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1 Introduction

A conformal defect is a local line of discontinuity in a conformal field theory or between

two different conformal field theories. The simplest situation is that of a cylinder with the

defect wrapping the cylinder once, or equivalently of a plane with the defect placed on the

unit circle. The defect can be represented as an operator D mapping from the Hilbert

space of the theory inside the unit circle to that of the theory outside the circle and it is

easy to state the condition that the defect is conformal:

(Lm − L̄−m) D = D(Lm − L̄−m) . (1.1)

There are very few cases, however, in which the general solution to this equation can be

found as this is equivalent (via the folding trick) to the equations of a conformal bound-

ary condition in the folded model. If the central charges of the holomorphic and anti-

holomorphic Virasoro algebras of two theories inside and outside the defect are (c1, c̄1) and

(c2, c̄2), then the folded model has central charges (ctot = c1 + c̄2, c̄tot = c̄1 + c2). A con-

formal defect between the two theories can only exist if c1− c̄2 = c̄1− c2, or equivalently a

conformal boundary condition on the folded model can only exist if ctot = c̄tot. Conformal

boundary conditions have been completely classified for minimal models of the Virasoro

Algebra [2, 3] (which have c < 1) and for free boson theories [4–9] (with c = 1) but not for

higher values of c. Since the tri-critical Ising model (TCIM) has c = c̄ = 7/10, the folded

model has ctot = 7/5, the general conformal boundary condition for the folded model is

not known and so the general solution to (1.1) is not known for the TCIM. From now on,

we will only consider theories with c = c̄ and will not mention c̄ again.

Some particular solutions to (1.1) are known - these are the Topological and Factorising

defects. A defect is topological if it satisfies

Lm D = DLm , L̄m D = DL̄m . (1.2)

Such defects are classified for unitary minimal models such as the TCIM for which there

are 6 fundamental topological defects.
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A defect is factorising if it satisfies

(Lm − L̄−m) D = 0 , D(Lm − L̄−m) = 0 , (1.3)

which is equivalent to a cut in the worldsheet separating the inner and outer theories with a

conformal boundary condition for each theory. Conformal boundary conditions have again

been classified for unitary minimal models and so all factorising defects are also known for

the TCIM: there are 6 fundamental conformal boundary conditions for the TCIM leading

to 36 fundamental factorising defects.

Sums of topological and factorising defects will of course also satisfy (1.1) but there

is strong evidence that these do not exhaust the list of conformal defects for the TCIM.

Notably, one can consider relevant perturbations of topological defects in the TCIM. Such

perturbations define a renormalisation group flow in the space of defects, with the defect

at the IR fixed point also being a conformal defect. Both perturbative and numerical

TCSA (truncated conformal space approach) calculations suggest [10] that there are non-

topological, non-factorising, conformal defects which can be found this way.

In [1], Gang and Yamaguchi considered defects in TCIM constructed as GSO pro-

jections of boundary states in a folded supersymmetric model. This provided candidate

expressions for new non-topological non-factorising conformal defects, but their construc-

tion also produced factorising defects which did not agree with the known expressions. For

this reason, we think that their paper deserves re-examination: if the construction produces

factorising defects which fall outside the known classification, then it is quite possible that

the new candidate defects they proposed are also incorrect.

In this paper we take a first step towards re-examining the results of [1] through

a related, but different, route to constructing defects in TCIM. We adapt ideas from

Gaiotto [11] and from Gang and Yamaguchi [1] to construct defects in TCIM from con-

formal boundaries in the folded version of the Neveu-Schwarz sector of a fermionic theory

through the use of interfaces between the fermionic theory and the TCIM. The idea is that

there is a fermionic c = 7/10 theory (SVIR3) with superconformal symmetry which is re-

lated to the TCIM. Superconformal defects in SVIR3 are then equivalent to superconformal

boundary conditions in SVIR3
⊗2=SVIR3⊗SVIR3. As SVIR3

⊗2 has central charge c = 7/5

less than 3/2, its superconformal boundary conditions can be classified. We propose a set

of boundary conditions B for SVIR3
⊗2 (related to but not the same as those in [1]), lead-

ing to superconformal defects D′ in SVIR3. We also propose a set of topological interfaces

I between SVIR3 and TCIM. One can then sandwich the superconformal defects D′ be-

tween the topological interface defects I interpolating between the TCIM and the fermionic

model, leading to conformal defects D = ID′I† in the TCIM. One can then easily show (by

considering the defect entropy) that there are defects D that are not expressible in terms

of elementary topological and factorised defects in TCIM, and hence are new defects. This

construction is summarised in figure 1.

As a warm-up exercise, in section 2 we consider first the simpler case of the c = 1/2

Ising model and the related free-fermion. We propose defects in the free-fermion model

which preserve the fermion algebra and interfaces between the Ising model and the free-

fermion model.
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TCIM TCIM

D

=

'

TCIM SVIR3 SVIR3 TCIM

I D′ I

SVIR3 SVIR3

D′

SVIR3⊗ SVIR3

B

Figure 1. The equivalence between a boundary condition B in the folded fermionic model, a defect

D′ in the fermionic model and a defect D in the TCIM. I is an interface defect.

We then turn in section 3 to TCIM, the tri-critical Ising model, and SVIR3, the

fermionic model at c = 7/10, and propose superconformal topological defects in SVIR3

and topological interfaces between SVIR3 and TCIM.

Next, in section 4, we consider SVIR3
⊗2 and propose a set of superconformal boundary

conditions in this model. This is related to, but not the same as, the construction in [1].

By considering partition functions of SVIR3
⊗2 on the cylinder and comparing them with

partition functions of SVIR3 on the torus, we show how to interpret some of these boundary

conditions in terms of known defects in SVIR3, and how some are new defects in SVIR3.

Finally, we consider the construction of conformal defects in TCIM from the supercon-

formal defects in SVIR3 in section 6 and show that some of these cannot be constructed as

superpositions of known topological and factorised defects in TCIM. We also explain that

we are unable to compare our results with those of [1] which do not seem compatible with

our general approach.

We end with some comments on the new defects and on possible further work.

2 The Ising model and the free fermion

In this section we recall the basics of the Ising model, set up our definition of the Neveu-

Schwarz free fermion theory, and propose a set of defects in the free fermion theory and a set

of interfaces between the Ising model and the free-fermion theory. We present some results

exhibiting the consistency of these proposals. We give our conventions for the characters

of the free fermion and Ising model in appendix B.

2.1 The Ising model

There is a single modular invariant unitary conformal field theory with c = 1/2, the

Ising model. This is the first non-trivial value of c in the minimal unitary series c(m) =

1− 6/(m(m+ 1)) for the Virasoro algebra, corresponding to m = 3.

– 3 –
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The Virasoro algebra with c = 1/2 has three unitary irreducible highest weight rep-

resentations with h ∈ {0, 1/2, 1/16} with characters1 χ
(3)
h . As the Ising model is a

diagonal modular invariant theory, the theory correspondingly has three primary fields

(I ≡ φ0, ε ≡ φ1/2, σ ≡ φ1/16), three topological defects (D0, D1/2, D1/16) and three el-

ementary conformal boundary conditions (B0, B1/2, B1/16), each labelled by the set of

highest weight representations [3]. The bulk Hilbert space is

HIsing = (H0 ⊗ H̄0)⊕ (H1/2 ⊗ H̄1/2)⊕ (H1/16 ⊗ H̄1/16) , (2.1)

and the partition function on the torus is

TrHIsing
(qL0−c/24q̄L̄0−c/24) = |χ(3)

0 (q)|2 + |χ(3)
1/2(q)|2 + |χ(3)

1/16(q)|2 , (2.2)

which is modular invariant.

Modular invariance is, however, not a necessary condition to have a well defined field

theory on the plane or on the cylinder, and amongst the possible field theories one can

consider is the “Neveu-Schwarz free fermion” (FF) defined below.

2.2 The Neveu-Schwarz free fermion

We will consider the case of a symmetric theory with c = c̄ = 1/2 of a holomorphic fermion

ψ(z) and an anti-holomorphic fermion ψ̄(z̄). We shall also only consider the Neveu-Schwarz

sector, in which the fermions on the plane have mode decompositions

ψ(z) =
∑
m∈Z

ψmz
−m−1/2 , ψ̄(z̄) =

∑
m∈Z

ψ̄mz̄
−m−1/2 , (2.3)

and anti-commutators

{ψm, ψn} = {ψ̄m, ψ̄n} = δm+n,0 , {ψm, ψ̄n} = 0 . (2.4)

The Hilbert space, HFF, of the Neveu-Schwarz fermion is the Fock space generated by the

action of negative fermion modes acting on the unique vacuum state |0〉,

HFF = HNS ⊗ H̄NS = (H0 ⊕H1/2)⊗ (H̄0 ⊕ H̄1/2) . (2.5)

The partition function on the cylinder is

ZFF = TrHFF
(qL0−c/24q̄L0−c/24) = |χNS(q)|2 , (2.6)

where

χNS(q) = χ
(3)
0 (q) + χ

(3)
1/2(q) . (2.7)

ZFF is invariant under the modular transformation τ → −1/τ , that is q = exp(2πiτ) →
q̃ = exp(−2πi/τ). The function is not invariant under τ → 1 + τ but we shall in general

consider the theory defined on a right torus with q real, and the theory is well defined on

such a space.

1We denote the character of the representation of weight h in the m-th unitary Virasoro minimal model

by χ
(m)
h .
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2.2.1 Defects in the free fermion theory

We say a defect Dε,ε′ in the free-fermion model conserves the fermion algebra (up to auto-

morphism) if

ψmDε,ε′ = εDε,ε′ψm , ψ̄nDε,ε′ = ε′Dε,ε′ψ̄m , (2.8)

where ε = ±1 and ε′ = ±1. These conditions entirely determine the defect operators up to

normalisation constants αε,ε′ as

D++ = α++1 , D+− = α+−(−1)F̄ , D−+ = α−+(−1)F , D−− = α−−(−1)F+F̄ , (2.9)

where 1 is the identity operator on HFF.

We would like to impose two conditions: firstly, the Cardy condition that the trace

over the cylinder with the insertion of a defect DA is an integer combination of characters

of the free fermion in the dual channel, ie the constants NA
αβ defined by

TrHFF
(DA q

L0−c/24 q̄L̄0−c/24) =
∑
α,β

NA
αβ χα(q̃) χβ(¯̃q) , (2.10)

should be non-negative integers. This reflects the requirement that the torus partition

function can be interpreted as a trace over a space which carries a representation of the

free-fermion algebra. Note that we will allow α and β in the sum in (2.10) to run over NS

and R which is necessary as the defect can change the periodicities of the field ψ and ψ̄ -

see the appendix for details.

The Hilbert space of the Neveu-Schwarz fermions is HFF and so we have

TrH(D++ qL0−c/24q̄L̄0−c/24) = α++|χNS(q)|2 = α++|χNS(q̃)|2

TrH(D+− q
L0−c/24q̄L̄0−c/24) = α+−χNS(q)χ

ÑS
(q̄) =

√
2α+−χNS(q̃)χR(¯̃q)

TrH(D−+ qL0−c/24q̄L̄0−c/24) = α−+χ
ÑS

(q)χNS(q̄) =
√

2α−+χR(q̃)χNS(¯̃q)

TrH(D−− q
L0−c/24q̄L̄0−c/24) = α−−χ

ÑS
(q)χ

ÑS
(q̄) = 2α−−|χR(q̃)|2

(2.11)

Secondly, we would like the structure constants MC
AB in the algebra of defect operators,

DA DB =
∑
C

MC
ABDC , (2.12)

to be non-negative integers. We clearly have

Dε,ε′ Dη,η′ =
αε,ε′ αη,η′

αεη,ε′η′
Dεη,ε′η′ . (2.13)

The simplest solution that makes the right-hand side of equations (2.11) and the coefficients

in equation (2.13) integers is

α++ = α−− = 1 , α+− = α−+ =
√

2 . (2.14)

It is, at first sight, surprising that this means that the operator (−1)F is not rep-

resented by a defect, the defect instead being D−+ =
√

2(−1)F . However, this seems

necessary for there to be an integer number of operators that create the D−+ defect. The

– 5 –
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L

R

D−+

D−+

TrH−+(qL0+L̄0−c/12)

= 2χR(q)χNS(q̄)

q = e−2πR/L

D−+

TrHFF
(q̃L0+L̄0−c/12D−+)

=
√

2χ
ÑS

(q̃)χNS(¯̃q)

q̃ = e−2πL/R

Figure 2. The trace over the space of fields on which the D−+ defect can end is related by a

modular transformation to the trace with the defect inserted.

primary operators that create the defect, i.e. the operators on which the defect can end,

are counted by the partition function on the torus with a single defect inserted, as shown

in figure 2, and the proposal here ensures that this space is two-dimensional, which is

the smallest dimension possible given that this space has to carry a representation of the

Ramond algebra.

The space of fields on which the D−+ defect can end is H−+. This is related by

a modular S transformation to the trace over the free fermion space with the insertion

of D−+ and so (taking q to be real) TrH−+(qL0+L̄0−c/12) = TrHFF
(q̃L0+L̄0−c/12D−+) =√

2χ
ÑS

(q̃)χNS(q̃) = 2χR(q)χNS(q) , i.e. a two dimensional space of primary operators on

which the defect can end.

2.2.2 Boundary states for the free fermion theory

We would like to define boundary conditions which preserve the free fermion algebra, up

to automorphism. This implies that a boundary state ‖B〉〉 must satisfy the condition

(ψm − iεψ̄−m)‖B〉〉 , (2.15)

for ε = ±1. The space of Ishibashi states for a fixed choice of ε is one-dimensional, that is

there are only two Ishibashi states of interest,

|NS, ε〉〉 =

∞∏
m=0

eiεψ−m−1/2ψ̄−m−1/2 |0〉 . (2.16)

– 6 –
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The overlaps of these Ishibashi states are

〈〈NS,±|q
1
2 (L0+L̄0−c/12)|NS,±〉〉 = χNS(q) = χNS(q̃) ,

〈〈NS,±|q
1
2 (L0+L̄0−c/12)|NS,∓〉〉 = χ

ÑS
(q) =

√
2χR(q̃) .

(2.17)

Note that we use ‘double kets with single vertical bar’ |i〉〉 to denote Ishibashi states and

‘double kets with double vertical bars’ ‖B〉〉 to denote (elementary) boundary states. Since

we would like the cylinder partition function of two physical boundary states to be express-

ible in the crossed channel as the trace of the Hamiltonian along a strip, it should be a

non-negative integer combination of the characters χα(q̃). It would be nice to be able to

choose the boundary states to be |NS,+〉〉 and |NS,−〉〉, but the mutual overlap is not an

integer multiple of χR(q̃) and so we have to make a choice for the boundary states. We

can make either of the two choices

1. : {‖A〉〉 = |NS,+〉〉 , ‖B〉〉 =
√

2|NS,−〉〉} , (2.18)

2. : {‖A〉〉 = |NS,−〉〉 , ‖B〉〉 =
√

2|NS,+〉〉} . (2.19)

These then have cylinder partition functions

ZAA = 〈〈A‖q
1
2 (L0+L̄0−c/12)‖A〉〉 = χNS(q̃) ,

ZAB = 〈〈A‖q
1
2 (L0+L̄0−c/12)‖B〉〉 = 2χR(q̃) ,

ZBB = 〈〈B‖q
1
2 (L0+L̄0−c/12)‖B〉〉 = 2χNS(q̃) .

(2.20)

Since χNS = χ0 + χ1/2, the identity Virasoro representation appears twice in ZBB and so

this is not actually an elementary defect with respect to the Virasoro algebra. The usual

conclusion [12–14] would be that we need to introduce the Ramond sector with Ishibashi

states |R,±〉〉. This will allow us to write the boundary state ‖B〉〉 as the superposition of

two states ‖B±〉〉, which take the form

1. : ‖B±〉〉 =
1√
2
|NS,−〉〉 ± 1

21/4
|R,−〉〉 , (2.21)

2. : ‖B±〉〉 =
1√
2
|NS,+〉〉 ± 1

21/4
|R,+〉〉 . (2.22)

These, however, do not have cylinder partition functions that can be interpreted as the trace

over a representation of the fermion algebra. They can be considered as sums over different

spin structures for the fermion, or as partition functions for the Ising model obtained from

the free fermion by projecting onto even fermion number states. The Ising model has three

fundamental boundary conditions, usually denoted (−), (f) and (+) for Ising spin fixed

down, free, or fixed up and their boundary states can be identified as

‖f〉〉 = ‖A〉〉 , ‖±〉〉 = ‖B±〉〉 , (2.23)

– 7 –
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and the cylinder partition functions are traces over representations of the Virasoro algebra,

〈〈A‖q
1
2 (L0+L̄0−c/12)‖B±〉〉 = χR(q̃) = χ

(3)
1/16(q̃) ,

〈〈B±‖q
1
2 (L0+L̄0−c/12)‖B±〉〉 =

1

2

(
χNS(q̃) + χ

ÑS
(q̃)
)

= χ
(3)
0 (q̃)

〈〈B±‖q
1
2 (L0+L̄0−c/12)‖B∓〉〉 =

1

2

(
χNS(q̃)− χ

ÑS
(q̃)
)

= χ
(3)
1/2(q̃)

(2.24)

There is, however, no requirement for us to extend the space of boundary conditions in

this way: it is perfectly consistent to ask that the fermion boundary condition be defined

for a single choice of spin structure and we will work with the boundary conditions ‖A〉〉
and ‖B〉〉.

This agrees with the analysis in [15, 16] in which the free fermion is stated to have

two boundary conditions, “free” and “fixed”,2 distinguished by having two and one ground

states respectively, with the “fixed” boundary condition having a two-dimensional space

of weight zero fields, one bosonic and one fermionic. This fermionic weight zero field also

arises in the Ising model, where the “ε” defect can end at the junction of a (+) and a

(−) boundary condition in a field of weight zero. Such a space with one bosonic and one

fermionic degree of freedom, C1|1, also arises when constructing spin fields in the Ising

model in [18], and we think it is probable that a treatment of boundary conditions in the

manner of [18] will give our result in a rigorous manner.

2.3 Interfaces between the Ising model and the free fermion

We would now like to consider the case of topological interfaces between the Ising model

and the Neveu-Schwarz free fermion. Consider an operator I from the Hilbert space of the

free fermion to the Hilbert space of the Ising model; the operator I† will map from the

Ising model to the free fermion model. The topological conditions,

Lm I = I Lm , L̄m I = I L̄m , (2.25)

mean that I must be a sum of projectors on representations of the Virasoro algebra. Since

the Hilbert spaces of the two theories are

HIsing = (H0 ⊗ H̄0) ⊕ (H1/2 ⊗ H̄1/2) ⊕ (H1/16 ⊗ H̄1/16) ,

HFF = (H0 ⊕H1/2)⊗ (H̄0 ⊕ H̄1/2) ,
(2.26)

we see that the operator I is determined up to two constants, a and b, as

Ia,b = aP0P̄0 + bP1/2P̄1/2 , (2.27)

where P0P̄0 is the projector onto H0⊗ H̄0 and P1/2P̄1/2 is the projector onto H1/2⊗ H̄1/2.

As before, we would like the coefficients Mγ
Aβ andMγ

βA in the algebra of defect operators

DA Iβ =
∑
γ

Mγ
Aβ Iγ , Iβ DA =

∑
γ

Mγ
βA Iγ , (2.28)

2Note that this is not the same as the usual naming conventions for the Ising model, for which “free” and

“fixed” would have one and two ground states respectively, but since these are interchanged by duality [17],

this should not be of concern.

– 8 –
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to be non-negative integer coefficients. The known Ising defects [19, 20] and free fermion

defects can be expressed in terms of the projectors PhP̄h̄ as

Ising : D0 = P0P̄0 + P1/2P̄1/2 + P1/16P̄1/16 ,

D1/2 = P0P̄0 + P1/2P̄1/2 − P1/16P̄1/16 ,

D1/16 =
√

2(P0P̄0 − P1/2P̄1/2) ,

Free fermion : D++ = (P0 + P1/2)(P̄0 + P̄1/2) ,

D+− =
√

2(P0 + P1/2)(P̄0 − P̄1/2) ,

D−+ =
√

2(P0 − P1/2)(P̄0 + P̄1/2) ,

D++ = (P0 − P1/2)(P̄0 − P̄1/2) .

(2.29)

This gives the algebra

D0 Ia,b = Ia,b , D1/2 Ia,b = Ia,b , D1/16 Ia,b =
√

2Ia,−b , (2.30)

Ia,b D++ = Ia,b , Ia,b D+− =
√

2Ia,−b , Ia,b D−+ =
√

2Ia,−b , Ia,b D−− = Ia,b . (2.31)

We would also like the action of the interfaces on boundary states to give integer combina-

tions of boundary states in the other model, that is the coefficients MB
αA and M̃B

αA in the

algebra

Iα ‖BFF
A 〉〉 =

∑
B

MB
αA ‖B

Ising
B 〉〉 , I†α ‖B

Ising
A 〉〉 =

∑
B

M̃B
αA ‖BFF

B 〉〉 , (2.32)

should be non-negative integers. If Ia,b is an interface that acts from the free-fermion space

to the Ising model and I†a,b acts in the opposite direction, we have

Ia,b ‖A〉〉 =
a+ b

2
√

2

(
‖B0〉〉+ ‖B1/2〉〉

)
+
a− b

2
‖B1/16〉〉 ,

Ia,b ‖B〉〉 =
a− b

2

(
‖B0〉〉+ ‖B1/2〉〉

)
+
a+ b√

2
‖B1/16〉〉 ,

I†a,b ‖B0〉〉 =
a+ b

2
√

2
‖A〉〉+

a− b
4
‖B〉〉 ,

I†a,b ‖B1/2〉〉 =
a+ b

2
√

2
‖A〉〉+

a− b
4
‖B〉〉 ,

I†a,b ‖B1/16〉〉 =
a− b

2
‖A〉〉+

a+ b

2
√

2
‖B〉〉 .

(2.33)

The general solution to the integrality conditions is a =
√

2m + 2n, b =
√

2m − 2n, for

integers m and n. This suggests that there are two elementary interfaces, I = I√2,
√

2 and

I ′ = I2,−2 satisfying

I ‖A〉〉 = ‖B0〉〉+ ‖B1/2〉〉 , I† ‖B0〉〉 = I† ‖B1/2〉〉 = ‖A〉〉 ,
I ‖B〉〉 = 2‖B1/16〉〉 , I† ‖B1/16〉〉 = ‖B〉〉 ,
I ′ ‖A〉〉 = 2‖B1/16〉〉 , I ′† ‖B0〉〉 = I ′† ‖B1/2〉〉 = ‖B〉〉 ,
I ′ ‖B〉〉 = 2

(
‖B0〉〉+ ‖B1/2〉〉

)
, I ′† ‖B1/16〉〉 = 2‖A〉〉 ,

(2.34)

and that every other interface is formed by a linear combination of these two.
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Finally, we would like the product of interfaces to be expressible as a non-negative

integer combination of topological defects, that is the constants MA
αβ and M̃A

αβ in

Iα I
†
β =

∑
A

MA
αβ D

Ising
A , I†α Iβ =

∑
A

M̃A
αβ D

FF
A , (2.35)

should also be non-negative integers. We have

Ia,b I
†
c,d =

ac+ bd

4

(
D0 +D1/2

)
+
ac− bd

2
√

2
D1/16 ,

I†c,d Ia,b =
ac+ bd

4

(
D++ +D−−

)
+
ac− bd

4
√

2

(
D+− +D−+

)
, (2.36)

We see that two elementary interfaces I and I ′ do lead to an algebra with integer coeffi-

cients:
I I† = D0 +D1/2 , I I ′† = 2D1/16 ,

I† I = D++ +D−− , I ′† I = D+− +D−+ ,

I D++ = I D−− = I , I D+− = I D−+ = I ′ ,

D0 I = D1/2 I = I , D1/16 I = I ′ .

(2.37)

2.4 Consistency tests

The main object of this section was to construct topological interface operators between

the Ising model and the free-fermion model (as a warm-up for the tri-critical Ising case).

Since these interfaces are topological, one should be able to move the interfaces past field

insertions without changing their conformal properties. As an example, we can ask whether

we can pull the interface past the free fermion field, so that the free fermion field’s insertion

point is now on the Ising model side of the interface. Since the free fermion ψ(z) is not

a local field in the Ising model, it must arise as a defect creation operator, that is as the

termination point of a defect, which is the defect D1/2. This is shown in figure 3. This

is only possible if there is a one-dimensional space of zero-weight interface-interface-defect

junctions. These are counted by the partition function with insertions of I, D1/2 and I†.

We can calculate this using I I† D1/2 = (D0 +D1/2)D1/2 = (D0 +D1/2),

TrHIID1/2
(qL0−c/24q̄L̄0−c/24) = TrHFF

(I†D1/2I q
L0−c/24q̄L̄0−c/24)

= TrHIsing
(II†D1/2 q

L0−c/24q̄L̄0−c/24)

= TrHIsing
(D0 q

L0−c/24q̄L̄0−c/24)

+TrHIsing
(D1/2 q

L0−c/24q̄L̄0−c/24)

=
(
|χ(3)

0 (q)|2 + |χ(3)
1/2(q)|2 + |χ(3)

1/16(q)|2
)

+
(
|χ(3)

0 (q)|2 + |χ(3)
1/2(q)|2 − |χ(3)

1/16(q)|2
)

= 2|χ(3)
0 (q)|2 + 2|χ(3)

1/2(q)|2

= |χ(3)
0 (q̃) + χ

(3)
1/2(q̃)|2 + 2|χ(3)

1/16(q̃)|2 . (2.38)
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Ising Model Free fermion

I

ψ(z)
I

I

D1/2

Ising Model Free fermion

I

Space of zero weight functions
D1/2

I

I

is one dimensional.

Figure 3. The ψ field in the free-fermion model is realised as a defect-creation operator in the

Ising model. The associated space of three-defect junctions is one-dimensional.

The coefficient of |χ(3)
0 (q̃)|2 counts the dimension of weight zero junction fields so this is

indeed one-dimensional.

As a second example, consider a defect D−+ terminating in the FF model on fields of

conformal weights (1/16, 0). Since the partition function with D−+ is given from (2.11)

and (2.14) as

TrHFF
(D−+q

L0−c/24q̄L̄0−c/24) = 2χR(q̃)χNS(¯̃q) , (2.39)

the space of such fields is two dimensional. What happens when the interface is pulled

past this defect-terminating field? The only way a field of weights (1/16, 0) can arise in the

Ising model is as a field on the end of a D1/16 defect, and the space of such fields is only

one dimensional. The resolution is that the space of zero-weight fields at the point where

the D−+ defect crosses the interface I to become the D1/16 defect is two-dimensional, as

calculated by

TrHID−+ID1/16
(qL0−c/24q̄L̄0−c/24) = TrHIsing

(ID−+I
†D1/16 q

L0−c/24q̄L̄0−c/24)

= TrHIsing

(
(2D0 + 2D1/2)qL0−c/24q̄L̄0−c/24

)
= 2|χ0(q̃)|2 + . . . . (2.40)

In every case we have considered, the result of pulling local fields through the interface

result, in a similar fashion, in consistent interpretations in terms of the space of interface-

defect junctions.

We now turn to the main objects of interest, the tri-critical Ising model and the related

supersymmetric theory.
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name I ε σ Î ε̂ σ̂

Kac labels (r, s) (1, 1) (3, 1) (2, 1) (1, 3) (1, 2) (2, 2)

weight h 0 3/2 7/16 3/5 1/10 3/80

Entropy of defect Dh 1 1
√

2 1+
√

5
2

1+
√

5
2

1+
√

5√
2

Entropy of boundary Bh

(
5−
√

5
40

) 1
4
(

5−
√

5
40

) 1
4
(

5−
√

5
10

) 1
4
(

5+2
√

5
20

) 1
4
(

5+2
√

5
20

) 1
4
(

5+2
√

5
5

) 1
4

Table 1. TCIM data.

3 The tri-critical Ising model and the fermionic model at c = 7/10

The tri-critical Ising model (TCIM for short) is the unitary minimal model of the Virasoro

algebra with c = 7/10 with diagonal modular invariant and all the local fields have integer

spin. The Virasoro algebra with c = 7/10 has six unitary highest weight representations,

and correspondingly the TCIM has six primary fields, six elementary topological defects

and six elementary conformal boundary conditions, each labelled by these representations.

The TCIM is the unique local field theory with c = 7/10 with a modular invariant

partition function but we can define a related model with local fields with integer and

half-integer spins which is well-defined on the cylinder, in the same way the FF model is

related to the Ising model. This fermionic model has superconformal symmetry and we

will denote it by SVIR3. There are four irreducible unitary highest-weight representations

of the super Virasoro algebra with c = 7/10 of which two are Neveu-Schwarz and two are

Ramond. The local field theory SVIR3 is the diagonal theory formed from the Neveu-

Schwarz representations.

Our aim is to find interfaces between the TCIM and SVIR3 theories and use these to

construct defects in TCIM from defects in SVIR3. Before we do that we will first have

to construct defects in SVIR3 and we will do this by identifying them with boundary

conditions on the doubled model, SVIR3
⊗2. This is the main technical challenge of the

paper. Before we come to this point, we first introduce some notation and recall some facts

about the TCIM and SVIR3 models. (We list our conventions for the representations, their

labels, characters, fusion rules, etc, in appendix C.)

3.1 TCIM

The tri-critical Ising model is the unitary, diagonal modular invariant theory at c = 7/10

and is the m = 4 member of the unitary minimal series. The Virasoro algebra has six

unitary highest weight representations at c = 7/10 with characters χ
(4)
h ; associated to each

of these there is a topological defect Dε̂ ≡ D1/10 ≡ D(1,2), etc and a conformal boundary

condition |ε̂〉〉 etc. We list these together with their defect and boundary entropies in table 1.

The shorthand names are chosen to make clear the fusion rules, which are (Lee-

Yang)×(Ising). The fields I, ε and σ have Ising fusion rules, and I and Î have Lee-Yang

– 12 –
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name INS ϕR ϕNS IR

Kac labels (r.s) (1, 1) ≡ (2, 4) (1, 2) ≡ (2, 3) (1, 3) ≡ (2, 2) (1, 4) ≡ (2, 1)

weight h 0 3/80 1/10 7/16

Table 2. SVIR3 data.

rules, that is

Î ? Î = I + Î , (3.1)

and in general

X ? Ŷ = ̂(X ? Y ) , X̂ ? Ŷ = (X ? Y ) + ̂(X ? Y ) . (3.2)

3.2 SVIR3

The SVIR3 model has local fields G(z) and Ḡ(z̄) of conformal weights (3/2, 0) and (0, 3/2)

respectively, which are fermionic and generate two copies of the c = 7/10 superconformal

algebra. This is the m = 3 member of the superconformal unitary minimal series for which

c(m) = 3/2(1 − 8/(m(m + 2))). There are two Neveu-Schwarz representations and two

Ramond representations, which we label as in table 2.

The fusion rules are (Lee-Yang)×(Free-fermion). The local field theory SVIR3 consists

of the Neveu-Schwarz fields and, in terms of representations of the Virasoro algebra, has

Hilbert space

HSVIR3 = (H0 ⊕H3/2)⊗ (H̄0 ⊕ H̄3/2) ⊕ (H1/10 ⊕H3/5)⊗ (H̄1/10 ⊕ H̄3/5) . (3.3)

The partition function of the Neveu-Schwarz sector of SVIR3 model can be expressed in

terms of the characters ch3
h of the superconformal algebra and χ

(4)
h of the Virasoro algebra,

TrHSVIR3
(qL0−c/24q̄L̄0−c/24) = |ch3

0(q)|2 + |ch3
1/10(q)|2

= |χ(4)
0 (q) + χ

(4)
3/2(q)|2 + |χ(4)

1/10(q) + χ
(4)
3/5(q)|2 . (3.4)

It is not fully modular invariant, but it is invariant under τ → −1/τ and τ → τ + 2.

The operators (−1)F and (−1)F̄ each have eigenvalue +1 on the state |0〉 and value

−1 on the state |1/10〉. The field φ1/10 is still a bosonic field, though, as (−1)F+F̄ has

eigenvalue +1.

The Ramond representations of the N = 1 superconformal algebra do not correspond

to local fields in the SVIR3 theory - as fields, they can only arise as defect-creation fields

(that is fields on which defect lines end) or fields at which two or more defects join.

3.2.1 Superconformal defects in SVIR3

We will consider superconformal topological defects in SVIR3, that is defects which preserve

the N = 1 algebra up to automorphism and so satisfy

Lm D = D Lm , Gm D = εD Gm , L̄m D = D L̄m , Ḡm D = ε′D Ḡm , (3.5)
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where ε and ε′ are ±1. A defect satisfying (3.5) is determined up to two constants as

Dεε′ = a(P0 + εP3/2)(P̄0 + ε′P̄3/2) + b(P1/10 + εP3/5)(P̄1/10 + ε′P̄3/5) , (3.6)

where PiP̄j is the projector onto the Virasoro representations Hi ⊗ H̄j .
We have found a complete set of eight elementary defects satisfying these condi-

tions, namely

{DI , Dϕ,
√

2(−1)FDI ,
√

2(−1)FDϕ,
√

2(−1)F̄DI ,
√

2(−1)F̄Dϕ, (−1)F+F̄DI , (−1)F+F̄Dϕ} ,
(3.7)

where the two fundamental defects with ε = ε′ = 1 are DI = 1 (the identity operator on

HSVIR3) and Dϕ, given by

DI = (P0 + P3/2)(P̄0 + P̄3/2) + (P1/10 + P3/5)(P̄1/10 + P̄3/5) ,

Dϕ =
1 +
√

5

2
(P0 + P3/2)(P̄0 + P̄3/2) +

1−
√

5

2
(P1/10 + P3/5)(P̄1/10 + P̄3/5) .

(3.8)

These defects have a product algebra with non-negative integer structure constants, the

defect product algebra being determined by

Dϕ Dϕ = DI +Dϕ . (3.9)

Further, the trace over the Hilbert space with any number of defects inserted can be

expressed as an integer combination of characters of the superconformal algebra in the

dual channel. All such traces are determined by the elementary traces

Tr(qH q̄H̄) = |ch3
1,1(q̃)|2 + |ch3

1,3(q̃)|2 , (3.10)

Tr(
√

2(−1)F qH q̄H̄) = 2
[
ch3

1,2(q̃)ch3
1,3(¯̃q) + ch3

1,4(q̃)ch3
1,1(¯̃q)

]
, (3.11)

Tr((−1)F+F̄ qH q̄H̄) = 2
[
|ch3

1,2(q̃)|2 + |ch3
1,4(q̃)|2

]
, (3.12)

Tr(Dϕ(−1)F qH q̄H̄) = |ch3
1,3(q̃)|2 + ch3

1,3(q̃)ch3
1,1(¯̃q) + ch3

1,1(q̃)ch3
1,3(¯̃q) , (3.13)

Tr(
√

2(−1)FDϕ q
H q̄H̄) = 2

[
ch3

1,2(q̃)(ch3
1,1(¯̃q) + ch3

1,3(¯̃q)) + ch3
1,4(q̃)ch3

1,3(¯̃q)
]
, (3.14)

Tr((−1)F+F̄Dϕ q
H q̄H̄) = 2

[
|ch3

1,2(q̃)|2 + ch3
1,2(q̃)ch3

1,4(¯̃q) + ch3
1,4(q̃)ch3

1,2(¯̃q)
]
, (3.15)

where H = L0 − 7
240 , H̄ = L̄0 − 7

240 .

3.2.2 Boundary states for SVIR3

As with the free fermion, we shall consider boundary states with components in the Neveu-

Schwarz sector only. Some of these will not be elementary with respect to the Virasoro

algebra, with the introduction of the Ramond sector allowing this degeneracy to be lifted,

but we do not need this sector to construct non-conformal defects in TCIM.

There are two gluing conditions for the superconformal algebra, ±, which we take to be

(Gm + iεḠ−m)|h, ε〉〉 = 0 . (3.16)
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Given that there are two Neveu-Schwarz representations, there are then four Ishibashi

states,

|0,±〉 = |0〉 ∓ i

2c/3
G−3/2Ḡ−3/2 |0〉+

1

c/2
L−2L̄−2 |0〉+ . . .

| 1

10
,±〉 = | 1

10
〉 ∓ i

1/5
G−1/2Ḡ−1/2 |

1

10
〉+

1

1/5
L−1L̄−1 |

1

10
〉+ . . .

(3.17)

Their normalisation is given by

〈〈h,±|q
1
2

(L0+L̄0−c/12)|h′,±〉〉 = δh,h′ ch3
h(q) , (3.18)

〈〈h,±|(−1)F q
1
2

(L0+L̄0−c/12)|h′,±〉〉 = δh,h′ c̃h
3

h(q) . (3.19)

In addition, the fermion parity operators act on the Ishibashi states as

(−1)F |h,±〉〉 = ε(h)|h,∓〉〉 , (−1)F̄ |h,±〉〉 = ε(h)|h,∓〉〉 , (−1)F+F̄ |h,±〉〉 = |h,±〉〉 ,
(3.20)

where ε(h) = ±1 is the fermion parity of the highest weight state |h〉. For SVIR3 we take

ε(0) = 1 and ε(1/10) = −1.

We find that there are four consistent fundamental boundary conditions, which we call

‖INS〉〉, ‖ϕNS〉〉, ‖IR〉〉, and ‖ϕR〉〉. There are, again, two choices for the way to construct

these boundary states, corresponding to the two gluing conditions. This means that one

consistent choice is

‖INS〉〉 =

(
5−
√

5

10

) 1
4

|0,+〉〉+

(
5 +
√

5

10

) 1
4

| 1

10
,+〉〉 ,

‖ϕNS〉〉 = Dϕ‖INS〉〉 =

(√
5 + 2√

5

) 1
4

|0,+〉〉 −

(√
5− 2√

5

) 1
4

| 1

10
,+〉〉 ,

‖IR〉〉 =
√

2(−1)F ‖INS〉〉 =

(
2(5−

√
5)

5

) 1
4

|0,−〉〉 −

(
2(5 +

√
5)

5

) 1
4

| 1

10
,−〉〉 ,

‖ϕR〉〉 =
√

2(−1)F ‖ϕNS〉〉 =

(
4(
√

5 + 2)√
5

) 1
4

|0,−〉〉+

(
4(
√

5− 2)√
5

) 1
4

| 1

10
,−〉〉 .

(3.21)

and the other is given by using the Ishibashi states of the opposite gluing condition.

These have overlaps/cylinder partition functions as follows:

|INS〉〉 |ϕNS〉〉 |IR〉〉 |ϕR〉〉

〈〈INS | ch3
1,1(q̃) ch3

1,3(q̃) 2 ch3
1,4(q̃) 2 ch3

1,2(q̃)

〈〈ϕNS | ch3
1,1(q̃)+ch3

1,3(q̃) 2 ch3
1,2(q̃) 2 ch3

1,2(q̃)+2 ch3
1,4(q̃)

〈〈IR| 2 ch3
1,1(q̃) 2 ch3

1,3(q̃)

〈ϕR| 2 ch3
1,1(q̃)+2 ch3

1,3(q̃)

(3.22)

The boundary states ‖IR〉〉 and ‖ϕR〉〉 are not fundamental as conformal boundary condi-

tions, since the identity representation appears twice in their cylinder partition functions.
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If we allow the introduction of the Ramond sector then they can each be written as a

superposition of two boundary states, but the cylinder partition functions will not then be

expressible as a sum of characters of the super Virasoro algebra.

3.3 Interface operators

The common sectors of HTCIM and HSVIR3 are, in terms of representations of the Vira-

soro algebra,

(H0 ⊗ H̄0) ⊕ (H3/2 ⊗ H̄3/2) ⊕ (H1/10 ⊗ H̄1/10) ⊕ (H3/5 ⊗ H̄3/5) . (3.23)

This means that a topological interface operator I satisfying (2.25) and acting from the

space of TCIM to SVIR3 is a constant on each of these four sectors and so is determined

by four constants

I(a, b, c, d) = a P0P̄0 + b P3/2P̄3/2 + c P1/10P̄1/10 + d P3/5P̄3/5 , (3.24)

as well as a map identifying the Virasoro highest weights states of weights (3/2, 3/2) and

(3/5, 3/5). We take this to be

|(1, 3)〉TCIM = i ξ1,3G−3/2Ḡ−3/2 |0〉SVIR3
,

|(3, 1)〉TCIM = i ξ3,1G−1/2Ḡ−1/2 |
1

10
〉
SVIR3

, (3.25)

where ξ1,3 and ξ3,1 are signs.

Requiring integer coefficients in the expansions

Iα ‖BSVIR3
A 〉〉 =

∑
B

MB
αA‖BTCIM

B 〉〉 , I†α ‖BTCIM
A 〉〉 =

∑
B

M̃B
αA‖B

SVIR3
B 〉〉 , (3.26)

allows us to solve for (a, b, c, d). In particular, from the definitions in (3.21), the expan-

sions (3.17) and the identifications (3.25), we get

I(a, b, c, d)† ‖B0〉〉 = m1‖INS〉〉+m2‖ϕNS〉〉+m3‖IR〉〉+m4‖ϕR〉〉 , (3.27)

with

a =
√

2m1 +
1 +
√

5√
2

m2 + 2m3 + (1 +
√

5)m4 ,

−ξ1,3 b =
√

2m1 +
1 +
√

5√
2

m2 − 2m3 − (1 +
√

5)m4 ,

c =
√

2m1 +
1−
√

5√
2

m2 − 2m3 − (1−
√

5)m4 ,

−ξ3,1d =
√

2m1 +
1−
√

5√
2

m2 + 2m3 + (1−
√

5)m4 .

(3.28)

We will choose ξ1,3 = ξ3,1 = −1. This means that any interface can be expressed as a

combination

I(a, b, c, d) = m1 I +m2 I2 +m3 I3 +m4 I4 , (3.29)
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where the interfaces are given by

I = I(
√

2,
√

2,
√

2,
√

2)

I2 = I

(
1 +
√

5√
2

,
1 +
√

5√
2

,
1−
√

5√
2

,
1−
√

5√
2

)
I3 = I(2,−2,−2, 2)

I4 = I(1+
√

5,−1−
√

5,−1+
√

5, 1−
√

5)

(3.30)

These act on the boundary states as follows

I ‖INS〉〉 = ‖B(1,1)〉〉+ ‖B(3,1)〉〉 , I† ‖B(1,1)〉〉 = I† ‖B(3,1)〉〉 = ‖INS〉〉 ,
I ‖ϕNS〉〉 = ‖B(1,2)〉〉+ ‖B(1,3)〉〉 , I† ‖B(1,2)〉〉 = I† ‖B(1,3)〉〉 = ‖ϕNS〉〉 ,
I ‖IR〉〉 = 2 ‖B(2,1)〉〉 , I† ‖B(2,1)〉〉 = ‖IR〉〉 ,
I ‖ϕR〉〉 = 2 ‖B(2,2)〉〉 , I† ‖B(2,2)〉〉 = ‖ϕR〉〉 ,

(3.31)

and satisfy the relations

I2 = D1/10 I = I Dϕ , I3 = D7/16 I = I ·
√

2(−1)F , I4 = D1/10 I = I ·
√

2(−1)FDϕ .

(3.32)

Requiring I I† be expressible as a sum of topological defects in TCIM and I† I be

expressible as a sum of topological defects in SVIR3 provides a strong constraint, just as

it did in the Ising/FF case. Taking a, b, c, d to be real, we have, for example,

I(a, b, c, d) I(a, b, c, d)† =
(5−

√
5)(a2 + b2) + (5 +

√
5)(c2 + d2)

40
(D0 +D3/2)

+
a2 + b2 − c2 − d2

4
√

5
(D1/10 +D3/5)

+
(5−

√
5)(a2 − b2)− (5 +

√
5)(c2 − d2)

20
√

2
D7/16

+
a2 − b2 + c2 − d2

2
√

10
D3/80 . (3.33)

We find the interfaces given by (3.29) indeed give integer coefficients, and the fundamental

interface I given by (3.30) satisfies

I I† = D0 +D3/2 , I† I = DI + (−1)F+F̄DI , (3.34)

D3/2 I = I · (−1)F+F̄ = I . (3.35)

To summarise, we have found a set of four elementary boundary conditions for SVIR3,

a set of eight elementary topological superconformal defects in SVIR3 and a set of four

fundamental interfaces between TCIM and SVIR3. All we need to do now is to find super-

conformal defects in SVIR3 and use the interface operators to generate defects in TCIM.
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4 The doubled model, SVIR3
⊗2

The basic idea behind finding superconformal non-topological defects in SVIR3 is that every

superconformal defect in SVIR3 is equivalent to a superconformal boundary condition on

SVIR3
⊗2. Since the central charge of SVIR3

⊗2 is 7/5, which is less than 3/2, there are

only a finite set of fundamental superconformal boundary conditions, and that it is quite

possible that not all of these are topological.

We first have to identify the local fields in SVIR3
⊗2. Since we are only considering

Neveu-Schwarz sectors, the partition function of SVIR3
⊗2 is exactly the square of the par-

tition function of SVIR3. This has been identified in [1] as the Neveu-Schwarz sector of

the D6–E6 modular invariant of the N = 1 super Virasoro algebra, and so we can consider

SVIR3
⊗2 as a model with sVir10 symmetry. There are numerous character identities re-

lating characters of the superconformal algebras sVir3 at c = 7/10 and sVir10 at c = 7/5;

these allow one to write the partition function in terms of characters of sVir10 as

ZSVIR3
⊗2 = (ZSVIR3)2 =

(
|ch3

1,1|2 + |ch3
1,3|2

)2
= |ch10

1,1 + ch10
1,5 + ch10

1,7 + ch10
1,11|2 + |ch10

3,1 + ch10
3,5 + ch10

3,7 + ch10
3,11|2

+ 2|ch10
(5,1) + ch10

(5,5)|
2 .

(4.1)

We will be constructing boundary states which respect the sVir10 symmetry, and the

building blocks are Ishibashi states for the sVir10 algebra. There are two Ishibashi states

(one for each gluing condition) for each diagonal term (those with h = h̄) in the partition

function (4.1). Hence there are 24 Ishibashi states in total.

The diagonal terms in the partition function (4.1) can be identified by Kac labels (r, s)

with r and s taking values in the exponents of D6 and a subset of the exponents of E6

respectively. These exponents are {1, 3, 5, 5′, 7, 9} and {1, 4, 5, 7, 8, 11} (the label 5 appears

twice, as do fields with labels (5, s) in the Neveu-Schwarz sector (4.1)). This over-counts

the set of fields by a factor of two, as it does not take into account the symmetry of the Kac

labels (r, s) ' (10−r, 12−s). Furthermore, it also includes the Ramond sector (those with

s = 4 or s = 8). the result is that we can label the Neveu-Schwarz diagonal fields in (4.1)

by (r, s) with r ∈ {1, 3, 5, 5′, 7, 9} and s ∈ {1, 5, 7, 11} modulo (r, s) ' (10− r, 12− s).
The full chiral algebra of SVIR3

⊗2 is, of course, larger than sVir10 and so can be

described as an extension of the sVir10 by super-primary fields, i.e. as a super W-algebra.

From the character decomposition of the full chiral algebra sVir3 ⊗ sVir3,

(ch3
1,1)2 = ch10

1,1 + ch10
1,5 + ch10

1,7 + ch10
1,11 , (4.2)

we see that the chiral algebra contains three super-primary fieldsW(3/2),W(7/2), andW(10)

of weights h
(10)
1,5 = 3/2, h

(10)
1,7 = 7/2, and h

(10)
1,11 = 10 respectively. Expressions for these fields

are given in appendix A. Extending sVir10 by the field of weight 3/2 just recovers the

full sVir3 × sVir3 algebra. Extending sVir10 by the field of weight 7/2 gives an algebra

SW(7/2) which has been considered before in [21–23]. Extending sVir10 by the field of

weight 10 gives a new algebra SW(10). We will return to these algebras when we consider

the boundary states in section 5.
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(r, s) (1, 1) (3, 5) (5, 5) (5′, 5)

ρ(|r, s〉) |0〉〈0| | 1
10〉〈

1
10 | |0〉〈 1

10 | |
1
10〉〈0|

ρ′(|r, s〉) |0〉〈0| −| 1
10〉〈

1
10 | −|0〉〈

1
10 | |

1
10〉〈0|

Table 3. Images of the highest weight states.

Finally, we note here that it is also possible to express a single copy of the SVIR3

partition function in terms of characters of the c = 7/5 algebra:

ZSVIR3 = (ch3
1,1)2 + (ch3

1,3)2

= ch10
1,1 + ch10

1,5 + ch10
1,7 + ch10

1,11 + ch10
3,1 + ch10

3,5 + ch10
3,7 + ch10

3,11 ,
(4.3)

where we note again that q is real. The reason is that one can embed the c = 7/5

superconformal algebra into the two (holomorphic and anti-holomorphic) copies of the

c = 7/10 algebra in SVIR3.

4.1 Relating boundary conditions on SVIR3
⊗2 to defects in SVIR3

Central to the idea of the folding procedure is that a boundary condition in SVIR3
⊗2 is

equivalent to a defect in SVIR3. The folding condition is simple if the boundary is along

the real axis with the folded model living entirely in the upper half plane: for each field

φ(z, z̄) in SVIR3, there are two copies φ(a) in the folded theory, with the a = 1 copy

being the original field, φ(1)(z, z̄) = φ(z, z̄) and the a = 2 copy being the folded field,

φ(2)(z, z̄) = φ(z̄, z). When we consider boundary states and defect operators, it is more

usual for the boundary/defect to be on the unit circle, and we can define a map ρ from

states in SVIR3
⊗2 to defects in SVIR3 as follows.

If the boundary lies on the unit circle with SVIR3
⊗2 defined on the exterior of the unit

circle, copy a = 1 corresponds to the superconformal algebra on the outside of the unit

circle and copy a = 2, the inside. If ρ(|B〉〉) = D̂, then we can define

ρ(G1
m‖B〉〉) = Gm D̂ ,

ρ(Ḡ1
m‖B〉〉) = Ḡm D̂ ,

ρ(G2
m‖B〉〉) = − i(−1)F+F̄ D̂(−1)F+F̄ Ḡ−m ,

ρ(Ḡ2
m‖B〉〉) = i(−1)F+F̄ D̂(−1)F+F̄G−m .

(4.4)

The signs in (4.4) are determined by finding a family of Möbius maps which interpolate

the identity map preserving the real axis and a map which sends the real axis to the unit

circle, as explained in appendix D.

To complete the definition, we need the image of the highest weight states in SVIR3
⊗2

which are tensor products, |h1〉 ⊗ |h2〉. We can take the simplest choice, i.e. ρ(|h1〉 ⊗
|h2〉) = |h1〉〈h2|, but as we will see later, it will be helpful to define in addition the map

ρ′(|h1〉 ⊗ |h2〉) = |h1〉〈h2|(−1)F . These maps are summarised in table 3.

We can now identify the 24 known conformal defects in SVIR3 (8 topological and 16

factorised) with boundary conditions on SVIR3
⊗2, and in particular the gluing conditions

satisfied by the boundary conditions.
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For a topological defect, we have two free signs given in equation (3.5). These imply

that the corresponding boundary state satisfies

GmD = ηDGm

ḠmD = η′DḠm

⇒
(G1

m + iηḠ2
−m)‖B〉〉 = 0

(G2
m + iη′Ḡ1

−m)‖B〉〉 = 0
(4.5)

For a factorising defect, we have again two free signs coming from the two gluing conditions

of the two boundary states, which imply for the corresponding defect

(Gm + iη Ḡ−m)‖A, η〉〉〈〈B, η′‖ = 0

‖A, η〉〉〈〈B, η′‖(Gm − iη′ Ḡ−m) = 0

⇒
(G1

m + iηḠ1
−m)‖B〉〉 = 0

(G2
m − iη′Ḡ2

−m)‖B〉〉 = 0
(4.6)

It is clear from equations (4.5) and (4.6) that we will not be able to find a way to express all

the gluing conditions that arise as gluing conditions on a single set of combinations G1
m±G2

m

and Ḡ1
m ± Ḡ2

m, and so, in the next section, we consider exactly how we can organise the

boundary states of SVIR3
⊗2 corresponding to the known defects into boundary states of

the algebra sVir10.

4.2 Relating the boundary conditions on SVIR3
⊗2 to boundary conditions for

sVir10

To view SVIR3
⊗2 as a model of the c = 7/5 superconformal algebra sVir10 we need to

define an embedding of sVir10 into the two copies of the c = 7/10 algebra sVir3 in SVIR3.

An embedding of sVir10 into sVir3 × sVir3 is defined by four signs {α, β, γ, δ}:

ιαβγδ(Gm) = αG1
m + βG2

m , ιαβγδ(Ḡm) = γḠ1
m + δḠ2

m . (4.7)

We will denote the combined map (ρ ◦ ιαβγδ) by ραβγδ.

We also need to define a map from the Ishibashi states with respect to sVir10 to the

states in SVIR3
⊗2. The Ishibashi states are determined by a highest weight states and a

gluing condition, and the highest weight condition depends on the choice of embedding, so

we need to take some care over this.

For the moment we restrict attention to the gluing condition. Suppose we have an

Ishibashi state |h, ε〉〉 of sVir10 satisfying

(Gm + iεḠ−m)|h, ε〉〉 = 0 . (4.8)

With the embedding ιαβγδ, this state satisfies

(αG1
m + βG2

m + iεγḠ1
−m + iεδḠ2

−m)|h, ε〉〉 = 0 . (4.9)

Hence a purely transmitting defect with gluing conditions {η, η′} corresponds to η = αδε

and η′ = βγε, that is αβγδ = ηη′ and a pure reflecting defects with gluing conditions

{η, η′} corresponds to η = αγε and η′ = −βδε, that is αβγδ = −ηη′. Hence we find that

there are two equivalence classes of embeddings, given by αβγδ = ±1. An embedding with

αβγδ = 1 will correspond to transmitting defects with ηη′ = 1 and reflecting defects with
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ηη′ = −1, whereas an embedding with αβγδ = −1 will correspond to transmitting defects

with ηη′ = −1 and reflecting defects with ηη′ = 1.

The result is that we can expect two sets of boundary states with respect to two

different choices of embeddings sVir10, with one set giving half the defects of SVIR3 and

the other set giving the other half. The precise expressions for these boundary states in

terms of Ishibashi states will of course depend on the definitions of the highest weight states.

There are eight highest weight states with respect to sVir10 whose definitions depend on the

embedding, namely those with Kac labels (1, 5), (1, 7), (1, 11), (3, 1), (3, 7), (3, 11), (5, 1),

and (5′, 1). For example, the state |1, 5〉 of weight (3/2, 3/2) is given by

ιαβγδ(|1, 5〉) =
iη1,5

4c/3
(αG1

−3/2 − βG
2
−3/2)(γḠ1

−3/2 − δḠ
2
−3/2)|0〉 , (4.10)

where c = 7/10 and η1,5 is a free sign, and the state |3, 1〉 of weight (7/10, 7/10) is given by

ιαβγδ(|3, 1〉) =
iη3,1

2h
(αG1

−1/2 − βG
2
−1/2)(γḠ1

−1/2 − δḠ
2
−1/2) |3, 5〉 , (4.11)

where h = 1/10 and η3,1 is a free sign. We have a free sign ηr,s for each of these eight such

states. Expanded expressions for these states and others can be found in appendix E.

Using these facts, it is possible to construct the boundary states corresponding to

all the known topological and factorising defects in SVIR3. We find that they can all be

written in terms of the states ‖(a, b)NS〉〉 and ‖(a, b)
ÑS
〉〉 defined in [1] in (at least) two ways.

We illustrate this in the next two sections with the case of the identity defect in SVIR3,

and the factorising defect ‖INS〉〉〈〈INS‖, before summarising the results in section 4.4.

4.2.1 The identity defect in SVIR3

The identity defect in SVIR3 takes the very simple form of a sum over an orthonormal

basis of HSVIR3 :

1 =
∑
ψ

|ψ〉〈ψ| . (4.12)

Expanding this out,

1 = |0〉〈0|+ 1

2c/3

(
G−3/2|0〉〈0|G3/2 + Ḡ−3/2|0〉〈0|Ḡ3/2

)
+ . . .

+| 1

10
〉〈 1

10
|+ 1

1/5

(
G−1/2|

1

10
〉〈 1

10
|G1/2 + Ḡ−1/2|

1

10
〉〈 1

10
|Ḡ1/2

)
+ . . . (4.13)

This must arise from a combination of the Ishibashi states |(1, 1), ε〉〉, |(1, 5), ε〉〉, |(1, 7), ε〉〉,
|(1, 11), ε〉〉, |(3, 1), ε〉〉, |(3, 5), ε〉〉, |(3, 7), ε〉〉, and |(3, 11)ε〉〉. Since the Identity defect satis-

fies (3.5) with η = η′ = 1, the gluing condition ε and embedding ιαβγδ satisfy ε = αδ = βγ

and αβγδ = 1.

The simplest choice is α = β = γ = δ = ε = 1. This still leaves the signs ηr,s free.

Given the freedom to choose these signs, the boundary state ‖DI〉〉 can be expressed as

sum over all the Ishibashi states in the NS sector with the + gluing condition:

1 = ρ++++(‖DI〉〉) ,
‖DI〉〉 = |(1, 1),+〉〉+ |(1, 5),+〉〉+ |(1, 7),+〉〉+ |(1, 11),+〉〉

+ |(3, 1),+〉〉+ |(3, 5),+〉〉+ |(3, 7),+〉〉+ |(3, 11),+〉〉 ,
(4.14)

– 21 –



J
H
E
P
0
9
(
2
0
1
7
)
0
1
3

where ρ acts as in table 3. Looking at the explicit expressions in appendix E, this fixes in

particular η1,5 = 1, η3,1 = 1 and η3,7 = −1.

We could, by choosing the signs of η in a different fashion, instead have the equally

symmetric expression

1 = ρ′++++(‖DI〉〉) ,
‖DI〉〉 = |(1, 1),+〉〉 − |(1, 5),+〉〉+ |(1, 7),+〉〉 − |(1, 11),+〉〉

+ |(3, 1),+〉〉 − |(3, 5),+〉〉+ |(3, 7),+〉〉 − |(3, 11),+〉〉 ,
(4.15)

where ρ′ acts as in table 3. Looking again at the explicit expressions in appendix E, this

implies the opposite choices,

η1,5 = −1 , η3,1 = −1 , η3,7 = 1 . (4.16)

Note that in equations (4.14) and (4.15) we have suppressed all the information re-

garding the choices of signs for the descendent states |1, 5〉 etc, and have only kept the

information regarding the choice of the signs for the maps of the highest weight states from

table 3.

4.2.2 The factorising defect ‖INS〉〉〈〈INS‖ in SVIR3

We will take the boundary state ‖INS〉〉 to be given in terms of the Ishibashi states in

SVIR3 as

‖INS〉〉 =

(
5−
√

5

10

) 1
4

|0,+〉〉+

(
5 +
√

5

10

) 1
4

| 1

10
,+〉〉 , (4.17)

which is one of the two possibilities shown in (3.21). This means the factorising defect

‖INS〉〉〈〈INS‖ is given as

‖INS〉〉〈〈INS‖ =

(
5−
√

5

10

) 1
2

|0,+〉〉〈〈0,+|+
(

1

5

) 1
4

|0,+〉〉〈〈 1

10
,+|

+

(
1

5

) 1
4

| 1

10
,+〉〉〈〈0,+|

(
5 +
√

5

10

) 1
2

| 1

10
,+〉〉〈〈 1

10
,+| .

(4.18)

Since this factorising defect satisfies (4.6) with η = η′ = 1, the gluing condition ε and

embedding ιαβγδ satisfy ε = αγ = −βδ and αβγδ = −1.

The simplest choice, which we take from now on, is α = β = γ = η = 1, δ = −1. Given

the freedom to choose the signs ηr,s, we can express this factorising defect in many ways,

but the one that we will use later is this:

‖INS〉〉〈〈INS‖ = ρ+++−(‖INSINS〉〉) ,

‖INSINS〉〉 =

(
5−
√

5

10

) 1
2 (
|(1, 1),+〉〉+ |(1, 5),+〉〉+ |(1, 7),+〉〉+ |(1, 11),+〉〉

)
+

(
1

5

) 1
4 (
|(5, 1),+〉〉+ |(5, 5),+〉〉+ |(5′, 1),+〉〉+ |(5′, 5),+〉〉

)
+

(
5 +
√

5

10

) 1
2 (
|(3, 1),+〉〉+ |(3, 5),+〉〉+ |(3, 7),+〉〉+ |(3, 11),+〉〉

)
,

(4.19)
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1 2 3 4

5

6

D6

1 2 3 4 5

6

E6

(Showing map a 7→ r(a))

Figure 4. The Dynkin diagrams of D6 and E6 showing the bi-colouration and the map r.

where ρ acts as in table 3 and the signs η1,5,η3,1 and η3,7 are again as in equation (4.16).

We cannot say whether the remaining signs are also fixed as for the identity defect as we

have not calculated them. Note that in equation (4.19) we have again suppressed all the

information regarding the choices of signs for the descendent states |1, 5〉 etc, and have only

kept the information regarding the choice of the signs for the maps of the highest weight

states from table 3.

4.3 Boundary conditions in SVIR3
⊗2

The boundary states are linear combinations of the Ishibashi states corresponding to diago-

nal (h = h̄) Neveu-Schwarz fields. As noted above, there are 24 of these, |(r, s),±〉〉, labelled

by (r, s) odd exponents of D6 and E6 modulo the Kac symmetry, and a gluing condition.

A set of boundary states for the GSO projection of SVIR3
⊗2 was proposed in [1]

although there are some difficulties with these, as explained in 7. The states in [1] have

both Neveu-Schwarz and Ramond contributions; here we only need components in the

Neveu-Schwarz sector.

The boundary conditions themselves are labelled by pairs of nodes on the Dynkin

diagrams of D6 and E6, together with a choice of gluing condition. However, this again

over-counts the number of Neveu-Schwarz boundary states in two ways. Firstly, the nodes

on the E6 diagram that are related by the diagram symmetry, r : 1 7→ 5 and r : 2 7→ 4 lead

to the same Neveu-Schwarz contribution. (We can think of this as replacing the E6 Dynkin

diagram by the F4 diagram, with the nodes related by the Z2 symmetry corresponding to

the short simple roots of F4). This gives 24 pairs of nodes. Secondly, we can bi-colour the

Dynkin diagrams and split these 24 pairs into those with nodes of the same colour and

those with nodes of opposite colour, giving two sets of 12 pairs of nodes, combined with

the gluing condition.

With the bi-colouration as in figure 4, and making a choice for the representatives of

the nodes related by the Z2 symmetry of the E6 diagram a 7→ r(a), we take the nodes with

the same colouration to be

Ne = {(1, 1), (3, 1), (5, 1), (6, 1), (2, 2), (4, 2), (1, 3), (3, 3), (5, 3), (6, 3), (2, 6), (4, 6)} , (4.20)

and the nodes with opposite colouration to be

No = {(2, 1), (4, 1), (1, 2), (3, 2), (5, 2), (6, 2)(2, 3), (4, 3), (1, 6), (3, 6), (5, 6), (6, 6)} . (4.21)
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The key ingredient in the boundary states proposed in [1] are matrices Ψ
(a,b)
(r,s) ,

Ψ
(a,b)
(r,s) =

ψra(D6)ψsb(E6)√
S

(8)
1r S

(10)
1s

, (4.22)

formed from eigenvectors ψra(G) of the adjacency matrices of the Dynkin diagram of G and

modular S-matrices S
(k)
rs for affine su(2) characters at level k. We give the vectors ψra(G)

and a table of numerical values of Ψ
(a,b)
(r,s) in appendix F for convenience. These matrices

have the property that under the Kac-symmetry

Ψ
(a,b)
(r,s) =

Ψ
(a,b)
(10−r,12−s) (a, b) ∈ Ne , same colouration,

−Ψ
(a,b)
(10−r,12−s) (a, b) ∈ No , opposite colouration.

(4.23)

Following [1], we can define boundary states ‖(a, b)NS〉〉 using these matrices, but we

take a slightly different choice to [1],

‖(a, b)NS〉〉 =
∑

r∈{1,3,5,5′,7,9}
s∈{1,7}

Ψ
(a,b)
(r,s) |(r, s),+〉〉 , (4.24)

where in [1] the sum over s is s ∈ {1, 5}. The sums are over exactly the same represen-

tations, but the choice of different representatives results in expressions which differ by a

sign for s = 7 when the nodes are of opposite colour (eg the labels (1, 7) and (9, 5) denote

the same representation, but Ψ
(1,2)
(1,7) = −Ψ

(1,2)
(9,5 ).

Our choice of representatives was motivated by the fact the E6 ŝu(2)10 WZW model

has an extended symmetry algebra consisting of the representations (1) ⊕ (7) and so our

choice seems natural when considering fusion of the sVir10 model. We think it results in

more natural expression for the final boundary states.

One consequence is that (unlike the situation in [1]) our choice of representatives results

in sets of states which only differ by factors of
√

2,

‖(a, 6)NS〉〉 =
√

2 ‖(a, 1)NS〉〉 , ‖(a, 3)NS〉〉 =
√

2 ‖(a, 2)NS〉〉 . (4.25)

These two different ways of expressing the same boundary state may seem redundant, but

it helps a great deal when it comes to providing consistent descriptions of all the possible

boundary states for SVIR3
⊗2.

We also define states ‖(a, b)
ÑS
〉〉 in a slightly different way to [1], as

‖(a, b)
ÑS
〉〉 = (−1)F ‖(a, b)NS〉〉 . (4.26)

These differ from the states defined in [1] by an extra sign for each of the Ishibashi states

which corresponds to a fermionic highest weight state, that is for the states |r, s〉 with

(r, s) ∈ {(1, 5), (1, 7), (3, 1), (3, 11), (5, 5), (5′, 5)} which again simplifies the identification of

the known boundary states.
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αβγδ = −1, α=β=γ=1, δ=−1, map = ρ+++−

Defect Boundary states

‖INS〉〉〈〈INS‖
√

2 ‖(1, 1)NS〉〉 , ‖(1, 6)NS〉〉

‖INS〉〉〈〈ϕNS‖
√

2 ‖(5, 1)NS〉〉 , ‖(6, 6)NS〉〉

‖ϕNS〉〉〈〈INS‖
√

2 ‖(6, 1)NS〉〉 , ‖(6, 6)NS〉〉

‖ϕNS〉〉〈〈ϕNS‖
√

2 ‖(3, 1)NS〉〉 , ‖(3, 6)NS〉〉
√

2(−1)F
√

2 ‖(2, 6)NS〉〉 , 2 ‖(2, 1)NS〉〉
√

2(−1)F̄
√

2 ‖(2, 6)
ÑS
〉〉 , 2 ‖(2, 1)

ÑS
〉〉

√
2(−1)FDϕ

√
2 ‖(4, 6)NS〉〉 , 2 ‖(4, 1)NS〉〉

√
2(−1)F̄Dϕ

√
2 ‖(4, 6)

ÑS
〉〉 , 2 ‖(4, 1)

ÑS
〉〉

(−1)F ‖INS〉〉〈〈INS‖(−1)F
√

2 ‖(1, 1)
ÑS
〉〉 , ‖(1, 6)

ÑS
〉〉

(−1)F ‖INS〉〉〈〈ϕNS‖(−1)F
√

2 ‖(5, 1)
ÑS
〉〉 , ‖(6, 6)

ÑS
〉〉

(−1)F ‖ϕNS〉〉〈〈INS‖(−1)F
√

2 ‖(6, 1)
ÑS
〉〉 , ‖(6, 6)

ÑS
〉〉

(−1)F ‖ϕNS〉〉〈〈ϕNS‖(−1)F
√

2 ‖(3, 1)
ÑS
〉〉 , ‖(3, 6)

ÑS
〉〉

αβγδ = 1, α=β=γ=δ=1, map = ρ′++++

Defect Boundary states

‖INS〉〉〈〈IR‖
√

2 ‖(1, 6)NS〉〉 , 2 ‖(1, 1)NS〉〉

‖INS〉〉〈〈ϕR‖
√

2 ‖(5, 6)NS〉〉 , 2 ‖(6, 1)NS〉〉

‖ϕNS〉〉〈〈IR‖
√

2 ‖(6, 6)NS〉〉 , 2 ‖(6, 1)NS〉〉

‖ϕNS〉〉〈〈ϕR‖
√

2 ‖(3, 6)NS〉〉 , 2 ‖(3, 1)NS〉〉

‖IR〉〉〈〈INS‖
√

2 ‖(1, 6)
ÑS
〉〉 , 2 ‖(1, 1)

ÑS
〉〉

‖IR〉〉〈〈ϕNS‖
√

2 ‖(5, 6)
ÑS
〉〉 , 2 ‖(6, 1)

ÑS
〉〉

‖ϕR〉〉〈〈INS‖
√

2 ‖(6, 6)
ÑS
〉〉 , 2 ‖(6, 1)

ÑS
〉〉

‖ϕR〉〉〈〈ϕNS‖
√

2 ‖(3, 6)
ÑS
〉〉 , 2 ‖(3, 1)

ÑS
〉〉

1
√

2 ‖(2, 1)NS〉〉 , ‖(2, 6)NS〉〉

(−1)F+F̄
√

2 ‖(2, 1)
ÑS
〉〉 , ‖(2, 6)

ÑS
〉〉

Dϕ

√
2 ‖(4, 1)NS〉〉 , ‖(4, 6)NS〉〉

(−1)F+F̄Dϕ

√
2 ‖(4, 1)

ÑS
〉〉 , ‖(4, 6)

ÑS
〉〉

Table 4. Identifications of the boundary states corresponding to the known defects.

4.4 Identifying known defects

With the definitions (4.25) and (4.26) we can identify all the known defects in SVIR3.

These split into two sets, those with αβγδ = 1 for which we need the highest-weight state

map ρ′, supplemented by suitable choices of signs for the descendent states, and those with

αβγδ = −1 for which we need the map ρ, shown in table 4.

Note that these two sets are not defined at the same time as they use different em-

beddings; we cannot describe the defects 1 and ‖INS〉〉〈〈INS‖ as supersymmetric boundary

conditions for SVIR3
⊗2 at the same time.

As an example, we show here the overlap of the boundary states
√

2 ‖(2, 1)NS〉〉 =

‖(2, 6)NS〉〉 (representing the identity defect) with
√

2 ‖(2, 1)
ÑS
〉〉 = ‖(2, 6)

ÑS
〉〉 (represent-

ing the defect (−1)F+F̄ ), 2 ‖(1, 1)NS〉〉 =
√

2 ‖(1, 6)NS〉〉 (representing ‖INS〉〉〈〈IR‖), and

2 ‖(1, 1)
ÑS
〉〉 =

√
2 ‖(1, 6)

ÑS
〉〉 (representing ‖IR〉〉〈〈INS‖), all of which have αβγδ = 1. We

have exactly the expected results:

〈〈(2, 6)NS‖qH‖(2, 6)NS〉〉 =
(
ch10

1,1 + ch10
1,5 + ch10

1,7 + ch10
1,11

+ch10
3,1 + ch10

3,5 + ch10
3,7 + ch10

3,11

)
(q̃)

=
(
ch3

1,1(q̃)
)2

+
(
ch3

1,3(q̃)
)2
, (4.27)

〈〈(2, 6)NS‖qH‖(2, 6)
ÑS
〉〉 = 2

(
ch10

1,4 + ch10
1,8 + ch10

3,4 + ch10
3,8

)
(q̃)

= 2
(
ch3

1,2(q̃)
)2

+ 2
(
ch3

1,4(q̃)
)2
, (4.28)

2 〈〈(2, 6)NS‖qH‖(1, 1)NS〉〉 = 2
(
ch10

2,4 + ch10
2,8

)
(q̃)

= 2 ch3
1,4(
√
q̃) , (4.29)

2 〈〈(2, 6)NS‖qH‖(1, 1)
ÑS
〉〉 = 2

(
ch10

2,1 + ch10
2,5 + ch10

2,7 + ch10
2,11

)
(q̃)

= 2 ch3
1,4(
√
q̃) , (4.30)
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where H = (L0 + L̄0 − 7/60), q = exp(−4πL) and q̃ = exp(−π/L). Note that the overlaps

of ‖(2, 6)NS〉〉 with 2 ‖(1, 1)NS〉〉 and 2 ‖(1, 1)
ÑS
〉〉 are the same, 2 ch3

1,4(
√
q̃), thanks to two

different identities relating the characters of sVir10 and sVir3. This is a function of
√
q̃

since geometrically it corresponds to a strip of width 2L, as shown in figure 5.

However, if we consider defects with different values of αβγδ we do not get sensible

results. The overlap of the boundary state in SVIR3
⊗2 corresponding to the identity defect

with the boundary state corresponding to the factorising defect ‖INS〉〉〈〈INS‖ will give the

partition function on the strip of width 2L and boundary conditions INS on both sides,

that is

TrSVIR3

(
qH DI ‖INS〉〉〈〈INS‖

)
= ch3

1,1(
√
q̃) . (4.31)

But ch3
1,1(
√
q) = q−7/480(1 + q3/4 + q + q5/4 + q3/2 + . . .) cannot be expressed as a sum

of characters of the c = 7/5 algebra, and so it is not possible for the two defects DI and

‖INS〉〉〈〈INS‖ to be represented as boundary states for sVir10 at the same time. If we look

at table 4, we see that DI corresponds to ‖(2, 6)NS〉〉 defined with embedding ι++++ but

‖INS〉〉〈〈INS‖ corresponds to ‖(1, 6)NS〉〉 with embedding ι+++−, and so their overlap being

calculated as

〈〈(2, 6)NS‖qH‖(1, 6)NS〉〉 =
√

2 ch3
1,4(
√
q̃) (4.32)

has nothing to do with the required quantity.

4.5 Identifying new defects

Now that we have identified all the known defects, we can see that they all correspond

to the nodes 1 and 6 on the E6 diagram. If we instead use the nodes 2 and 3 on the E6

diagram, we find new defects which are neither topological nor factorising.

The transmission coefficient was defined in [24] in such a way that a topological defect

has T = 1 and a factorising boundary condition has T = 0, and thus it lets us quickly iden-

tify these amongst the boundary states. We can calculate the T (transmission) coefficient

and the defect entropy for these new defects using the expressions in appendix E. If the

defect obtained from a boundary state ‖Ψ〉〉 of the following form,

‖Ψ〉〉 = A|(1, 1)ε〉〉+B|(1, 5)ε〉〉+ . . . , (4.33)

and the sign is η1,5 = −1, then the transmission coefficient is

T =
1

2

[
1− εB/A

]
, (4.34)

whether the map is ρ+++− or ρ′++++.
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L

〈〈(2, 6)NS‖ ‖(2, 6)NS〉〉

SVIR3
⊗2

identity

defect

2L

SVIR3

SVIR3

identity

defect

identity

defect

L

〈〈INS‖ 〈〈IR‖

2 〈〈(1, 1)NS‖

‖INS〉〉 ‖IR〉〉

2 ‖(1, 1)NS〉〉

SVIR3
⊗2

L

SVIR3

SVIR3

INS INS

IR IR

L

〈〈(2, 6)NS‖ ‖INS〉〉 ‖IR〉〉

2 ‖(1, 1)NS〉〉

SVIR3
⊗2

SVIR3

SVIR3

identity

defect

INS

IR

INS IR

identity

defect

2L

'

'

' '

Figure 5. Different boundary conditions on SVIR3
⊗2 result in different geometrical set-ups

for SVIR3.

The g values are independent of the embedding and choice of signs η given by

g
(
‖(a, 1)

NS/ÑS
〉〉
)

=


S
(8)
a1√
S
(8)
1,1

=
√

1 + 1√
5

sin
(
aπ
10

)
for a = 1, 2, 3, 4

S
(8)
5,1

2
√
S
(8)
1,1

= 1
2

√
1 + 1√

5
for a = 5, 6

(4.35)

g
(
‖(a, 2)

NS/ÑS
〉〉
)

=

√
2 +
√

3 g
(
‖(a, 1)

NS/ÑS
〉〉
)
, (4.36)

g
(
‖(a, 3)

NS/ÑS
〉〉
)

= (1 +
√

3) g
(
‖(a, 1)

NS/ÑS
〉〉
)
, (4.37)

g
(
‖(a, 6)

NS/ÑS
〉〉
)

=
√

2 g
(
‖(a, 1)

NS/ÑS
〉〉
)
, (4.38)

where the last two relations follow from (4.25).
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T g boundary states defined with ι+++− and map ρ

1
√

2 1.414 . . . 2 ‖(2, 1)NS〉〉, 2 ‖(2, 1)
ÑS
〉〉

1+
√

5√
2

2.288 . . . 2 ‖(4, 1)NS〉〉, 2 ‖(4, 1)
ÑS
〉〉

0
(

5−
√

5
10

)1/2
0.5257 . . . ‖(1, 6)NS〉〉, ‖(1, 6)

ÑS
〉〉(

5+
√

5
10

)1/2
0.8506 . . . ‖(5, 6)NS〉〉, ‖(6, 6)NS〉〉, ‖(5, 6)

ÑS
〉〉, ‖(6, 6)

ÑS
〉〉(

5+2
√

5
5

)1/2
1.3763 . . . ‖(3, 6)NS〉〉, ‖(3, 6)

ÑS
〉〉

√
3−1
2

√
2 +
√

3 1.9318 . . . ‖(2, 3)NS〉〉, ‖(2, 3)
ÑS
〉〉

3.1258 . . . ‖(4, 3)NS〉〉, ‖(4, 3)
ÑS
〉〉

3−
√

3
2 1.4363 . . . 2 ‖(1, 2)NS〉〉, 2 ‖(1, 2)

ÑS
〉〉

3.7603 . . . 2 ‖(3, 2)NS〉〉, 2 ‖(3, 2)
ÑS
〉〉

2.3240 . . . 2 ‖(5, 2)NS〉〉, 2 ‖(6, 2)NS〉〉, 2 ‖(5, 2)
ÑS
〉〉, 2 ‖(6, 2)

ÑS
〉〉

T g boundary states defined with ι++++ and map ρ′

1 1 1 ‖(2, 6)NS〉〉, ‖(2, 6)
ÑS
〉〉

1+
√

5
2 1.618 . . . ‖(4, 6)NS〉〉, ‖(4, 6)

ÑS
〉〉

0
(

5−
√

5
5

)1/2
0.7434 . . . 2 ‖(1, 1)NS〉〉, 2 ‖(1, 1)

ÑS
〉〉(

5+
√

5
5

)1/2
1.2030 . . . 2 ‖(5, 1)NS〉〉, 2 ‖(6, 1)NS〉〉, 2 ‖(5, 1)

ÑS
〉〉, 2 |(6, 1)

ÑS
〉〉(

10−2
√

5
5

)1/2
1.9465 . . . 2 ‖(3, 1)NS〉〉, 2 ‖(3, 1)

ÑS
〉〉

√
3−1
2 1 +

√
3 2.732 . . . 2 ‖(2, 2)NS〉〉, 2 ‖(2, 2)

ÑS
〉〉

4.4205 . . . 2 ‖(4, 2)NS〉〉, 2 ‖(4, 2)
ÑS
〉〉

3−
√

3
2 1.0156 . . . ‖(1, 3)NS〉〉, ‖(1, 3)

ÑS
〉〉

2.6589 . . . ‖(3, 3)NS〉〉, ‖(3, 3)
ÑS
〉〉

1.6433 . . . ‖(5, 3)NS〉〉, ‖(6, 3)
ÑS
〉〉

Table 5. T and g values for the SVIR3
⊗2 boundary states.

Note that ‖Ψ〉〉 and (−1)F ‖Ψ〉〉 have the same value of g and T . We find that the

boundary states ‖(a, b)
NS/ÑS

〉〉 only take four different values for T as in table 5, but a

large range of g values. We also list the g values for the known topological and factorising

defects in SVIR3 in the same table.

If the g value of a boundary state cannot be expressed as a sum of the g values of

known topological and factorising defects, then this boundary state must correspond to a

“new” defect.

Again, these defects fall into two sets - those defined from the boundary state using

embedding ι++++ and map ρ′, and those defined with embedding ι+++− and map ρ. With

each set, the boundary states satisfy Cardy’s condition, that is, the overlaps of any two

boundary states corresponding to the same embedding ρ, or ρ′, are non-negative integer
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combinations of characters of sVir10. The overlaps of states corresponding to different

maps do not satisfy Cardy’s condition.

Further, the overlaps involving the known (topological and factorising) defects can be

expressed in terms of the characters of sVir3, but those involving the new defects can not.

As an example, we consider the overlaps of the boundary states
√

2 ‖(2, 1)NS〉〉 =

‖(2, 6)NS〉〉 (representing the identity defect) with
√

2 ‖(1, 2)NS〉〉 = ‖(1, 3)NS〉〉 and√
2 ‖(1, 1)NS〉〉 = ‖(1, 6)NS〉〉 (representing ‖INS〉〉〈〈INS‖) with

√
2 ‖(2, 2)NS〉〉 = ‖(2, 3)NS〉〉.

We have

〈〈(2, 6)NS‖qH‖(2, 6)NS〉〉 =
(
ch10

1,1 + ch10
1,5 + ch10

1,7 + ch10
1,11

+ ch10
3,1 + ch10

3,5 + ch10
3,7 + ch10

3,11

)
(q̃) ,

=
(
ch3

1,1(q̃)
)2

+
(
ch3

1,3(q̃)
)2

(4.39)

〈〈(2, 6)NS‖qH‖(1, 3)NS〉〉 =
(
ch10

2,2 + ch10
2,4 + 2 ch10

2,6 + ch10
2,8 + ch10

2,10

)
(q̃) , (4.40)

〈〈(1, 6)NS‖qH‖(1, 6)NS〉〉 =
(
ch10

1,1 + ch10
1,5 + ch10

1,7 + ch10
1,11

)
(q̃)

=
(
ch3

1,1(q̃)
)2
, (4.41)

〈〈(1, 6)NS‖qH‖(2, 3)NS〉〉 =
(
ch10

2,2 + ch10
2,4 + 2 ch10

2,6 + ch10
2,8 + ch10

2,10

)
(q̃) , (4.42)

where H = (L0 + L̄0 − 7/60), q = exp(−4πL) and q̃ = exp(−π/L).

Since h
(10)
2,2 = 1

80 6= h
(3)
r,s + h

(3)
r′,s′ for any (r, s), (r′, s′) in sVir3, the over-

lap 〈〈(2, 6)NS‖qH‖(1, 3)NS〉〉 cannot be expressed as a sum of products of characters

ch3
r,s(q̃) ch3

r′,s′(q̃). In addition, since h
(10)
2,2 − 7

120 = − 11
240 6=

1
2(h

(3)
r,s − 7

240) for any (r, s)

in sVir3, it cannot be expressed as a sum of characters ch3
r,s(
√
q̃).

Note that 〈〈(2, 6)NS‖qH‖(1, 3)NS〉〉 = 〈〈(1, 6)NS‖qH‖(2, 3)NS〉〉, which suggest that these

overlaps are related by the insertion of a topological defect in the doubled model labelled

by the Dynkin nodes (2, 1).

Just for reference, we give the overlaps of the new boundary states with themselves

to show that they satisfy Cardy’s condition, but also cannot be expressed in terms of

characters of sVir3:

〈〈(1, 3)NS‖qH‖(1, 3)NS〉〉 =
(
ch10

1,1 + 2ch10
1,3 + 3ch10

1,5 + 3ch10
1,7 + 2ch10

1,9 + ch10
1,11

)
(q̃) ,

〈〈(2, 3)NS‖qH‖(2, 3)NS〉〉 =
(
ch10

1,1 + 2ch10
1,3 + 3ch10

1,5 + 3ch10
1,7 + 2ch10

1,9 + ch10
1,11

+
(
ch10

3,1 + 2ch10
3,3 + 3ch10

3,5 + 3ch10
3,7 + 2ch10

3,9 + ch10
3,11

)
(q̃) ,

(4.43)

4.5.1 New factorising defects in SVIR3

While the boundary state ‖(1, 6)
ÑS
〉〉 can be identified as the defect

(−1)F ‖INS〉〉〈〈INS‖(−1)F , this is not actually the product of two boundary states in

SVIR3. The state (−1)F ‖INS〉〉 does not satisfy Cardy’s constraint - for example, its

overlap with ‖INS〉〉 is not an integer combination of characters in the crossed channel:

〈〈INS‖qH(−1)F ‖INS〉〉 =
√

2 ch3
1,4(q̃) . (4.44)
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The defect (−1)F ‖INS〉〉〈〈INS‖(−1)F does however satisfy the constraint - for example

〈〈(1, 6)NS‖qH‖(1, 6)
ÑS
〉〉 = 〈〈INS‖qH(−1)F ‖INS〉〉〈〈INS‖(−1)F qH‖INS〉〉 = 2 ch3

1,4(q̃)2 .

(4.45)

Conversely, the factorising defect ‖IR〉〉〈〈IR‖ does not arise in the tables 4, The resolu-

tion seems to be that these factorising defects are not fundamental and instead we have

‖(1, 6)
ÑS
〉〉 ' (−1)F ‖INS〉〉〈〈INS‖(−1)F ,

‖IR〉〉〈〈IR‖ = 2(−1)F ‖INS〉〉〈〈INS‖(−1)F ' 2‖(1, 6)
ÑS
〉〉 . (4.46)

This illustrates the possibility that each known factorising and topological defect in SVIR3

gives rise to a superconformal boundary state in SVIR3
⊗2, but the converse need not to

be true.

5 Boundary states in SVIR3
⊗2 and extended algebras

The boundary states we have discussed can be understood from the point of view of ex-

tended superconformal algebras. There are two relevant algebras, SW (3/2) and SW (10)

which is a subalgebra of SW (3/2).

5.1 The algebra SW (3/2)

The first case to consider is boundary states which preserve the whole algebra SW (3/2).

Since this is the same as sVir3 ⊗ sVir3, we expect to recover the known topological and

factorised defects. This algebra contains not only the superconformal generator, G(z), but

a fermionic primary field of weight 3/2, W(3/2)(z) and its superpartner of weight 2, T (z).

Details are given in appendix A.

As with the field G(z), we have a choice for the gluing conditions of the field W(3/2),

so that we can define gluing conditions (ε, ε′) where the Ishibashi state |(h, h̃)ε, ε′〉〉 satisfies

(Gm + iεḠ−m)|(h, h̃)ε, ε′〉〉 = 0 , (W(3/2)
m + iε′W̄(3/2)

−m )|(h, h̃)ε, ε′〉〉 = 0 . (5.1)

The SVIR3
⊗2 model can be thought of as a model of SW (3/2) in two ways. With

the embedding αβγδ = 1, the partition function is diagonal in the four characters of

this algebra,

Z = |χ1|2 + |χ3|2 + |χ5|2 + |χ5′ |2 . (5.2)

With the embedding αβγδ = −1, the partition function is not diagonal, but is instead

Z = |χ1|2 + |χ3|2 + χ5χ̄5′ + χ5′χ̄5 . (5.3)

Either way, we would expect to have four Ishibashi states for each set of gluing conditions,

and hence four boundary states per gluing condition, but this is not quite the case. The

SW (3/2) algebra relations include

{Gm,W(3/2)
n } = 2Tm+n (5.4)

– 30 –



J
H
E
P
0
9
(
2
0
1
7
)
0
1
3

and so an Ishibashi state |(h, h̃)ε, ε′〉〉 satisfies

(T0 − εε′T̄0)|(h, h̃)ε, ε′〉〉 = 0 . (5.5)

This means that for either embedding, there are only two choices of gluing conditions for

the representations with h = 1
10 , so that rather than having 16 Ishibashi states, in fact we

only have 12 different Ishibashi states.

This means we will have 12 independent combinations of these Ishibashi states into

boundary states, which is exactly what we find. There are 12 mutually consistent boundary

states which preserve this algebra with αβγδ = 1 and 12 (different) consistent states with

αβγδ = −1 which correspond to the known topological and factorising boundary defects

of SVIR3.

Since we can choose W(3/2) and W̄(3/2) so that

|1, 5〉 = iη1,5W(3/2)
−3/2 W̄

(3/2)
−3/2 |0〉 , (5.6)

then we have

W(3/2)
3/2 |1, 5〉 = iη1,5W̄(3/2)

−3/2 |0〉 , (5.7)

and so the coefficients of |1, 1)〉〉 and |1, 5〉〉 are related by this gluing condition. As we can

read off table 8, Ψ
(a,b)
(1,5) = Ψ

(a,b)
(1,1) for (a, b) equal to (2, 6) and (4, 6), and Ψ

(a,b)
(1,5) = −Ψ

(a,b)
(1,1) for

(a, b) equal to (1, 1), (3, 1), (5, 1) and (6, 1).

5.2 The algebra SW (10)

When we turn to the algebra SW (10) which has a superprimary fieldW of weight 10. Since

this algebra is invariant under W(10) → −W(10), we can again choose the gluing condition

W(10)
m |h〉〉 = ±W̄(10)

−m |h〉〉 . (5.8)

Since we can choose W(10) and W̄(10) so that

|(1, 11)〉 = η1,11W(10)
−10W̄

(10)
−10 |0〉 , (5.9)

then we have

W(10)
10 |(1, 11)〉 = η1,11W̄(10)

−10 |0〉 , (5.10)

and so the coefficients of |(1, 1)〉〉 and |(1, 11)〉〉 are related by this gluing condition. As we

can read off table 8, Ψ
(a,b)
(1,11) = Ψ

(a,b)
(1,1) for boundaries (a, b) in Ie with b = 2 and b = 6,

but Ψ
(a,b)
(1,11) = −Ψ

(a,b)
(1,1) for b = 1 and b = 3. Likewise, the coefficients Ψ

(a,b)
(1,5) = ±Ψ

(a,b)
(1,7),

Ψ
(a,b)
(3,1) = ±Ψ

(a,b)
(3,11) and Ψ

(a,b)
(3,5) = ±Ψ

(a,b)
(3,7).

There are now 8 different representations of SW (10) appearing in SVIR3
⊗2, as each

representation of SW (3/2) splits into exactly two representations of SW (10). By the same

reasoning as for the algebra SW (3/2), 4 of these representations will allow all four choices

of gluing condition but 4 will only allow 2 choices, so that there are 24 different Ishibashi

states, leading to two sets of 24 mutually consistent boundary states. These are exactly

the full set of boundary states we have found. We can say that the boundary states we

have discussed in this paper are precisely those which preserve the algebra SW (10).
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6 Defects in TCIM from defects in SVIR3
⊗2

We have found a set of non-topological, non-factorising defects in SVIR3 from the boundary

states |(a, 2)NS/ÑS〉〉 and |(a, 3)NS/ÑS〉〉 in SVIR3
⊗2. We can now use these to construct

defects in TCIM by using the interface operators constructed in section 3.3: if D̂SVIR3 is a

defect in SVIR3, then DTCIM defined by

D̂TCIM = I · D̂SVIR3 · I† , (6.1)

is a defect in TCIM. The T and g values of D̂TCIM are easy to find, they are just

T (D̂TCIM ) = T (D̂SVIR3) , g(D̂TCIM ) = 2g(D̂SVIR3) . (6.2)

It is very unlikely that this defect in TCIM is fundamental - it is instead very likely that

it is the superposition of two (possibly identical) defects. This is exactly what happened

in the free fermion case, where the map from free fermion defects to Ising model defects

always resulted in the superposition of two [or more] defects of the same g value, as below,

and it is also true for the identifiable topological and factorising defects in SVIR3, eg

I ·D1 · I† = D0 +D3/2 ,

I ·Dϕ · I† = D1/10 +D3/5 ,

I ·
√

2(−1)F · I† = 2D7/16 ,

I ·
√

2(−1)FDϕ · I† = 2D3/80 ,

I · |INS〉〉〈〈INS | · I† =
(
|B0〉〉+ |B3/2〉〉

) (
〈〈B0|+ 〈〈B3/2|

)
,

(6.3)

When we come to the new defects in SVIR3, we cannot say for certain whether they

are fundamental or not, but given the results above it is very likely that they are not.

Looking at table 5, the simplest conformal non-topological defects we can construct come

from the boundary states ‖(1, 3)NS/ÑS〉〉 with g = 2.03 . . .. Let us denote these by D±,

D+ = I · ρ(‖(1, 3)NS〉〉) · I† , D− = I · ρ(‖(1, 3)ÑS〉〉) · I† . (6.4)

From the fact that ‖(1, 3)ÑS〉〉 = (−1)F ‖(1, 3)NS〉〉, it follows that ρ(‖(1, 3)ÑS〉〉) =

(−1)Fρ(‖(1, 3)NS〉〉)(−1)F̄ and so

D− = (−1)FD+(−1)F =
1

2
D2,1 · D+ ·D2,1 . (6.5)

Using this relation, we have

〈0| D+ |0〉 = 〈0| D− |0〉 , 〈0| D+ | 1

10
〉 = −〈0| D− | 1

10
〉 , (6.6)

and from the explicit expressions for the boundary state coefficients in table 8, we thus see

that D± are distinct, different operators.

〈0| D+ |0〉 = 〈0| D− |0〉 = 2Ψ
(1,3)
(1,1) = 2(15)−1/4

(
(3 +

√
3)(
√

5− 1)

2(
√

3− 1)

)1/2

= 2.031 . . . ,

〈0| D+ | 1

10
〉 = −〈0| D− | 1

10
〉 = −2(15)−1/4

√
2
√

3− 3 = −0.692 . . . . (6.7)

– 32 –



J
H
E
P
0
9
(
2
0
1
7
)
0
1
3

6.1 Comparisons with the results of Gang and Yamaguchi

We can now attempt to compare our results for non-topological, non-factorising defects

with those of Gang and Yamaguchi. The simplest such defects we have found are D±

defined in (6.4) with g = 2.031 . . . and T = (3 −
√

3)/2. Looking at the list of proposed

defects in section 3.2 of [1] the only candidates to which we can hope to relate D± are those

from the boundary state |(1, 3)〉A± which have the same value of T and half the g-value.

From the definitions in equation (3.9) of [1], the states |(1, 3)〉A± have equal and op-

posite components in the Ramond sector. Since our defects have no components in the

Ramond sector, we must consider the sum |(1, 3)〉A+
+ |(1, 3)〉A− which has the same T and

g values as each of D±.

There are no precise definitions given in [1] on how to obtain a defect from a boundary

state, but we can see that |(1, 3)〉A+
+ |(1, 3)〉A− has zero overlap with the states |(5, 3, 5)10〉

and |(5′, 3, 5)10〉 (in the notation of [1]) which are equivalent to (in our notation) |(5, 5)〉 and

|(5′, 5)〉. This means that whatever map ρ̃ is required to obtain a defect from a boundary

state in the formalism of [1], the corresponding defect has zero matrix elements between

〈0| and |1/10〉

〈0| ρ̃
(
|(1, 3)〉A+

+ |(1, 3)〉A−
)
| 1

10
〉 = 0 , (6.8)

and so cannot be equal to either D+ or D−.

Gang and Yamaguchi do not give details on the precise map ρ̃ required to obtain a

defect from a boundary state in their formalism. We can be sure that the method we use

cannot work, as this will result in defects which are not GSO projected, that is defects

which are not maps from the TCIM to the TCIM. To illustrate this, we consider the states

used in [1] in the representation

[
H3

1,3 ⊗H3
1,3

]⊗2
=
[
H10

3,1 ⊕H10
3,5 ⊕H10

3,7 ⊕H10
3,11

]⊗2
(6.9)

The paper [1] uses coset representations, and each highest weight representation H10
r,s ≡

H10
10−r,12−s of sVir10 splits into two coset representations,

H10
3,1 = H(3,1,1)10 ⊕H(3,3,1)10 , H

10
3,5 = H(3,1,5)10 ⊕H(3,3,5)10 ,

H10
3,7 = H(7,1,5)10 ⊕H(7,3,5)10 , H

10
3,11 = H(7,1,1)10 ⊕H(7,3,1)10 .

(6.10)

Only four of these coset representations appear in the boundary states of [1], with conformal

weights as follows

Representation Weight

(3, 3, 5)10 1/5

(3, 1, 1)10 6/5

(7, 3, 5)10 6/5

(7, 1, 1)10 31/5

(6.11)
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In our terms, these can be identified with SVIR3
⊗2 descendants of the sVir10 highest weight

states,

|(3, 3, 5)10〉 = |(3, 5)〉 , |(7, 3, 5)10〉 = |(3, 7)〉 ,

|(3, 1, 1)10〉 =
iη

7/5
G−1/2Ḡ−1/2 |(3, 1)〉 , |(7, 1, 1)10〉 =

iη′

57/5
G−1/2Ḡ−1/2 |(3, 11)〉 ,

(6.12)

where η and η′ are undetermined signs. Further, given an embedding ιαβγδ, the states

|(3, 7)〉 and |(3, 1)〉 can be identified from appendix E as

|(3, 1)〉 =
iη3,1

2/5
(αG1

−1/2 − βG
2
−1/2)(γḠ1

−1/2 − δḠ
2
−1/2) |(3, 5)〉 ,

|(3, 7)〉 =
η3,7

7/5
(L1
−1 − L2

−1 +
αβ

1/5
G1
−1/2G

2
−1/2)

(
L̄1
−1 − L̄2

−1 +
γδ

1/5
Ḡ1
−1/2Ḡ

2
−1/2

)
|(3, 5)〉 .

(6.13)

This means that the state |(3, 1, 1)10〉 is

|(3, 1, 1)10〉 =
−η η3,1

(2/5)(7/5)
(L1
−1 − L2

−1 − 2αβG1
−1/2G

2
−1/2)

× (L̄1
−1 − L̄2

−1 − 2γδḠ1
−1/2Ḡ

2
−1/2) |(3, 5)〉 . (6.14)

Putting these together with the results in appendix E, and the fact that the boundary state

|(3, 3, 5)10〉〉 = |(3, 5)〉+
1

2/5
L−1L̄−1 |(3, 5)〉+ . . . , (6.15)

we can find the expansion up to level one of a defect given by a combination of boundary

states constructed from the four states (6.12):

|Ψ〉〉 = A|(3, 3, 5)10〉〉+B|(3, 1, 1)10〉〉+ C|(7, 3, 5)10〉〉+D|(7, 1, 1)10〉〉 , (6.16)

ραβγδ
(
|Ψ〉〉

)
= A| 1

10
〉〈 1

10
|

+

(
A

2/5
− Bηη3,1

(2/5)(7/5)
+
Cη3,7

7/5

)[
L−1L̄−1|

1

10
〉〈 1

10
|+ | 1

10
〉〈 1

10
|L̄1L1

]
+

(
A

2/5
+

Bηη3,1

(2/5)(7/5)
− Cη3,7

7/5

)[
L−1|

1

10
〉〈 1

10
|L1 + L̄−1|

1

10
〉〈 1

10
|L̄1

]
+ iαβ

(Bηη3,1 + Cη3,7)

7/25

[
G−1/2|

1

10
〉〈 1

10
|Ḡ1/2L1−L̄−1G−1/2|

1

10
〉〈 1

10
|Ḡ1/2

]]
+ iγδ

(Bηη3,1 + Cη3,7)

7/25

[
L−1Ḡ−1/2|

1

10
〉〈 1

10
|G1/2 − Ḡ−1/2|

1

10
〉〈 1

10
|Ḡ1/2L̄1

]
+ αβγδ

(
2Bηη3,1

7/25
− Cη3,7

7/125

)[
G−1/2Ḡ−1/2|

1

10
〉〈 1

10
|Ḡ1/2G1/2

]
+ . . . (6.17)

The expression (6.17) is only GSO projected if Bηη3,1 + Cη3,7 = 0, otherwise it is not.

We can fix ηη3,1 and η3.7 by comparing (6.17) with equation (3.20) of [1]. Equation (3.20)

says that the expression (6.17) should be purely transmitting for A = B = 1, C = −1 and

purely reflecting for B = −1, A = C = 1, from which we deduce that ηη3,1 = η3.7 = 1. We
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can now decide if the defects arising from the boundary states of [1] are GSO projected

or not by looking at the ratio of the coefficients B and C of the states |(3, 1, 1)10〉〉 and

|(7, 3, 5)10〉〉. If this ratio is −1, the resulting defect can be GSO projected, if it is not −1

then it is not GSO projected:

B = −C, GSO projected B 6= −C, not GSO projected

|(2, 6)〉A± , |(4, 6)〉A± |(1, 3)〉A± , |(3, 3)〉A± , |(5, 3)〉A± , |(6, 3)〉A±
|(1, 1)〉B , |(3, 1)〉B , |(5, 1)〉B , |(6, 1)〉B |(2, 2)〉B , |(4, 2)〉B

(6.18)

Those which are GSO projected correspond to topological or factorising defects; none of

the “new” defects proposed in [1] lead to GSO projected defects in our formalism, and so

it is difficult for us to make a stronger comparison with the proposals of [1].

7 Conclusions

We have constructed GSO-projected defects in the tri-critical Ising model from defects

in the Neveu-Schwarz sector of the supersymmetric tri-critical Ising model using interface

operators. Our construction uses many elements from the paper of Gang and Yamaguchi [1]

but in the end the defects we propose are not the same as theirs. There is some doubt

over the complete validity of their approach as it leads to factorised defects outside the

normal classification, and using our methods would result in the new defects proposed in [1]

not being properly GSO projected, but we must stress that we have not shown that their

non-topological defects are incorrect, simply that they are not the same as ours.

As part of our construction, we found evidence for two non-commensurate sets of

boundary states in SVIR3
⊗2 corresponding to two inequivalent embeddings of c = 7/5

algebra into two copies of c = 7/10. We have identified half of these boundary states as

known objects, the remaining half are new and lead to non-topological and non-factorising

defects in the tri-critical Ising model We hope that these new defects will include the

conjectured ‘C’ defect in [10].

We think it should be possible to derive the boundary states we have proposed for

SVIR3
⊗2 using topological field theory methods, in the spirit of as well as compare our

method with the construction of fermionic models of Novak and Runkel [18] using topo-

logical field theory methods which incorporate spin structure.

The next steps would be to extend our approach of explicit construction of bound-

ary states and consideration of extended algebras to include the Ramond sector of the

supersymmetric tri-critical Ising model and obtain defects in the tri-critical Ising model

using GSO projection, rather than interface operators and compare these directly with the

results of [1].
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A The chiral algebra of SVIR3
⊗2

The chiral algebra of SVIR3
⊗2 is, of course, generated by two copies of the superconformal

algebra, with superconformal fields G1 and G2. It can also be viewed as generated by a

superconformal generator G(z) and three super-primary fields W(3/2), W(7/2) and W(10),

of weights 3/2, 7/2 and 10 respectively.

The choice of G is fixed by the two signs α and β,

G(z) = αG1(z) + βG2(z) . (A.1)

With this choice, the super-primary fields W(3/2) and W(7/2) can be defined by the states

|W3/2〉 = (αG1
−3/2 − βG

2
−3/2)|0〉 (A.2)

|W7/2〉 =

[
α

(
L1
−2G

1
−3/2 −

3

4
G1
−7/2

)
+ β

(
L2
−2G

2
−3/2 −

3

4
G2
−7/2

)
−17

2
(βL1

−2G
2
−3/2 + αL2

−2G
1
−3/2)

]
|0〉 (A.3)

– the expression for |W10〉 is too lengthy to give here, and is not unique due to null states

in the vacuum representation at c = 7/10. The states |G〉 and |W(7/2)〉 are even under

interchanging G1 ↔ G2, and |W(3/2)〉 and |W(10)〉 are odd.

Since G and W3/2 generate the whole chiral algebra on their own, the fields W7/2 and

W(10) can be expressed in terms of G and W3/2, but they can also be considered as fields

in their own right.

The super-partner to W(3/2) is T (z) defined by

|T 〉 =
1

2
G−1/2 |W(3/2)〉 = (L1

−2 − L2
−2) |0〉 , T (z) = T 1(z)− T 2(z) . (A.4)

The representations of W(3/2) are thus labelled by the eigenvalues h of L0 = L1
0 + L2

0 and

h̃ of T0 = L1
0 − L2

0; in terms of the eigenvalues hi of Li0 we clearly have

h = h1 + h2 , h̃ = h1 − h2 . (A.5)

Since there are two NS representations of sVir3, there are four NS representations of

SW (3/2) at c = 7/5 which we label {1, 3, 5, 5′} with highest weight eigenvalues and char-

acters as in table 6.

There are two interesting subalgebras of this chiral algebra - the super W-algebra

SW(7/2), where the superconformal algebra is extended by the single field W7/2 of weight

7/2, and the super W-algebra SW(10), where the superconformal algebra is extended by

the single field W7/2 of weight 7/2.

These can be proven to be closed algebras without calculating the commutation rela-

tions explicitly.

In the first case, SW (7/2) consists of all fields in SVIR3
⊗2 which are invariant under

interchanging the fields G1 and G2. SW(7/2) was considered as an abstract super W-

algebra in [21–23] where it was shown to be consistent for c = 7/5.
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label (h, h̃) character

1 (0, 0) χ1 = ch10
1,1 + ch10

1,5 + ch10
1,7 + ch10

1,11 = (ch3
1,1)2

3 (1
5 , 0) χ3 = ch10

3,1 + ch10
3,5 + ch10

3,7 + ch10
3,11 = (ch3

1,3)2

5 ( 1
10 ,

1
10) χ5 = ch10

5,1 + ch10
5,5 = ch3

1,1ch3
1,3

5′ ( 1
10 ,−

1
10) χ5′ = ch10

5,1 + ch10
5,5 = ch3

1,1ch3
1,3

Table 6. The NS representations of SW (3/2) at c = 7/5.

label h character

1 0 χ1 = ch10
1,1 + ch10

1,1

1̃ 3
2 χ1̃ = ch10

1,5 + ch10
1,7

3 7
10 χ3 = ch10

3,1 + ch10
3,11

3̃ 1
5 χ3̃ = ch10

3,5 + ch10
3,7

5 13
5 χ5 = ch10

5,1

5̃ 1
10 χ5̃ = ch10

5,5

5′ 13
5 χ5′ = ch10

5,1

5̃′ 1
10 χ5̃′ = ch10

5,5

Table 7. The NS representations of SW (10) at c = 7/5.

In the second case, SW (10) is closed as the fusion rules of the superconformal algebra

at c = 7/2 are [1, 11] ∗ [1, 11] = [1, 1], that is the field W(10) is a simple current for the

superconformal algebra. There are eight representations of SW (10) as each representation

of SW (3/2) is reducible into two representations of SW (10) with labels and characters as

in table 7. We give the value of h, the eigenvalue of L0, only, the eigenvalue of W(10) being

too hard to calculate.

B Conventions for the free-fermion and the Ising model

If a free fermion is single-valued on a path around the origin, then it has an expansion over

modes ψm with m ∈ Z + 1/2,

ψ(z) =
∑

m∈Z+1/2

ψmz
−m−1/2 . (B.1)

These modes form the Neveu-Schwarz free-fermion algebra,

{ψm, ψn} = δm+n,0 (B.2)

which has a single unitary irreducible representation, HNS with character

χNS(q) = TrHNS (qL0−c/24) = q−1/48
∞∏
m=0

(1 + qm+1/2) . (B.3)
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We also define χ
ÑS

as the trace with the insertion of (−1)F ,

χ
ÑS

(q) = TrHNS (qL0−c/24(−1)F ) = q−1/48
∞∏
m=0

(1− qm+1/2) . (B.4)

If a free fermion instead changes sign on a path around the origin, it has an expansion

in modes ψm, m ∈ Z,

ψ(z) =
∑
m∈Z

ψmz
−m−1/2 . (B.5)

These satisfy the Ramond free-fermion algebra {ψm, ψn} = δm+n,0. This algebra has

two unitary irreducible highest weight representations, HR± with highest weights |1/16〉±
satisfying

ψ0 |1/16〉± = ± 1√
2
|1/16〉± . (B.6)

These have the same character

χR(q) = TrHR±
(qL0−c/24) = q1/24

∞∏
m=1

(1 + qm) . (B.7)

Note that there is an alternative and widely used convention which includes a factor of
√

2

in the definition, χR
alternative =

√
2χR. This alternative definition has the advantage of

making the modular S matrix in equation (B.10) symmetric, but the disadvantage that it

is not the trace of qL0−c/24 over a representation.

The three unitary irreducible highest weight representations of the Virasoro algebra

with c = 1/2 have weights h ∈ {0, 1/2, 1/16} and their characters are

χ
(3)
0 =

1

2
(χNS + χ

ÑS
) , χ

(3)
1/2 =

1

2
(χNS − χÑS) , χ

(3)
1/16 = χR . (B.8)

These characters are related under modular transformation τ → −1/τ , that is q =

exp(2πiτ)→ q̃ = exp(−2πi/τ), by
χ

(3)
0

χ
(3)
1/2

χ
(3)
1/16

 (q) =

 1/2 1/2 1/
√

2

1/2 1/2 −1/
√

2

1/
√

2 −1/
√

2 0



χ

(3)
0

χ
(3)
1/2

χ
(3)
1/16

 (q̃) (B.9)

χNSχ
ÑS

χR

 (q) =

1 0 0

0 0
√

2

0 1/
√

2 0


χNSχ

ÑS

χR

 (q̃) (B.10)

C Conventions for the super Virasoro minimal models

C.1 Characters

For the super Virasoro algebra with the central charge 0 ≤ c < 3/2, irreducible modules

are unitary at discrete points, and corresponding highest weight modules are labelled by

(c, h), both of which are parametrised by the integers m, r, s as

c =
3

2

(
1− 8

m(m+ 2)

)
(C.1)
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with m = 2, 3, 4, . . . , and

h(m)
r,s =

((m+ 2)r −ms)2 − 4

8m(m+ 2)
+

1

32

(
1− (−1)r−s

)
(C.2)

where 1 ≤ r ≤ m − 1 and 1 ≤ s ≤ m + 1. As usual, due to the Kac table symmetry

h
(m)
r,s = h

(m)
m−r,m+2−s, we need identification of the Kac labels (r, s) ∼ (m−r,m+2−s). When

we denote the super Virasoro algebra by sVirm, it is understood to take the irreducible

modules with (c, h) specified by (C.1) and (C.2). When r − s ∈ 2Z, a representation is

in the Neveu-Schwarz sector, which corresponds to the modes Gn with n ∈ Z + 1/2, and

when r − s ∈ 2Z + 1, a representation is in the Ramond sector, which corresponds to Gn
with n ∈ Z.

Since sVir is Z2 graded by fermion parity of the generators (Ln are bosonic and Gm
are fermionic), it is natural to consider Z2 graded modules. We may introduce an oper-

ator (−1)F on a module and take a basis, in which the highest weight state |h(m)
r,s 〉 is an

eigenvector of (−1)F with the eigenvalue ε(r, s) = ±1 and {(−1)F , Gm} = 0.

For a highest weight module HNS in the Neveu-Schwarz sector, which is generated

from |h(m)
r,s 〉, we define its character by

chmr,s(q) ≡ TrHNS q
L0− c

24 = q−
c
24

∞∑
n=−∞

(
qh(2mn+r,s) − qh(2mn−r,s)

) ∞∏
l=1

1 + ql−
1
2

1− ql
,

where h(r, s) = h
(m)
r,s and the explicit formula on the right hand side is given in [25]. We

also define the following quantity associated to this module

c̃h
m

r,s(q) ≡ TrHNS (−1)F qL0− c
24

= ε(r, s) q−
c
24

∞∑
n=−∞

(−1)mn
(
qh(2mn+r,s) − (−1)rsqh(2mn−r,s)

) ∞∏
l=1

1− ql−
1
2

1− ql
,

where ε(r, s) = ± is the eigenvalue of (−1)F on the highest weight vector. Note that when

ε(r, s) = 1, the series expansion of c̃h
(m)

r,s always starts from qh−
c
24 (1− . . . ).

Due to the zero modes, some care is needed when defining a character for a highest

module HR in the Ramond sector, which is generated from |h(m)
r,s 〉. When h

(m)
r,s 6= c/24,

L0 eigensubspaces of HR are two-dimensional in which we can take two basis vectors to

carry opposite fermion parity. On the other hand, L0 eigensubspaces are one-dimensional

when h
(m)
r,s = c/24, which happens for m ∈ 2Z and (r, s) = (m/2,m/2 + 1) — we call this

representation the fixed point of a Kac table. We simply define the following function

chmr,s(q) = q−
c
24

∞∑
n=−∞

(
qh(2mn+r,s) − qh(2mn−r,s)

) ∞∏
l=1

1 + ql

1− ql
,

for r − s ∈ 2Z + 1. The expansion of this function is of the form qh−
c
24 (1 + . . . ). We view

this as a “character” of HR in the sense that

TrHR q
L0− c

24 = 2 chmr,s(q) when h 6= c/24

TrHR q
L0− c

24 = chmr,s(q) when h = c/24.

We choose this normalisation so that it is easy to see if Cardy’s condition is satisfied or not.
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C.2 Modular transformations

When we denote a representation of sVir by its Kac label, we take the “bottom half” of

the Kac table. That is, we take the following sets of Kac labels

(r, s) ∈ INS when r + s ∈ 2Z and

{
1 ≤ s ≤ m+ 1 for r < m

2

1 ≤ s ≤ m
2 for r = m

2

(r, s) ∈ IR when r + s ∈ 2Z + 1 and

{
1 ≤ s ≤ m+ 1 for r < m

2

1 ≤ s ≤ m
2 + 1 for r = m

2

Note that we take this convention only to make it clear that two distinct Kac labels corre-

spond to different representations, and there is no “physical” reason to do so. For example,

in the D6–E6 theory, it may be more natural to take r ∈ {1, 3, 5, 5′, 7, 9} and s ∈ {1, 7}.
We define the modular S-matrix elements as follows

chNSr,s (q̃) =
∑

(r′,s′)∈INS

S
[NS,NS]
(r,s)(r′,s′) chNSr′,s′(q) ,

c̃h
ÑS

r,s (q̃) =
∑

(r′,s′)∈IR

S
[ÑS,R]
(r,s)(r′,s′) chRr′,s′(q) ,

chRr,s(q̃) =
∑

(r′,s′)∈INS

S
[R,ÑS]
(r,s)(r′,s′) c̃h

ÑS

r′,s′(q) ,

which can be written explicitly as

S
[NS,NS]
(r1,s1)(r2,s2) =

4√
m(m+ 2)

sin
(πr1r2

m

)
sin

(
πs1s2

m+ 2

)
,

S
[ÑS,R]
(r1,s1)(r2,s2) = ε(r1, s1) (−1)

r1−s1
2

4
√

2G(r2, s2)√
m(m+ 2)

sin
(πr1r2

m

)
sin

(
πs1s2

m+ 2

)
,

S
[R,ÑS]
(r1,s1)(r2,s2) = ε(r2, s2) (−1)

r2−s2
2

2
√

2√
m(m+ 2)

sin
(πr1r2

m

)
sin

(
πs1s2

m+ 2

)
,

where

G(r, s) =


1
2 if r = m

2 and s = m
2 + 1

1 otherwise
.

Note that chRi (q) is not quite a modular function but
√

2chRi (q) is. Therefore, the above

modular S matrix is non-symmetric but squares to 1. It is possible to make the S matrix

symmetric by introducing the modified Ramond character
√

2chRi (q) when i is not the fixed

point, but we do not do that in this paper.

In terms of ŝu(2)k modular S matrix elements

S
(k)
ij =

√
2

k + 2
sin

(
ijπ

k + 2

)
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where i, j = 1, 2, . . . , k + 1, sVir S matrix elements can be written as

S
[NS,NS]
(r1,s1)(r2,s2) = 2S(m−2)

r1r2 S(m)
s1s2 ,

S
[ÑS,R]
(r1,s1)(r2,s2) = ε(r1, s1) (−1)

r1−s1
2

√
2G(r2, s2) 2S(m−2)

r1r2 S(m)
s1s2 ,

S
[R,ÑS]
(r1,s1)(r2,s2) = ε(r2, s2) (−1)

r2−s2
2

√
2S(m−2)

r1r2 S(m)
s1s2 .

C.3 Fermion parity assignment of NS highest weight vectors

In most cases, a choice of ε(r, s) for NS highest weight vectors is irrelevant. Usually,

NS highest weight vectors |r, s〉 are taken to be bosonic (i.e. G−1/2|r, s〉 and G−3/2|0〉 are

fermionic). However, we take the following convention:

• For m odd,

r + s ∈ 4Z + 2→ |r, s〉 bosonic i.e. ε(r, s) = 1

r + s ∈ 4Z→ |r, s〉 fermionic i.e. ε(r, s) = −1

(In particular, |1, 3〉 = |2, 2〉 with h = 1
10 is fermionic in m = 3.)

• For m = 10 with the D6-E6 bulk partition function,

(r, s) = (1, 5), (1, 7), (3, 1), (3, 11), (5, 5), (5, 7), (7, 1), (7, 11), (9, 5), (9, 7)→ fermionic

others→ bosonic

The first choice for m odd cases makes all the fusion coefficients
(
N
ÑS ÑS

ÑS
)
ij

k
non-

negative. However, there is no obvious procedure to make all these coefficients non-negative

for m even cases. The second choice for m = 10 comes from two observations: modular

transformations of the bulk partition function and character identities between m = 3 and

m = 10.

• Consider the D6-E6 bulk partition function,

Z =
1

2

(
ZNS + Z

ÑS

)
+ ZR

ZNS =
∣∣ch10

1,1 + ch10
1,5 + ch10

1,7 + ch10
1,11

∣∣2 +
∣∣ch10

3,1 + ch10
3,5 + ch10

3,7 + ch10
3,11

∣∣2
+ 2

∣∣ch10
5,1 + ch10

5,5

∣∣2
ZR = 2

∣∣ch10
1,4 + ch10

1,8

∣∣2 + 2
∣∣ch10

3,4 + ch10
3,8

∣∣2 + 4
∣∣ch10

5,4

∣∣2
If we demand Z

ÑS
to have the same form as ZNS , we need

ε(1, 1) = ε(1, 11) = −ε(1, 5) = −ε(1, 7)

ε(3, 1) = ε(3, 11) = −ε(3, 5) = −ε(3, 7)

ε(5, 1) = −ε(5, 5)

to ensure modular S transformation 1
2ZÑS ↔ ZR.
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• From the NS character identities between m = 3 and m = 10, if we want something

similar for ÑS characters, that is (again with q real)(
c̃h

3

1,1

)2
= c̃h

10

1,1 + c̃h
10

1,5 + c̃h
10

1,7 + c̃h
10

1,11(
c̃h

3

1,3

)2
= c̃h

10

3,1 + c̃h
10

3,5 + c̃h
10

3,7 + c̃h
10

3,11

then they fix ε(1, 1) = 1, ε(3, 1) = −1, etc. Furthermore, if we take ε(1, 3) = −1

for m = 3,

c̃h
3

1,1 · c̃h
3

1,3 = c̃h
10

5,1 + c̃h
10

5,5

fixes ε(5, 1) = 1 and ε(5, 5) = −1.

The above arguments fix ε(r, s) of the NS representations with (r, s) appearing in the D6-E6

bulk partition function. For the other NS representations, we simply pick ε(r, s) = 1.

D The folding map relating boundaries and defects

We want to relate two copies of the superconformal algebra defined on the exterior of the

unit circle with one copy outside and one inside. We shall do this by considering a family

of Möbius maps w 7→ z(w), such that the image of the real axis changes smoothly from the

real axis to the unit circle. We can take such a map to be defined by

w = 2iR

(
z − i/R

z − i/R+ 2iR

)
. (D.1)

For R = ∞, this is the identity map; for R = 1 this maps the real axis to the unit circle.

This map further has the property that the derivative at the origin is 1,

∂z

∂w

∣∣∣∣
w=0

= 1 . (D.2)

The map relating generators of the folded model, G2, and the unfolded model, Ḡ, is

G2(w)|w=a = Ḡ(w̄)|w=ā . (D.3)

We would like to relate the modes G2
m and Ḡm in the expansions of the fields

z3/2G2(z) =
∑
m

G2
mz
−m , z̄3/2Ḡ(z̄) =

∑
m

Ḡmz̄
−m , (D.4)

when R = 1. Under the map (D.1), the relation becomes

z3/2G2(z)
∣∣∣
w=a

= +

(
(2iR− a)(2aR2 + 2iR− a)

(2iR+ a)(2aR2 − 2iR− a)

)3/2

z̄3/2Ḡ(z̄)
∣∣∣
w=ā

, (D.5)

where the ‘+’ sign is chosen so that the map is correct at R =∞. At R = 1, we have

z̄|w=a =
1

a
, (D.6)

and so,

a3/2G2(a) = −ia−3/2Ḡ(1/a) , G2
m = −iḠ−m , (D.7)

where the factor of −i comes from requiring the relation (D.5) continue smoothly to R = 1.

Likewise, we find

Ḡ2
m = +iG−m . (D.8)
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E Explicit expansions of boundary states

We give here the explicit expansions of some boundary states for SVIR3
⊗2 and their images

under the maps ι and ρ. These expressions are needed to fix the constants η1,5, η3,1 etc

as well as to calculate the transmission coefficient T . Throughout this section, we shall

use c′ = 2c.

|(1, 1)〉 = |0〉 (E.1)

|(1, 1)ε〉〉 = |0〉 − iε

2c′/3
G−3/2Ḡ−3/2 |0〉+

1

c′/2
L−2L̄−2 |0〉 −

iε

2c′
G−5/2Ḡ−5/2 |0〉

+
1

2c′
L−3L̄−3 |0〉 −

3iε

c′(c′ + 12)
L−2G−3/2L̄−2Ḡ−3/2 |0〉

− 81iε

c′(c′+12)(21+4c′)

[
L−2G−3/2 −

c′ + 12

9
G−7/2

]
×
[
L̄−2Ḡ−3/2 −

c′ + 12

9
Ḡ−7/2

]
|0〉+ . . . (E.2)

ι(|(1, 1)ε〉〉) = |0〉 − iε

4c/3
(αG1

−3/2 + βG2
−3/2)(γḠ1

−3/2 + δḠ2
−3/2) |0〉

+
1

c
(L1
−2 + L2

−2)(L̄1
−2 + L̄2

−2) |0〉

− iε

4c
(αG1

−5/2 + βG2
−5/2)(γḠ1

−5/2 + δḠ2
−5/2) |0〉

+
1

4c
(L1
−3 + L2

−3)(L̄1
−3 + L̄2

−3) |0〉

− 3iε

4c(c+ 6)
(L1
−2 + L2

−2)(αG1
−3/2 + βG2

−3/2)

× (L̄1
−2 + L̄2

−2)(γḠ1
−3/2 + δḠ2

−3/2) |0〉

− 81iε

4c(c+6)(21+8c)

×
[
(L1
−2 + L2

−2)(αG1
−3/2 + βG2

−3/2)− 2(c+ 6)

9
(αG1

−7/2 + βG2
−7/2)

]
×
[
(L̄1
−2 + L̄2

−2)(γḠ1
−3/2 + δḠ2

−3/2)− 2(c+6)

9
(γḠ1

−7/2 + δḠ2
−7/2)

]
|0〉

+ . . . (E.3)

ρ(|(1, 1)ε〉〉) = |0〉〈0|

− iε

4c/3

[
αγG−3/2Ḡ−3/2|0〉〈0|+ iαδG−3/2|0〉〈0|G3/2

+ iβγḠ−3/2|0〉〈0|Ḡ3/2 + βδ|0〉〈0|Ḡ3/2G3/2

]
+

1

c

[
L−2L̄−2|0〉〈0|+ L−2|0〉〈0|L2 + L̄−2|0〉〈0|L̄2 + |0〉〈0|L̄2L2

]
− iε

4c

[
αγG−5/2Ḡ−5/2|0〉〈0|+ iαδG−5/2|0〉〈0|G3/2

+ iβγḠ−5/2|0〉〈0|Ḡ3/2 + βδ|0〉〈0|Ḡ3/2G3/2

]
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+
1

4c

[
L−3L̄−3|0〉〈0|+ L−3|0〉〈0|L3 + L̄−3|0〉〈0|L̄3 + |0〉〈0|L̄3L3

]
+ . . . (E.4)

|(1, 5)〉 = |3
2
〉 (E.5)

|(1, 5)ε〉〉 = |3
2
〉 − iε

3
G−1/2Ḡ−1/2 |

3

2
〉+

1

3
L−1L̄−1 |

3

2
〉+ . . . (E.6)

ι(|(1, 5)〉) =
i η1,5

4c/3
(αG1

−3/2 − βG
2
−3/2)(γḠ1

−3/2 − δḠ
2
−3/2) |0〉 (E.7)

ι(|(1, 5)ε〉〉) =
i η1,5

4c/3
(αG1

−3/2 − βG
2
−3/2)(γḠ1

−3/2 − δḠ
2
−3/2) |0〉

− εη1,5

c
(L1
−1 − L2

−1)(L̄1
−1L̄

2
−1) |0〉+ . . . (E.8)

ρ(|(1, 5)ε〉〉) =
i η1,5

4c/3

[
αγG−1/2Ḡ−3/2|0〉〈0|+ βδ|0〉〈0|Ḡ3/2G3/2

− iαδG−3/2|0〉〈0|G3/2 − iβγḠ−3/2|0〉〈0|Ḡ3/2

]
(E.9)

− εη1,5

c

[
L−2L̄−2|0〉〈0| − L−2|0〉〈0|L2 − L̄−2|0〉〈0|L̄2 + |0〉〈0|L̄2L2

]
+ . . .

We now consider the sector corresponding to H1/10 ⊗H1/10. We give the results in terms

of a state of weight 2h, but of course in this particular case h = 1/10, the states are

identified as

|2h〉 = |1
5
〉 = |(3, 5)〉 , |2h+

1

2
〉 = | 7

10
〉 = |(3, 1)〉 , |2h+1〉 = |6

5
〉 = |(3, 7)〉 , (E.10)

and the constants are η ≡ η3,1 and η′ ≡ η3,7.

|(2h)ε〉〉 = |2h〉 − iε

4h
G−1/2Ḡ−1/2 |2h〉+

1

4h
L−1L̄−1 |2h〉+ . . . (E.11)

ι(|(2h)ε〉〉) = |2h〉 − iε

4h
(αG1

−1/2 + βG2
−1/2)(γḠ1

−1/2 + δḠ2
−1/2) |2h〉

+
1

4h
(L1
−1 + L2

−1)(L̄1
−1 + L̄2

−1) |2h〉+ . . . (E.12)

ρ(|(2h)ε〉〉) = |h〉〈h| − iε

4h

[
αγG−1/2Ḡ−1/2|h〉〈h|+ iαδG−1/2|h〉〈h|G1/2

+ iβγḠ−1/2|h〉〈h|Ḡ1/2 + βδ|h〉〈h|Ḡ1/2G1/2

]
+

1

4h

[
L−1L̄−1|h〉〈h|+L−1|h〉〈h|L1+L̄−1|h〉〈h|L̄1+|h〉〈h|L̄1L1

]
+ . . .

|
(

2h+
1

2

)
ε〉〉 = |2h+

1

2
〉 − iε

4h+1
G−1/2Ḡ−1/2 |2h+

1

2
〉+ . . . (E.13)

ι

(
|2h+

1

2
〉
)

=
iη

4h
(αG1

−1/2 − βG
2
−1/2)(γḠ1

−1/2 − δḠ
2
−1/2) |2h〉 (E.14)

ι

(
|
(

2h+
1

2

)
ε〉〉
)

=
iη

4h
(αG1

−1/2 − βG
2
−1/2)(γḠ1

−1/2 − δḠ
2
−1/2) |2h〉

− εη

4h(4h+ 1)
(L1
−1 − L2

−1 − 2αβG1
−1/2G

2
−1/2)

× (L̄1
−1 − L̄2

−1 − 2γδḠ1
−1/2Ḡ

2
−1/2) |2h〉+ . . . (E.15)
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ρ(|
(

2h+
1

2

)
ε〉〉) =

η

4h

[
iαγG−1/2Ḡ−1/2|h〉〈h|+ iβδ|h〉〈h|Ḡ1/2G1/2

+ αδG−1/2|h〉〈h|G1/2 + βγḠ−1/2|h〉〈h|Ḡ1/2

]
− εη

4h(4h+1)

[
L−1L̄−1|h〉〈h|+L−1|h〉〈h|L1+L̄−1|h〉〈h|L̄1+|h〉〈h|L̄1L1

]
+

2iεηαβ

4h(4h+1)

[
G−1/2|h〉〈h|Ḡ1/2L1 − L̄−1G−1/2|h〉〈h|Ḡ1/2

]
+

2iεηγδ

4h(4h+1)

[
L−1Ḡ−1/2|h〉〈h|G1/2 − Ḡ−1/2|h〉〈h|Ḡ1/2L̄1

]
+

4εηαβγδ

4h(4h+1)

[
G−1/2Ḡ−1/2|h〉〈h|Ḡ1/2G1/2

]
+ . . .

|(2h+1)ε〉〉 = |2h+1〉+ . . . (E.16)

ι(|(2h+1)ε〉〉) =
η′

4h+1

(
L1
−1 − L2

−1 +
αβ

2h
G1
−1/2G

2
−1/2

)
×
(
L̄1
−1 − L̄2

−1 +
γδ

2h
Ḡ1
−1/2Ḡ

2
−1/2

)
|2h〉+ . . . (E.17)

ρ(|(2h+1)ε〉〉) =
η′

4h+1

[
L−1L̄−1|h〉〈h|−L−1|h〉〈h|L1−L̄−1|h〉〈h|L̄1+|h〉〈h|L̄1L1

]
+ . . .

+
iη′αβ

2h(4h+1)

[
G−1/2|h〉〈h|Ḡ1/2L1 − L̄−1G−1/2|h〉〈h|Ḡ1/2

]
+

iη′γδ

2h(4h+1)

[
L−1Ḡ−1/2|h〉〈h|G1/2 − Ḡ−1/2|h〉〈h|Ḡ1/2L̄1

]
− η′αβγδ

4h2(4h+1)

[
G−1/2Ḡ−1/2|h〉〈h|Ḡ1/2G1/2

]
+ . . . (E.18)

F The matrices Ψ
(a,b)
(r,s)

The matrices Ψ
(a,b)
(r,s) are given in terms of the eigenvectors of adjacency matrices of the

Dynkin diagrams of D6 and E6 in equation (4.22):

Ψ
(a,b)
(r,s) =

ψra(D6)ψsb(E6)√
S

(8)
1r S

(10)
1s

, (F.1)

We repeat here for convenience the vectors ψra(G) given in [1].

The eigenvectors of the D6 adjacency matrix ψra(D6) are given by

ψra(D6) =
√

2S(8)
ar for a, r 6= 5 ψ5±

a (D6) = S
(8)
a5 for a 6= 5

ψr5±(D6) =
1√
2
S

(8)
5r for r 6= 5 ψ5ε

′

5ε (D6) =
1

2

(
S

(8)
55 − εε

′
)

where a = 1, 2, 3, 4, 5+, 5− (a = 5± correspond to 5 and 6 nodes on the D6 Dynkin diagram),

r ∈ E(D6) = {1, 3, 5, 5′, 7, 9} (r = 5± above correspond to 5 and 5′), and S
(8)
ij is the ŝu(2)8
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modular S matrix elements,

S
(k)
ij =

√
2

k + 2
sin

(
πij

k + 2

)
Explicitly, the entries in ψra(D6) are

a \ r 1 3 5+ (= 5) 5− (= 5′) 7 9

1 −1+
√

5
2
√

10
1
2

√
3
5 + 1√

5
1√
5

1√
5

1
2

√
3
5 + 1√

5
−1+

√
5

2
√

10

2 1
2

√
1− 1√

5
1
2

√
1 + 1√

5
0 0 −1

2

√
1 + 1√

5
−1

2

√
1− 1√

5

3 1
2

√
3
5 + 1√

5
−1+

√
5

2
√

10
− 1√

5
− 1√

5
−1+

√
5

2
√

10
1
2

√
3
5 + 1√

5

4 1
2

√
1 + 1√

5
−1

2

√
1− 1√

5
0 0 1

2

√
1− 1√

5
−1

2

√
1 + 1√

5

5+ (= 5) 1√
10

− 1√
10

1
10

(
−5 +

√
5
)

1
10

(
5 +
√

5
)

− 1√
10

1√
10

5− (= 6) 1√
10

− 1√
10

1
10

(
5 +
√

5
)

1
10

(
−5 +

√
5
)

− 1√
10

1√
10

The eigenvectors of the E6 adjacency matrix ψsb(E6) are given by

b \ s 1 4 5 7 8 11

1 a 1
2 b b 1

2 a

2 b 1
2 a −a −1

2 −b

3 c 0 −d −d 0 c

4 b −1
2 a −a 1

2 −b

5 a −1
2 b b −1

2 a

6 d 0 −c c 0 −d

where
a = 1

2

√
3−
√

3
6 b = 1

2

√
3+
√

3
6

c = 1
2

√
3+
√

3
3 d = 1

2

√
3−
√

3
3

Putting these together, we can calculate the entries of Ψ. Since it is helpful to have

an overview of the properties of Ψ when discussing the boundary states from the extended

algebra point of view, we include a table of the approximate numerical values in table 8.

G Character identities

Relations expressing products of NS characters of sVir3 as sums of NS characters of sVir10:

ch10
1,1 + ch10

1,5 + ch10
1,7 + ch10

1,11 = (ch3
1,1)2 (G.1)

ch10
3,1 + ch10

3,5 + ch10
3,7 + ch10

3,11 = (ch3
1,3)2 (G.2)

ch10
5,1 + ch10

5,5 = ch3
1,1 · ch3

1,3 (G.3)
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(r, s)

(a, b) (1, 1) (1, 5) (1, 7) (1, 11) (3, 1) (3, 5) (3, 7) (3, 11) (5, 1) (5, 5) (5′, 1) (5′, 5)

(1, 1) 0.3717 0.3717 0.3717 0.3717 0.6015 0.6015 0.6015 0.6015 0.4729 0.4729 0.4729 0.4729

(1, 2) 0.7182 −0.1924 −0.1924 0.7182 1.162 −0.3114 −0.3114 1.162 0.9135 −0.2448 0.9135 −0.2448

(1, 3) 1.016 −0.2721 −0.2721 1.016 1.643 −0.4403 −0.4403 1.643 1.292 −0.3462 1.292 −0.3462

(1, 6) 0.5257 0.5257 0.5257 0.5257 0.8507 0.8507 0.8507 0.8507 0.6687 0.6687 0.6687 0.6687

(2, 1) 0.7071 −0.7071 0.7071 −0.7071 0.7071 −0.7071 0.7071 −0.7071 0 0 0 0

(2, 2) 1.366 0.3660 −0.3660 −1.366 1.366 0.3660 −0.3660 −1.366 0 0 0 0

(2, 3) 1.932 0.5176 −0.5176 −1.932 1.932 0.5176 −0.5176 −1.932 0 0 0 0

(2, 6) 1.000 −1.000 1.000 −1.000 1.000 −1.000 1.000 −1.000 0 0 0 0

(3, 1) 0.9732 0.9732 0.9732 0.9732 0.2298 0.2298 0.2298 0.2298 −0.4729 −0.4729 −0.4729 −0.4729

(3, 2) 1.880 −0.5038 −0.5038 1.880 0.4438 −0.1189 −0.1189 0.4438 −0.9135 0.2448 −0.9135 0.2448

(3, 3) 2.659 −0.7125 −0.7125 2.659 0.6277 −0.1682 −0.1682 0.6277 −1.292 0.3462 −1.292 0.3462

(3, 6) 1.376 1.376 1.376 1.376 0.3249 0.3249 0.3249 0.3249 −0.6687 −0.6687 −0.6687 −0.6687

(4, 1) 1.144 −1.144 1.144 −1.144 −0.4370 0.4370 −0.4370 0.4370 0 0 0 0

(4, 2) 2.210 0.5922 −0.5922 −2.210 −0.8443 −0.2262 0.2262 0.8443 0 0 0 0

(4, 3) 3.126 0.8376 −0.8376 −3.126 −1.194 −0.3199 0.3199 1.194 0 0 0 0

(4, 6) 1.618 −1.618 1.618 −1.618 −0.6180 0.6180 −0.6180 0.6180 0 0 0 0

(5, 1) 0.6015 0.6015 0.6015 0.6015 −0.3717 −0.3717 −0.3717 −0.3717 −0.2923 −0.2923 0.7651 0.7651

(5, 2) 1.162 −0.3114 −0.3114 1.162 −0.7182 0.1924 0.1924 −0.7182 −0.5646 0.1513 1.478 −0.3961

(5, 3) 1.643 −0.4403 −0.4403 1.643 −1.016 0.2721 0.2721 −1.016 −0.7984 0.2139 2.090 −0.5601

(5, 6) 0.8507 0.8507 0.8507 0.8507 −0.5257 −0.5257 −0.5257 −0.5257 −0.4133 −0.4133 1.082 1.082

(6, 1) 0.6015 0.6015 0.6015 0.6015 −0.3717 −0.3717 −0.3717 −0.3717 0.7651 0.7651 −0.2923 −0.2923

(6, 2) 1.162 −0.3114 −0.3114 1.162 −0.7182 0.1924 0.1924 −0.7182 1.478 −0.3961 −0.5646 0.1513

(6, 3) 1.643 −0.4403 −0.4403 1.643 −1.016 0.2721 0.2721 −1.016 2.090 −0.5601 −0.7984 0.2139

(6, 6) 0.8507 0.8507 0.8507 0.8507 −0.5257 −0.5257 −0.5257 −0.5257 1.082 1.082 −0.4133 −0.4133

Table 8. Numerical values of the boundary state coefficients Ψ
(a,b)
(r,s) .

Relations expressing products of Ramond characters for sVir3 as sums of Ramond

characters for sVir10:

ch10
3,4 + ch10

3,8 = (ch3
1,2)2 (G.4)

ch10
1,4 + ch10

1,8 = (ch3
1,4)2 (G.5)

ch10
5,4 = ch3

1,2 · ch3
1,4 (G.6)

Relations expressing Ramond characters for sVir3 at
√
q as sums of characters for

sVir10. Note that the same characters for sVir3 can be expressed as sums of characters in

both the Ramond and NS sectors of sVir10.

ch10
2,4 + ch10

2,8 = ch3
1,4(
√
q) (G.7)

ch10
2,1 + ch10

2,5 + ch10
2,7 + ch10

2,11 = ch3
1,4(
√
q) (G.8)

ch10
4,4 + ch10

4,8 = ch3
1,2(
√
q) (G.9)

ch10
4,1 + ch10

4,5 + ch10
4,7 + ch10

4,11 = ch3
1,2(
√
q) (G.10)
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