏
i=1

( i∏
j=−i

j−i even

(1− vixj)
)( i−1∏

j=−i+1
j−i odd

∏
α∈∆̃G

(1− vi+1xje2πimα)

)
, (6.10)

where ∆̃G includes the positive and negative roots of G, as well as its Cartan vectors, and

we denote by x = e2πiε− , v = e2πiε+ the exponentials of the SU(2)L × SU(2)R fugacities.

However, the way it is written equation (6.10) contains too many factors. To see this,

recall that the topological string partition function in the limit q → 0 takes the form

Ztop(X̃G) = Z0

1 +
∑
k≥1

Q̃kH(MG,k)

 . (6.11)

Note that a term of the form

(1− vixj) = 1− eiπ((i+j)ε1+(i−j)ε2) (6.12)

in the denominator of the Hilbert series, equation (6.10), would lead to a singularity in the

topological string free energy Ftop = log(Ztop) at

(i+ j)ε1 + (i− j)ε2 = 0. (6.13)

However, from the genus expansion of the topological string free energy,

Ftop(X) =
∑
g,n≥0

(−ε1ε2)g−1(ε1 + ε2)nFg,m(X), (6.14)
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one sees that only poles at ε1 = 0 or ε2 = 0 are allowed to occur. This implies that all the

terms in the denominator of (6.10) for which i 6= ±j must cancel against analogous factors

in the numerator.18,19

This leads to a somewhat leaner expression for the denominator:

D′G,k(v, x,mα) =

k∏
i=1

∏
s=±1

(
(1− (vxs)i)

i−1∏
j=−i+1
j−i odd

∏
α∈∆+

(1− vi+1xje2πismα)

)
, (6.15)

where the label α now runs only over the positive roots of G.

As discussed in section 5.2, the elliptic genus is expected to reduce to the Hilbert

series in the 5d limit q → 0, as in equation (5.8). Using ideas similar to the ones developed

in [30, 87, 141], we now formulate an Ansatz for the elliptic genus which matches the form

of the Hilbert series in the 5d limit. We begin by noting that it is natural to interpret each

factor of the form

(1− e2πiz) (6.16)

in (6.15) as the contribution of a zero mode of a bosonic field on the BPS string, and to

also include in the elliptic genus the contributions of its excitations. In other words, in

order to pass to the elliptic genus one would like to replace any such factor by a factor

of (1 − e2πiz)
∏∞
j=1(1 − qje2πiz)(1 − qjx−2πiz), where q = e2πiτ . It is in fact convenient to

express the denominator in a modular covariant fashion, so we instead make the following

replacement as in [86, 87, 141]:

(1− e2πiz) 7→ ϕ−1,1/2(z, τ) ≡ θ1(z, τ)

η(τ)3
= ie−πiz(1− e2πiz)

∞∏
j=1

(1− qje2πiz)(1− qjx−2πiz)

(1− qj)2
,

(6.17)

which is a weak Jacobi form of modular weight −1 and index 1/2. Furthermore, in order

to account for the leading order behavior of the elliptic genus

E
h̃
(k)
G

' q−cL/24(. . . ) = q−
kh∨G
6 (. . . ) (6.18)

we also include a factor of

η(τ)4kh∨G =

(
q1/24

∞∏
k=1

(1− qk)

)4kh∨G

(6.19)

in our expression for the denominator.

18Indeed, such cancelations occur for all the examples we have checked. It would be interesting to find a

satisfactory gauge-theoretic explanation for this fact.
19An analogous argument has been used by M.-X. Huang, S. Katz, and A. Klemm to formulate an

Ansatz for the topological string theory partition function for compact elliptic Calabi-Yau threefolds; we

are grateful to them for sharing a copy of the draft of their upcoming paper [140], and refer to the slides of

A. Klemm’s talk ‘BPS states on elliptic Calabi-Yau, Jacobi-forms and 6d theories ’ at the “F-theory at 20”

conference, Caltech, February 2016 for a sketch of their argument.
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We are therefore led to the following Ansatz for the elliptic genus:

E
h̃
(k)
G

(ε1,ε2,mα,τ)= (6.20)

NG,k(ε1,ε2,mα,τ)

η(τ)4kh∨G
∏
s=±1

k∏
i=1

ϕ−1,1/2(i(ε++sε−),τ)
i−1∏

j=−i+1
j−i odd

∏
α∈∆+

ϕ−1,1/2(s((i+1)ε++jε−))+mα,τ)


.

The numerator should be a weak Jacobi form of several elliptic variables and integer Fourier

coefficients. Considerations based on modularity and topological string theory significantly

constrain its form. First of all, the requirement that the elliptic genus be a Jacobi form of

weight zero implies that the numerator is a holomorphic Jacobi form of weight

2kh∨G − 2k − k(k + 1)

2
(dim(G)− rk(G)), (6.21)

which for G simply laced reduces to

2k(h∨G − 1)− k(k + 1)

2
h∨Grk(G). (6.22)

Furthermore, the modular anomaly of the denominator can be easily read off from the

modular transformation of the Jacobi theta function,

θ1(z/τ,−1/τ) =
√
−iτe

2πi
τ

z2

2 θ1(z, τ), (6.23)

and is given by:

fD
h̃
(k)
G

(mα, ε+, ε−) =
1

2
k(k + 1)h∨G( ~y | ~y )G +

k(k + 1)

6

[
(2k + 1)(ε2+ + ε2−)

+ (dim(G)− rk(G))(2 + k)((3k + 5)ε2+ + (k − 1)ε2−)
]
. (6.24)

The modular anomaly of the elliptic genus (6.8) is simply the difference between the

modular anomaly of the numerator (fN ) and that of the denominator (6.24). Therefore

fN
h̃
(k)
G

(mα, ε+, ε−) = f
h̃
(k)
G

(mα, ε+, ε−) + fD
h̃
(k)
G

(mα, ε+, ε−)

= Cflavor(G, k)
(~y | ~y)G

2
+ Cε+(G, k)ε2+ + Cε−(G, k)ε2−, (6.25)

where

Cflavor(G, k) =
1

3
k
(
h∨G(2 + 3k)− 6

)
, (6.26)

Cε+(G, k) =
k

24

(
2(2 + 5dim(G)− 10h∨G − 5rk(G)) + k(21(dim(G)− rk(G)) + 4(9 + h∨G))

+ 2k2(4 + 7(dim(G)− rk(G))) + 3k3(dim(G)− rk(G)
)
, (6.27)

Cε−(G, k) =
k

24

(
2(2− dim(G) + 2h∨G + rk(G)) + k(rk(G)− dim(G)− 4(3 + h∨G))

+ 2k2(4 + dim(G)− rk(G)) + k3(dim(G)− rk(G)
)
, (6.28)
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capture the anomaly with respect to G, SU(2)R, and SU(2)L respectively. One sees by

inspection that for all the choices of G that arise for (1,0) 6d SCFTs with no matter and for

any number k of strings the coefficient CG is an integer, while Cε± are either integers or half-

integers. These coefficients also play the rôle of weights for the corresponding Jacobi form.

We remark that in the case of one G-instanton the modular anomaly of the numerator

simplifies to

1

6

(
5h∨G − 6

)
(~y | ~y)G +

1

2
(2ε+)2

(
1 + dim(G)− rk(G)−

h∨G
3

)
. (6.29)

In other words, the dependence on the SU(2)L fugacity ε− drops out. This is indeed

consistent with the fact that for a single instanton the SU(2)L flavor symmetry only acts

on the decoupled hypermultiplet (whose contribution to the elliptic genus is confined to

denominator terms). Furthermore, it turns out that the elliptic genus can be expressed in

terms of Jacobi forms with elliptic variable 2ε+ and index

1

2

(
1 + dim(G)− rk(G)−

h∨G
3

)
, (6.30)

which always belongs to Z/2. This is a useful fact, since the dimension of the space of Jacobi

forms grows rapidly with the index. On a related note, one indeed observes that the Hilbert

series of one-instanton moduli spaces only depends on the square of the variable v = e2πiε+ .

To make further progress, we express the numerator in terms of the appropriate basis

of Jacobi forms, which should capture the invariance of the elliptic genus under the Weyl

group of the global symmetry G × SU(2)L × SU(2)R. The natural set of Jacobi forms to

use are therefore the Weyl-invariant Jacobi forms for G, SU(2)L and SU(2)R whose theory

has been developed in [142]. We refer to those papers for the precise definition of this

class of functions, but we remark here that under a modular transformation τ → −1/τ , a

Weyl[G]-invariant Jacobi form Φ(z, τ) of weight ` and index m transforms as follows:

Φ(z/τ,−1/τ) = τ `e
2πim
τ

(z|z)
2 Φ(z, τ). (6.31)

Comparing with equation (6.25), one sees that the numerator has integral index with

respect to G, and half-integral with respect to SU(2)L,R. Using a slight generalization of

corollary 3 to Theorem 8 of Chapter III of [81], we write the numerator schematically as a

finite sum ∑
i

ai gi(ε+, ε−,mα, τ), (6.32)

where each gi is a product of powers of Weyl[SU(2)L]-, Weyl[SU(2)R]-, and Weyl[G]- in-

variant Jacobi forms and Eisenstein series E4(τ) and E6(τ), such that gi has the correct

modular weight and indices.
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For SU(2), the algebra of Weyl-invariant Jacobi forms of integer index is generated by

the two well-known functions [81]

ϕ0,1(z, τ) = 4

4∑
k=2

θk(z, τ)2

θk(0, τ)2
(6.33)

ϕ−2,1(z, τ) =
θ1(z, τ)2

η(τ)6
, (6.34)

where the labels k,m in ϕk,m denote respectively the weight and the index of the Jacobi

form.

In what follows will also need to make use of half-integral Jacobi forms for SU(2). By a

lemma of Gritsenko [143], any Jacobi form with integral Fourier coefficients, of even weight

2k and half-integral index m+ 1/2, can be written as

ϕ0,3/2 =
θ1(2z, τ)

θ1(z, τ)
(6.35)

times a Jacobi form of weight 2k and integral index m − 1. Likewise, a Jacobi form with

integral Fourier coefficients, of odd weight 2k + 1 and half-integral index m+ 1/2, can be

written as

ϕ−1,1/2 =
θ1(z, τ)

η(τ)3
(6.36)

times a Jacobi form of weight 2k + 2 and integral index m.

For G simple, the Weyl[G]-invariant Jacobi forms of integer index form a polynomial

algebra over the ring of modular forms; a set of rk(G) + 1 generators for this algebra has

been constructed in all cases except G = E8 [82]. For any G, of these generators, one has

modular weight zero, while the others all have negative weight (we refer to [82] for details).

In practice, we find that keeping the dependence on the fugacities mα for G significantly

complicates the task of determining the elliptic genus by modularity arguments alone. This

is due to the fact that Jacobi forms of high index arise in the numerators. In this paper,

therefore, for simplicity we set mα → 0, and leave the dependence of the elliptic genus on

the G fugacities for future work. In this limit, all the negative weight Weyl[G]-invariant

Jacobi forms vanish, while the weight zero Jacobi form reduces to a constant.

The approach outlined here is general and leads to an Ansatz for all of the h̃kG theories.

In the remainder of this section, we demonstrate the efficiency of this method in the case

k = 1. In all cases, we match our Ansatz in the q → 0 limit against the Hilbert series,

which has the known expansion [132]

H(MG,1) =
1

(1− vx)(1− vx−1)

∑
`≥0

dim(` ·AdjG)v2`, (6.37)

where ` ·AdjG denotes the representation whose highest weight is ` times the highest root

in the adjoint representation of G. As we explain in the rest of this section, we will also

need to further impose the vanishing of certain coefficients in the Fourier expansion of the
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elliptic genus at higher orders in q. In all cases, we will find that such constraints are

sufficient to fix all the unknown coefficients in our Ansatz for the numerator.20

6.3 Elliptic genus of one SU(3) string

In this section we apply the techniques discussed above to uniquely determine the elliptic

genus for one SU(3) instanton. We make the following Ansatz:

E
h̃
(1)
SU(3)

(ε+, ε−) =
NSU(3),1(2ε+, τ)

η(τ)12ϕ−1,1/2(ε1)ϕ−1,1/2(ε2)
∏
α∈∆

SU(3)
+

ϕ−1,1/2(2ε+, τ)2
. (6.38)

The modularity constraints discussed in section 6.2 imply that the numerator is a Jacobi

form of modular weight −2 and index 3 with respect to 2ε+. This fixes its form up to two

unknown coefficients a1, a2:

NSU(3),1(2ε+, , τ) = a1φ−2,1(2ε+, τ)φ0,1(2ε+, τ)2 + a2φ−2,1(2ε+, τ)3E4(τ). (6.39)

We next impose the equality21

lim
q→0

q
4h∨

SU(3)
24 E

h̃
(1)
SU(3)

(ε+, ε−) = v
h∨
SU(3) H(MSU(3),1) (6.40)

between the elliptic genus and the Hilbert series of one SU(3) instanton, where the latter

quantity is given by

1

(1− vx)(1− vx−1)

∑
`≥0

dim(` ·AdjSU(3))v
2`, (6.41)

where dim(` · AdjG) = `3. Imposing equation (6.40) uniquely fixes the coefficients of the

numerator, and one finds:

a1 = − 1

24
, a2 =

1

24
. (6.42)

This completely determines the elliptic genus of one SU(3) instanton string. We have

checked that our result is in agreement with the genus-zero topological string data given

in [34]. Furthermore, we can remove from the elliptic genus the contribution of the center

of mass hypermultiplet,

Ec.m. =
η(τ)2

θ1(ε1, τ)θ1(ε2, τ)
, (6.43)

to obtain the elliptic genus of the h
(1)
E6

theory; we have verified up to O(q7/2) that this

matches with the expression which was recently obtained in [42] by gauge-theoretic tech-

niques. We observe here that

v
1−h∨

SU(3)q
4(h∨

SU(3)
−1)

24 E
h
(1)
SU(3)

(ε+, ε−)

∣∣∣∣
qv0

= 9 = dim(SU(3)) + 1, (6.44)

20It is natural to ask whether also for k > 1 one can completely determine the elliptic genus by imposing

a sufficient number of constraints on the Ansatz; this question will be addressed elsewhere [88].
21We find it always necessary to multiply the Hilbert series by a factor of vh

∨
G , which makes it symmetric

under v → v−1. We view such factor as being part of the relative normalization between Q and Q̃ in

equations (5.1) and (5.7).
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and we will see later on that a similar statement holds for the other choices of G. In order

to efficiently display the numerical coefficients appearing in the elliptic genus, we find it

convenient for all G to define a rescaled elliptic genus,

EG(p, p̃) = q
h∨G−1

6 v1−h
∨
G
3 E

h
(1)
G

(2ε+, τ), (6.45)

which we can expand in terms of variables p = v2 and p̃ = q/v2 as:

EG(p, p̃) =
∑
k,l≥0

bGk,l p
kp̃l. (6.46)

The coefficients b
SU(3)
k,l in the series expansion of the elliptic genus of one SU(3) instanton

are displayed in table 6 of appendix A.

6.4 Elliptic genus of one SO(8) string

Next, we use modularity to fix the elliptic genus of one SO(8) string (with fugacities mα

set to zero for simplicity). From our discussion in section 6.2 it follows that the numerator

has modular weight −14 and index 23/2 with respect to 2ε+. We can therefore write the

numerator as

NSO(8),1(2ε+, 0, τ) = φ0,3/2(2ε+, τ)φ7
−2,1(2ε+, τ)

(
a1φ0,1(2ε+, τ)3 (6.47)

+ a2E4(τ)φ−2,1(2ε+, τ)2φ0,1(2ε+, τ) + a6E6(τ)φ0,1(2ε+, τ)3

)
,

which depends on just three undetermined coefficients. Imposing

lim
q→0

q
4h∨

SO(8)
24 ESO(8),1 = v

h∨
SO(8) H(MSO(8),1), (6.48)

where [132]

H(MSO(8),1) =

(
v2 + 1

) (
v8 + 17v6 + 48v4 + 17v2 + 1

)
(1− v2)10 · 1

(1− v)2
, (6.49)

is sufficient to fix all the undetermined coefficients. We find:

a1 =
7

144
; a2 = − 1

16
; a3 =

1

72
. (6.50)

We have verified that under this choice of coefficient the elliptic genus agrees with the

known expression in [34] to high powers in q. Analogously to the SU(3) case, we observe

that:

v
−h∨

SO(8)q
4(h∨

SO(8)
−1)

24 E
h
(1)
SO(8)

(mα, ε+, ε−)

∣∣∣∣
qv0

= 29 = dim(SO(8)) + 1. (6.51)

6.5 Elliptic genera of exceptional instanton strings

In this section we determine the elliptic genera of the one instanton theories h̃
(1)
G for G =

F4, E6, E7, and E8.
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6.5.1 G = F4

We begin by looking at G = F4. Although in this case we do not have a geometric

engineering construction for this theory, we can still use the anomaly polynomial (6.8),

which based on the derivation of [42, 43] is also valid for the F4 strings, to fix the form

of the elliptic genus. The numerator of our Ansatz has modular weight −32 and index 23

with respect to 2ε+. This leads to an expression which is determined up to 9 coefficients.

In this case, comparing with the Hilbert series,

lim
q→0

q
4h∨F4
24 E

h̃
(1)
F4

= v
h∨F4 H(MF4,1), (6.52)

only fixes 8 out of the 9 coefficients.

In order to fix the remaining coefficient a, we now factor out the center of mass hy-

permultiplet contribution Ec.m. and look at the subleading order in the q expansion of the

elliptic genus E
h
(1)
F4

. This is given by v8q−4/3+1 times

1

54

(
7

v6
a+

98

v4
a+

357

v2
a+ (2862 + 868a) +O(v2)

)
. (6.53)

Notice that if we set a = 0 all the terms with negative powers of v drop out. Furthermore,

one finds that the v0 coefficient is

53 = dim(F4) + 1, (6.54)

analogously to the cases G = SU(3) and SO(8). We find that the numerator of our Ansatz

for the theory of one F4 instanton is given by:

NF4,1 =
1

746496
φ16
−2,1

(
φ6
−2,1φ0,1

(
56E2

6−81E3
4

)
+45E2

4E6φ
7
−2,1+486E2

4φ
4
−2,1φ

3
0,1 (6.55)

−366E4E6φ
5
−2,1φ

2
0,1−453E4φ

2
−2,1φ

5
0,1+209E6φ

3
−2,1φ

4
0,1+104φ7

0,1

)
,

where we have omitted the elliptic and modular arguments (2ε+, τ) of the Jacobi and

modular forms for brevity.

In appendix A we also provide the series expansion coefficients of the elliptic genus.

One can verify that the coefficients can be written in terms of sums of dimensions of small

numbers of representations of F4 with positive coefficients. We view these facts as a strong

indication that the choice a = 0 gives the elliptic genus of one F4 instanton string.

6.5.2 G = E6

The theory of one E6 instanton string is the T 2 × S2 compactification of Gaiotto’s T3

theory, whose elliptic genus has been computed via (0,4) dualities [67] (see the overview in

section 4.3.2). We now recover the same result (with fugacities mα turned off) by resorting

to modularity. The numerator of our Ansatz has modular weight −50 and index 69/2 with

respect to 2ε+. There is a 10-dimensional space of Jacobi forms of such weight and index,

and matching against the Hilbert series fixes 8 of the coefficients. We fix the remaining
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additional coefficient by requiring the v−2kq1 terms (with k > 0) of the expression for E
h
(1)
E6

to vanish. This completely fixes the elliptic genus (and in fact gives an over-determined

set of constraints on the coefficients), and we again observe that the q1v0 term is:

1 + dim(E6) = 79, (6.56)

analogously to the G = SU(3), SO(8), and F4 cases.

The explicit expression for the numerator of the elliptic genus is:

NE6,1 =
1

23887872
φ25
−2,1φ0,3/2

(
9φ8
−2,1

(
23E4

4−64E4E
2
6

)
+4φ6

−2,1φ
2
0,1

(
512E2

6−1845E3
4

)
+4656E2

4E6φ
7
−2,1φ0,1+23010E2

4φ
4
−2,1φ

4
0,1−14880E4E6φ

5
−2,1φ

3
0,1

−18564E4φ
2
−2,1φ

6
0,1+7280E6φ

3
−2,1φ

5
0,1+4199φ8

0,1

)
. (6.57)

In appendix A we also provide the series expansion coefficients of the elliptic genus. One

can verify that the coefficients can be written in terms of sums of dimensions of small

numbers of representations of E6 with positive coefficients.

We can compare the expression we find with the elliptic genus of the T3 theory; we

have checked up to O(q4) that the two expressions match, which serves as a check of both

our Ansatz and of our geometric engineering argument. In all the cases discussed so far we

notice that all the coefficients bGk,l with k ≤ h∨G/3 − 1 and l ≤ h∨G/3 − 1 vanish.22 We will

assume this to also hold true for G = E7 and G = E8, which will be crucial for uniquely

fixing the elliptic genera.

6.5.3 G = E7

In this case, the modular weight of the numerator is -92, and the index with respect to

2ε+ is 121
2 . This fixes the Ansatz for the numerator up to 21 undetermined coefficients.

Comparing the leading order terms in the q-expansion with the Hilbert series of the moduli

space of one E7 instanton fixes 13 coefficients, leaving 8 undetermined. We fix these by

imposing the vanishing of coefficients bE7
k,l for k ≤ 5, l ≤ 5. This is an overdetermined set

of constraints that leads to a unique solution, which is given by:

NE7,1 =
1

2972033482752
φ46
−2,1φ0,3/2

(
12(6399E5

4E6−10528E2
4E

3
6)φ13
−2,1 (6.58)

+(1472256E3
4E

2
6−151875E6

4−60416E4
6)φ12
−2,1φ0,1−180E4E6(26739E3

4−8704E2
6)φ11
−2,1φ

2
0,1

+18E2
4(258993E3

4−627040E2
6)φ10
−2,1φ

3
0,1+280E6(106623E3

4−5680E2
6)φ9
−2,1φ

4
0,1

−567E4(45667E3
4−29056E2

6)φ8
−2,1φ

5
0,1−51471000E2

4E6φ
7
−2,1φ

6
0,1

+228(217503E3
4−25648E2

6)φ6
−2,1φ

7
0,1+31668516E4E6φ

5
−2,1φ

8
0,1

−40739325E2
4φ

4
−2,1φ

9
0,1−6249100E6φ

3
−2,1φ

10
0,1+14827410E4φ

2
−2,1φ

11
0,1−1964315φ13

0,1

)
.

22We refer the reader to appendix A for our notation. It would be desirable to find a physical argument

for why these coefficients should vanish.
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We display the series expansion coefficients of the elliptic genus thus obtained in ap-

pendix A. Again, we verify that the q1v0 coefficient is given by

dim(E7) + 1 = 134. (6.59)

6.5.4 G = E8

Finally, we proceed in the same manner for the case of one E8 instanton. The modular

weight of the numerator is -182 and the index with respect to 2ε+ is 231
2 . This determines

the Ansatz up to 56 coefficients, of which 23 are fixed by matching with the Hilbert series.

As for the E7 case, we impose the vanishing of bE8
k,l for k ≤ 9 and l ≤ 9. This again gives an

overdetermined set of constraints on the series coefficients bE8
k,l which uniquely determines

the form of our Ansatz. We provide the expression for the numerator, which is rather

unwieldy, in appendix A, along with the series expansion coefficients of the elliptic genus.

We also verify in this example that the q1v0 coefficient is given by dim(E8) + 1 = 249.

7 Relation with the Schur index of H
(1)
G

In this section we comment on a surprising relation between the elliptic genus of one

instanton string E
h
(1)
G

, which is the β-twisted partition function on T 2×S2, and the Schur

index of the H
(1)
G theory, which is a partition function on S1 × S3.

7.1 The case G = SU(3)

We begin by discussing the G = SU(3) theory, which is the same as the (A1, D4) Argyres-

Douglas theory. More precisely, we remove the contribution of a free hypermultiplet

η(q)4φ−1,1/2(ε1)φ−1,1/2(ε2) (7.1)

from the denominator of equation (6.38), so we consider

E
h
(1)
SU(3)

(ε+, τ) =
NG,1(2ε+, τ)

η(τ)8
∏
α∈∆

SU(3)
+

ϕ−1,1/2(2ε+, τ)2
, (7.2)

and make the specialization

ε+ = τ/4. (7.3)

In this limit, one has:

φ−2,1(2ε+, τ) 7→ q−1/4 θ4(0, τ)2

η(τ)6
, φ0,1(2ε+, τ) 7→ 4q−1/4

(
θ2(0, τ)2

θ3(0, τ)2
+
θ3(0, τ)2

θ2(0, τ)2

)
, (7.4)

and

φ−1,1/2(2ε+ + z, τ) 7→ i

eπizq1/8

θ4(z, τ)

η(τ)3
. (7.5)
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l k 0 1 2 3 4 5 6

0 0 1 8 27 64 125 216

1 1 0 9 64 216 512 1000

2 8 9 0 53 360 1188 2816

3 27 64 53 0 245 1600 5211

4 64 216 360 245 0 971 6168

5 125 512 1188 1600 971 0 3435

6 216 1000 2816 5211 6168 3435 0

Table 3. Expansion coefficients b
SU(3)
k,l for one SU(3) instanton.

We then expand the elliptic genus as a q-series and find the following result:

E
h
(1)
SU(3)

(τ/4, τ) = 2q1/6

(
1 + 8q1/2 + 36q + 128q3/2 + 394q2 + 1088q5/2 + 2776q3 + 6556q7/2

+ 15155q4 + 33056q9/2 + 69508q5 + 141568q11/2 + 280382q6 (7.6)

+541696q13/2+1023512q7+1895424q15/2+3446617q8+O(q17/2)

)
,

or in other words, up to O(q17/2),

E
h
(1)
SU(3)

(τ/4, τ) = 2q1/6I
H

(1)
SU(3)

(q1/2), (7.7)

where I
H

(1)
SU(3)

(q) is the Schur limit of the superconformal index of the H
(1)
SU(3) theory (in

the limit mα → 0). This theory coincides with the (A1, D4) Argyres-Douglas theory, and

the explicit expression for its Schur index has been obtained in [90, 144].

The factor of 2 can be accounted for by looking at the data in table 6. We reproduce a

small region of that table in table 3. The spectrum of states that contribute to the elliptic

genus consists of two identical sets, whose degeneracies are captured by the coefficients

b
SU(3)
k,l : those for k > l and those for k < l. Let us denote by

LSU(3)(v, q) =
∑
l≥0

∑
k>l

b
SU(3)
k,l v2k(q/v2)2l (7.8)

the half of the elliptic genus expansion associated to the upper right half of the table. In

other words,

LSU(3)(v, q) = (1 + 8v2 + 27v4 + . . . ) + q(9 + 64v2 + . . . ) + . . . (7.9)

Our prescription for matching with the Schur index requires setting v = q1/4. In this

limit, the coefficients of the q expansion are obtained by summing along the anti-diagonals

in table 6, and it is clear that each of the two sets of states contributes an identical term

LSU(3)(q
1/4, q) =

(
1 + 8 q1/2 + (27 + 9) q + (64 + 64) q3/2 + . . .

)
= I

H
(1)
SU(3)

(q1/2). (7.10)

to the elliptic genus.
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7.2 Generalization to other G

It is natural to ask whether a similar relation between elliptic genus and Schur index

continues to hold for other G (at least for the simply laced cases, which have a clear four-

dimensional origin as discussed in section 3). A first hint that the relation might not just

be a coincidence comes by comparing the elliptic genus of a free 2d (0, 4) hypermultiplet,

which is given by

Eh.m.(ε+, ε−, τ) = − η(τ)2

θ1(ε+ + ε−, τ)θ1(ε+ − ε−, τ)
, (7.11)

to the Schur index of a 4d hypermultiplet,

Ih.m.(ε−, τ) = exp

( ∞∑
n=1

1

n

qn/2

1− qn
(zn + z−n)

)
, (7.12)

where z = e2πiε− . Setting ε+ = τ/4, one indeed finds that

Eh.m.(τ/4, ε−, τ) = Ih.m.(ε−, τ/2). (7.13)

Furthermore, the same relation also holds between the elliptic genus of a free 2d (0, 4)

vector multiplet,

Ev.m.(ε+, τ) = η(τ)2 θ1(2ε+, τ)

η(τ)
, (7.14)

and the Schur index of a 4d vector multiplet:

Iv.m.(τ) = η(τ)2. (7.15)

In other words, we find:

Ev.m.(τ/4, τ) = Iv.m.(τ/2). (7.16)

At first glance, however, for other H
(1)
G theories this relation seems to fail: the states

under the diagonal in tables 7 and 9–11 contribute to the elliptic genus with an opposite sign

compared to the ones above the diagonal, and therefore the elliptic genus vanishes when

we set v2 → q1/2. However, a closer look at the expansion coefficients hints at a possible

relation. For example, if we isolate the coefficients b
SO(8)
k,l with k > l + 1 in the coefficient

table for G = SO(8) (shown in red in table 4), and sum along anti-diagonals (that is, set

v = q1/4 in the sum v−2
∑

l≥0

∑
k>l+1 b

SO(8)
k,l v2k(q/v2)2l), we find the following expression:

1 + 28 q1/2 + 329 q + 2632 q3/2 + 16381 q2 + 85764 q5/2 + 393674 q3 +O(q7/2), (7.17)

which disagrees from the Schur index of H
(1)
SO(8) [92, 145] (with q → q1/2)

1 + 28 q1/2 + 329 q + 2632 q3/2 + 16380 q2 + 85764 q5/2 + 393589 q3 +O(q7/2) (7.18)

by a small subleading correction

1 · q2 + 85 q3 +O(q7/2). (7.19)

One also notices the existence of another sequence of coefficients, marked in blue in

table 4, which is given by:

2 · 1, 2 · 29, 2 · 464, . . . (7.20)
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l k 0 1 2 3 4 5 6

0 0 0 1 28 300 1925 8918

1 0 0 0 29 707 6999 42889

2 -1 0 0 2 464 9947 92391

3 -28 -29 -2 0 58 5365 101850

4 -300 -707 -464 -58 0 928 49775

5 -1925 -6999 -9947 -5365 -928 0 10646

6 -8918 -42889 -92391 -101850 -49775 -10646 0

7 -32928 -193102 -544786 -894198 -843165 -391587 -97429

8 -102816 -699762 -2392663 -5096487 -7032993 -5965996 -2702949

Table 4. Series coefficients b
SO(8)
k,l for the elliptic genus of one SO(8) instanton.

which is essentially a repetition of the coefficients b
SO(8)
1,0 , b

SO(8)
2,1 , b

SO(8)
3,2 , . . . , multiplied by

a factor of 2.

A similar pattern holds for the case G = E6: if we isolate the terms bE6
k,l with k > l+ 3

in table 9 and sum over anti-diagonals, we obtain:

q−2
∑
l≥0

∑
k>l+1

b
SO(8)
k,l q(k+l)/2 = (7.21)

=1+78q1/2+2509q+49270q3/2+698426q2+7815106q5/2+72903429q3+O(q7/2),

which is again very close to the Schur index of the 4d H
(1)
E6

= T3 SCFT:23

I
H

(1)
E6

(q1/2)=1+78q1/2+2509q+49270q3/2+698425q2+7815106q5/2+72903350q3+O(q7/2).

(7.22)

We recognize the difference between the two series expansions,

1 · q2 + 79 q3 +O(q7/2) (7.23)

as consisting of the diagonal coefficients bk+3,k. As in the G = SO(8) case, here we also

notice that there are additional sequences of coefficients

bE6
5+n,5+n = 2 · bE6

4+n,n (7.24)

and

bE6
5+n,4+n = −1 · bE6

4+n,n, (7.25)

as well as analogous sequences in the bottom left half of the table.

In the E7 and E8 cases (tables 10 and 11) we see a similar pattern of repeating

sequences; for example, zooming into a small region in the table of bE8
k,l coefficients

23We are grateful to Wenbin Yan for providing us with code to compute the Schur index of the T3 theory

to high orders in q.
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l k 10 11 12 13 14 15

0 1 248 27000 1763125 79143000 2642777280

1 0 249 57877 5943753 368338125 15776893240

2 0 0 31374 6815877 659761497 38811914750

3 0 -1 0 2666375 539686750 49211333622

4 0 0 -249 0 171756125 32299833875

5 0 0 0 -31374 0 8931266291

6 0 0 0 -248 -2666375 0

7 0 0 0 0 -57877 -171756125

8 0 0 0 0 0 -6815877

9 0 0 0 0 0 -27000

Table 5. Series expansion coefficients bE8

k,l for one E8 instanton.

(table 5), we see that the additional sequences of coefficients (such as the one starting

with b11,3 = −1 in this example) consist of additional copies of the same sequences of

coefficients as in the top sequence,

{1, 249, 31374, 2666375, 171756125 . . . }, (7.26)

{248, 57877, 6815877 . . . }, (7.27)

{27000, . . . }. (7.28)

By inspection, we find from the data at hand that all the properties discussed above

are simultaneously satisfied if we make the following conjecture: the elliptic genus of the

theory h
(1)
G , for G = SU(3), SO(8), F4, E6, E7, E8 can be written as

E
h
(1)
G

(ε+,τ)=v
h∨
G
3 −1

∑
n≥0

q2n
[(

v

q1/4

) 2h∨
G

3

LG(qnv;q)−(−1)h
∨
G

(
q1/4

v

) 2h∨
G

3

LG(qn+1/2/v;q) (7.29)

+(1+(−1)h
∨
G)q

1
2

(
h∨
G
3 +1

)((
v

q1/4

)2

LG(qn+1/2v,q)−
(
q1/4

v

)2

LG(qn+1/v,q)

)

−q2

−(−1)h
∨
G

(
v

q1/4

)4−2
h∨
G
3

LG(qn+1v,q)+

(
q1/4

v

)4−2
h∨
G
3

LG(qn+3/2/v,q)

]

where

LG(v, q) =
∑
k,l≥0

hGk,lv
2kql (7.30)

is a series involving only positive powers of v, q.

The coefficients hGk,l are uniquely determined by requiring that it satisfies (7.29), where

EhG(1)(ε+, τ) is the elliptic genus determined by modularity in section 6.2. We find that

the function LG(v, q) thus obtained satisfies the following additional properties:
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1. The coefficients hGk,l are positive integers, which can be expressed as linear combina-

tions of dimensions of irreducible representations of G with positive coefficients.

2. LG(v, 0) is the Hilbert series of the reduced moduli space of one G-instanton (that

is, the Hall-Littlewood index of the H
(1)
G theory).

3. hG0,1 = dim(G) + 1.

Remarkably, for the cases G = SU(3), SO(8), E6 for which a series expansion of the

Schur index is known, we also find that LG(q1/4, q) coincides with I
H

(1)
G

(q1/2), where

I
H

(1)
G

(q) is the Schur index of the 4d SCFT H
(1)
G ! We discuss the various cases in turn.

G = SU(3). In this case, setting h∨SU(3) = 3 in equation (7.29) one finds that the right

hand side collapses to just two terms, and one has the relation

E
h
(1)
SU(3)

(ε+, τ) = q−1/2v2LSU(3)(v, q) + q1/2v−2LSU(3)(q
1/2/v, q). (7.31)

Using

LSU(3)(v, q) =
∑
k,l≥0

h
SU(3)
k,l v2kql, (7.32)

one sees that

h
SU(3)
k,l = b

SU(3)
k+l,l (7.33)

are just the coefficients appearing in the upper right half of table 6. The two terms in

equation (7.31) correspond respectively to the upper right and bottom left halves of the

table, and we recover the results of section 7.1. In particular, equation (7.7), which we have

verified to hold for the first 15 coefficients in the q-expansion, is equivalent to the statement

LSU(3)(q
1/4, q) = I

H
(1)
SU(3)

(q1/2). (7.34)

We note that H(v, q) is has an extremely simple form:

LSU(3)(v, q) = (q, q)−8
∞

(
(1 + 8v2 + 27v4 +O(v6)) + q + (1 + 8v2)q2 + (1 + 27v4)q3

+ (1 + 8v2 + 64v6)q4 + (1 + 125v8)q5 +O(q6)

)
, (7.35)

where (q, q)∞ = q−1/24η(q) is the q-Pochhammer symbol. This infinite series is an

expansion of the following sum:

LSU(3)(v, q) = (q, q)−8
∞

∑
n≥1

n3v2n−2

1− qn

 , (7.36)

which also gives the following formula for the Schur index of the (A1, D4) Argyres-Douglas

theory:

I(A1,D4)(q) = (q2, q2)−8
∞

∑
n≥1

n3qn−1

1− q2n

 . (7.37)
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Note that the q0 term in equation (7.36) coincides with the Hilbert series of one SU(3)

instanton, since

n3 = dim(n ·AdjSU(3)). (7.38)

We have also been able to resum equation (7.36) into the following closed form:

LSU(3)(v, q) = −(q, q)−8
∞ q

∂

∂q
log

 ∞∏
j=0

(
q−v

2jj3(1− v2j−2qj)j
2
) . (7.39)

It would be interesting to find a field theoretic interpretation for this formula.

G = SO(8). We use equation (7.29) with

h∨G = 6, (7.40)

to solve for LSO(8)(v, q), and find:

LSO(8) =(1+28v2+300v4+1925v6+8918v8+32928v10+102816v12+282150v14+O(v18))+

+(29+707v2+6999v4+42889v6+193102v8+699762v10+2156994v12+O(v16))q+

+(463+9947v2+92391v4+544786v6+2392663v8+8526042v10+O(v14)q2+

+(5280+101850v2+894198v4+5096487v6+21888529v8+O(v12))q3+

+(47897+842537v2+7032993v4+38869314v6+O(v10))q4+

+O(q5). (7.41)

We have not been able to resum this series as in equation (7.36) for the G = SU(3) case.

In the following table 12 we display how the various copies of LSO(8)(v, q) are intertwined

to give the coefficients b
SO(8)
k,l of the elliptic genus of table 7.

If we now take the limit v → q1/4, we obtain

LSO(8)(q
1/4,q)=1+28q1/2+329q+2632q3/2+16380q2+85764q5/2+393589q3+1628548q7/2

+6190527q4+21921900q9/2+73070291q5+231118384q11/2+698128389q6

+2024433460q13/2+5659730075q7+15309703500q15/2+40191125219q8

+O(q17/2), (7.42)

in perfect agreement with the expression for the vacuum character of the ŝo(8)−2 algebra

given in appendix C of [92], which captures the Schur index of the H(1)
SO(8) theory with

q → q1/2.

G = E6. Proceeding as above for G = E6, using h∨E6
= 12 we find:

LE6(v,q)=(1+78v2+2430v4+43758v6+537966v8+4969107v10+36685506v12+O(v14))

+(79+5512v2+157221v4+2644707v6+30843384v8+273370383v10+O(v12))q

+(3238+201292v2+5283549v4+83526287v6+928768412v8+O(v10))q2

+(90911+5048576v2+122611239v4+1830734165v6+O(v8))q3

+(1956516+97616506v2+2205133146v4+O(v6))q4+O(q5). (7.43)
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We display the contribution of the various copies of LE6(v, q) to the elliptic genus of one

E6 string in table 14 of the appendix.

In the limit v → q1/4 we find:

LE6(q1/4, q) = 1 + 78q1/2 + 2509q + 49270q3/2 + 698425q2 + 7815106q5/2 + 72903350q3

+ 587906696q7/2 + 4204567965q4 + 27174694560q9/2 + 161016744070q5

+ 884547201850q11/2 + 4545922103619q6 + 22017119036040q13/2

+ 101105788757675q7 + 442470577988634q15/2 + 1853392626320950q8

+O(q17/2), (7.44)

in perfect agreement with the first 17 terms in the expansion of the Schur index of the T3

theory.

G = E7. We set h∨E7
= 18 in equation (7.29) and find:

LE7(v, q) = (1 + 133v2 + 7371v4 + 238602v6 + 5248750v8 + 85709988v10 +O(v12)

+ (134 + 16283v2 + 835562v4 + 25353429v6 + 528271250v8 +O(v10))q

+ (9178 + 1014581v2 + 48250384v4 + 1375996758v6 +O(v8))q2

+ (426533 + 42814809v2 + 1890508984v4 +O(v6))q3

+ (15077814 + 1374731795v2 +O(v4))q4

+O(v5). (7.45)

We display the contribution of the various copies of LE7(v, q) to the elliptic genus of one

E7 string in table 15 of the appendix.

In the limit v → q1/4, this gives:

LE7(q1/4,q)=1+133q1/2+7505q+254885q3/2+6093490q2+112077998q5/2

+1678245091q3+21264679635q7/2+234433785700q4+2296105563465q9/2

+20303111086038q5+164158274895703q11/2+1226192258964745q6

+8533333787379775q13/2+55718714973652300q7+343388965671840483q15/2

+2007596030844978734q8+O(q17/2). (7.46)

The Schur index of the H
(1)
E7

theory can be computed by the techniques of [146, 147]. It is

natural to conjecture that LE7(q1/4, q) coincides with the Schur index I
H

(1)
E7

(q1/2); we have

verified this up to O(q7/2).24

24We thank Wenbin Yan for providing us with code for computing the Schur index of the H
(1)
E7

theory.
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G = E8. We set h∨E8
= 30 in equation (7.29) and find:

LE8(v, q) = (1 + 248v2 + 27000v4 + 1763125v6 + 79143000v8 + 2642777280v10 +O(v12))

+ (249 + 57877v2 + 5943753v4 + 368338125v6 + 15776893240v8 + +O(v10))q

+ (31373 + 6815877v2 + 659761497v4 + 38811914750v6 +O(v8))q2

+ (2666126 + 539686750v2 + 49211333622v4 +O(v6))q3

+ (171724751 + 32299833627v2 +O(v4))q4 +O(q5). (7.47)

We display the contribution of the various copies of LE8(v, q) to the elliptic genus of one

E8 string in table 16 of the appendix.

In the limit v → q1/4, we find:

LE8(q1/4,q)=1+248q1/2+27249q+1821002q3/2+85118126q2+3017931282q5/2

+85616292063q3+2018221136220q7/2+40655908880933q4

+715118758926278q9/2+11171613223900451q5+157140768554366660q11/2

+2012705625856030235q6+23694966834840175472q13/2

+258431445654249301583q7+2628885836402784435498q15/2

+25087207661618093562092q8+O(q17/2) (7.48)

We conjecture that this expression agrees with the Schur index I
H

(1)
E8

(q1/2); we have checked

up to O(q5/2) that the two quantities agree.25

G = F4. We set h∨F4
= 9 in equation (7.29) and find:

LF4(v, q) = (1 + 52v2 + 1053v4 + 12376v6 + 100776v8 + 627912v10 + 3187041v12 +O(v14)

+ (53 + 2432v2 + 44980v4 + 495872v6 + 3856722v8 + 23235328v10 +O(v12))q

+ (1483 + 59996v2 + 1023464v4 + 10670660v6 + 79721160v8 +O(v10))q2+

+ (28771 + 1034880v2 + 16410602v4 + 162744192v6 +O(v8))q3+

+ (432526 + 13979228v2 + 207409930v4 +O(v6))q4+

+O(q5). (7.49)

We display the contribution of the various copies of LF4(v, q) to the elliptic genus of

one F4 string in table 13 of the appendix.

In the limit v → q1/4 we find:

LF4(q1/4, q) = 1 + 52q1/2 + 1106q + 14808q3/2 + 147239q2 + 1183780q5/2 + 8095998q3

+ 48688888q7/2 + 263508351q4 + 1305275544q9/2 + 5993906570q5

+ 25771913376q11/2 + 104583612240q6 + 403149160444q13/2 (7.50)

+ 1484121980708q7 + 5241010219736q15/2 + 17821566681691q8 +O(q17/2).

25We thank Wenbin Yan for providing us with code to compute the Schur index of the H
(1)
E8

theory.
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It is interesting to remark that Schur indices can be identified with vacuum characters

of chiral algebras [145]. The properties of the functions LG(v, q) hint at a similar relation

among (non-supersymmetric) chiral algebras and 2d (0, 4) BPS strings of 6d (1, 0) theories.

Understanding the details of such relation goes beyond the scope of the present work and

we leave it to future work [84].
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A Explicit expressions for the elliptic genera

In this appendix we collect the results of our computations for the elliptic genera of one

G-instanton, for G = SU(3), SO(8), F4, E6, E7, E8, as fixed by the modularity constraints

discussed in section 6.2. In the first part of the appendix we provide the explicit expressions

for the numerator of

Ẽ
h
(1)
G

(2ε+,mα, τ) =
NG,1(2ε+,mα, τ)

η(τ)4(h∨G−1)
∏
α∈∆+

ϕ−1,1/2(2ε+ +mα, τ)ϕ−1,1/2(2ε+ −mα, τ)
, (A.1)

in the limit mα → 0. In the second part of the appendix we provide extensive tables

of series coefficients of the elliptic genus (A.1), expanded in powers of v2 = e4πiε+ and

qv−2 = e2πi(τ−2ε+).

A.1 Explicit form of the numerator terms

We write the expressions for the numerators of the Ansatz in terms of the Jacobi forms

φ−2,1(2ε+, τ), φ0,1(2ε+, τ), φ0,3/2(2ε+, τ) and of the Eisenstein series E4(τ), E6(τ).

For conciseness, in what follows we drop the arguments of these functions and also

write NG,1(2ε+, 0, τ) = NG,1. We find the following results:

NSU(3),1 =
1

24
φ−2,1(E4φ

2
−2,1−φ2

0,1). (A.2)

NSO(8),1 =
1

144
φ7
−2,1φ0,3/2(2E6φ

3
−2,1−9E4φ

2
−2,1φ0,1+7φ3

0,1). (A.3)

– 40 –



J
H
E
P
0
9
(
2
0
1
7
)
0
8
1

NF4,1 =
1

746496
φ16
−2,1

(
φ6
−2,1φ0,1

(
56E2

6−81E3
4

)
+45E2

4E6φ
7
−2,1+486E2

4φ
4
−2,1φ

3
0,1

−366E4E6φ
5
−2,1φ

2
0,1−453E4φ

2
−2,1φ

5
0,1+209E6φ

3
−2,1φ

4
0,1+104φ7

0,1

)
. (A.4)

NE6,1 =
1

23887872
φ25
−2,1φ0,3/2

(
9φ8
−2,1

(
23E4

4−64E4E
2
6

)
+4φ6

−2,1φ
2
0,1

(
512E2

6−1845E3
4

)
+4656E2

4E6φ
7
−2,1φ0,1+23010E2

4φ
4
−2,1φ

4
0,1−14880E4E6φ

5
−2,1φ

3
0,1

−18564E4φ
2
−2,1φ

6
0,1+7280E6φ

3
−2,1φ

5
0,1+4199φ8

0,1

)
. (A.5)

NE7,1 =
1

2972033482752
φ46
−2,1φ0,3/2

(
12(6399E5

4E6−10528E2
4E

3
6)φ13
−2,1

+(1472256E3
4E

2
6−151875E6

4−60416E4
6)φ12
−2,1φ0,1−180E4E6(26739E3

4−8704E2
6)φ11
−2,1φ

2
0,1

+18E2
4(258993E3

4−627040E2
6)φ10
−2,1φ

3
0,1+280E6(106623E3

4−5680E2
6)φ9
−2,1φ

4
0,1

−567E4(45667E3
4−29056E2

6)φ8
−2,1φ

5
0,1−51471000E2

4E6φ
7
−2,1φ

6
0,1

+228(217503E3
4−25648E2

6)φ6
−2,1φ

7
0,1+31668516E4E6φ

5
−2,1φ

8
0,1

−40739325E2
4φ

4
−2,1φ

9
0,1−6249100E6φ

3
−2,1φ

10
0,1+14827410E4φ

2
−2,1φ

11
0,1−1964315φ13

0,1

)
. (A.6)

NE8,1 =
φ91
−2,1φ0,3/2

92010239818739402932224

(
2877420E4E6φ

11
−2,1φ

12
0,1

(
333172971E3

4−32233088E2
6

)
+

+29638480E6φ
9
−2,1φ

14
0,1

(
481040E2

6−23057271E3
4

)
+820244934E4φ

8
−2,1φ

15
0,1

(
539755E3

4−134912E2
6

)
−115263177φ6

−2,1φ
17
0,1

(
1982439E3

4−108880E2
6

)
+278766529364394E2

4E6φ
7
−2,1φ

16
0,1

+71015153903967E2
4φ

4
−2,1φ

19
0,1−33264E4E6φ

17
−2,1φ

6
0,1(2345906637E6

4−3740993360E3
4E

2
6

+159614976E4
6)+1716E6φ

15
−2,1φ

8
0,1

(
202247657541E6

4−142801148160E3
4E

2
6+1237560320E4

6

)
−858E4φ

14
−2,1φ

9
0,1

(
193760793603E6

4−715814423280E3
4E

2
6 +41243970560E4

6

)
+806φ12

−2,1φ
11
0,1

(
481766368221E6

4−828424091520E3
4E

2
6 +10039040000E4

6

)
−531960E2

4E6φ
13
−2,1φ

10
0,1

(
1457598645E3

4−418811552E2
6

)
−12284370E2

4φ
10
−2,1φ

13
0,1

(
43165017E3

4−31257376E2
6

)
+6E4E6φ

23
−2,1(73362915E9

4

−1968261120E6
4E

2
6 +2153134080E3

4E
4
6−80478208E6

6)

+4E6φ
21
−2,1φ

2
0,1(−47714905305E9

4 +408586731840E6
4E

2
6

−158043820032E3
4E

4
6 +1049559040E6

6)+3E4φ
20
−2,1φ

3
0,1(46391070465E9

4

−1684505859840E6
4E

2
6 +1886854717440E3

4E
4
6−69807374336E6

6)

−7φ18
−2,1φ

5
0,1

(
568895485455E9

4−9050573631168E6
4E

2
6+4143604654080E3

4E
4
6−29575086080E6

6

)
+18E2

4E6φ
19
−2,1φ

4
0,1

(
405308228085E6

4−1442655164160E3
4E

2
6 +199133118464E4

6

)
+99E2

4φ
16
−2,1φ

7
0,1

(
384852307779E6

4−2932139934720E3
4E

2
6 +519389409280E4

6

)
+3E2

4φ
22
−2,1φ0,1

(
−258037569E9

4+28032966000E6
4E

2
6−80889477120E3

4E
4
6+10505617408E6

6

)
−60306155259108E4E6φ

5
−2,1φ

18
0,1−12164845368165E4φ

2
−2,1φ

21
0,1+5355592300450E6φ

3
−2,1φ

20
0,1

+881510533925φ23
0,1

)
. (A.7)

A.2 Tables of coefficients

In tables 6–11 we display several numerical coefficients of the series expansion of the elliptic

genera of the theories h
(1)
G for G = SU(3), SO(8), E6, E7, E8. For G = SU(3), F4, the elliptic

genera display the following symmetry:

E
h
(1)
G

(τ − 2ε+, τ) = q
1
2

(
h∨G
3
−1)v2(1−h

∨
G
3

)E
h
(1)
G

(2ε+, τ); (A.8)
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while on the other for G = SO(8), E6, E7, E8 one has:

E
h
(1)
G

(τ − 2ε+, τ) = −q
1
2

(
h∨G
3
−1)v2(1−h

∨
G
3

)E
h
(1)
G

(2ε+, τ). (A.9)

Also, the leading order term in the q-expansion of E
h
(1)
G

(2ε+, τ) is proportional to q−4
h∨G−1

6 .

We therefore find it convenient to rescale the elliptic genus and rewrite it in terms of

the variables p = v2, p̃ = q v−2 as follows:

E
h
(1)
G

(2ε+, τ)→ EG(p, p̃) = q
h∨G−1

6 v1−h
∨
G
3 E

h
(1)
G

(2ε+, τ). (A.10)

The rescaled elliptic genus then has the following expansion:

EG(p, p̃) =
∑
k,l≥0

bGk,l p
kp̃l, (A.11)

where

bGk,l = bGl,k for G = SU(3), F4, and bGk,l = −bGl,k for G = SO(8), E6, E7, E8. (A.12)

For instance,

ESU(3)(p, p̃) = (p+ 8p2 +O(p3)) + p̃(1 + 9p2 +O(p3)) + p̃2(8 + 9p+O(p3)) +O(p̃3). (A.13)

In tables 6–11 we display the expansion coefficients bGk,l for all G.

Finally, in tables 12–16 we display portions of tables 7–11, now including information

about how the series coefficients bGk,l arise as sum of contributions from the different terms

in equation (7.29), which we repeat here for convenience:

E
h
(1)
G

(ε+,τ)=v
h∨
G
3 −1

∑
n≥0

q2n

[(
v

q1/4

) 2h∨
G

3

LG(qnv;q)−(−1)h
∨
G

(
q1/4

v

) 2h∨
G

3

HG(qn+1/2/v;q) (A.14)

+(1+(−1)h
∨
G)q

1
2

(
h∨
G
3 +1

)((
v

q1/4

)2

LG(qn+1/2v,q)−
(
q1/4

v

)2

LG(qn+1/v,q)

)

−q2

−(−1)h
∨
G

(
v

q1/4

)4−2
h∨
G
3

LG(qn+1v,q)+

(
q1/4

v

)4−2
h∨
G
3

LG(qn+3/2/v,q)

].
Each entry in tables 12–16 is schematically written as a sum of integers with subscripts;

the two subscripts m,n indicate that the integer arises from the m-th occurrence of the

function LG(v, q) in the n-th term of the sum in equation (A.14). Thus, for example, the

k = 5, l = 6 entry in table 12 for G = SO(8),

2 · 52803,0 + 2 · 293,1 + 285,0 (A.15)

indicates that b
SO(8)
5,6 = 10646 arises as the sum of three terms: 2 · 52803,0 comes from

the LSO(8)(q
n+1/2v, q) term in equation (A.14), with n = 0; 2 · 293,1 also comes from the

same term, with n = 1; and 285,0 comes from the LSO(8)(q
n+1v, q) term, with v = 5.
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