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1 Introduction

The remarkable success the integrability program has had in solving string theory on

AdS5 × S5 [1, 2] is a reason for adopting the same approach for other less supersymmetric

string backgrounds which are still integrable [3–6]. This approach has allowed tremendous

progress in AdS4×CP
3 [7] and AdS3×S3×M4 [8]. One of the most recent frontiers seems

to be the Type II AdS2 × S2 × T 6 background with R-R fluxes, preserving 8 supersym-

metries [9–13]. The holographic dual is either expected to be a superconformal quantum

mechanics, or a chiral 2D CFT [14–17] (see [18–29] for recent work).

The AdS2 ×S2 (coset) part of the background is described by a Metsaev-Tseytlin [30]

type of action [31, 32] based on the quotient supergroup

PSU(1, 1|2)
SO(1, 1)× SO(2)

.

The algebra psu(1, 1|2) admits a Z4 automorphism (cf. [33, 34]). This is crucial for classical

integrability, which has been explicitly shown up to quadratic order in the fermions [35],

cf. also [36, 37].

In [38], an exact S-matrix was constructed for the scattering of excitations transform-

ing under the centrally-extended psu(1|1)2 symmetry superalgebra preserving the BMN
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vacuum [39–41], generalising to AdS2/CFT1 the armamentarium familiar from higher di-

mensions [42–52]. The S-matrix for massive modes is subject to crossing and unitarity,

but a solution for the dressing factor is still unknown. Under certain assumptions, the

near-BMN expansion gives consistency with perturbation theory [40, 41].

The principal feature which differentiates AdS2 from its higher-dimensional relatives

AdS5, (AdS4) and AdS3, is that the magnon representations are long for any non-zero mass.

Furthermore, because of generic reducibility of the tensor-product representation, the S-

matrix depends on an undetermined function, which is fixed by the Yang-Baxter equation

(cf. also [53–55]). The massless representations are instead short, and the approach adopted

in [38] — cf. [56–59] — is to take a zero-mass / finite h limit of the corresponding massive

centrally-extended psu(1|1) building block (cf. [60, 61]). One obtains in this fashion the

limiting S-matrices for all choices of left- and right- movers. The scattering theory enjoys

Yangian symmetry — cf. also [62].

1.1 Relativistic massless scattering

Integrable massless scattering is a remarkable chapter in the theory of exact S-matrices and

solvable two-dimensional models. It was pioneered by Zamolodchikov as a tool to describe

the renormalisation group flow between conformal field theories, along massless integrable

trajectories [60, 61]. The properties of massless S-matrices are slightly different from the

standard ones valid for massive theories, and are summarised in [63], appendix A. For the

gauge-fixed string sigma-model, the situation is complicated by the absence of relativistic

invariance. On the one hand, this allows for a perturbative description of scattering among

only left or right movers [56–59]. On the other hand, the formulas, especially for AdS2, are

considerably more complicated.

To gain some insight in a simplified setting, we study here first the relativistic (i.e.

strict BMN) limit of the massless AdS2 S-matrix with N = 1 supersymmetry, connected

to N = 1 supersymmetric theories in 1 + 1 dimensions. Massive representations and their

scattering have been studied in [64]. We will show how the S-matrices obtained in the

massless relativistic limit from AdS2 are related to those of [64]. In the process, we will

understand how to interpret their features in the light of the standard theory of massless

scattering. This in turn clarifies some facts observed in the non-relativistic case.

1.2 Problems with the reference state

The difficulties associated to AdS2 do not terminate with the complicated form of the

scattering matrix, which is attenuated by taking the massless limit. The specific form

of the R-matrix1 closely resembles, in the location of its non-zero entries, the R-matrix

for the XYZ spin-chain or the eight-vertex model [65, 66]. This is a common feature to

integrable models with N = 1 supersymmetry [67, 68]. It is then easy to see that such

R-matrices, and the associated transfer matrices, suffer from the problem of not admitting

a reference state (pseudo-vacuum), namely, a lowest-weight state from which to construct

1Throughout the paper, we will use both terminologies of “R-matrices” and “S-matrices”. They contain

the same physical information. The precise relationship for our purposes is given in section 5.1.
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the spectrum of excitations by means of the algebraic Bethe ansatz [69]. As a result, a set

of Bethe equations, to match with those conjectured from the sigma-model in [35], has not

yet been constructed from the R-matrix.

A variety of approaches have been developed in the literature to overcome such prob-

lems, starting with Baxter’s original method of functional relations. Recently, [70–72] suc-

cessfully applied this strategy to non-diagonal boundary problems, which suffer from the

same issue (see also e.g. [73] for one particular example out of the vast related literature).

Unfortunately, we do not yet have the appropriate Baxter operators for AdS2. In [74],

Faddeev and Takhtajan found a way of extending the algebraic Bethe ansatz to treat the

specific case of the XYZ chain. A similar idea was used in the supersymmetric case, for

those particular S-matrices which satisfy the so-called free-fermion condition [75–78]. This

condition allows a basis-transformation, convenient to ultimately extract the eigenvalues

the transfer matrix. Such scheme has been performed for N = 1 models in [68, 79], which

we will closely follow. What this will produce for us is a set of (auxiliary) Bethe-ansatz

conditions, identifying the location of potential zeroes of the transfer-matrix eigenvalues.

We will manage to match this with a naive massless limit of the Bethe ansatz conjectured

in [35]. The whole problem is then reduced to solving a factorisation condition (inversion

relation, cf. [80]), which we simply state.

The free-fermion condition holds for the AdS2 massive S-matrix as well, and it is

nothing else than the determinantal condition which was observed in [38]. Thanks to

this condition, the S-matrix enjoys an accidental u(1) symmetry under which only the

fermions are charged, corresponding to a property of the string theory [38, 40, 41]. This

in fact allows for the existence of a reference state for the complete scattering matrix,

which consists of two copies of the one we shall study in this paper. Such phenomenon is

echoed in other integrable systems [81] — see [82] for a comprehensive discussion -, where

a reference state is for instance found considering two or more adjacent spin-chain sites.2

It is however here technically rather complicated to proceed that way.3 Nevertheless, the

free-fermion condition allows us to make progress in the massless case using the strategy

of [68, 79]. There is all hope that it will likewise help in the massive situation, although

its implementation for long representations looks challenging at the moment.

1.3 This paper

Here is the outline of the paper. In section 2, we recollect salient facts about the centrally-

extended psu(1|1) algebra governing the scattering of AdS2 magnons, and specialise it to

its massless limit. In section 2.1, we perform the relativistic (BMN) limit, and display

a family of relativistic massless S-matrices. Some of them are known from the theory of

N = 1 supersymmetry, while others are related to them in a special way, which we describe

and comment upon from the viewpoint of the relativistic theory of massless integrable scat-

tering. In section 2.2, we obtain these special S-matrices as the relativistic limit of those

derived in [38] for massless non-relativistic AdS2 superstrings. In particular, we clarify a

2We thank Davide Fioravanti for communication about this point.
3We thank Ben Hoare, Marius de Leeuw and Alessandro Sfondrini for communication about this point.
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series of observations made in [38] regarding the braiding-unitarity properties of these mass-

less S-matrices, by analysing the issue from the relativistic viewpoint. In section 3, we write

down the relativistic crossing symmetry condition, and find a minimal solution for the dress-

ing factor, which we expect to be connected to the relativistic limit of the (yet unknown)

dressing factor for left-left and right-right AdS2 massless magnons. In section 4, we obtain

a set of differential equations for various relativistic S-matrices, in preparation to a similar

type of geometric analysis as the one contained in [83–87], which we plan for future work.

In section 5, we illustrate the Bethe-ansatz technique based on the free-fermion condition,

first displaying it for a known N = 1 S-matrix in section 5.1, then specialising the process

to the S-matrices obtained from AdS2 in the BMN limit in section 5.2. In section 5.3, we

generalise the procedure to the massless non-relativistic AdS2 case, which is seen to work

in a similar fashion. We obtain a particular set of Bethe-ansatz conditions, which we can

compare with a naive massless limit of the one conjectured by Sorokin, Tseytlin, Wulff and

Zarembo [35]. We then conclude with some remarks and open questions.

2 Massless representation of centrally-extended psu(1|1)

In this section we shall derive the massless representation of the centrally-extended psu(1|1)
symmetry algebra relevant for scattering of massless modes in AdS2 × S2 × T 6. We will

first consider the massive representation, then apply the massless limit while remaining

non-relativistic, and finally take the relativistic (BMN) limit.

The centrally-extended psu(1|1) Lie superalgebra is defined by the commutations re-

lations:

{Q,Q} = 2P, {S,S} = 2K, {Q,S} = 2C, (2.1)

where P,K and C are central bosonic generators, Q and S are fermionic generators. We

begin by remarking that, from a purely algebraic viewpoint, these commutation relations

already identify N = 1 supersymmetry in 1+1 dimensions [64, 67, 68] (see also [88] and

references therein), which we will take in various massless and relativistic representations

in what follows.

The (boson,fermion)
(

|φ〉, |ψ〉
)

representation we consider is the following:

Q |φ〉 = a |ψ〉 , Q |ψ〉 = b |φ〉 ,
S |φ〉 = c |ψ〉 , S |ψ〉 = d |φ〉 ,
C |v〉 = C |v〉 , P |v〉 = P |v〉 , K |v〉 = K |v〉 , (2.2)

where v = φ, ψ, and a, b, c, d, C, P and K are the representation parameters:

a =
α e

ip
4
− iπ

4√
2

√
e + m, b =

α−1e−
ip
4
+ iπ

4√
2

h(1− eip)√
e + m

,

c =
α e

ip
4
− iπ

4√
2

h(1− e−ip)√
e + m

, d =
α−1e−

ip
4
+ iπ

4√
2

√
e + m,

C =
e

2
, P =

h

2
(1− eip), K =

h

2
(1− e−ip), (2.3)
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where e, p and m are the energy, spatial momentum and mass respectively, h is the coupling

constant and α is an undetermined phase. One has the “dispersion relation”

e2 = m2 + 4h2 sin2
p

2
. (2.4)

We recall that the AdS2 massive representation we have just described is long, hence (2.4)

is not to be seen as a shortening condition. In particular, the “mass” parameter m is

completely unconstrained. Its meaning as a mass has to be imposed by hand, inspired by

analogy with the higher-dimensional cases.

The non-relativistic massless representation of centrally-extended psu(1|1) is obtained
by performing the limit m → 0 at finite h. Setting m = 0 amounts to a shortening

condition [38], which is expected to be protected from quantum corrections in the complete

theory [35–37]. The representation parameters become

a = α e
ip
4
− iπ

4

√

h sin(p/2), b = ± 1

α
e

ip
4
− iπ

4

√

h sin(p/2),

c = ±α e−
ip
4
+ iπ

4

√

h sin(p/2), d =
1

α
e−

ip
4
+ iπ

4

√

h sin(p/2), (2.5)

where the upper sign is for right movers, the lower sign for left movers (in the latter

case one also needs to account for a global factor of
√
−1 = i according to our choice of

branch, which will matter in the mixed right-left and left-right coproducts). The massless

dispersion relation is

e = 2h
∣

∣

∣
sin

p

2

∣

∣

∣
, (2.6)

Rep ∈ (0, π) for right movers, Rep ∈ (−π, 0) for left movers. Crossing is implemented by

first shifting the fundamental domain to Rep ∈ (0, 2π), and then analytically continuing to

negative momenta and energies, starting from the fundamental domain and going through

the lower imaginary axis [63]. As in AdS5, the magnon representation is self-conjugate,

while in AdS3 crossing symmetry exchanges L and R particles in addition to analytically

continuing the momenta.

2.1 Relativistic massless R-matrices

In this section we derive R-matrices in the relativistic massless limit. We rescale the

momentum and the coupling as follows

p → εq, h → c

ε
, ε → 0+. (2.7)

where

q = eθ, (2.8)

θ is the rapidity and c is the speed of light. The relativistic massless representation is then

given by

a = α e−iπ
4

√

c q

2
, b = ±α−1 e−iπ

4

√

c q

2
,

c = ±α ei
π
4

√

c q

2
, d = α−1 ei

π
4

√

c q

2
, (2.9)
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where the upper sign is for right movers, the lower sign for left movers, and

C =
c q

2
, P = −i

c q

2
, K = i

c q

2
, (2.10)

with the relativistic massless dispersion relation

e = c |q|, (2.11)

where Req > 0 for right movers, Req < 0 for left movers. Relativistic invariance will

guarantee all the R-matrices to only depend on the difference of the rapidities of the two

scattering particles.

The action of the symmetry on two-particle states in the relativistic limit is

∆(Q) = Q⊗ 1+ 1⊗Q, ∆(S) = S⊗ 1+ 1⊗S,

∆(P) = P⊗ 1+ 1⊗P, ∆(C) = C⊗ 1+ 1⊗ C,

∆(K) = K⊗ 1+ 1⊗ K, (2.12)

where all the non-trivial braiding factors [38, 45, 46] have gone to 1 when ǫ → 0. We

impose the R-matrix to commute with the algebra action on two-particle states,

∆op(J)R = R∆(J), (2.13)

which must be true for all generators J of centrally-extended psu(1|1). Conservation of the

total fermionic number constrains the R-matrix to be parametrised as

R = A12 E11 ⊗ E11 +B12 E11 ⊗ E22 + C12 E22 ⊗ E11

+D12 E22 ⊗ E22 + Y12 E12 ⊗ E12 + F12 E21 ⊗ E21

+G12 E12 ⊗ E21 +H12 E21 ⊗ E12, (2.14)

with Eij the 2× 2 matrix unities, i.e. matrices with all zeroes but 1 in position (i, j). The

subscript 12 in the coefficients refers to particles 1 and 2 in the scattering. Eq. (2.13) then

implies that, if we consider for instance right-right scattering, then

A12 = D12 −
1

α2
e

θ
2F12 − α2e−

θ
2Y12 − 2 cosh

θ

2
G12,

B12 = D12 − α2e−
θ
2Y12 − e−

θ
2G12,

C12 = D12 −
1

α2
e

θ
2F12 − e

θ
2G12,

H12 = −α2Y12 −
1

α2
F12 −G12, (2.15)

and similarly for the other combinations. Whenever it is unambiguous from the context,

we will always denote θ ≡ θ1 − θ2.

We provide in what follows a list of R-matrices which are invariant under the relativistic

massless coproduct action (2.12) for the values of α specified below, and which satisfy the

Yang-Baxter equation. Let us remark that, throughout all of section 2, whenever we write

matrices, we mean the matrices of coefficients of the R-matrix action on states. All matrices

– 6 –
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except for Solution 1 (meaning, Solutions 2–5) are for both particles with the same chirality

(right-right or left-left, as specified case by case).

The way we have obtained the solutions reported below is by first imposing the sym-

metry w.r.t. the centrally extended psu(1|1) algebra, and afterwards imposing the Yang-

Baxter equation (YBE). Only then we have tested crossing symmetry (more precisely,

Zamolodchikov’s combined cross-unitarity condition [63]) and braiding-unitarity, the latter

corresponding to the property

R12(p1, p2)R21(p2, p1) = 1, R21(p, q) = Rop(p, q). (2.16)

We have not exhausted all possibilities of solution of the YBE, and retained only those

which will be relevant for our discussion. All our solutions satisfy cross-unitarity, but some

will not satisfy braiding unitarity. We remark that [67] found the most general solution

to the YBE, satisfying the N = 1 supersymmetry algebra. The S-matrices on which [67]

focuses, however, all satisfy the properties of crossing symmetry and braiding unitarity,

although the latter is dubbed “optional”.

• Solution 1: for arbitrary values of α,











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











. (2.17)

It trivially satisfies crossing symmetry and braiding unitarity. We shall see that the

mixed scattering matrix of AdS2 massless modes equals (2.17) in the relativistic limit,

which signals a decoupling of left and right movers.

• Solution 2 (“Fendley p = 1

2
”): for α2 = 1 (right-right), α2 = −1 (left-left),















1 0 0 − sinh θ
2

cosh θ

0 − tanh θ
cosh θ

2

cosh θ
0

0
cosh θ

2

cosh θ
tanh θ 0

− sinh θ
2

cosh θ
0 0 −1















. (2.18)

It satisfies crossing symmetry and braiding-unitarity. This is one of the solutions

found in [64], and the “p = 1
2” parameter in the name reflects the notations of that

paper — p being no momentum at all in this case. It was there obtained for massive

particles, but same-chirality relativistic R-matrices formally coincide with massive

ones — cf. the discussion in [63].

The need to set the parameter α2 to a specific value in this solution (and, later on,

in Solution 4), although in principle α should remain an undetermined relative scale

between bosons and fermions, is to match with the precise S-matrices of [64], where

a definite choice has been made for such scale.

– 7 –
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• Solution 3: for arbitrary values of α,













1 0 0 ∓α−2e−
θ
2

0 −1 e−
θ
2 0

0 e−
θ
2 1 0

∓α2e−
θ
2 0 0 −1













, (2.19)

where the upper sign is for right-right, the lower sign for left-left. It satisfies cross-

unitarity [63] (cf. also [89]), but does not satisfy braiding-unitarity.

• Solution 4 (“Fendley p = −3

2
”): for α2 = 1 (right-right), α2 = −1 (left-left),















1 0 0
sinh 3

2
θ

cosh θ

0 tanh θ
cosh 3

2
θ

cosh θ
0

0
cosh 3

2
θ

cosh θ
− tanh θ 0

sinh 3
2
θ

cosh θ
0 0 −1















. (2.20)

It satisfies crossing symmetry and braiding-unitarity. This is the other solution found

in [64].

• Solution 5: for arbitrary values of α,













1 0 0 ±α−2e
θ
2

0 1 e
θ
2 0

0 e
θ
2 −1 0

±α2e
θ
2 0 0 −1













, (2.21)

where the upper sign is for right-right, the lower sign for left-left. It satisfies cross-

unitarity, but does not satisfy braiding-unitarity.

We remark that Solution 3, for right-right (resp., left-left) and α2 = 1 (resp., α2 = −1), can

be obtained from Solution 2 as an asymptotic expansion at θ → +∞, and from Solution 4

as an asymptotic expansion at θ → −∞. Solution 5, instead, for right-right (resp., left-left)

and α2 = 1 (resp., α2 = −1), can be obtained from Solution 2 as an asymptotic expansion

at θ → −∞, and from Solution 4 as an asymptotic expansion at θ → +∞.

2.2 Connection with non-relativistic massless scattering

There is a natural connection between the R-matrices found above and those which are

solutions of the non-relativistic massless algebra given in [38]. We verify here that Solutions

1, 3 and 5 descend from the non-relativistic massless-massless R-matrices found in [38].

We shall first remind the notation used in [38]. The massless Zhukovsky variables

(x±1 , x
±
2 ) for two particles entering the scattering process satisfy the relation

x+i =
1

x−i
, i = 1, 2. (2.22)

– 8 –
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In our conventions,

x+i = ±ei
pi
2 , (2.23)

where the upper sign stands for right movers Repi ∈ (0, π), the lower sign for left movers

Repi ∈ (−π, 0). In [38], a function f is introduced as

f =

√

x+
1

x−

1

(

x−1 − 1
x+
1

)

−
√

x+
2

x−

2

(

x−2 − 1
x+
2

)

1− 1
x+
1 x−

1 x+
2 x−

2

, (2.24)

controlling the value of the massive S-matrix entries. The function f is not well-defined if

we take the massless limit on both scattering particles, since f assumes the indeterminate

form 0
0 . The way one can compute f in the massless-massless case is to perform the massless

limit on one of the two particles and keep the other one massive, and finally perform the

remaining massless limit. The order in which one performs the two limits matters only

for scattering of type right-right and left-left, while for scattering of type right-left and

left-right such ambiguity does not appear. For the right-right and left-left cases, we will

show that this mathematical ambiguity is connected to the two possibilities for Fendley’s

relativistic S-matrix [64]. For the mixed cases, the ambiguity is absent and it guarantees

that the BMN limit reproduces the trivial scattering matrix. We have verified that this

pattern precisely matches the table given in section 5.2 of [38].

In order to show this, let us go one step backwards before the relativistic limit, and

restore the non-triviality of the coproduct. On the supercharges (which generate all other

coproducts by Lie superalgebra homomorphism) this reads [38, 45, 46]

∆(Q) = Q⊗ 1+ ei
p
2 ⊗Q, ∆(S) = S⊗ 1+ e−i

p
2 ⊗S. (2.25)

The non-relativistic massless R-matrix in [38] reads, in the mixed case,

R =











1 0 0 ± 1
α2κ(p1, p2)

0 ±δ(x+1 ) κ̃(p1, p2) 0

0 κ̃(p1, p2) ∓δ(x+2 ) 0

±α2κ(p1, p2) 0 0 −δ(x+1 )δ(x
+
2 )











, (2.26)

where

δ(x+i ) =

{

+1, if x+i is right-mover

−1, if x+i is left-mover
, (2.27)

and

κ(p1, p2) = −i 4

√

x+2
1

x+2
2

x+2

√

i(x−1 − x+1 )
√

i(x−2 − x+2 )

1− x+1 x
+
2 ± (x+1 − x+2 )

,

κ̃(p1, p2) = δ(x+1 )δ(x
+
2 )κ(p1, p2). (2.28)
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In the right-left massless scattering, f → 1, one takes the upper sign in (2.26), and we

obtain from it the matrix










1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











, (2.29)

which is the first-order term appearing in perturbation theory [40, 41]. This is in agreement

with Zamolodchikov’s picture — cf. the discussion in [63].

In the left-right scattering, f → −1 and one takes the lower sign in (2.26). Again,

the relativistic limit produces (2.29), which is once again consistent with Zamolodchikov’s

picture.

The non-relativistic right-right R-matrix reads

R =























1 0 0 ± 1
α2

[

tan
p1
4

tan
p2
4

]± 1
2

0 ±1
[

tan
p1
4

tan
p2
4

]± 1
2

0

0
[

tan
p1
4

tan
p2
4

]± 1
2 ∓1 0

±α2
[

tan
p1
4

tan
p2
4

]± 1
2

0 0 −1























. (2.30)

In the right-right massless scattering f → ±1, which is a reflection of the massless limit

order ambiguity mentioned above. The upper sign in (2.30) corresponds to f → 1, the

lower to f → −1. The relativistic limit of the massless R-matrix in [38] gives:












1 0 0 1
α2 e

θ
2

0 1 e
θ
2 0

0 e
θ
2 −1 0

α2e
θ
2 0 0 −1













, f → +1, (2.31)

which reproduces Solution 5 right-right, and












1 0 0 − 1
α2 e

− θ
2

0 −1 e−
θ
2 0

0 e−
θ
2 1 0

−α2e−
θ
2 0 0 −1













, f → −1, (2.32)

which reproduces Solution 3 right-right.

Finally, the non-relativistic left-left scattering reads

R =























1 0 0 ± 1
α2

[

tan
p1
4

tan
p2
4

]∓ 1
2

0 ∓1
[

tan
p1
4

tan
p2
4

]∓ 1
2

0

0
[

tan
p1
4

tan
p2
4

]∓ 1
2 ±1 0

±α2
[

tan
p1
4

tan
p2
4

]∓ 1
2

0 0 −1























. (2.33)
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The upper sign in (2.33) corresponds to f → 1, the lower to f → −1. In the relativistic

limit we obtain












1 0 0 1
α2 e

− θ
2

0 −1 e−
θ
2 0

0 e−
θ
2 1 0

α2e−
θ
2 0 0 −1













, f → +1, (2.34)

which reproduces Solution 3 left-left, and













1 0 0 − 1
α2 e

θ
2

0 1 e
θ
2 0

0 e
θ
2 −1 0

−α2e
θ
2 0 0 −1













, f → −1, (2.35)

which reproduces Solution 5 left-left.

We remind that the non-triviality of the massless right-right and left-left BMN limit

is a completely non-perturbative effect, in full consonance with Zamolodchikov’s picture of

massless scattering [60, 61, 63].

The following diagram gives a snapshot of the relevant connections between the various

limits of the R-matrices:

m 6=0

non-relativistic (AdS2)

m 6=0

relativ. (Fendley)

m=0

non-relativistic

Type I

m=0 , relativistic

Solutions 2, 4

crossing, b. unit.

Type II

m=0 , relativistic

Solutions 3, 5

cross-unitarity, b. unit.

θ→±∞

We recall that the BMN limit of the massive AdS2 R-matrix is the identity. What we

call type I relativistic massless R-matrices satisfy crossing and braiding unitarity, while the

analogous type II R-matrices satisfy cross-unitarity, but do not satisfy braiding unitarity.

We have found that Solutions 3 and 5, which are of type II, can be obtained from Solutions

2 and 4, which are of type I, in the asymptotic expansion θ → ±∞, for appropriate values

of α2. This implies that formally extracting the expression where |θ| is large will break

braiding unitarity. Here we give an explanation, which clarifies a series of observations

which were made in [38].

Let R(I) be a R-matrix of type I, and let R(II) be a R-matrix of type II, such that, for

example,

R(I) ∼→ R(II) at θ → ∞. (2.36)
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Then R(I) must satisfy braiding unitarity, which is

R
(I)
12 (θ1 − θ2)R

(I)
21 (θ2 − θ1) = 1. (2.37)

Now we take the asymptotic expansion θ ≡ θ1−θ2 → +∞ of both sides of (2.37). The first

factor on the l.h.s. of (2.37) asymptotes correctly to R(II) in the limit θ → +∞. However,

the second factor must be expanded at −∞ in the limit θ → +∞, which does not reproduce

the solution R(II) as would be desired. It is also clear from this reasoning that, if we keep

f fixed, we have a form of combined braiding unitarity between Solution 3 and 5, which

should physically correspond to the braiding unitarity of each of the two separate Fendley’s

solutions.

This is not inconsistent with Zamolodchikov’s picture of massless scattering. In fact, if

a massless relativistic S-matrix is obtained at large same-chirality (left-left and right-right)

rapidities from a massive relativistic one, it shall be identical to the massive, hence will

satisfy the same axioms. This applies to Fendley’s solution, which is indeed identical to

the massive theory [64]. The other solutions obtained from AdS are not subject to this

argument, as they are obtained directly from non-relativistic ones, and coincide with the

large-rapidity asymptotic expansion of [64].

Comment. There are two solutions which are invariant under the relativistic massless

coproduct action (2.12), which satisfy the Yang-Baxter equation, but which do not follow

by any limit of the massless non-relativistic R-matrix in [38]. These solutions are:

• Solution 6: for arbitrary values of α and κ an arbitrary constant,














1 0 0 0

0 −1+eθ

−1+eθ+eκ+θ
eκ+

θ
2

−1+eθ+eκ+θ 0

0 eκ+
θ
2

−1+eθ+eκ+θ 1− eκ

−1+eθ+eκ+θ 0

0 0 0 −1−eκ+eθ

−1+eθ+eκ+θ















. (2.38)

It satisfies braiding-unitarity, but does not satisfy crossing symmetry.

• Solution 7: for α2 = 1,














1 + 2i sinβπ
sinh θ

0 0 i sinβπ

cosh θ
2

0 1 i sinβπ

sinh θ
2

0

0 i sinβπ

sinh θ
2

1 0

i sinβπ

cosh θ
2

0 0 1− 2i sinβπ
sinh θ















. (2.39)

where β is an arbitrary constant. It satisfies crossing symmetry and braiding-

unitarity. This S-matrix corresponds to the supersymmetric Sinh-Gordon model [79,

90–92] (with β related to the coupling). We remark that the Pohlmeyer reduction of

the AdS2 superstring is theN = 2 supersymmetric sine-Gordon theory [54, 55], whose

S-matrix is built from those of N = 1 supersymmetric sine-Gordon (Ben Hoare, pri-

vate communication). It would be very interesting to explore this connection further

in future work.
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3 Crossing and dressing factors

In this section, for definiteness, we will set α2 = 1 and focus on right-right scattering.

Crossing symmetry is implemented in the following fashion. Define the supertranspose of

a matrix M as

M str
ij = (−)ij+iMji, (3.1)

and the charge conjugation matrix as

C = diag(i, 1), (3.2)

such that

−Qq = C−1Qstr
−q C, −Sq = C−1Sstr

−q C,

where the crossing map is given by

q → −q, θ → iπ + θ. (3.3)

The cross-unitarity condition for Solution 2 reads

R(θ)
[

C−1 ⊗ 1
]

Rstr1(iπ + θ)
[

C ⊗ 1
]

=

(

1 +
sinh2 θ

2

cosh2 θ

)

1⊗ 1 . (3.4)

From here, we deduce the cross-unitarity equation for the dressing factor Φ:

Φ(θ)Φ(θ + iπ) =

(

1 +
sinh2 θ

2

cosh2 θ

)−1

. (3.5)

The dressing factor given in [64] is

Φ(θ) = 4

[

1

2
− θ

πi

]2 ∞
∏

j=1

(

j − 1
2

)

∏3
k=1

(

3j + 1
2 − k

)

(

2j − 1
2

)2(

2j + 1
2

)2(

4j2 −
[

1
2 − θ

πi

]2
)2

×
Γ
(

3j − 5
2 + 3

2
θ
πi

)

Γ
(

3j − 1− 3
2

θ
πi

)

Γ
(

3j − 1 + 3
2

θ
πi

)

Γ
(

3j + 1
2 − 3

2
θ
πi

)

Γ
(

j − 1
2 + θ

2πi

)

Γ
(

j − θ
2πi

)

Γ
(

j + 1
2 − θ

2πi

)

Γ
(

j + θ
2πi

) . (3.6)

We have verified that (3.6) solves equation (3.5). It also has the right analiticity structure,

meaning no poles in the physical strip ℑθ ∈ (0, π) (as massless particles cannot form bound

states).

We have also constructed the minimal solution to the cross-unitarity equation satis-

fied by Solution 3, essentially by factorising Zamolodchikov’s formula for the Sine-Gordon

dressing factor [93]. It can be directly verified, by using properties of the Gamma function

and its product-representation, that the expression

Ω(θ) =
e

γ
2
−πi

8
+ θ

4√
2π

∞
∏

j=1

e
− 1

2j j
Γ
(

j − 1
2 + θ

2πi

)

Γ
(

j − θ
2πi

)

Γ
(

j + 1
2 − θ

2πi

)

Γ
(

j + θ
2πi

) , (3.7)
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satisfies

Ω(θ)Ω(θ + iπ) =
e

θ
2

2 cosh θ
2

, (3.8)

where γ is Euler’s constant. The factor Ω(θ) has no poles in the physical strip. Hence, no

CDDs are necessary, and we therefore expect it to be associated to the limit of the mass-

less AdS2 dressing factor in the corresponding relativistic limit, shadowing an analogous

phenomenon occurring in the AdS3 case [94].

4 Differential equations

The R-matrices (2.19), (2.18) and (2.21), (2.20) respectively satisfy the following partial

differential equations (for α2 = 1 and right-right scattering):

[

∂

∂θ
+ Γ

(i)
θ

]

R = 0 , (4.1)

where

Γ
(3,5)
θ = ± 1

2(1 + e±θ)
1⊗ 1− 1

4 cosh( θ2)
σ1 ⊗ σ1 , (4.2)

(with 3/5 associated to the upper/ lower sign),

Γ
(2)
θ =

tanh θ
2(2− cosh θ)

2 cosh θ(1− 2 cosh θ)
1⊗ 1+

2− cosh θ

2 cosh 3θ
2

(E12 ⊗ E12 + E21 ⊗ E21)

+
cosh θ

2

1− 2 cosh θ
(E12 ⊗ E21 + E21 ⊗ E12) , (4.3)

and

Γ
(4)
θ =

(

sinh θ − 2 sinh 2θ

1− 2 cosh θ + 2 cosh 2θ
− 1

2
tanh

θ

2
+ tanh θ

)

(E11 ⊗ E11 + E22 ⊗ E22)

−4 sinh θ + sinh 3θ + 2 tanh θ

2(cosh 2θ + cosh 3θ)
(E11 ⊗ E22 + E22 ⊗ E11)

− cosh θ
2(−3 + 2 cosh θ)

1− 2 cosh θ + 2 cosh 2θ
(E12 ⊗ E21 + E21 ⊗ E12)

−3− cosh θ + cosh 2θ

2 cosh 5θ
2

(E12 ⊗ E12 + E21 ⊗ E21) , (4.4)

where σ1 ≡ E12 + E21. The (would-be) connections Γ(i) are meromorphic with poles in

the complex θ-plane. In the spirit of [83, 84], we conjecture that the above represents the

relativistic limit of a “non-relativistic” fibre bundle, with a 2D torus as a base space —

which is then decompactified and complexified to C
2 ∋ (p1, p2) because of the analytic

continuation of the dressing factor — and a U(su(1|1)) fibre.4 The hint for the existence

of a non relativistic fibre bundle has been first found in [84] in the context of AdS3. The

algebraic tail in the equation (4.1) gives a hint for the existence of a relativistic fibre

4Where U denotes the universal enveloping algebra.
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bundle in AdS2 as well, which might come from a parental non relativistic fibre bundle

via a relativistic limit. We conjecture that the relativistic limit might be responsible for

the shrinking5 of the base space T 2 to S1, decompactified and complexified to C ∋ θ. Our

conjecture is supported by the fact that the R-matrices (2.18), (2.19), (2.20), (2.21) do not

depend on the coordinate θ1+θ2, but only on θ1−θ2, which is a peculiar implication of the

relativistic limit. Therefore the coordinate θ1+θ2 is mute, the connection Γ along θ1+θ2 is

identically zero, hence the part of the fibre bundle constructed over the coordinate θ1 + θ2
can be disregarded, since it is geometrically trivial.

We have checked that the connections for Solution 3 / 5 respectively coincide with

those for Solution 2 / 4 in the asymptotic large-θ regime, as expected from the discussion

in section 2.

A very important point is that we have derived the above differential equations disre-

garding dressing factors, such as the solution Ω(θ) obtained in the previous section. Adding

them corrects the differential equations by adding a term proportional to the identity:

[

∂

∂θ
+ Γ

(i)
θ − ∂

∂θ
log Ω(θ)

]

Ω(θ)R = 0. (4.5)

This can be interpreted, in the light of the conjecture we have advanced, as a u(1) ⊂ su(1|1)
shift of − ∂

∂θ
log Ω(θ)1⊗ 1 to the connection Γ

(i)
θ . Whether this term has an interpretation

analogous to a gauge transformation on a principle bundle is left for future investigation.

5 Bethe ansatz

In this section, we study the Bethe-ansatz for the massless sector of AdS2 superstrings.

We start from the strict relativistic limit to illustrate the procedure, and eventually gen-

eralise the formulas to the non-relativistic case. We begin with Fendley’s S-matrix [64] for

illustration purposes.6 We then move on to those associated to the BMN limit of AdS2

superstrings, and finally we generalise the technique to massless non-relativistic AdS2.

5.1 Free-fermion condition and basis-change

As mentioned in the Introduction, the problem of lack of a reference state prevents the

direct applicability of the algebraic Bethe ansatz technique to obtain the Bethe equations.

The method relying on the free-fermion condition, which we will describe below, allows

one to circumvent this problem.

One finds it convenient to first switch from the R-matrix to a version of the S-matrix,

and, after that, to proceed by ignoring any further fermionic sign. Whenever it has been

possible to compare, we have checked that this preserves the Yang-Baxter equation and

5We thank Jock McOrist and Martin Wolf for communication about this point.
6We strongly believe that the Bethe ansatz for Fendley’s S-matrix is known to experts (we acknowledge

private communication with Zoltan Bajnok and Mauro Moriconi on this point). Given that we have not

been able to explicitly retrieve it from the literature, we have decided to independently re-derive it and to

display the detail of the procedure in section 5.1, if only for illustrative scope.
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captures (a subset of) the same spectrum of eigenvectors, which would be obtained by the

R-matrix based algebraic Bethe ansatz7 [68, 79]. One writes such S-matrix as

S =

(

A B

C D

)

, (5.1)

where the matrix displayed acts on the first (auxiliary) space, while the operators A, B, C

and D act on the second (quantum) space as follows:

A = a+ E11 + b+ E22 , B = d+ E12 + c− E21 ,

C = c+ E12 + d− E21 , D = b− E11 + a− E22 . (5.2)

The functions appearing in the above formula read

a+ = a− = 1 , b− = −b+ = tanh θ ,

c+ = c− =
cosh θ

2

cosh θ
, d+ = −d− =

sinh θ
2

cosh θ
. (5.3)

One momentarily suppresses the dressing factor, which can easily be reinstated at the very

end. The entries satisfy the free-fermion condition:

a+a− + b+b− = c+c− + d+d− . (5.4)

The monodromy matrix M and the associated transfer matrix T are defined as

M = S01(θ − θ1) . . . S0N (θ − θN ) , T = tr0M , (5.5)

and they constitute the basis for RTT quantisation [69]. As we have already remarked,

the very first step of the algebraic Bethe ansatz is hindered here by the impossibility of

finding a natural lowest-weight eigenstate of T , from which the spectrum can be spanned

by repeated action of the off-diagonal entries of M .

The strategy of [76–78] and [68, 79] goes as follows. First, define a new S-matrix S(1),

which takes the same form as S but replacing the functions by

a± → a
(1)
± = −b± , b± → b

(1)
± = a± ,

c± → c
(1)
± = c± , d± → d

(1)
± = −d± . (5.6)

One can promptly notice that S(1) still satisfies the free-fermion condition. Then, one

writes

T T (1) = tr0

[

S01(θ − θ1) . . . S0N(θ − θN)
]

tr0′
[

S
(1)
0′1(θ − θ1) . . . S

(1)
0′N(θ − θN)

]

= tr0⊗0′

N
∏

i=1

S0i(θ − θi)⊗ S
(1)
0′i (θ − θi) , (5.7)

where the tensor product is between the two auxiliary spaces 0 and 0′ pertaining to T and

T (1), respectively.

7We thank Ben Hoare for discussions about this point.
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The trick is now to find a similarity transformation on the combined tensor-product

object S0i(θ − θi) ⊗ S
(1)
0′i (θ − θi), capable of putting it into an upper triangular form.

Such a transformation is performed at each site, but it should not depend on the site-

specific variables (inhomogeneities) θi. Because of the difference-form, this means that

the similarity matrix should be a constant, which is a non-trivial step which requires the

free-fermion condition. It is only in this fashion that the similarity matrices will all cancel

in expression (5.7), and the task of taking the trace will become straightforward.

In fact, one can prove that the following matrix:

X =
1√
2











0 1 1 0

1 0 0 1

1 0 0 −1

0 1 −1 0











= X−1 (5.8)

is such that

XS0i ⊗ S
(1)
0′iX

−1 = X











AA(1) AB(1) BA(1) BB(1)

AC(1) AD(1) BC(1) BD(1)

CA(1) CB(1) DA(1) DB(1)

CC(1) CD(1) DC(1) DD(1)











X−1 =











m+ ∗ ∗ ∗
0 n+ ∗ ∗
0 0 n− ∗
0 0 0 m−











, (5.9)

with

m± =
1

2 cosh2(θ − θi)

[

± cosh(θ − θi) + cosh 2(θ − θi)
]

1 ,

n± =
1

2 cosh2(θ − θi)

[

± sinh(θ − θi) + sinh 2(θ − θi)
]

σ3 , (5.10)

having denoted 1 = E11 + E22 and σ3 = E11 − E22. Since tr0⊗0′ = tr4, we can immediately

write

T T (1) =
N
∏

i=1

m+(θ − θi) +
N
∏

i=1

m−(θ − θi) +
N
∏

i=1

n+(θ − θi) +
N
∏

i=1

n−(θ − θi) . (5.11)

We now make use of a very particular relation between S and S(1). One can check that

S
(1)
0′i = τ σ1 S0′i(θ − θi + iπ)σ−1

1 τ−1 ,

σ1 = E12 + E21 , τ = E11 + iE22 , (5.12)

where this similarity transformation is performed in the auxiliary space 0′. This means

that

T (1)(θ) = T (θ + iπ) , (5.13)

which turns (5.11) into a crossing-type equation referred to as inversion relation [80]. This

is consistent with the property that m+ maps into m− and n+ into n−, under θ → θ+ iπ.

We have performed explicit checks, for small N , that (5.11) is correct.

The eigenvalues of (5.11) will be given by the same expression, with σ3 replaced by

the fermionic number of the particular eigenstate. The final task is then to factorise such
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expressions into a product of two functions, namely f(θ)f(θ+iπ). As it is familiar from solv-

ing crossing-symmetry relations for S-matrices, this is a difficult problem in general, whose

study relies on analyticity assumptions. Here, we shall content ourselves with deriving a

condition which identifies potential zeroes of the transfer-matrix eigenvalues, a condition

which will be seen to lead to auxiliary Bethe-ansatz type equations. First, one splits

TT (1) =

[

N
∏

i=1

A(θ − θi) + F
N
∏

i=1

B(θ − θi)

]

×
[

N
∏

i=1

C(θ − θi) + F

N
∏

i=1

D(θ − θi)

]

1
∏N

i=1 2 cosh
2(θ − θi)

, (5.14)

where F = ± is the fermionic degree of the particular state one considers, and

A(θ − θi) =
c+0i
C0i

, B(θ − θi) =
s−0i
C0i

, D(θ − θi) =
s+0i
c+0i

C0i , (5.15)

where C0i is a freedom of this rewriting, and we have defined

c±0i = ± cosh(θ − θi) + cosh 2(θ − θi) ,

s±0i = ± sinh(θ − θi) + sinh 2(θ − θi) , (5.16)

and used the fact that

c+0i c
−
0i = s+0i s

−
0i . (5.17)

The eigenvalue has N potential poles, determined by the hyperbolic cosines at the de-

nominator, and a certain number of potential zeroes, possibly coincident, depending on

the particular state. The possible location of them will be determined below via a set of

auxiliary Bethe-ansatz conditions. Moreover, the eigenvalues are periodic of period 2πi, as

can be seen by the fact that, by shifting (5.11) of a further +iπ and using (5.13), one gets

T (θ + iπ)T (θ + 2iπ) = T (θ)T (θ + iπ) , (5.18)

where we have also explicitly made use of the invariance of the r.h.s. of (5.11) under shift

of iπ. Therefore, T (θ + 2iπ) = T (θ), hence it can be analysed by studying the location of

its poles and zeroes in the strip θ ∈ [−π, π). We recall that the dressing factor — say, Φ —

does not affect these considerations, since we already know how we will have to decorate

the eigenvalue T obtained at the end, i.e. by a product of dressing factors
∏N

i=1Φ(θ − θi).

From (5.14), one sees that potential zeroes can come from

N
∏

i=1

A(zk − θi)

B(zk − θi)
= −F ,

N
∏

i=1

C(zk − θi)

D(zk − θi)
= −F . (5.19)

Plugging the explicite formulas, we see that the freedom of C0i is indeed irrelevant, and

we obtain that the potential zeroes can come from either of two conditions:

N
∏

i=1

coth
z+k − θi

2
= −F ,

N
∏

i=1

coth
3(z−k − θi)

2
= −F , (5.20)
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for any fixed value of the fermionic number F = 0, 1 of the state under consideration.

Notice that, thanks to (5.17), each of two auxiliary Bethe equations maps into itself under

z±k → z±k + iπ.

One needs at this point to identify the actual set of zeroes of T vs. those of T (1) in

order to extract the eigenvalues of T . This can then be used to write down the (momentum-

carrying) Bethe equation: intuitively, if one considers N+1 excitations on a circle of length

L with periodic boundary conditions, interacting via the scattering matrix S, one is led to

consider a quantisation condition of the following type [68, 79]:

eip0L T (p0|p1, . . . , pN )|ψ〉 = |ψ〉 , (5.21)

where pa = eθa , a = 0, . . . N , and

T (p0|p1, . . . , pN ) = tr0M(p0|p1, . . . , pN ) (5.22)

is the transfer matrix, supplemented by the appropriate dressing factors. Revolving the

particle 0 around the circle involves scattering all the other ones in sequence, returning the

same eigenstate |ψ〉 of the transfer matrix. Eq. (5.21) is then turned into an equation for

the eigenvalues. These are parametrised by their potential poles and zeroes, a subset of

which are obtained from (5.20).

Some experimenting with small N seems to reveal that this final step is not straight-

forward, and would require a separate analysis. This will be so for all the cases which we

discuss in this paper. This observation is clearly related to the fact that our eigenvalues

may either tend to zero (as in this section) or have an essential singularity (as in the next

section) at θ = ∞, at odds with the situation in [68, 79] — and [80], after going to a re-

duced transfer matrix with no essential singularities. This is easily evinced by studying the

asymptotics of the corresponding S-matrices. Therefore, even the knowledge of the zeroes

and poles of the meromorphic periodic function T (θ) would not allow us to completely

reconstruct it, as one cannot eliminate the ambiguity of factors which are entire periodic

functions of θ and depend on all θi’s.

5.2 Bethe-ansatz condition for solution 3

Now that we have illustrated the procedure and setup the notation, it is a simple exercise

to apply it to Solution 3, which of course still satisfies the free-fermion condition. The

advantage of having performed the process on Fendley’s S-matrix is manifest from the fact

that Solution 3 can formally be obtained from it in a large θ asymptotic expansion. This

does not mean that one can indiscriminately expand at large θ all the previous formulas,

but in several cases it implies that similar algebraic manipulations will apply.

We can be concise on the intermediate steps, and write now

a+ = a− = 1 , b− = −b+ = 1 ,

c+ = c− = e−
θ
2 , d+ = −d− = e−

θ
2 , (5.23)

such that

a+a− + b+b− = c+c− + d+d− . (5.24)
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and

a± → a
(1)
± = −b± , b± → b

(1)
± = a± ,

c± → c
(1)
± = c± , d± → d

(1)
± = −d± . (5.25)

The very same transformation X in (5.8) and (5.9) works for this case as well, and one

obtains an upper triangular form like (5.9) for TT (1), this time with diagonal entries

m± =
(

1± e−θ
)

1 , n± =
(

1± e−θ
)

σ3 . (5.26)

The great simplification with respect to the previous section is now that the product (5.11)

of the two eigenvalues reduces to

TT (1) = (1 + F )

[

N
∏

i=1

(

1 + e−(θ−θi)
)

+
N
∏

i=1

(

1− e−(θ−θi)
)

]

, (5.27)

where F denotes again the fermionic number of the particular eigenstate under considera-

tion. Formula (5.27) shows that, in this case, we access only part of the spectrum, as TT (1)

annihilates all fermionic eigenstates. The auxiliary Bethe equations, for each subset of M

βk’s chosen amongst the potential zeroes of the bosonic transfer-matrix eigenvalues, read:

N
∏

i=1

tanh
βk − θi

2
= −1 , k = 1, . . . ,M . (5.28)

Furthermore, one can verify that the relations (5.12) and (5.13) work exactly the same

way, hence one can rely on the very same 2πi periodicity property of the eigenvalue of T .

One would then write the momentum-carrying equation

eie
θ0L

[

N
∏

i=1

Ω(θ0 − θi)

]

Λ(θ0|θ1, . . . , θN |β1, . . . , βM ) = 1 , (5.29)

subject to (5.28), where Λ is the transfer-matrix eigenvalue normalised to a+ = 1, and

we have inserted the dressing factor obtained in section 3. As we shall see next, the

condition (5.28) on the potential zeroes of Λ matches the naive massless relativistic limit

of the auxiliary Bethe equations for AdS2 [35].

5.3 Bethe-ansatz condition for non relativistic massless AdS2

Let us now go back to the non-relativistic massless S-matrix. It is easy to see that we can

simply repeat the entire line of argument of the previous section, with the replacement

(consistent with the relativistic limit)

e
θ−θi

2 →
√

tan p0
4

tan pi
4

, 1± eθ−θi → 1± tan p0
4

tan pi
4

, (5.30)

where θ → θ+ iπ is replaced by p0 → −p0, and under the square-root this is prescribed to

give i. This means that the auxiliary Bethe equations now read

N
∏

i=1

sin qk+pi
4

sin qk−pi
4

= −1 , k = 1, . . . ,M . (5.31)
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If we naively take the massless relativistic limit of half (corresponding to one wing of the

psu(1, 1|2) Dynkin diagram) of the auxiliary Bethe equations conjectured in [35] (STWZ),

we find that they seem to exactly match with the square of (5.31), if we identify their

auxiliary roots, say, pk,3 with our qk, switching e.g. the type 1 roots off.

The momentum-carrying equation can easily be obtained via the same naive limit from

STWZ, and it can be simplified using momentum conservation
∑N

j=1 pj,2 = 0 (in their con-

ventions, translating into
∑N

j=1 pj = 0 in ours) to be expressed in terms of the same

functions appearing in (5.31), except for the dressing factors. However, once again a sepa-

rate analysis would be required to obtain such an equation from the procedure we have de-

scribed, in analogy to (5.29). The relativistic limit should then ideally reproduce some vari-

ant of (5.29), precisely like (5.31) straightforwardly reduces to (5.28). The proposal for the

dressing factor to appear in the Bethe ansatz made in [35] involves the inverse-square of the

BES factor [95, 96], which should then be compared with our section-3 Ω(θ) in the appropri-

ate massless relativistic limit along the lines of [94], something we have not yet attempted.

6 Conclusions

In this paper, we have first analysed the relativistic scattering theory of massless excitations

of the AdS2 × S2 × T 6 superstring [38], with the idea that this provides both a simplified

setting where to resolve the complication of the system, and a warmup for attempting

the derivation of the Bethe ansatz in the non-relativistic case. Using standard techniques

available in the literature, one is capable of overcoming the issue of lack of a reference state.

The so-called free-fermion condition is crucial in employing this strategy, and it appears

to lie at the heart of the model, being a property of the massive theory as well associated

to a u(1) symmetry of the string theory [38, 40, 41]. Turning the argument around, we see

that the partial embedding of N = 1 integrable S-matrices into string-theory might shed

light on the nature of this rather miraculous constraint.

After having obtained a Bethe-ansatz condition for the relativistic case, we then dis-

covered that it is almost straighforward to apply the same procedure to the massless non-

relativistic situation. We could then compare with a naive massless limit applied to the

conjecture of Sorokin, Tseytlin, Wulff and Zarembo [35].

There are a series of natural open questions at this stage. The most urgent one is to

solve the factorisation condition based on analiticity assumptions, and derive the complete

set of Bethe equations for the massless and massive scattering theory, in such a way to per-

form (at least in the massive case) a thorough comparison with the Bethe equations of [35].

The free-fermion condition promises to be the essential tool to make progress, although

the complication of the S-matrix entries will require a separate treatment. In particular,

we expect it to be quite challenging to disentangle the eigenvalues of the transfer matrix T

from those of T (1) at the end of the process — cf. section 5. We plan this for future work.

Another striking feature of N = 1 (massive relativistic) supersymmetric models is

Melzer’s folding [68, 97–99], which in fact relates the Thermodynamic Bethe Ansatz of N =

2 theories to the one of N = 1 theories. A similar “folding” relationship exists between the

dressing factors of the respective S-matrices. We are tempted to speculate a similar connec-
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tion between AdS2 and AdS3 models [94]. We plan to eplore this avenue, and what it might

entail for the respective string sigma models and their holographic duals, in upcoming work.

Finally, the analysis of the massless sector is of crucial importance to achieve a complete

non-perturbative description of the theory. We believe that the non-triviality of the BMN

limit in same-chirality scattering should play a key role in any progress in this direction [94].

Although difficult at the moment, it would be extremely interesting to find a connection

between our setup and the recent developments concernig the SYK (Sachdev-Ye-Kitaev)

model, where also an AdS2/CFT1 holographic problem is being attacked (see e.g. [100]).
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[73] S. Belliard and N. Crampé, Heisenberg XXX model with general boundaries: eigenvectors

from algebraic Bethe ansatz, SIGMA 9 (2013) 072 [arXiv:1309.6165] [INSPIRE].

[74] L.A. Takhtajan and L.D. Faddeev, The quantum method of the inverse problem and the

Heisenberg XYZ model, Russ. Math. Surveys 34 (1979) 11 [Usp. Mat. Nauk 34 (1979) 13]

[INSPIRE].

[75] V.V. Bazhanov and Yu. G. Stroganov, Hidden symmetry of free fermion model 1. Triangle

equations and symmetric parametrization, Theor. Math. Phys. 62 (1985) 253 [Teor. Mat.

Fiz. 62 (1985) 377] [INSPIRE].

[76] B.U. Felderhof, Direct diagonalization of the transfer matrix of the zero-field free-fermion

model, Physica 65 (1973) 421.

[77] B.U. Felderhof, Diagonalization of the transfer matrix of the free-fermion model. II,

Physica 66 (1973) 279.

[78] B.U. Felderhof, Diagonalization of the transfer matrix of the free-fermion model. III,

Physica 66 (1973) 509.

[79] C.-R. Ahn, Thermodynamics and form-factors of supersymmetric integrable field theories,

Nucl. Phys. B 422 (1994) 449 [hep-th/9306146] [INSPIRE].

[80] A.B. Zamolodchikov, Thermodynamic Bethe ansatz for RSOS scattering theories,

Nucl. Phys. B 358 (1991) 497 [INSPIRE].

– 26 –

https://doi.org/10.1103/PhysRevD.93.066006
https://arxiv.org/abs/1509.07587
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.07587
https://doi.org/10.1088/1751-8121/50/2/024004
https://arxiv.org/abs/1607.00914
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00914
https://doi.org/10.1016/0370-2693(90)91160-D
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B250,96%22
https://doi.org/10.1016/0003-4916(72)90335-1
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,70,193%22
https://doi.org/10.1016/0003-4916(72)90270-9
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,70,323%22
https://doi.org/10.1016/0550-3213(90)90674-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B344,665%22
https://doi.org/10.1016/0550-3213(95)00649-4
https://arxiv.org/abs/hep-th/9511008
https://inspirehep.net/search?p=find+EPRINT+hep-th/9511008
https://doi.org/10.1088/1751-8113/49/32/323004
https://arxiv.org/abs/1606.02950
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.02950
https://doi.org/10.1016/j.nuclphysb.2013.06.022
https://arxiv.org/abs/1306.1742
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1742
https://doi.org/10.1007/JHEP10(2015)133
https://arxiv.org/abs/1507.08866
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08866
https://doi.org/10.1007/978-3-662-46756-5
https://doi.org/10.3842/SIGMA.2013.072
https://arxiv.org/abs/1309.6165
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6165
https://inspirehep.net/search?p=find+J+%22Russ.Math.Surveys,34,11%22
https://doi.org/10.1007/BF01018266
https://inspirehep.net/search?p=find+J+%22Theor.Math.Phys.,62,253%22
https://doi.org/10.1016/0031-8914(73)90059-1
https://doi.org/10.1016/0031-8914(73)90330-3
https://doi.org/10.1016/0031-8914(73)90298-X
https://doi.org/10.1016/0550-3213(94)90441-3
https://arxiv.org/abs/hep-th/9306146
https://inspirehep.net/search?p=find+EPRINT+hep-th/9306146
https://doi.org/10.1016/0550-3213(91)90422-T
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B358,497%22


J
H
E
P
0
9
(
2
0
1
7
)
0
7
5

[81] L.D. Faddeev and O. Tirkkonen, Connections of the Liouville model and XXZ spin chain,

Nucl. Phys. B 453 (1995) 647 [hep-th/9506023] [INSPIRE].

[82] D. Fioravanti and M. Rossi, A braided Yang-Baxter algebra in a theory of two coupled

lattice quantum KdV: algebraic properties and ABA representations,

J. Phys. A 35 (2002) 3647 [hep-th/0104002] [INSPIRE].

[83] J. Strömwall and A. Torrielli, AdS3/CFT2 and q-Poincaré superalgebras,
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