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1 Introduction

Dynamics of nonlinear waves in confined domains is a fascinating subject, since (unlike in

scattering situations) the interactions are never effectively cut off by the wave dispersal

to infinity, resulting in sophisticated behaviors. Weakly turbulent phenomena, whereby

nonlinearities transfer energy to progressively shorter wavelengths, are of particular interest

in this setting.

When nonlinearities are introduced to systems whose linearized spectra of frequencies

are perfectly resonant (all frequencies are commensurate), the sophisticated behaviors due

to repeated wave scattering in the confined domain survive to arbitrarily small magnitudes

of nonlinear interactions, provided that one waits long enough. (The transfer of energy be-

tween linearized normal modes becomes slow when the nonlinearities are weak.) A number

of equations of mathematical physics display this feature. For instance, nonlinear dynamics

of small perturbations of the Anti-de Sitter spacetime has attracted a lot of attention over

the recent years (starting with [1], for a review see [2]). The same features are shared by

nonlinear wave equations in AdS and on spheres, which will be the main subject of our

present investigation. As we will show, these equations can also be viewed as a relativistic

version of the Gross-Pitaevskii equation describing Bose-Einstein condensates in a har-

monic trap (reviews can be found in [3–5]). This Gross-Pitaevskii equation also represents

waves in a confined domain with a perfectly resonant spectrum of linear frequencies.

As a first step in analyzing nonlinear dynamics in confined domains for systems with

resonant frequency spectra, it is natural to focus on weakly nonlinear regimes. Naive per-

turbative expansions break down due to so-called secular terms, and have to be replaced by

alternative perturbative techniques. A number of such techniques are known, based on ap-

plication of multiscale analysis, time-averaging or renormalization group resummation (for

a textbook treatment, see [6], for discussions in the context of the AdS stability problem,

see [7–9]). As an output of these methods, one obtains a simplified infinite-dimensional

flow system (also known as the resonant or effective system) describing slow energy transfer

between the linearized modes due to resonant interactions.
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Flow systems arising from the sort of weakly nonlinear analysis described above are

often more structured than the original equations from which they descend, for example,

they may have extra conservation laws [9, 10]. For some equations, the flow system may

be simple enough to admit explicit analytic solution. For instance, both the conformal

flow equation arising from the cubic wave equation on a 3-sphere, and the Lowest Landau

Level (LLL) equation [11, 12] arising from the Gross-Pitaevskii equation for harmonically

trapped Bose-Einstein condensates, admit analytic solutions in which the linearized normal

mode amplitudes exhibit exact periodic returns to the original configuration [13, 14]. Such

remarkable solutions are likely to imply a deeper structure and allude to integrability. In

fact, both of these flow equations look like more complicated generalizations of the cubic

Szegő equation, an integrable system designed in the mathematical literature [15] as a

solvable model of weak turbulence.

In this article, our aim is to develop a series of flow systems arising from weakly

nonlinear wave equations in AdS spacetime and on spheres. These flows generalize the

conformal flow considered in [13] by treating wave equations without spherical symmetry,

whereas the considerations of [13] were specific to perturbations on a 3-sphere rotationally

invariant about one picked point. (We note that attempts to analyze similar problems for

the considerably more involved related case of gravitational perturbations of AdS spacetime

have recently intensified [16–19].) The flows we derive are also closely related to the

LLL equation [14], since they arise from focusing on maximally rotating modes (modes

of maximal angular momentum from each frequency level), and there is furthermore a

relation between the Gross-Pitaevskii equation and the wave equations we consider, as we

explain in the discussion section. Remarkably, we find that the flow equations we derive

display periodic perfect returns of the normal mode amplitude spectrum to the initial

configuration, analogous to what has been known for the cubic Szegő equation [15], the

conformal flow [13] and the LLL equation [14].

While the systems we are considering are interesting in their own right from the non-

linear dynamics perspective, nonlinear wave equations in AdS spacetime have also surfaced

in the context of gravitational holography research. In string-theory-derived versions of the

AdS/CFT correspondence, matter fields in the AdS bulk backreact on the metric, but this

is not always the case in so-called bottom-up approaches to holography. For simplicity,

one often starts by studying a regime in which the bulk matter fields of interest do not

backreact on the bulk geometry. Such probe approximations have been used, for instance,

in studies of holographic QCD [20, 21] (in the limit in which the number of flavors is

much smaller than the number of colors), holographic superconductors [22, 23] (in a limit

in which the scalar operator that condenses has large charge), and holographic quantum

quenches [24, 25] (in a limit in which a bulk scalar field has large self-coupling).

The paper is organized as follows. In section 2, we mainly study the conformally

invariant cubic wave equation on the Einstein cylinder spacetime R × S3. We review

the procedure of time-averaging, show that the resulting flow equations allow a consis-

tent truncation to the maximally rotating sector, and construct exact solutions describing

remarkable periodic returns. We also show that a similar attempt to construct periodic

solutions fails for other dimensions. In section 3, we discuss the case of AdS, where the
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equations are a bit more involved, but where we are able to construct periodic return solu-

tions in any dimension and for any value of the scalar field mass. In section 4, we conclude

with a discussion of the significance of our results and possible further implications. In

particular, we point out that the Gross-Pitaevskii equation with a harmonic potential can

be viewed as a nonrelativistic limit of the cubic wave equation in AdS, which makes contact

with a recent study of the LLL equation in [14].

2 Weakly nonlinear dynamics of maximally rotating perturbations on

spheres

We start by considering the wave equations on spatial spheres Sd, which correspond to the

Einstein cylinder spacetime R × Sd. We shall first specialize to d = 3, the case for which

the conformal flow of [13] was derived (in this dimension, the cubic wave equation enjoys

symmetry enhancement to the full conformal group). We shall briefly comment on other

dimensions at the end.

The relevant metric is (we set the 3-sphere radius to 1):

ds2 = −dt2 + dχ2 + sin2 χ(dθ2 + sin2 θ dϕ2). (2.1)

We choose to work with a complex scalar field φ for reasons that will become apparent

below. The conformally invariant cubic wave equation is

− ∂2
t φ+∆S3φ− φ = |φ|2φ, (2.2)

where ∆S3 is the 3-sphere Laplacian given by

∆S3 =
1

sin2 χ
∂χ

(

sin2 χ∂χ
)

+
1

sin2 χ
∆S2 , ∆S2 =

1

sin θ
∂θ (sin θ∂θ) +

1

sin2 θ
∂2
ϕ. (2.3)

Note that if φ is replaced by a real field, this becomes identical to the wave equation treated

in [13].

The above wave equation can be converted into an infinite set of coupled oscillators

by expanding φ in the basis of (hyper)spherical harmonics on S3

φ(t, χ, θ, ϕ) =
∞
∑

n=0

n
∑

l=0

l
∑

k=−l

cnlk(t)Ynlk(χ, θ, ϕ), (2.4)

where the Ynlk satisfy

∆S3Ynlk = −n(n+ 2)Ynlk, (2.5)

and are normalised to one, such that (2.2) becomes

c̈n1l1k1 + (n+ 1)2cn1l1k1 = −
∑

n2l2k2

∑

n3l3k3

∑

n4l4k4

Cn1l1k1...n4l4k4 c̄n2l2k2cn3l3k3cn4l4k4 . (2.6)

The interaction coefficients Cn1l1k1...n4l4k4 are given by

Cn1l1k1...n4l4k4 =

∫

dΩ3Ȳn1l1k1 Ȳn2l2k2Yn3l3k3Yn4l4k4 , (2.7)
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where dΩ3 = sin2 χ sin θdχdθdϕ is the invariant measure on the 3-sphere. The hyperspheri-

cal harmonics on S3 can be expressed in terms of the familiar spherical harmonics on S2 by

Ynlk (χ, θ, ϕ) =

√

2(2l)!!(n+ 1)(n− l)!(2l + 1)!

π(2l + 1)!!(n+ l + 1)!
sinl χC

(l+1)
n−l (cosχ) Ylk (θ, ϕ) , (2.8)

where the C
(λ)
n (x) are Gegenbauer polynomials of degree n with the measure parameter

λ. They form a system of orthogonal polynomials on the interval (−1, 1) with respect to

the measure (1− x2)λ−
1

2 .

Note that the perfectly resonant spectrum of frequencies in (2.6) is due to the conformal

value of the mass in (2.2) and would not be present for generic masses. (By contrast, in the

AdS spacetimes we shall focus on in the next section, the spectrum is always fully resonant.)

A fully resonant spectrum (more specifically, the property that the difference between any

two frequencies is integer) is crucial to maintain the weakly nonlinear approximation in the

form we are about to derive.

The solutions to the linearized system corresponding to (2.6), where the right-hand

side has been replaced by zero, are simply

clinearnlk = Anlke
i(n+1)t +Bnlke

−i(n+1)t, (2.9)

where Anlk and Bnlk are arbitrary complex constants. One could then try to treat the

non-linearity perturbatively by performing a weak field expansion of the form

φ = εφlinear + ε3φcorrection + . . . , (2.10)

but φcorrection will grow in time, due to so called secular terms, and invalidate the above ex-

pansion at times of order 1/ε2. This perturbative expansion can be resummed (improved),

in different ways, leading to flow equations that accurately describe slow energy transfer

between the modes due to nonlinearities, while the fast oscillations of the original linearized

modes are ‘integrated out.’ Rather than presenting this entire procedure, it is quicker (and

equivalent) to directly factor out fast oscillations using a method known as time-averaging.

(Some pedagogical comments on different approaches to improving perturbation theory

can be found in [8, 9].)

To employ time-averaging we first change variables from c and ċ to the complex-valued

functions of time αnlk(t) and βnlk(t)

cnlk = ε
(

αnlke
i(n+1)t + βnlke

−i(n+1)t
)

, (2.11)

ċnlk = iε(n+ 1)(αnlke
i(n+1)t − βnlke

−i(n+1)t). (2.12)

Combining these, we find for αnlk

εαnlke
i(n+1)t =

1

2

(

cnlk +
ċnlk

i(n+ 1)

)

. (2.13)

Differentiating and taking into account (2.6), we find:

2iε(n1 + 1)α̇n1l1k1 = −
∑

n2l2k2

∑

n3l3k3

∑

n4l4k4

Cn1l1k1...n4l4k4 c̄n2l2k2cn3l3k3cn4l4k4e
−i(n1+1)t. (2.14)
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Analogously,

2iε(n1 + 1)β̇n1l1k1 =
∑

n2l2k2

∑

n3l3k3

∑

n4l4k4

Cn1l1k1...n4l4k4 c̄n2l2k2cn3l3k3cn4l4k4e
i(n1+1)t. (2.15)

In the above equations, the cnlk should be expressed through αnlk and βnlk. This leads to

a collection of terms on the right-hand side oscillating as e−iΩt, where Ω is (n1+1)± (n2+

1)±(n3+1)±(n4+1) for (2.14) and −(n1+1)±(n2+1)±(n3+1)±(n4+1) for (2.15). All

the plus-minus signs are independent. We call the terms with Ω = 0 resonant interactions

and those with Ω 6= 0 non-resonant.

Rewriting (2.14)–(2.15) in terms of the slow time τ = ε2t, the dependence on ε drops

out, except that the non-resonant terms are now proportional to e−iΩτ/ε2 . This means

that in the weak field regime, ε → 0, they become highly oscillatory and time-averaging is

equivalent to simply discarding all non-resonant terms. It can be proved that the result-

ing time-averaged system with discarded non-resonant terms accurately approximates the

original system on time scales of order 1/ε2 for small ε [6].

After the non-resonant terms in (2.14)–(2.15) have been discarded, one further sim-

plification occurs. There are solutions to the resonance condition Ω = 0 of the form

n1 = 2+ n2 + n3 + n4 (or other variants obtained by permuting the n’s). However, all the

interaction coefficients C for such terms will vanish. This is completely analogous to the

usual angular momentum selection rules in quantum mechanics. The integral in (2.7) is

over the invariant measure on the sphere, and it can only be nonzero if the direct product

of the representations of the sphere isometries furnished by the four factors in the integrand

contains the identity representation. The spherical harmonics are in the rank n traceless

fully symmetric tensor representations. It is impossible to contract four traceless fully sym-

metric tensors of ranks n1, n2, n3, n4 satisfying n1 = 2 + n2 + n3 + n4 to obtain a scalar.

Therefore, the corresponding C-coefficients vanish. The only contributing solutions to the

resonance condition Ω = 0 are thus of the form n1+n2 = n3+n4 (and permutations of the

n’s). Such selections rules are well-known for analogous considerations in AdS [8, 9, 26–28].

Putting everything together, and taking into account the index permutation symme-

tries of the coefficients C given by (2.7), we obtain the following time-averaged equations

for α:

2i(n+ 1)
dαn1l1k1

dτ
= −

∑

n2l2k2

∑

n3l3k3

∑

n4l4k4
n1+n2=n3+n4

Cn1l1k1...n4l4k4ᾱn2l2k2αn3l3k3αn4l4k4

− 2
∑

n2l2k2

∑

n3l3k3

∑

n4l4k4
n1+n3=n2+n4

Cn1l1k1...n4l4k4 β̄n2l2k2βn3l3k3αn4l4k4 .
(2.16)

As we remarked, this equation accurately approximates the original system on time scales

O(ε−2), in the sense that the difference of exact solutions and solutions obtained from the

time-averaged system uniformly becomes arbitrarily small on such intervals for small ε [6].

– 5 –
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The time-averaged system for β becomes

2i(n+ 1)
dβn1l1k1

dτ
= −

∑

n2l2k2

∑

n3l3k3

∑

n4l4k4
n1+n2=n3+n4

Cn1l1k1...n4l4k4 β̄n2l2k2βn3l3k3βn4l4k4

− 2
∑

n2l2k2

∑

n3l3k3

∑

n4l4k4
n1+n3=n2+n4

Cn1l1k1...n4l4k4ᾱn2l2k2αn3l3k3βn4l4k4 .
(2.17)

We observe that time-averaging has enhanced the symmetry. While the original system

possesed a U(1) symmetry rotating α and β by the same common phase (the usual U(1)

symmetry of a charged complex scalar), the time-averaged system allows rotation of all

α’s and all β’s by two independent common phases, thus giving two U(1) groups. This is

closely related to the apearance of a new U(1) symmetry in the time-averaged system for

real scalar fields described in the literature [9, 10] and resulting in extra conservation laws.

In close relation to this, β can be consistently set to zero in the time-averaged equations,

resulting in the following system containing only α:

i(n+ 1)α̇n1l1k1 =
∑

n2l2k2

∑

n3l3k3

∑

n4l4k4
n1+n2=n3+n4

Cn1l1k1...n4l4k4ᾱn2l2k2αn3l3k3αn4l4k4 . (2.18)

(We have rescaled τ to eliminate numerical factors.) We shall henceforth focus on the

sector described by this equation (and disregard the β-variables).

Equation (2.18) is still rather complicated, and a reasonable strategy is to look for

smaller decoupling subsectors, which can be analyzed independently. One example is the

spherically symmetric scalar field, which amounts to retaining only the modes with l = k =

0. The resulting equation is the conformal flow, studied previously in [13] and arising there

from a real scalar field wave equation. In [13], a range of remarkable properties were demon-

strated for the spherically symmetric truncation of (2.18), including explicit analytic solu-

tions for which |α(t)| is a periodic function of time with a common period for all modes. Our

main purpose of this article is to demonstrate that a few distinct systems sharing the same

property emerge from other consistent truncations of (2.18) and other related equations.

The specific sector of (2.18) we want to focus on can be called the maximally rotating

sector. These are the modes with n = l = k, i.e., the modes of maximal angular momentum

for each frequency. The decoupling can be seen as follows. First note that the mode

functions are all proportional to e−ikϕ, where k is the number of units of angular momentum

along the polar axis. All three integrals in the interaction coefficients (2.7) factorize, so

that the integral over ϕ ensures that only coefficients k1 + k2 = k3 + k4 are non-zero (this

is just the angular momentum conservation in mode interactions). Consider the situation

where the only excited modes are maximally rotating. Then the time-derivatives of the non-

maximally rotating modes are zero, as can be seen from (2.18): only terms with coefficients

n2 = k2, n3 = k3, n4 = k4 are non-zero, but the summation restriction and properties of C

then impose n1 + n2 = n3 + n4 and k1 + n2 = n3 + n4, so that k1 (and hence l1) equal n1.

Therefore, non-maximally rotating modes are never excited. In the rest of this section we

focus on the dynamics in the maximally rotating subsector. (Note that restriction to the

– 6 –
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maximally rotating sector is incompatible with reality of the field φ. That is the reason

why we had to start with a complex field.)

The maximally rotating spherical harmonics are given by

en(χ, θ, ϕ) = Ynnn(χ, θ, ϕ) =

√
n+ 1√
2π

sinn χ sinn θe−inϕ. (2.19)

Correspondingly the interaction coefficients are evaluated as (we discard mode number

independent numerical factors as they can be absorbed in a rescaling of time):

Cnmkl =

∫

dΩ3enemekel =

√

(n+ 1)(m+ 1)(k + 1)(l + 1)

n+m+ 1
. (2.20)

The ‘maximally rotating flow’ equation is then

i(n+ 1)α̇n =

∞
∑

j=0

n+j
∑

k=0

√

(n+ 1)(j + 1)(k + 1)(n+ j − k + 1)

n+ j + 1
ᾱjαkαn+j−k. (2.21)

In addition to the scaling symmetry α → λα(τ/λ2) , this equation possesses two further

symmetries (where ξ1 and ξ2 are real parameters),

αnlk → eiξ1αnlk, αnlk → einξ2αnlk, (2.22)

giving rise to two conserved quantities

Q =

∞
∑

n=0

(n+ 1)|αn|2, E =

∞
∑

n=0

(n+ 1)2|αn|2. (2.23)

To simplify (2.21), introduce

βn ≡
√
n+ 1αn (2.24)

(unrelated to the modes βnlk appearing at early stages of our derivations that we have

consistently set to zero) and rewrite it as

iβ̇n =

∞
∑

j=0

n+j
∑

k=0

β̄jβkβn+j−k

n+ j + 1
. (2.25)

Analogously to the (spherically symmetric) conformal flow of [13], we try to find low-

dimensional invariant submanifolds of (2.25) by making an ansatz depending on only a few

parameters and seeing whether it closes. Motivated by the spherically symmetric case, we

choose

βn = (b+ an)pn, (2.26)

where a, b and p are complex-valued functions of time. Substitution in (2.25) gives

i

(

ḃ+ n

(

ȧ+ b
ṗ

p

)

+ n2a
ṗ

p

)

=
∞
∑

j=0

(ā+ jb̄)|p|2j
n+ j + 1

n+j
∑

k=0

(b+ ka)(b+ (n+ j − k)a). (2.27)

Note that the factor of pn has consistently cancelled between the two sides.
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We will have a consistent ansatz if the right-hand side of (2.27) is a quadratic polyno-

mial in n after the summations have been performed. We first use

N
∑

k=0

k =
N(N + 1)

2
,

N
∑

k=0

k2 =
N(N + 1)(2N + 1)

6
. (2.28)

Note that these Faulhaber’s sums are divisible by N +1, so that the factor of 1/(n+ j+1)

cancels, leaving at most quadratic terms in n. This guarantees the closure of our ansatz.

It remains to carry out the sums over j using

∞
∑

j=0

jAxj = (x∂x)
A 1

1− x
. (2.29)

Setting the coefficients of equal powers of n equal we arrive at a system of three

equations for three variables, which can be conveniently rewritten as

iȧ

1 + y
= −a2b̄

6
+

5a|b|2
6

+ y

(

5|a|2b
6

+
a|a|2
6

+
a2b̄

3

)

+ 2y2
a|a|2
3

, (2.30)

iḃ

1 + y
= b|b|2 + y

(

āb2 + a|b|2 + a2b̄

3
+ |a|2b− a|a|2

6
+

b|b|2
6

)

+ 2y2
(

|a|2b− a|a|2
6

+
a2b̄

6
+ 3

b|b|2
6

)

+ 6y3
b|b|2
6

, (2.31)

iṗ

1 + y
=

p

6

(

ab̄+ y|a|2
)

, (2.32)

where we have introduced

y =
|p|2

1− |p|2 . (2.33)

We will now explicitly solve the dynamics on this invariant subspace. Equation (2.32)

can be converted into an equation for y:

ẏ =
1

3
y(1 + y)2 Im (ab̄). (2.34)

Using conservation laws, we will be able to reduce the system to a single equation for y.

With the sums (2.29), the conserved quantities Q and E take the following form in terms

of the parameters of our ansatz:

Q = (1 + y)
[

|b|2 + 2Re (ab̄)y + |a|2y(1 + 2y)
]

, (2.35)

E = (1 + y)2
[

|b|2 + 4Re (ab̄)y + 2|a|2y(1 + 3y)
]

. (2.36)

The Hamiltonian gives the third independent conservation law, but it is more convenient

to derive another related conserved quantity quadratic in a. We first write

d|a|2
dτ

= −1

3
(1 + y)(1 + 3y) Im (ab̄). (2.37)

Combined with (2.34), this ensures the conservation of

S = |a|2y(1 + y)2. (2.38)

– 8 –
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Expressing |b|2, |a|2 and Re (ab̄) through Q,E, S and y we get

|a|2 = S

y(1 + y)2
, (2.39)

Re (ab̄) =
E −Q(1 + y)− S(1 + 4y)

2y(1 + y)2
, (2.40)

|b|2 = 2Q(1 + y)− E + 2Sy

(1 + y)2
. (2.41)

Inserting these expressions in (2.34) we find the following equation for y

ẏ2 =
1

36

(

−(E −Q− S)2 + 2((2E −Q− 4S)S + (E −Q)Q)y − (Q2 + 8S2)y2
)

, (2.42)

which expresses the energy conservation for an ordinary one-dimensional harmonic oscil-

lator. This immediately guarantees that all solutions for y, and hence for |p| are exactly

periodic with period

T =
12π

√

Q2 + 8S2
. (2.43)

Equations (2.40)–(2.41) then guarantee that the same property is shared by |a|2, |b|2 and

Re(ab̄). From this it follows that the absolute values of the amplitudes |αn| are exactly

periodic with the same common period. We have thus recovered in our maximally rotating

sector the periodic behaviors observed in the literature for the conformal flow, the cubic

Szegő equation and the LLL equation.

We briefly comment on what happens when one tries to generalize the above story to

general dimensions d. We will denote the angles on Sd as θ1, . . . θd−1, ϕ and collectively

as Ω. The metric is most compactly expressed recursively in terms of metrics on lower-

dimensional spheres,

dΩ2
d = (dθd−1)

2 + sin2 θddΩ
2
d−1, (2.44)

resulting in a recursion relation for the Laplacian

∆Sd =
1

sind−1 θd−1

∂θd−1

(

sind−1 θd−1∂θd−1

)

+
1

sin2 θd−1
∆Sd−1 . (2.45)

For general d, the mass term in the wave equation required to ensure a fully resonant

linearized spectrum is −(d− 1)2φ/4, corresponding to the conformal mass. (Note that this

reduces to the previous −φ for d = 3.) The wave equation is then given by

− ∂2
t φ+∆Sdφ− (d− 1)2

4
φ = |φ|2φ, (2.46)

and hence the mode functions are now spherical harmonics on Sd, which also have a

corresponding recursive expression

Ynlµ (θd−1, . . . , θ1, ϕ) = Nnl sin
l θd1C

(l+ d

2
−1)

n−l (cos θd−1)Ylµ (θd−2, . . . , θ1, ϕ) , (2.47)

with an appropriate normalization factor Nnl. We use µ as a shorthand for all the other

indices present in the successively lower-dimensional harmonics. The spherical harmonics
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are eigenfunctions of the Laplacian on Sd with eigenvalues −n(n + d − 1). Hence, the

corresponding oscillation frequencies are n+(d−1)/2, giving a perfectly resonant spectrum.

The maximally rotating harmonics are given by

en(θ1, . . . θd−1, ϕ) =

√

Γ
(

n+ d+1
2

)

Γ(n+ 1)
sinn θ1 . . . sin

n θd−1e
−inϕ. (2.48)

Repeating the time-averaging procedure with the generalized expressions for the mass

and eigenvalues, we find the maximally rotating flow equation for general d

i

(

n+
d− 1

2

)

α̇n =
∞
∑

j=0

n+j
∑

k=0

Cnjkn+j−kᾱjαkαn+j−k, (2.49)

where the interaction coefficients are given by (again up to irrelevant numerical factors)

Cnmkl=

∫

dΩdenemekel=

√

Γ
(

n+ d+1
2

)

Γ(n+1)

Γ
(

m+ d+1
2

)

Γ(m+1)

Γ
(

k+ d+1
2

)

Γ(k+1)

Γ
(

l+ d+1
2

)

Γ(l+1)

Γ(n+m+1)

Γ
(

n+m+ d+1
2

) .

(2.50)

Here dΩd = dϕΠd−1
l=1 sind−l θldθl is the integration measure on Sd.

The flow equation on Sd generalizes the case of S3 analyzed above, and is also extremely

similar to the flow equations in AdS treated in the next section. These parallels suggest

that one should try the ansatz

βn ≡
(

n+
d− 1

2

)

√

Γ(n+ 1)

Γ
(

n+ d+1
2

) αn = (b+ an)pn, (2.51)

which reduces to (2.26) at d = 3 and simplifies the equations (in particular, Faulhaber’s

sums again make an appearance). One discovers, however, that evaluation of the sums

does not produce the necessary polynomial dependence on n, and the ansatz thus fails.

We conclude that it is unlikely that the weak field dynamics on Sd displays an invariant

manifold analogous to what we have seen on S3 and what we are about to see for AdS of

any dimension in the next section.

3 Weakly nonlinear dynamics of maximally rotating perturbations in

AdS

We now turn to the case of global Anti-de Sitter spacetime AdSd+1 with d spatial di-

mensions, and consider a complex scalar field with a general mass m. AdS spacetime is

remarkable in that the spectrum of frequencies of linear fields is fully resonant for any

mass in any dimension (which has a simple explanation in terms of the algebra of AdS

isometries). The AdS metric with radius set to 1 is

ds2 =
1

cos2 x

(

−dt2 + dx2 + sin2 x dΩ2
d−1

)

, (3.1)
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where dΩ2
d−1 is the metric on the (d−1)-sphere parametrized in hyperspherical coordinates

collectively denoted as Ω. On this spacetime, the complex scalar wave equation for a field

of mass m with a cubic non-linearity is

cos2 x

(

−∂2
t φ+

1

tand−1 x
∂x

(

tand−1 x∂xφ
)

+
1

sin2 x
∆Sd−1φ

)

−m2φ = |φ|2φ, (3.2)

where ∆Sd−1 is the (d− 1)-sphere Laplacian. The linearized system can be solved by sep-

aration of variables. First one computes the mode functions as solutions of the eigenvalue

problem
(

1

tand−1 x
∂x

(

tand−1 x∂x

)

+
1

sin2 x
∆Ωd−1

− m2

cos2 x

)

enlk(x,Ω) = −ω2
nlkenlk(x,Ω). (3.3)

The expansion of φ in these modefunctions then yields the general linearized solution

φlinear(t, x,Ω) =

∞
∑

n=0

∑

l,k

(Anlke
iωnlkt +Bnlke

−iωnlkt)enlk(t, x,Ω), (3.4)

where Anlk and Bnlk are arbitrary complex constants.

The explicit form of the mode functions is known as

enlk(x,Ω) = Nnlk cos
δ x sinl xP

(δ− d

2
,l+ d

2
−1)

n (− cos 2x)Ylk(Ω) (3.5)

and

ωnlk = δ + 2n+ l, (3.6)

where δ = d
2 +

√

d2

4 +m2 and Nnlk is a normalisation factor. (Note that the difference of

any two frequencies is integer irrespectively of δ.) The P
(a,b)
n (x) are the Jacobi polynomials,

an orthogonal basis on the interval (−1, 1) with respect to the measure (1−x)a(1+x)b. The

Ylk are spherical harmonics in (d− 1) dimensions, i.e. eigenfunctions of the corresponding

sphere Laplacian with eigenvalue l(l + d − 2), and k labels all harmonics contained in a

given l-multiplet.

One can perform a weakly nonlinear analysis of (3.2) in a manner exactly identical to

the previous section. After implementing time-averaging, one obtains a system of flow equa-

tions describing slow evolution of the complex amplitudes αnlk(t) and βnlk(t) descending

from the constant amplitudes Anlk and Bnlk in the linearized solution (3.4). Due to se-

lection rules in the interaction coefficients [8, 9, 26–28], the flow equations enjoy enhanced

symmetries that permit consistently setting all β’s to zero. Furthermore, the resulting

equation for α can be consistently truncated to the maximally rotating sector, comprising

modes of maximal angular momentum at each frequency level (this is a consequence of

the resonance condition on frequencies of the interacting modes and angular momentum

conservation). In the notation of (3.6), maximally rotating modes exactly correspond to

n = 0. The modes we retain are then labelled by a single number, the polar axis projection

of their angular momentum m, and are denoted simply by αm. We thus arrive at the

maximally rotating conformal flow equation on AdSd+1

i(δ + n)α̇n =
∞
∑

m=0

n+m
∑

k=0

Cnmk,n+m−kᾱmαkαn+m−k, (3.7)

– 11 –



J
H
E
P
0
9
(
2
0
1
7
)
0
5
9

where the interaction coefficients are given by

Cnmjk =

∫ π

2

0
dx

tand−1 x

cos2 x

∫

dΩd−1enemejek. (3.8)

Here, dΩd−1 is the integration measure on Sd−1 given below (2.50). This equation possesses

the same symmetries as (2.18) and hence the corresponding conserved quantities

Q =
1

Γ(δ)

∞
∑

n=0

(n+ δ)|αn|2, E =
1

Γ(δ)

∞
∑

n=0

(n+ δ)2|αn|2, (3.9)

where we have divided by Γ(δ) for future convenience.

The maximally rotating modes are given by (again, we omit plain numerical factors

independent of the mode number, as they can always be absorbed in a redefinition of time):

en(x, θ1, . . . , θd−2, ϕ) ≡ e0n···n(x,Ω) =

√

Γ(n+ 1 + δ)

Γ(n+ 1)
cosδ x sinn θ1 . . . sin

n θd−2e
−inϕ,

(3.10)

where we have written out explicitly the angles θ1, . . . θd−2, φ collectively denoted by Ω.

The interaction coefficients can be evaluated as

Cnmjk =

√

Γ(n+ 1 + δ)Γ(m+ 1 + δ)Γ(j + 1 + δ)Γ(k + 1 + δ)

Γ(n+ 1)Γ(m+ 1)Γ(j + 1)Γ(k + 1)

Γ(n+m+ 1)

Γ(n+m+ 2δ)
. (3.11)

(This expression is nearly identical to the formula on Sd from the previous section, but the

minor difference will play a crucial role in our subsequent derivation.) Note that at this

point, the number of AdS dimensions and the scalar field mass only enter the equations

through δ (which is also known as the ‘conformal dimension’).

Once again, we try to find a finite-dimensional dynamically invariant subspace. To

this end, define

βn ≡ (n+ δ)

√

Γ(n+ 1)

Γ(n+ 1 + δ)
αn, (3.12)

in terms of which the flow equation in AdS becomes

iβ̇n =
∞
∑

m=0

Γ(m+ δ)

Γ(m+ 1)

n+m
∑

k=0

(

n+m

k

)

B (k + δ, n+m− k + δ) β̄mβkβn+m−k. (3.13)

Analogously to the considerations of the previous section, we examine the ansatz

βn = (b+ na)pn (3.14)

to see if it is respected by the evolution. The sum over k in (3.13) can be computed as

follows. First, for the sum without powers of k,

N
∑

k=0

(

N

k

)

B (k + δ,N − k + δ) =

∫ 1

0
dx

N
∑

k=0

(

N

k

)

xk+δ−1(1− x)N−k+δ−1

=

∫ 1

0
dx xδ−1(1− x)δ−1 = B (δ, δ) .

(3.15)
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The sums involving powers of k are analogously computed as

N
∑

k=0

k

(

N

k

)

B (k + δ,N − k + δ) = NB (δ + 1, δ) =
N

2
B (δ, δ) , (3.16)

N
∑

k=0

k2
(

N

k

)

B (k + δ,N − k + δ) =

(

N

2
+

N(N − 1)

2

1 + δ

1 + 2δ

)

B (δ, δ) . (3.17)

Finally, one carries out the m-summation using

∞
∑

m=0

Γ(m+ δ)

Γ(m+ 1)
mAxm = (x∂x)

A Γ(δ)

(1− x)δ
. (3.18)

At the end of the day, one obtains quadratic polynomials in n on both sides of (3.13),

which ascertains the validity of the ansatz and results in the following equations:

iḃ

(y + 1)δ
= b|b|2 + yδ

(

āb2 + a|b|2 + |a|2b
)

+ (3.19)

+ y2δ

(

|a|2b(δ + 1) +
a2b̄

2

δ(δ + 1)

1 + 2δ
+ a|a|2 δ(δ + 1)

1 + 2δ

)

+ y3
a|a|2
2

δ2(δ + 1)(δ + 2)

1 + 2δ
,

iȧ

(y + 1)δ
=

a|b|2
2

2 + 3δ

1 + 2δ
− a2b̄

2

δ

1 + 2δ
+ yδ

( |a|2b
2

2 + 3δ

1 + 2δ
+ a2b̄

δ

1 + 2δ
+

a|a|2
2

δ

1 + 2δ

)

+

+ y2a|a|2 δ
2(δ + 1)

1 + 2δ
, (3.20)

iṗ

(y + 1)δ
=

p

2
δ

(

ab̄
1

1 + 2δ
+ y|a|2 δ

1 + 2δ

)

. (3.21)

We have absorbed an overall factor of B(δ, δ)Γ(δ) in another rescaling of time.

We will solve these equations in a manner completely analogous to the maximally

rotating flow of the previous section. Expressing the conserved quantities (3.9) within our

ansatz yields

Q = (y + 1)δ
[

|b|2 + 2Re (ab̄)δy + |a|2δy(1 + (δ + 1)y)
]

, (3.22)

E = δ(y + 1)δ+1
[

|b|2 + 2Re (ab̄)(δ + 1)y + |a|2(δ + 1)y(1 + (δ + 2)y)
]

. (3.23)

We then convert the equation for p into one for y, as defined by (2.33):

ẏ

(y + 1)δ+1
=

yδ

1 + 2δ
Im (ab̄), (3.24)

and obtain an extra conserved quantity S from this equation and the expression for the

time derivative of |a|2 derived from (3.20):

S = |a|2y(y + 1)δ+1. (3.25)

– 13 –



J
H
E
P
0
9
(
2
0
1
7
)
0
5
9

Expressing |b|2, |a|2 and Re (ab̄) through Q, E, S and y we find

|a|2 = S

y(y + 1)δ+1
, (3.26)

Re (ab̄) =
E

2δy(y + 1)δ+1
− Q

2y(y + 1)δ
− (δ + 1)S

yδ+1
− S

2y(y + 1)δ+1
, (3.27)

|b|2 = δ(δ + 1)
y

(y + 1)δ+1
S − E

(y + 1)δ+1
+ (δ + 1)

Q

(y + 1)δ
. (3.28)

Inserting this in (3.24) we arrive at

ẏ2 = −y2
δ2

4(1 + 2δ)2
(

Q2 + 4(δ + 1)S2
)

− y
δ

2(1 + 2δ)2
(

−E(Q+ 2(1 + δ)S) + δ(Q2 + (Q+ 2E)S + 2(1 + δ)S2)
)

− (E − (Q+ S)δ)2

4(1 + 2δ)2
,

(3.29)

which again expresses energy conservation of a harmonic oscillator. This immediately

guarantees that all solutions for y, and hence for |p| are exactly periodic with period

T =
4π(1 + 2δ)

δ
√

Q2 + 4(δ + 1)S2
. (3.30)

Equations (3.26)–(3.28) then guarantee that the same property is shared by |a|2, |b|2 and

Re(ab̄). From this it follows that the absolute values of the amplitudes |αn| are exactly

periodic with the same common period. Maximally rotating flows in AdS thus share the

same periodic return property previously described for the conformal flow, the cubic Szegő

equation, the LLL equation and the maximally rotating flow on S3.

4 Discussion

We have considered cubic wave equations for a complex scalar field on Einstein static uni-

verses and in AdS spacetimes of various dimensions. In all cases considered, the spectrum

of frequencies of linear normal modes is perfectly resonant (the difference of any two fre-

quencies is an integer). Nontrivial effects of nonlinearities survive to arbitrarily small field

amplitudes and can be effectively described by simplified flow systems capturing the slow

energy transfer between the normal modes in weakly nonlinear regimes. These flow sys-

tems can be consistently truncated to maximally rotating modes (only one mode carrying

the maximal angular momentum is retained from each frequency level). This is analogous

to the Lowest Landau Level (LLL) truncation of the Gross-Pitaevskii equation describing

harmonically trapped Bose-Einstein condensates. The resulting maximally rotating flow

systems appear to be highly structured analytically and admit simple explicit analytic

solutions with exactly periodic energy flows for S3 and in AdS of any dimension. (Such

explicit solutions are extraordinary for infinite-dimensional nonlinear systems and allude

at deeper and more far-reaching structures, such as integrability.) We shall now briefly

comment on the implications of our findings.

– 14 –



J
H
E
P
0
9
(
2
0
1
7
)
0
5
9

The weakly nonlinear dynamics of a cubic conformal wave equation on R×S3 has been

previously treated in [13], where the analysis was restricted to the spherically symmetric

sector and the weak field dynamics displayed periodic behaviors of the same type we found

here. (This, in fact, was among the main motivations for our present work.) That the same

equation for a complex scalar field, now truncated to the completely different maximally

rotating sector, displays similar analytic structures, makes us strongly suspect that the full

weakly nonlinear dynamics of the cubic conformal wave equation on R × S3, without any

mode truncation, is analytically tractable. We leave this subject for future work. (Note

that because of the conformal relation between R×S3 and AdS4, our considerations of the

maximally rotating sector in AdS4 provide yet another sector of S3 dynamics decoupling

in the weak field regime and displaying exact returns of the energy spectrum. The cubic

wave equation on R×Sd for d 6= 3 is not conformally invariant and thus cannot be mapped

to a cubic wave equations in AdS.)

We have not succeeded in obtaining similar returning solutions on R× Sd with d 6= 3,

and strongly suspect that the dynamical features at d = 3 are not shared by the spheres

of other dimensions. By contrast, we see returning behaviors in AdS for any dimension

and any mass of the complex scalar field. This suggests that the AdS picture captures the

underlying dynamics more thoroughly. (Note that the only sphere case where we find the

return structure is the one related to AdS4 by a conformal transformation, though the AdS

version only includes a subset of S3 modes, see [13].)

Nonlinear wave equations in AdS have been considered in the context of gravitational

holography research [20–25]. It would be interesting to contemplate whether the weakly

nonlinear dynamical return phenomena we have described here have implications from the

standpoint of holographic interpretation of AdS dynamics.

We would like to conclude with an even more straightforward connections of our AdS

analysis to real-life physics. One can take a nonrelativistic limit of the wave equation (3.2)

in AdS by introducing the would-be nonrelativistic wavefunction Ψ(t, r,Ω) which is related

to the relativistic field φ(t, x,Ω) satisfying (3.2) by

φ(t, x,Ω) =
√
2me−imtΨ(t, x

√
m,Ω). (4.1)

One can then check that taking the limit m → ∞ and enforcing the wave equation inside

any finite ball in terms of the r-coordinate results in the Gross-Pitaevskii equation with a

harmonic potential for Ψ:

i
∂Ψ

∂t
=

1

2

(

−∇2 + r2
)

Ψ+ |Ψ|2Ψ. (4.2)

The Gross-Pitaevskii equation describes trapped Bose-Einstein condensates that can be

created in a lab using ultracold atomic gases [3–5]. From the above AdS-based construction,

it is not surprising that the Gross-Pitaevskii equation (4.2) enjoys a nonrelativistic version

of conformal symmetry known as the Schrödinger symmetry, as described in [29] (a classic

treatment of the same symmetry group without the nonlinear term in (4.2) can be found

in [30]). Analogies between weakly nonlinear dynamics of the Gross-Pitaevskii equation

and AdS systems have been previously pointed out in [31], and the above non-relativistic

limit makes the analogy precise for wave equations in AdS. Viewed from this perspective,
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our present results in AdS generalize the periodic behaviors of the LLL equation described

in [14], since the LLL equation simply represents the maximally rotating sector of the

weakly nonlinear dynamics of the Gross-Pitaevskii equation with a harmonic potential.
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