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Abstract: The evaluation of generic Cachazo-He-Yuan(CHY)-integrands is a big chal-

lenge and efficient computational methods are in demand for practical evaluation. In this

paper, we propose a systematic decomposition algorithm by using cross-ratio identities,

which provides an analytic and easy to implement method for the evaluation of any CHY-

integrand. This algorithm aims to decompose a given CHY-integrand containing higher-

order poles as a linear combination of CHY-integrands with only simple poles in a finite

number of steps, which ultimately can be trivially evaluated by integration rules of simple

poles. To make the method even more efficient for CHY-integrands with large number of

particles and complicated higher-order pole structures, we combine the Λ-algorithm and the

cross-ratio identities, and as a by-product it provides us a way to deal with CHY-integrands

where the Λ-algorithm was not applicable in its original formulation.
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1 Introduction

The n-particle scattering amplitude in arbitrary dimension can be described by Cachazo-

He-Yuan (CHY) formulation [1–5] as

Atree
n =

∫ ( ∏n
a=1 dza

vol SL(2,C)

)(∏′
δ(Ea)

)
I(z) (1.1)

=

∫ (
zrszstztr

∏
a∈{1,2,...,n}\{r,s,t}

dza

)(
zijzjkzki

∏
a∈{1,2,...,n}\{i,j,k}

δ(Ea)
)
I(z) , (1.2)

respecting Möbius SL(2,C) invariance. The scattering equations Ea’s form an algebraic

system of n rational functions in n complex variables za, a = 1, 2, . . . , n as

0 = Ea =
∑

b∈{1,2,...,n}\{a}

sab
za − zb

for a = 1, 2, . . . , n , (1.3)

where {1, 2, . . . , n} \ {a} denotes a set of {1, 2, . . . , n} extracting the element a. Instead

of (1.3), it has been shown in [6] that an equivalent polynomial form of scattering equations
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exists, with its geometric structure investigated in [7], makes the evaluation of (1.2) well-

suited in the algebraic geometry context. The Möbius invariance implies that among the

n distinct punctured points za, a = 1, 2, . . . , n in Riemann sphere, any three of them, say

za, a ∈ {r, s, t} , can be fixed to particular locations, conventionally chosen as zr =∞, zs =

1, zt = 0, such that the n-dimensional integration module the volume of SL(2,C) in (1.1)

can be written as the one in the first parenthesis of (1.2), which is a (n − 3)-dimensional

integration. The Möbius invariance also implies that only (n− 3) scattering equations are

linearly independent, and it forces us to write the
∏′δ(Ea) in (1.1) as the one in the second

parenthesis of (1.2), to ensure that
∏′δ(Ea) is independent of removing any three scattering

equations Ea, a ∈ {i, j, k}, leaving only (n− 3) linearly independent delta functions. Hence

formula (1.2) is in fact a (n − 3)-dimensional integration constrained by (n − 3) delta

functions, allowing a representation

Atree
n =

∑
z∈ solutions

zijzjkzkizrszstztr
Jacobian

I(z) , (1.4)

on the (n− 3)! solutions of scattering equations, where

Jacobian = det

[
∂Ea
∂zb

]
(n−3)×(n−3)

, for a ∈ {1, 2, . . . , n} \ {i, j, k} , b ∈ {1, 2, . . . , n} \ {r, s, t} ,

(1.5)

coming from the evaluation of (n− 3) delta functions. The so called CHY-integrand I(z)

is a rational function of zij ≡ zi − zj , external momenta ki’s as well as the polarization

vectors εi’s, whose explicit definition varies with the field theories under consideration,

while systematic and compact construction of I(z) exists for bi-adjacent cubic-scalar, pure

Yang-Mills, Gravity theories, NLSM, DBI as well as mixing among them [3–5].

Although conceptually simple and elegant, it is in fact impossible to analytically eval-

uate (1.2) by (1.4), due to the well-known Abel-Ruffini theorem that there is no algebraic

solution to the general polynomial equations of degree five or higher with arbitrary coeffi-

cients. There are a few studies on the solutions of scattering equations in four-dimension

and at special kinematics [8–11], but not generic. Even in five-point case where analytic

solution of scattering equations is available, the (5− 3)! = 2 solutions are radical functions

of Mandelstam variables. Only after summing over two solutions we get rational functions

as the final simple result. This infers that there must be better evaluation techniques, and

it motives various approaches towards the evaluation of (1.2) avoiding the explicit solutions

of scattering equations, based on algebraic geometry techniques. In [12], a method is pro-

posed and applied to analytically evaluating all five-point amplitudes, by the well-known

Vieta formulae that relates the sum of solutions of a polynomial equations to the coeffi-

cient of polynomials. The elimination theory elaborated therein for rewriting multivariate

polynomials as an univariate polynomial is further developed in [13–15], to deal with more

generic n-particle scattering system. In [16], companion matrix method is introduced,

which rephrases the computation of summing over (n − 3)! solutions as computing the

trace of certain (n− 3)!× (n− 3)! matrix, and provides an intuitive interpretation that the

final analytic result is indeed rational functions. This is later proven to be equivalent to the

elimination method [13, 15]. In [17], Bezoutian matrix method is introduced to evaluate
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the total sum of residues of (1.2) algebraically, without working out individual residues

(or solutions of scattering equations). In [18, 19], polynomial reduction techniques are

investigated based on the polynomial form [6] of scattering equation. All above algebraic

geometry based methods are in principle generalizable to the evaluation of any n-particle

scattering, however the elimination algorithm as well as the polynomial reduction rewrite

the polynomials in a form such that the coefficients are rather involved. Furthermore, a

complete computation also depends on the explicit expression of Jacobian (1.5) which could

be very complicated for large n. These make the analytic computation in practical difficult

even for lower-point amplitude. A resulting trouble is that the amplitude computed by

these methods is not in the form with manifest physical poles, and simplification of the

result takes quite a long time. For example, using the companion matrix method [16], it

would be possible to spend hours to produce a six-point amplitude of scalar theory.

In the demand of computational efficiency, many other methods come to rescue. In [20],

graph theory knowledge is introduced in the contour integration of (1.2), to expand a

generic CHY-integrand into basis of known simple CHY-integrands, named after building

blocks. This idea is further developed in [21], resulting into the so called Λ-algorithm,

to recursively cut a generic CHY-integrand into lower-point sub-CHY-integrands until to

certain basic building blocks. Although this method is able to deal with off-shell configu-

rations, which have allowed to generalize it to loop-level recently in [22], and despite it can

compute CHY-integrands of higher-order poles, it still has some limitations. The cutting

procedure for CHY-integrands is general, but when the so called singular configurations

appear in sub-CHY-integrands, evaluation becomes difficult. However for many CHY-

integrands, the singular configuration is un-avoidable. Another approach is inspired by the

string amplitude computation, where combinatorial rules for integration (integration rules)

of (1.2) is derived [23, 24]. In [25, 26], auxiliary Feynman-like diagrams are introduced to

compute the global residue, quite similar to that of [23, 24, 27], while in [28], Berends-Giele

recursion relations are applied to the computation of CHY-integrands which are products

of two Parke-Taylor type factors that containing only simple poles. On the other hand, the

integration rule is a rather simple and efficient technique. In fact, the actual computation

can be carried out without any information of the solutions of scattering equations as well

as the detailed expression of Jacobian in CHY-formulation, but only the information of

CHY-integrand as a rational function of zij . However, it suffers from a disadvantage that

only CHY-integrand with simple poles can be perfectly evaluated, while a generic CHY-

integrand from Yang-Mills or gravity theories could have many higher-order poles. There

are two intuitive ways of bypassing this disadvantage. The first is to create rules for higher-

order poles, which is investigated in [29], but yet a complete set of rules for any types of

higher-order poles are required therein before it could be a complete method. The other is

to decompose a CHY-integrand of higher-order poles into several CHY-integrands of simple

poles by non-trivial identities relating different rational terms of zij . The idea of decom-

position is already discussed in [23], where Pfaffian identities are introduced to take on the

task. But the power of Pfaffian identities is limited to certain examples with lower-point
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scattering, and no systematic implementation can be elaborated with them.1 In a recent

paper [30], identities originated from monodromy relations are proposed to systematically

decompose a CHY-integrand of higher-order poles into those of simple poles.

In this paper, we propose another kind of identities, namely the cross-ratio identities, to

overcome the difficulties towards a systematic and complete evaluation of (1.2) in practice.

These identities are applied in two levels. For a CHY-integrand with reasonable number

of scattering particles and not so complicated higher-order pole structures,2 the cross-ratio

identities can be applied directly to decompose a CHY-integrand into terms with only

simple poles. While in the situation that a naive decomposition of a CHY-integrand would

result in far too much terms that slow the computation, the Λ-algorithm developed in [21]

would then be introduced to split a CHY-integrand into products of several lower-point

CHY-integrands which can not be computed by Λ-algorithm, followed by the application

of cross-ratio identities to reformulate the lower-point ones as those that can be computed

by integration rules of simple poles or Λ-algorithm.

This paper is structured as follows. In section 2, we present the construction of cross-

ratio identities and its generic formulation for an arbitrary pole 1/s, and demonstrate the

decomposition of CHY-integrands of higher-order poles by cross-ratio identities with two

examples. in section 3, we propose a systematic algorithm aims to completely decompose

any CHY-integrand of higher-order poles within finite steps by cross-ratio identities, and

illustrate the algorithm by a highly non-trivial eight-point example. In section 4, we

illustrate how the Λ-algorithm and decomposition algorithm with cross-ratio identities

can work together to make an even more efficient computational method. Recurrence

relations for a particular type of CHY-integrands are presented as an example to show

that for many complicated CHY-integrands with large n, iterative cutting procedure can

be applied to rewrite them as lower-point sub-CHY-integrands which are easy to compute.

Section 5 comes the conclusion, while in appendix A, a practical algorithm is proposed for

a complete implementation of integration rules of simple poles. In appendix B, comparison

is provided between the identities from monodromy relations [30] and cross-ratio identities,

while in appendix C, D, quantities needed for the recurrence relations by Λ-algorithm are

provided. Very brief introduction on integration rules of simple poles can be found in

section 3 and appendix A, but we suggest [29] for more detailed explanation. For detailed

description of Λ-algorithm please refer to [21, 22].

2 The cross-ratio identities

Following the decomposition idea, the primary problem is to find a better identity rather

than Pfaffian identities, which can be applied to CHY-integrands with any pole structures.

1For even-integer n, a Pfaffian identity relates 2(n−3)!! terms, while for odd-integer n, it relates (n−2)!!

terms, so the number of terms involved in an identity grows factorially. But a more severe problem is that

the Mandelstam variables involved in Pfaffian identity are only sij , and a pole of 1
si1i2·im

with m > 2 is

not obviously exist.
2From the practice, this can be detailed as around n = 10 with about five higher-order poles (double or

triple pole), or any number of particles with around two higher-order poles. They can be computed in a

reasonably short time.

– 4 –



J
H
E
P
0
9
(
2
0
1
6
)
1
3
3

✶ ✷

✸✹

✶ ✷

✸✹

✶ ✷

✸✹

Figure 1. The 4-regular graphs of four-point CHY-integrands with simple, double and triple pole

respectively.

Although it is extensively discussed in the literature, let us take, for conceptual inspiration,

some four-point CHY-integrands as starting point. Three typical CHY-integrands are given

as

IS
4 =

1

z212z
2
23z

2
34z

2
41

, ID
4 =

1

z312z23z
3
34z41

, IT
4 =

1

z412z
4
34

, (2.1)

with their 4-regular graphs shown in figure 1.

The explicit results for them are given as

A(IS
4) = − 1

s12
− 1

s14
, A(ID

4 ) = −s13
s212

, A(IT
4 ) =

s13s14
s312

. (2.2)

The CHY-integrand IS
4 contains only simple poles, and can be readily evaluated by integra-

tion rules, while ID
4 and IT

4 contain double pole and triple pole respectively, which makes

it impossible to apply integration rules of simple poles. However, a simple factorization of

these results

A(ID
4 ) = − 1

s12

(
s13
s12

)
, A(IT

4 ) =
1

s212

(
s13s14
s12

)
(2.3)

indicates that, if explicit 1
s factor can be introduced in the original CHY-integrand to

compensate the extra degrees of s from the higher-order poles, then the expressions in

the parenthesis are likely to be produced by CHY-integrands of simple poles (dressed with

appropriate s). To explain the above statement, let us start from a scattering equation

E1 =
s12
z12

+
s13
z13

+
s14
z14

= 0 , (2.4)

and modify it as

0 =
z12
s12
E1 = 1 +

s13
s12

z12
z13

+
s14
s12

z12
z14

= 1− s12 + s14
s12

z12
z13

+
s14
s12

z12
z14

=

(
1− z12

z13

)
+
s14
s12

(
z12
z14
− z12
z13

)
=
z23
z13

+
s14
s12

z12z43
z14z13

. (2.5)

From the last expression we end up with an identity

1 = −s14
s12

z12z43
z14z23

. (2.6)

Since the zij ’s in the identity are arranged as cross-ratios, which are invariant under Möbius

transformation, we call it the cross-ratio identity. Note that a pole 1
s12

is apparent in the

identity. Multiplying it with ID
4 leads to

ID
4 =

(
1

z312z23z
3
34z41

)
×
(
−s14
s12

z12z43
z14z23

)
= −s14

s12
IS
4 , (2.7)
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Figure 2. The diagrammatic presentation of how CHY-integrands with different pole structures

can be related by cross-ratio identities.

while multiplying it two times with IT
4 leads to

IT
4 =

(
1

z412z
4
34

)
×
(
−s14
s12

z12z43
z14z23

)2

=
s214
s212
IS
4 , (2.8)

which are diagrammatically shown in figure 2. Hence for four-point case, an evaluation

of CHY-integrands with simple poles is sufficient to produce results of all other CHY-

integrands with higher-order poles.

The idea encoded in above decomposition procedure is readily generalized to any CHY-

integrands of higher-order poles. For a given n-point CHY-integrand, the poles as well as

the order of poles can be determined by Pole Condition. Whenever there is any higher-

order pole 1
sαA

, we can reduce the order of pole by multiplying identities containing that

pole sA. The decomposition proceeds by iteratively reducing the higher-order poles, until

every resulting CHY-integrand is composed of simple poles. In practical computation, this

strategy can be carried out only when there are enough identities of any possible poles,

and as mentioned, the Pfaffian identity is obviously not a good candidate. However, the

cross-ratio identity that appeared in the four-point examples can be generalized to satisfy

the computational demand, which we will describe below.

The cross-ratio identities. For a n-point scattering system, let us pick up an arbitrary

scattering equation Ea. For p, q 6= a, we can modify the scattering equation as

0 =
zaq
saq
Ea = 1 +

∑
b 6=a,q

zaq
saq

sab
zab

= 1 +
∑

b 6=a,q,p

zaq
saq

sab
zab

+
−
∑

t 6=a,p sat

zap

zaq
saq

=

(
1− zaq

zap

)
+
∑

b 6=a,q,p

sab
saq

(
zaq
zab
− zaq
zap

)
, (2.9)
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where in the last step of line one we have rewritten sap by momentum conservation. Using

zij − zik = zkj , we get

0 =
zqp
zap

+
∑

b 6=a,q,p

sab
saq

zaqzbp
zabzap

.

Hence the cross-ratio identity for sij-type pole can be formulated as

1 = −
∑

b 6=a,q,p

sab
saq

zaqzbp
zabzqp

. (2.10)

Again we remark that in each term of the identity, zij ’s are arranged as cross-ratios, which

are invariant under Möbius transformation. The identities (2.10) will be called fundamental

cross-ratio identities since all other identities of given pole si1i2···im can be derived from

them.

Before presenting the cross-ratio identity for a generic pole si1i2···im , let us show the

construction by taking the pole sijkl as a warm up. The fundamental cross-ratio iden-

tity (2.10) can be rewritten as

− sij =
∑
b 6=i,j,p

sib
zbp
zib

zij
zjp

. (2.11)

Let us take an arbitrary p 6= i, j, k, l, and consider the following three fundamental cross-

ratio identities

−sij = sik
zkpzij
zikzjp

+ sil
zlpzij
zilzjp

+
∑

b 6=i,j,k,l,p
sib
zbpzij
zibzjp

, (2.12)

−skj = ski
zipzkj
zkizjp

+ skl
zlpzkj
zklzjp

+
∑

b 6=i,j,k,l,p
skb

zbpzkj
zkbzjp

, (2.13)

−slj = sli
zipzlj
zlizjp

+ slk
zkpzlj
zlkzjp

+
∑

b 6=i,j,k,l,p
slb
zbpzlj
zlbzjp

. (2.14)

It is easy to see that

sik
zkpzij
zikzjp

+ski
zipzkj
zkizjp

= sik , sil
zlpzij
zilzjp

+sli
zipzlj
zlizjp

= sil , skl
zlpzkj
zklzjp

+slk
zkpzlj
zlkzjp

= slk , (2.15)

so summing over the three identities, we obtain

− sijkl =
∑

b 6=i,j,k,l,p

(
sib
zbpzij
zibzjp

+ skb
zbpzkj
zkbzjp

+ slb
zbpzlj
zlbzjp

)
. (2.16)

This immediately gives the cross-ratio identity of sijkl-type pole as

1 = − 1

sijkl

∑
b 6=i,j,k,l,p

(
sib
zbpzij
zibzjp

+ skb
zbpzkj
zkbzjp

+ slb
zbpzlj
zlbzjp

)
. (2.17)

Some remarks are in order for identity (2.17). The first is about the factors zij , zkj , zlj
in the numerator of each term respectively. They are crucial for reducing the number of

lines that connecting nodes {i, j, k, l}, hence consequently reducing the degree of pole sijkl

– 7 –



J
H
E
P
0
9
(
2
0
1
6
)
1
3
3

by one. This is the key point of our algorithm. The second is about the p index. It could be

any one in {1, 2, . . . , n} except i, j, k, l. Otherwise for instance p = k, there would always

be a factor zjp ≡ zjk in the denominator of (2.17), such that the number of lines connecting

nodes {i, j, k, l} will increase by one. So the order of poles will not be reduced. The third

is about the j index. In the derivation, we have chosen to fix the index j and consider

three fundamental cross-ratio identities for poles sij , skj , slj . Such choice breaks the sym-

metry among indices {i, j, k, l}, leaving only S3 permutation symmetry on {i, k, l} manifest.

Similarly, the choice of p also breaks the symmetry among remaining indices. As a conse-

quence, different choice of j, p leads to different cross-ratio identity for the same pole sijkl,

and during computation we can choose an appropriate one to simplify the decomposition.

The construction of cross-ratio identity for generic pole 1
sA

follows exactly the same

derivation. Let A be a subset of {1, 2, . . . , n}, and assume A to be its complement. Because

of momentum conservation, sA = sA. Then the cross-ratio identity for pole sA with selected

index j ∈ A and p ∈ A is

1 = −
∑

i∈A\{j}

∑
b∈A\{p}

sib
sA

zbpzij
zibzjp

≡ In[A, j, p] , (2.18)

where A \ {j} denotes the set A extracting the element j. In the notation In[A, j, p], A

is the subset associated to the pole sA of identity, and j, p are explicitly written down to

emphasize the special choice. We remark again that, the cross-ratio identity is invariant

under permutation on A \ {j} as well as permutation on A \ {p}, so there are in total

k(n− k) different identities for the pole sA if A is a length-k subset.

With the general construction of cross-ratio identities, we can now implement an algo-

rithm for the decomposition of any CHY-integrands with higher-order poles. In the next

section, we will present a systematic decomposition algorithm, but now let us follow two

examples to explore some details during the decomposition.

Two examples. The first example considers the CHY-integrand

I [1]6 =
1

z312z23z
3
34z45z

3
56z61

, (2.19)

with its 4-regular graph shown in figure 3. From the counting of lines among subsets of

nodes, we know the result for this CHY-integrand should be

N(sij)

s212s
2
34s

2
56s123s234s345

, (2.20)

where N(sij) is some polynomial function of sij which is irrelevant for the purpose of the

current example. So in order to perform the decomposition, we need to multiply it with

a cross-ratio identity of the pole 1
s12

, an identity of the pole 1
s34

and an identity of the

pole 1
s56

. Since for each sij , there are 2(6 − 2) = 8 cross-ratio identities, so naively we

have 83 = 512 possibilities of multiplying three identities. However, not all of them can

successfully decompose I [1]6 into terms with only simple poles, since with the multiplication

of zij , new higher-order poles would appear in some terms (as long as there are more than

– 8 –
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Figure 3. The 4-regular graph of a six-point CHY-integrand with three double poles.

two terms for a new higher-order pole, such that after summing over these terms the new

higher-order pole is still canceled.). Of course, the best expectation is that we can find

at least one multiplication such that the original CHY-integrand can be decomposed into

terms with only simple poles. Fortunately in this example, if taking the following three

fundamental cross-ratio identities

I6[{1, 2}, 2, 5] = −
(
s13z12z35
s12z13z25

+
s14z12z45
s12z14z25

+
s16z12z65
s12z16z25

)
,

I6[{3, 4}, 3, 5] = −
(
s46z65z43
s34z35z46

+
s14z15z43
s34z35z41

+
s24z25z43
s34z35z42

)
,

I6[{5, 6}, 5, 1] = −
(
s26z21z65
s56z51z62

+
s36z31z65
s56z51z63

+
s46z41z65
s56z51z64

)
, (2.21)

i.e.,

1 = I6[{1, 2}, 2, 5]I6[{3, 4}, 3, 5]I6[{5, 6}, 5, 1] , (2.22)

then all the resulting 33 = 27 terms after expanding I [1]6 × I6[{1, 2}, 2, 5]× I6[{3, 4}, 3, 5]×
I6[{5, 6}, 5, 1] are CHY-integrands with only simple poles. By using integration rules for

simple poles, it is confirmed that summing over these 27 terms indeed produces correct

answer.

The second example considers the CHY-integrand

I [2]6 =
1

z412z
3
34z45z

3
56z63

, (2.23)

with its 4-regular graph shown in figure 4. Again the result can be inferred as

N(sij)

s312s
2
34s

2
56s123s124s125s126

, (2.24)

where N(sij) is another polynomial function of sij . So we need to multiply it with four

fundamental cross-ratio identities, two of the pole 1
s12

(counting multiplicity), one of the

pole 1
s34

and one of the pole 1
s56

. Since each identity contains 3 terms, after multiplying

four identities the original CHY-integrand would be decomposed into 34 = 81 terms.

For each sij , there are 8 cross-ratio identities. We have gone through all 8(8+1)
2 ×8×8 =

2304 possible multiplications of four fundamental cross-ratio identities which have the poles
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Figure 4. The 4-regular graph of a six-point CHY-integrand with one triple pole and two double

poles.

1
s212s34s56

, and find none of them can decompose CHY-integrand (2.23) into 81 terms with

only simple poles. The best situation is that, 4 out of 81 terms are CHY-integrands with

a double pole while the remaining 77 terms with simple poles. Such a multiplication can

be constructed from the following four cross-ratio identities

I6[{1, 2}, 2, 5] = −
(
s13z12z35
s12z13z25

+
s14z12z45
s12z14z25

+
s16z12z65
s12z16z25

)
,

I6[{1, 2}, 1, 5] = −
(
s23z21z35
s12z15z23

+
s24z21z45
s12z15z24

+
s26z21z65
s12z15z26

)
,

I6[{3, 4}, 4, 1] = −
(
s35z51z34
s34z35z41

+
s36z61z34
s34z36z41

+
s23z21z34
s34z32z41

)
,

I6[{5, 6}, 6, 1] = −
(
s25z21z56
s56z52z61

+
s35z31z56
s56z53z61

+
s45z41z56
s56z54z61

)
. (2.25)

After multiplying I6[{1, 2}, 2, 5]× I6[{1, 2}, 1, 5]× I6[{3, 4}, 4, 1]× I6[{5, 6}, 6, 1] to I [2]6 , we

get 81 terms, while the following four terms contain double pole, explicitly as

− s14s24s35s36
s212s34s56

z13z45
z212z

2
14z15z24z25z

2
34z35z

2
36z

2
56

, −s14s24s
2
35

s212s34s56

z13z45
z212z

2
14z16z24z25z

2
34z

2
35z36z

2
56

(2.26)

with double pole s124, and

− s16s26s
2
35

s212s34s56

z13
z212z14z

2
16z25z26z

2
34z

2
35z36z45

, − s16s26s35s45
s212s34s56

1

z212z
2
16z25z26z

2
34z35z36z

2
45

(2.27)

with double pole s126. Note that s124 and s126 are not double poles of original CHY-

integrand, so it should not present in the final answer. The two terms of each double pole

guarantee the cancelation. For a complete decomposition, we can further multiply the

cross-ratio identity

I6[{1, 2, 4}, 2, 3] = −
(
s15z12z53
s124z15z23

+
s45z42z53
s124z23z45

+
s16z12z63
s124z16z23

+
s46z42z63
s124z23z46

)
, (2.28)

to the two terms in (2.26), and the identity

I6[{1, 2, 6}, 2, 3] = −
(
s14z12z43
s126z14z23

+
s46z62z43
s126z23z64

+
s15z12z53
s126z15z23

+
s56z53z62
s126z23z65

)
(2.29)
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to the two terms in (2.27). Then the four terms with double poles can be further decom-

posed into terms with simple poles. Hence the CHY-integrand (2.23) is decomposed into

77 + 4× 4 = 93 CHY-integrands of simple poles, and summing over these 93 terms indeed

produces the correct answer.

The second example clearly shows that, for generic CHY-integrand of complicated

higher-order poles, it is usually not possible to completely decompose it within one step.

Even after trying all possible multiplication of cross-ratio identities, there would be some

resulting CHY-integrands which need a second and even more steps on cross-ratio identity

decomposition. Another thing is about the various cross-ratio identities for the same pole

sA. To compensate the higher-order pole sA, different cross-ratio identities provide different

decomposition. Some cross-ratio identities will reduce the degree of higher-order poles in

each resulting terms while some will introduce other higher-order poles. These suggest

us to implement a decomposition algorithm step by step, and a complete decomposition

could be guaranteed only if there are appropriate cross-ratio identities to reduce, or at least

not increase, the degree of higher-order poles in each step. Since there are pretty much

cross-ratio identities for a pole sA, and also various possibilities of decomposition steps,

it seems to give us enough information such as the decomposition procedure can always

continue until we get a decomposition with CHY-integrands of simple poles.

With above preparations, we are ready to propose a systematic decomposition algo-

rithm in the following section.

3 A systematic decomposition algorithm

3.1 The algorithm

In order to decompose a CHY-integrand I(zij) of higher-order poles into terms with only

simple poles by cross-ratio identities, we can start from an arbitrary higher-order pole sA
and multiply an appropriate cross-ratio identity of pole sA to the original CHY-integrand.

This leads to several CHY-integrands with the order of higher-order poles reduced.3 For

each resulting CHY-integrand, we again reduce the order of poles by multiplying an appro-

priate cross-ratio identity, and iteratively perform this procedure until all resulting terms

contain simple poles. Here we present a systematic decomposition algorithm aims to de-

compose any CHY-integrand of higher-order poles into terms with only simple poles in

finite steps.

Let us start from a generic n-point CHY-integrand I(zij), as a rational function of zij ,

as

I =
1∏

1≤i<j≤n z
βij
ij

, (3.1)

In the 4-regular graph representation, the βij is represented by lines connecting nodes zi, zj .

A positive integer βij is represented by the corresponding number of solid lines, a negative

integer βij (which stands for a non-trivial numerator) is represented by the corresponding

3There are subtleties that require a careful treatment and we will discuss them along this section.
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number of dashed lines. In order to respect the Möbius invariance, for each node, the

number of connected solid lines minus the number of connected dashed lines is four.

For the length-n set {1, 2, . . . , n}, since a subset is considered to be equivalent to its

complement due to momentum conservation, we have the following independent subsets Ã,

• If n is odd, Ãα = {i1, i2, . . . , ik}, i1, i2, . . . , ik ∈ {1, 2, . . . , n}, 2 ≤ k ≤ bn2 c,

• If n is even, Ãα = {i1, i2, . . . , ik}, i1, i2, . . . , ik ∈ {1, 2, . . . , n}, for 2 ≤ k ≤ bn2 c − 1,

and i1 = 1, i2, . . . , ik ∈ {2, . . . , n} for k = bn2 c.

For a subset Ãα = {i1, i2, . . . , ik}, the number of lines L[Ãα] connecting nodes

zi1 , zi2 , . . . , zik is given by

L[Ãα] =
∑

i′,j′∈Ãα

βi′j′ , (3.2)

so the pole index χ
Ãα

for this subset is

χ
Ãα

= L[Ãα]− 2(|Ãα| − 1) =

( ∑
i′,j′∈Ãα

βi′j′

)
− 2(k − 1) . (3.3)

From the CHY-integrand (3.1), we can directly read out the pole index for every subset.

Each subset Ãα corresponds to a pole 1
sα

. From the Pole Condition follows that, if χ
Ãα

< 0,

the pole will not present in the final result, while if χ
Ãα

= 0, a simple pole 1
sα

will present,

and if χ
Ãα

> 0, a pole of order 1

sχ+1
α

will appear in the final result.

Assuming that for a given CHY-integrand I, there are m independent subsets

Aα1 , Aα2 , . . . , Aαm with χAαi ≥ 0, we define the order of poles of the CHY-integrand as

Υ[I] =
m∑
i=1

χAαi , (3.4)

which can be readily computed from βij by using (3.3). The Υ is the number of poles

to be compensated by cross-ratio identities, i.e., in order to completely decompose a

CHY-integrand, we need to multiply at least Υ cross-ratio identities. Υ[I] = 0 means the

corresponding CHY-integrand I contains only simple poles. We will use it as a criteria in

the decomposition algorithm.

Before stating the algorithm, let us have a look at the cross-ratio identities. For a

generic pole si1i2···ik , from definition (2.18) we know that there are k(n− k) identities

In[{i1, i2, . . . , ik}, j, p] , j ∈ {i1, i2, . . . , ik} ,
p ∈ {1, 2, . . . , n} \ {i1, i2, . . . , ik} . (3.5)

Each identity gives a different decomposition of CHY-integrand with higher-order pole of

si1i2···ik , and we need to choose an appropriate one in the algorithm.

Now let us state the decomposition algorithm. For a generic CHY-integrand I, we

1. Compute the order of poles Υ[I]. If Υ[I] = 0, return I itself. If Υ[I] > 0, list all

independent subsets with χ > 0(assuming there are m′)

A′α1
, A′α2

, . . . , A′αm′ . (3.6)
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2. Take the first A′α1
, and list all |A′α1

|(n− |A′α1
|) cross-ratio identities of sα1 ,

In[A′α1
, j, p] where j ∈ A′α1

, p ∈ {1, 2, . . . , n} \A′α1
. (3.7)

3. Decompose the CHY-integrand I with the first cross-ratio identity in step 2,

I = I × In[A′α1
, j, p] =

∑
`

c`I ′` , (3.8)

where I ′’s are resulting new CHY-integrands, and c`’s are rational functions of Man-

delstam variables.

4. Compute all Υ[I ′],

• If all Υ[I ′] < Υ[I], return
∑

` c`I ′`,

• If any Υ[I ′] ≥ Υ[I], try the second cross-ratio identity in step 2 and so on, until

find a cross-ratio identity satisfying all Υ[I ′] < Υ[I]. By this way, the order of

poles of CHY-integrand is at least reduced by one.

• If we can always find a cross-ratio identity such that all Υ[I ′] < Υ[I], then after

at most Υ[I] steps, the CHY-integrand can be decomposed into terms with only

simple poles. This happens for some CHY-integrands but not for all. If after

running over all cross-ratio identities of the pole sα1 , we still can not find an

identity such that all Υ[I ′] < Υ[I], then start from the first cross-ratio identity

in step 2 again, but now stop at an identity such that all Υ[I ′] ≤ Υ[I]. By this

way, some of I ′ would have the same order of poles as I but different rational

functions of zij . Anyway we return
∑

` c`I ′`.

After above procedure, we get I =
∑

` c`I ′`. Then let each I ′` go through the procedure

recursively, until all resulting CHY-integrands contain only simple poles. If after some

steps (larger than Υ[I]), the terms of higher-order poles in resulting CHY-integrands keep

growing, then we shall restart the algorithm again, and choose A′α2
to start the decom-

position, etc. The whole algorithm will end in finite steps, with the judgement that all

Υ[I ′] = 0. Above algorithm can be easily implemented in Mathematica.

3.2 An illustrative example

As a highly non-trivial example to illustrate the above mentioned algorithm, let us consider

the CHY-integrand

I8 =
1

z412z34z
3
45z56z

3
67z78z

3
38

, (3.9)

with its 4-regular graph shown in figure 5. It can be computed that

Υ[I8] = 8 , (3.10)

and all subsets with χ > 0 are list below,

{1, 2} , {3, 8} , {4, 5} , {6, 7} , {1, 2, 3, 8} , {1, 2, 4, 5} , {1, 2, 6, 7} , (3.11)
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Figure 5. The 4-regular graph of an eight-point CHY-integrand.

where χ{1,2} = 2 and χ = 1 for the remaining six subsets. Let us start from subset {3, 8}
and multiply I8 with a cross-ratio identity of s38.

4 There are in total 2(8 − 2) = 12

cross-ratio identities for pole s38, list as follows,

I8[{3, 8}, 3, 1] , I8[{3, 8}, 3, 2] , I8[{3, 8}, 3, 4] , I8[{3, 8}, 3, 5] , I8[{3, 8}, 3, 6] , I8[{3, 8}, 3, 7] ,

I8[{3, 8}, 8, 1] , I8[{3, 8}, 8, 2] , I8[{3, 8}, 8, 4] , I8[{3, 8}, 8, 5] , I8[{3, 8}, 8, 6] , I8[{3, 8}, 8, 7] .

Each identity contains five terms, so after decomposition we get five terms

I8 = c1I ′[1]8 + c2I ′[2]8 + c3I ′[3]8 + c4I ′[4]8 + c5I ′[5]8 . (3.12)

Let us take for example the first identity for decomposition, and compute the order of poles

of resulting five terms, as

Υ[I ′[1]8 ] = 4 , Υ[I ′[2]8 ] = 7 , Υ[I ′[3]8 ] = 7 , Υ[I ′[4]8 ] = 8 , Υ[I ′[5]8 ] = 8 . (3.13)

It dose not satisfy the condition that all Υ[I ′[i]8 ] < 8, so we look for the next identity. It

can be found that the first identity satisfying this condition is I8[{3, 8}, 3, 6],5 with which

we have

Υ[I ′[1]8 ] = 7 , Υ[I ′[2]8 ] = 7 , Υ[I ′[3]8 ] = 6 , Υ[I ′[4]8 ] = 6 , Υ[I ′[5]8 ] = 4 . (3.14)

This finishes the Round 1 decomposition, and we should go through Round 2 decomposition

with each I ′[i]8 going through the strategy, until all resulting terms satisfying Υ[I ′[i]8 ] = 0.

Below is a table showing the number #[ALL] of resulting terms and the number #[H] of

terms of higher-order poles in each Round decomposition,

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8

#[ALL] 5 25 121 613 2779 7543 9914 9922

#[H] 5 25 121 464 615 301 2 0

4According to the algorithm, we have taken the first subset {1, 2} to start the decomposition. However

after 10 rounds of decompositions, we still can not get a result with CHY-integrands of only simple poles.

Then we restart the algorithm with the second subset {3, 8}.
5In fact, among the 12 identities, there are four satisfying the request. But since we only need to find

one identity, we do not need to check the remaining ones when a required one is obtained.
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It can be seen from the table that, after four rounds of decomposition, some resulting

terms are already those of simple poles. After five rounds of decomposition, terms of

higher-order poles start decreasing, until to the round 8 decomposition, where all terms of

higher-order poles are reduced, leaving 9922 CHY-integrands of simple poles. Computing

these 9922 terms via integration rules of simple poles takes a few minutes by Mathematica

in a laptop, and the result is confirmed numerically.

This algorithm can be applied to higher-n scattering process without difficulty. The

efficiency of decomposition mostly depends on the number of terms of higher-order poles in

each round decomposition but not the number n of scattering points. If Υ of original CHY-

integrand is not very large, the algorithm can be easily finished in a short time. However,

if Υ is large (for instance Υ > 10), the decomposition can still proceed, but might take

some time.

4 The Λ-algorithm and the cross-ratio identities

In the previous section, we apply the cross-ratio identities to the systematic decomposition

of CHY-integrand with higher-order poles. For CHY-integrands with large n and Υ, the

resulting terms of simple poles can easily reach a number of millions, hence slow the

computation. For those CHY-integrands where decomposition algorithm is significantly

slow, we can nevertheless combine the cross-ratio identities with Λ-algorithm, to pursue a

more efficient realization. In this section, we will describe such a combination.

The Λ-algorithm has been recently developed by one of the authors to compute CHY-

integrands. It has some interesting features as it can support up to three off-shell particles

as well as it factorizes the original graph representing the CHY-integrand into sub-graphs

with less number of vertices by means of an iterative algorithm. Nevertheless, it depends

on the gauge-fixing and it does not work on singular configurations. At some point on the

iterative process one usually reach some sub-graphs containing those singular configurations

and then the algorithm cease to work. Here we show how the Λ-algorithm is improved by

using the cross-ratio identities on graphs containing singular configurations. In addition,

we find some recurrence relations for particular types of CHY-integrands. Ultimately,

the cross-ratio identities in conjunction with the Λ-algorithm provide a more efficient and

systematic way to deal with amplitudes with a large number of particles.

4.1 Some notations

For reader’s convenience, let us briefly introduce some notations here, which will be use-

ful in the computation of some non-trivial examples soon after. We define the stripped

Mandelstam variables s̃a1...am as

s̃a1...am :=
m∑

ai<aj

kai · kaj , (4.1)

which equals to the standard Mandelstam variables sa1...am = (ka1 + · · · + kam)2/2 when

all kai ’s are massless. We also follow the conventional definition

ka1...am := ka1 + ka2 + · · ·+ kam , (4.2)
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and whenever [a1, . . . , am] is present in I(z) or s̃, it stands for the punctured point merged

from points {za1 , . . . , zam} in graph associated to the massive momentum ka1...am . The

colored notation in [21] which is needed to apply the Λ-algorithm is adopted,

❆�✁✂✄☎✂�✆

❋✝✆✆ ✞✆✝✁✆✟ ❋✂✟✆✠ ✞✆✝✁✆✟ ✡☛☞�✌✁☞✝✆✍ ✎✏ ☛✑✒✡✓✔✕✍

▼✖✗✗✂✘✆ ✖�✠ ✙✂✟✆✠ ✞✆✝✁✆✟ ✡☛☞�✌✁☞✝✆✍

❋✂✟✆✠ ✞✆✝✁✆✟ ✡☛☞�✌✁☞✝✆✍ ✎✏ ✗✌✖☎✆ ✂�✘✖✝✂✖�✌✆❇✝✖�✌✚ ✕☞✁ .

and for details please refer to [21].

All the results obtained from the Λ-algorithm can be written as a linear combination

of the following fundamental diagrams and its powers

B(a, b|c, d) := =
1

s̃ac
+

1

s̃ad
, (4.3)

where {kb, kc, kd} can be off-shell particles. Clearly, B(a, b|c, d) = B(a, b|d, c).
It is simple to check, using the Ea scattering equation, that

= − s̃ac
s̃ab

B(a, b|c, d) , = − s̃ac
s̃ad

B(a, b|c, d) ,

=

(
s̃ac
s̃ad

)2

B(a, b|c, d) , (4.4)

where {kb, kc, kd} could be off-shell particles.

4.2 A simple example

Before a general discussion, let us start from a simple but non-trivial six-point example

with the following geometry (Parke − Taylor)2 ⊕ (Parke− Taylor)2 as

I6(1, 2, 3|4, 5, 6) = , (4.5)
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where we have set the gauge-fixing so as to avoid singular configurations [21]. All non-zero

allowable configurations for this diagram are given by [21]

=
1

s̃23
,

=
1

s̃13
,

=
1

s̃3456
.

The Λ-algorithm stops at this step, since we have reached sub-diagrams containing singular

configurations

I5(a, b|c, d, e) = , (4.6)

which needs to be rewritten in terms of non-singular sub-diagrams by using the cross-ratio

identities, as we shall explain soon after. Let us remember that in this graph, {ka, kb, kc}
can be off-shell.

First of all, notice that only the Ed and Ee scattering equations can be used, since the

remaining points are already fixed. Moreover, clearly this graph has a triple pole, 1/s̃ 3
cde.

So, it is simple to show that using the Ed and Ee scattering equations one obtains the

following cross-ratio identity

s̃cde = s̃ad

(
zabzcd
zbczad

)
+ s̃ae

(
zabzce
zbczae

)
, (4.7)

which agrees with (2.18). We can represent the identity above by the graph

s̃cde = s̃ad + s̃ae . (4.8)

In order to eliminate the triple pole we take the square of (4.8)

s̃2cde = s̃2ad + s̃2ae + 2s̃ads̃ae . (4.9)
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Therefore, using this identity over the CHY diagram in (4.6), we obtain the expansion

=
s̃2ad
s̃2cde

+
s̃2ae
s̃2cde

+
2 s̃ad s̃ae
s̃2cde

These three graphs are computed straightforwardly from the Λ-algorithm resulting in,

I5(a, b|c, d, e) =
s̃2ad
s̃2cde

(
B(d, c|[a, b], e)

s̃cde
+
B(d, [b, c]|a, e)

s̃dea
+
B(d, b|a, [c, e])

s̃ce

)
(4.10)

+
s̃2ae
s̃2cde

(
B(d, [a, b]|c, , e)

s̃cde
+
B(d, a|[b, c], e)

s̃dea
+
B(d, b|c, [a, e])

s̃ae

)
+

2 s̃ae s̃ad
s̃2cde

(
− s̃dc
s̃cde s̃d[a,b]

B(d, [a, b]|c, e)−
s̃d[b,c]

s̃dea s̃da
B(d, a|[b, c], e)

)
.

Hence, the final answer for the CHY-integrand in (4.5) is given in terms of I5(a, b|c, d, e)
by the simple expression

I6(1, 2, 3|4, 5, 6) =
I5([2, 3], 1|4, 5, 6)

s̃23
+
I5([1, 3], 2|4, 5, 6)

s̃13
+
I5([1, 2], 3|4, 5, 6)

s̃3456
, (4.11)

which was checked numerically.

We remark that, for this particular example where we have combined the Λ-algorithm

with the cross-ratio identities, we solved a total of three CHY-integrands. On the other

hand, applying directly the cross-ratio identities over the CHY-integrand in (4.5), one must

compute ten CHY graphs, So, although the decomposition technique with the cross-ratio

identities is a good method by itself, in combination with the Λ-algorithm it produces

an even more efficient approach. The simple example above is enough to show how both

methods work out together, and instead of going into harder examples we choose to present

a new recurrence relation that can be obtained from this combination.

4.3 (Parke−Taylor)2 ⊕ (Parke−Taylor)2 geometry and recurrence relations

In this subsection, we would like to generalize the discussion in previous subsection to a

particular geometry given by two PT2 (i.e., PT2 ⊕ PT2) CHY-integrands, e.g.,

(4.12)

We denote this type of graphs by IPT2⊕PT2

m,n−m (1, . . . ,m |m+1, . . . , n), where m is the number

of vertices for the first PT2 sub-graph and n−m is the number of vertices for the second
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one. For instance, the graphs given in (4.12) are denoted as IPT2⊕PT2

4,4 (1, 2, 3, 4 | 5, 6, 7, 8),

IPT2⊕PT2

4,6 (1, 2, 3, 4 | 5, 6, 7, 8, 9, 10) and IPT2⊕PT2

7,3 (1, 2, 3, 4, 5, 6, 7 | 8, 9, 10), respectively.

Note also that for the graphs in (4.5) and (4.6) one has I6(1, 2, 3|4, 5, 6) =

IPT2⊕PT2

3,3 (1, 2, 3 | 4, 5, 6) and I5(a, b|c, d, e) = IPT2⊕PT2

2,3 (a, b | c, d, e), respectively.

It is very well-known that this type of CHY-integrands is highly non-trivial and one can

solve them from the cross-ratio identities.6 However, the price to pay is that the number

of CHY-integrands of simple poles to be computed is very large. So, in order to partially

simplify the decomposition procedure, we seek help from the Λ-algorithm. Nevertheless,

the Λ-algorithm alone is not enough to obtain the final answer, so we use the cross-ratio

identities but now over smaller sub-graphs. Note that for above particular type of diagrams

with PT2 ⊕PT2 geometry, after applying the Λ-algorithm, the resulting sub-graphs are of

the same type, i.e. PT2 ⊕ PT2, or just PT2. This feature suggests a recurrence relation.

So as to find this recurrence relation, let us consider the following ten-point example

(4.13)

where we have chosen a proper gauge in order to avoid singular configurations and we have

drawn all non-zero allowable configurations. Following this example, we can intermediately

deduce the new recurrence relation.

6In fact, if there is only one higher-order poles, either double or triple pole, the decomposition algorithm

with cross-ratio identities can produce the result instantly for any points.
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By using the notation in appendix C, we make the following definitions. Let oi be the

set of ordered elements given by

oi := {4, 5, 6, . . . i+ 3} , where i ∈ {1, . . . ,m− 3} , (4.14)

and we define o0 = ∅. Clearly, o1 = {4}, o2 = {4, 5}, o3 = {4, 5, 6} and so on.

We also denote oi as the ordered complement of oi, as

oi := {4, 5, 6, . . . ,m} \ oi , (4.15)

for example

o0 = {4, . . . ,m} , o1 = {5, . . . ,m} , . . . , om−3 = ∅ . (4.16)

With these definitions in mind, the recurrence relation has the form

IPT2⊕PT2

m,n−m (1, 2, . . . ,m |m+ 1, . . . , n) (4.17)

=
IPT2⊕PT2

2,n−m ([3, 4, . . . ,m, 1], 2 |m+ 1, . . . , n)× IPT2

m (1, [2,m+ 1, . . . , n], 3 . . . ,m)

s̃3,4,··· ,m,1

+

m−3∑
i=0

IPT2⊕PT2

m−1−i,n−m(1, [2, 3,oi],oi |m+ 1, . . . , n)× IPT2

3+i ([1,oi,m+ 1, . . . n], 2, 3,oi)

s̃2,3,oi

+
m−3∑
i=0

IPT2⊕PT2

2+i,n−m ([1, 2,oi], 3,oi |m+ 1, . . . , n)× IPT2

m−i(1, 2, [3,oi,m+ 1, . . . n],oi)

s̃3,oi,m+1,··· ,n
,

where remind again that [a1, a2, . . . , am] denotes a massive particle with momentum equal-

ing
∑m

i=1 kai .

Applying this recurrence relation over the example in (4.13), one obtains (for presen-

tation purpose here we omit the superscript PT2 ⊕ PT2 and PT2)

IPT2⊕PT2

7,3 (1, 2, 3, 4, 5, 6, 7 | 8, 9, 10) (4.18)

=
I2,3([3, 4, 5, 6, 7, 1], 2 | 8, 9, 10)× I7(1, [2, 8, 9, 10], 3, 4, 5, 6, 7)

s̃3,4,5,6,7,1

+
I6,3(1, [2, 3], 4, 5, 6, 7 | 8, 9, 10)× I3([1, 4, 5, 6, 7, 8, 9, 10], 2, 3)

s̃2,3

+
I5,3(1, [2, 3, 4], 5, 6, 7 | 8, 9, 10)× I4([1, 5, 6, 7, 8, 9, 10], 2, 3, 4)

s̃2,3,4

+
I4,3(1, [2, 3, 4, 5], 6, 7 | 8, 9, 10)× I5([1, 6, 7, 8, 9, 10], 2, 3, 4, 5)

s̃2,3,4,5

+
I3,3(1, [2, 3, 4, 5, 6], 7 | 8, 9, 10)× I6([1, 7, 8, 9, 10], 2, 3, 4, 5, 6)

s̃2,3,4,5,6

+
I2,3(1, [2, 3, 4, 5, 6, 7] | 8, 9, 10)× I7([1, 8, 9, 10], 2, 3, 4, 5, 6, 7)

s̃2,3,4,5,6,7

+
I2,3([1, 2, 4, 5, 6, 7], 3 | 8, 9, 10)× I7(1, 2, [3, 8, 9, 10], 4, 5, 6, 7)

s̃3,8,9,10
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+
I3,3([1, 2, 5, 6, 7], 3, 4 | 8, 9, 10)× I6(1, 2, [3, 4, 8, 9, 10], 5, 6, 7)

s̃3,4,8,9,10

+
I4,3([1, 2, 6, 7], 3, 4, 5 | 8, 9, 10)× I5(1, 2, [3, 4, 5, 8, 9, 10], 6, 7)

s̃3,4,5,8,9,10

+
I5,3([1, 2, 7], 3, 4, 5, 6 | 8, 9, 10)× I4(1, 2, [3, 4, 5, 6, 8, 9, 10], 7)

s̃3,4,5,6,8,9,10

+
I6,3([1, 2], 3, 4, 5, 6, 7 | 8, 9, 10)× I3(1, 2, [3, 4, 5, 6, 7, 8, 9, 10])

s̃3,4,5,6,7,8,9,10
,

which is the right expression for the configurations given in (4.13). The terms IPT2

n , n =

5, 6, 7, can easily be computed from the recurrence relation in (C.7). Now, the terms

IPT2⊕PT2

3,3 , IPT2⊕PT2

4,3 , IPT2⊕PT2

5,3 and IPT2⊕PT2

6,3 can be reduced using, iteratively, the re-

currence relation (4.17). In addition, in appendix D we have given the expressions for

these diagrams.

It is important to note that the relation in (4.17) only works for CHY-integrands with

m > 2. In other words, CHY-integrands such as IPT2⊕PT2

2,n−2 (1, 2 | 3, . . . , n) with n > 4

under the gauge-fixing as in (4.13) can not be solved just by the Λ-algorithm, and there-

fore we should proceed to use the cross-ratio identities. The main idea of the recur-

rence relation in (4.17) is to use it to straightforwardly reduce the original CHY-integrand

IPT2⊕PT2

m,n−m (1, 2, . . .m, |m+ 1, . . . , n) with m > 2 , n−m > 2 to IPT2⊕PT2

2,n′−2 with n′ smaller

than n, and then apply the cross-ratio identities.

For our particular example in (4.13), we were able to reduce the whole expression

in (4.18) as a linear combination of IPT2⊕PT2

2,3 (a, b |c, d, e) diagram (see appendix D). This

diagram was solved previously by using the cross-ratio identities, and its answer is given

in (4.10).

For the most general case, we must solve the n = (q + 2)-point CHY-integrand

IPT2⊕PT2

2,q (1, 2 |3, 4, . . . , q + 2) = , (4.19)

where we use the cross-ratio identities for doing it. Similarly as it was done in section 4.2

for the graph IPT2⊕PT2

2,3 (a, b | c, d, e), one notes that this graph has a triple pole, 1/s334...q+2.

In order to eliminate this pole, we can use the scattering equations, {E3, E4, . . . , Eq+2}, to

obtain the cross-ratio identity

s̃34...q+2 =

q+2∑
a=4

s̃1a

(
z12z3a
z23z1a

)
, (4.20)
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which has q − 1 elements. Taking the square of this identity one obtains

s̃234...q+2 =

q+2∑
a,b=4

s̃1a s̃1b

(
z12z3a
z23z1a

) (
z12z3b
z23z1b

)
(4.21)

=

q+2∑
a=4

s̃21a

(
z12z3a
z23z1a

)
+ 2

q+2∑
a<b=4

s̃1a s̃1b

(
z12z3a
z23z1a

) (
z12z3b
z23z1b

)
, (4.22)

which has a total number of terms, q − 1 + (q−1)(q−2)
2 = q (q−1)

2 . Therefore, the CHY-

integrand

IPT2⊕PT2

2,q (1, 2 |3, 4, . . . , q + 2)

is solved in a straightforward manner by computing a number of q (q−1)
2 trivial CHY-

integrands.

Finally, noticing that the recurrence relation (4.17) is only a consequence of the it-

erative nature of the Λ-algorithm, we can build many other relations by using the same

method. The only particularity that need to be satisfied in order to have an ordered recur-

rence is that the graphs under consideration should possess some symmetry such that the

cutting process preserves this “symmetry” for the smaller sub-graphs. For instance, for the

particular case in (4.13), the original graph is build out from two disjoint pieces, and in an

appropriate gauge avoiding singular configurations, all the allowed cuts produce sub-graphs

with the same topology as the original graph. Examples where similar recurrence relations

can be also obtained are graphs of the type
(
PT2

)n
:= (PT2)⊕ (PT2)⊕ · · · ⊕ (PT2). Such

CHY-integrands could have very large Υ, thus it is very necessary to apply Λ-algorithm be-

fore decomposition algorithm with cross-ratio identity. By solely using the Λ-algorithm we

will reach sub-diagrams containing singular configurations where the Λ-algorithm cease to

work and hence stop the recurrence. The remaining sub-diagrams should be then rewritten

by means of the cross-ratio identities in order to either solving them directly by integration

rules of simple poles or by continuing the cutting process of Λ-algorithm.

5 Conclusion

Based on the extremely simple and efficient method of integration rules for CHY-integrands

with only simple poles [23, 24], we propose a systematic decomposition algorithm by use

of cross-ratio identities, which can be applied to decompose any CHY-integrand of higher-

order poles to those with only simple poles, suitable for evaluating by the integration rules.

The basic idea of the algorithm can be described as follows. For any CHY-integrand with

higher-order poles, we multiply it with identities which are linear combination of terms as

sA
sB

za1a2za3a4
za1a3za2a4

,

i.e., cross-ratios of zij . The cross-ratios of zij reformulate the original CHY-integrands of

higher-order poles as new ones with only simple poles which can be evaluated trivially,

while the sB in denominator will compensate the extra degrees of higher-order poles, such
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that the final result still possess higher-order poles. This idea is exactly the same as the

algorithm proposed in [30], but in [30] identities from monodromy relations are used instead

of cross-ratio identities, and we have shown in the appendix B that a decomposition with

the former is far less efficient than that with the later for large number of scattering particles

and complicated higher-order pole structures, due to the fact that the number of terms in an

identity of monodromy relation grows factorially while in cross-ratio identity algebraically.

An eight-point CHY-integrand with one triple pole and six double poles is computed

in section 3, resulting in around 10,000 terms of only simple poles, which summed up

to produce the amplitude by integration rules, with the evaluation time around a few

minutes. The increasing of scattering particles will not affect the computation efficiency

much, but the increasing of higher-order poles will significantly increase the number of

resulting terms, since in order to compensate an extra 1
si1···ik

, we need to multiply an

identity with (k−1)(n−k−1) terms, and consequently the number of resulting terms will

be about (k − 1)(n − k − 1) times larger. So for CHY-integrands with very large n and

complicated higher-order pole structures, the number of resulting CHY-integrands after

decomposition will easily reach the size of millions, which slows the computation.7 In need

of these situations, we seek help from Λ-algorithm [21, 22]. The Λ-algorithm rewrites a

CHY-integrand as products of lower-point CHY-integrands, until the resulting lower-point

ones can not be computed by Λ-algorithm. We show that for particular type of CHY-

integrands, recurrence relations can be deduced to iteratively transform a specific CHY-

integrand into lower-point ones which are easy to compute by cross-ratio identities. The

combination of Λ-algorithm with decomposition algorithm makes a more efficient method

for evaluating large n-particle amplitude by use of cross-ratio identities.

Some aspects are in the following. The CHY-integrand we consider in this paper is quite

general, with in fact any possible higher-order poles. Thus the decomposition algorithm

is suitable and ready for evaluating Yang-Mills amplitudes and even gravity amplitudes in

the context of CHY-formulation, not only in principle but also in practical. Since the cross-

ratio identities deal with CHY-integrands with higher-order poles, while in [29] Feynman

rules for higher-order poles are conjectured, it would be interesting to investigate if one

can prove those Feynman rules by cross-ratio identities and further derive rules for more

higher-order poles. Another interesting problem considers the recurrence relation by Λ-

algorithm. We have in this paper presented a recurrence relation for CHY-integrands with

(PT)2 ⊕ (PT)2 geometry, to iteratively rewrite a CHY-integrand to other specific ones

which are easy to compute. It would be interesting to generalize the study of recurrence

relations to a broader range of CHY-integrands with other complicated geometries where

a direct decomposition algorithm would take too much time.

7Remind that there are many ways of decomposing a CHY-integrand into those with simple poles, and

the number of resulting terms depends on the cross-ratio identities multiplied in each step. A cross-ratio

identity in one step will affect the number of resulting terms as well as the higher-order pole structure in the

next step, while these two factors in together will affect the number of terms in the final step. There is no

clear canonical strategy to balance the effects of these two factors and lead to the minimal number of final

resulting terms. Thus we have chosen the most straightforward strategy, i.e., multiply the first cross-ratio

identity which reduces the order of poles.
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A A practical algorithm to determine the ± sign in integration rules

The systematic decomposition algorithm rewrites any CHY-integrand of higher-order poles

as terms of simple poles, and the last step towards a final answer is to evaluate the resulting

CHY-integrands by integration rules of simple poles. This requires a practical implemen-

tation of integration rules. In integration rules, the evaluation in fact contains two parts.

The first is the contributing terms, which can be readily determined by working out the

compatible combinations. The second is to determine the ± sign of each contributing term,

which is the topic we want to discuss here.

Again let us start from a generic n-point CHY-integrand (3.1), as (assuming here the

canonical ordering, i.e., always i < j),

I =
1∏

1≤i<j≤n z
βij
ij

, (A.1)

respecting the Möbius invariance. Assuming that it has m simple poles corresponding

to m subsets Ai, i = 1, . . . ,m of χ(Ai) = 0. Assuming also that one can construct m′

compatible combinations {Aα1 , Aα2 , . . . , Aαn−3}, etc., from m subsets. Then by integration

rule, the result is given by the summation of m′ terms, with each term from a compatible

combination as

(−1)n+1+Ninv
1

sα1sα2 · · · sαn−3

, (A.2)

where sαi = (PAαi )
2, and Ninv is the so-called inversion factor8 [31]. In the original

derivation, the inversion factor is defined under a given gauge-fixing. One need to pick up

a specific gauge and then consider what the inversion factor result. Briefly speaking, once

a gauge is fixed, the inversion factor ninv of a subset Aα (avoiding the infinite fixed point)

is the number of factor zij with i ∈ Aα and j /∈ Aα, and Ninv is the sum of all ninv in a

compatible combination. However, the choice of gauge makes it difficult to automatically

compute the inversion factor for any given compatible combination.

8We thank Christian Baadsgaard for explaining the inversion factor to us.
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From the practices , we found that it is not necessary to restrict to a given gauge-fixing

in order to compute the sign. Although the inversion factor is not the same in different

gauges, the parity of Ninv is invariant, while the (±) sign depends only on the parity. In

fact, we can define the inversion factor without referring to any fixed points, as will be

shown in the following.

For a length-n set Σ = {σ1, σ2, . . . , σn}, which is a permutation of {1, 2, . . . , n}, the

signature of set Σ is defined to be (−1)N , where N is the number of times required to

iteratively permute two adjacent elements in order to arrive at the canonical ordering

{1, 2, . . . , n}. For example,

{1, 3, 2, 5, 4, 6} 2↔3−−−→ {1, 2, 3, 5, 4, 6} 4↔5−−−→ {1, 2, 3, 4, 5, 6} , (A.3)

so N = 2. Of course there are many different permutations to do so, but the signature is

invariant. Here we define the weighted signature (−1)N
′
, where N ′ is the weighted number

of times. For each permutation of two adjacent elements i↔ j, we count the number as βij
but not 1, where βij is determined by a given CHY-integrand. So for the above example,

we have N ′ = β23 + β45, and the weighted signature is (−1)β23+β45 .

Now we define the inversion factor9 for a compatible combination A =

{Aα1 , Aα2 , . . . , Aαn−3} of a given CHY-integrand I(zij). Define the length-n set Σ =

{σ1, σ2, . . . , σn} to be cyclically ordered, i.e., σn and σ1 are also considered to be adjacent.

An adjacent subset Aα of Σ is defined to be a subset of Σ whose elements are adjacent in

Σ (but the ordering of elements in Aα dose not need to respect the ordering in Σ). For

example, both {σ2, σ3, σ4} and {σ2, σ4, σ3} are adjacent subsets of Σ, while {σ1, σ2, σn} is

also an adjacent subset, but {σ2, σ3, σ5} is not.

A cyclically ordered length-n set Σ = {σ1, σ2, . . . , σn} is said to be the parent set of

a compatible combination {Aα1 , Aα2 , . . . , Aαn−3} if all subsets Aαi ’s are adjacent subsets

of Σ. Provided we have already found a parent set Σ of a compatible combination A,

then the inversion factor Ninv of A is defined to be the weighted number N ′ for permuting

Σ = {σ1, σ2, . . . , σn} to canonical ordering {1, 2, . . . , n}, and the sign of the term associated

to the compatible combination A is nothing but (−1)n+1+Ninv = (−1)n+1+N ′ , proportional

to the weighted signature of parent set Σ. Of course, there will be more than one cyclically

ordered sets which could be the parent set of a given compatible combination. Although the

weighted number N ′ of them are different, the parity of N ′ is invariant, so is the weighted

signature. In this case, we only need to find one parent set for a compatible combination,

and compute the (±) sign with it.

For a given compatible combination A = {Aα1 , Aα2 , . . . , Aαn−3} of CHY-integrand

I(zij), now we shall find its parent set. Naively, one can generate all the permutation

sets of {1, 2, . . . , n} in Mathematica, and select one set which is the parent set of A.

However, the number of permutation sets grows factorially with n, so it is practically not

efficient. We propose the following strategy to construct a parent set of A. Remind that

any two subsets in a compatible combination satisfy compatible condition, i.e., they should

9Note again here without referring to any gauge, which is different from the definition in [31].
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be nested (Aαi
⋃
Aαj = Aαi or Aαj ) or disjoint (Aαi

⋂
Aαj = ∅). The strategy starts from

B = {Aα1},

• If Aα2 is disjoint with Aα1 , it will be included to get B = {Aα1 , Aα2},

• IfAα2 is nested with Aα1 , we will replace Aα1 with a new subset A′α1
, and consequently

B = {A′α1
}.

– In the case that Aα1 ⊂ Aα2 , we can define A′α1
= Aα1 + C[Aα2 , Aα1 ],10 where

C[Aαi , Aαj ] denotes the complement set of Aαj with respective to Aαi , i.e., a set

whose elements are in Aαi but not Aαj . This construction is to ensure that Aα1

as well as Aα2 are the adjacent subsets of a parent set.

– In the case Aα2 ⊂ Aα1 , we can define A′α1
= Aα2 + C[Aα1 , Aα2 ].

After Aα2 is done, we continue to Aα3 , where now we should consider Aα3 to be nested or

disjoint with all subsets in B from previous step. For example, if in previous step we get

B = {Aα1 , Aα2}, then

• If Aα3 is disjoint with both Aα1 , Aα2 (any subsets in B), we renew the set as B =

{Aα1 , Aα2 , Aα3},

• If Aα3 ⊂ Aαi (here i = 1 or 2. Because from the construction, the subsets included

in B are always disjoint with each other, so Aα3 could only be a subset of either Aα1

or Aα2), we define A′αi = Aα3 + C[Aαi , Aα3 ], and renew the set as B = {A′α1
, Aα2} or

B = {Aα1 , A
′
α2
},

• If any subsets in B are subsets of Aα3 ,

– If only one subset in B is a subset of the one under consideration, explicitly here

Aαi ⊂ Aα3 (i = 1 or 2), we define A′αi = Aαi + C[Aα3 , Aαi ], and renew the set

as B = {A′α1
, Aα2} or B = {Aα1 , A

′
α2
},

– If more than one subset in B are subsets of the one under consideration, explicitly

here Aα1 ⊂ Aα3 and Aα2 ⊂ Aα3 , since Aα1 and Aα2 are disjoint, we can define

a new subset

A′α1
= Aα1 +Aα2 + C[Aα3 , Aα1 +Aα2 ]

to replace Aα1 , Aα2 , and renew the set as B = {A′α1
}.

With such strategy, we can enlarge set B until the last Aαn−3 in the compatible combination

is considered. The subsets in B are by construction disjoint to each other. Assuming

B = {B1, B2, . . . , Bk}, a parent set of compatible combination A can then be given by

Σ = B1 +B2 + · · ·+Bk + C

[
{1, 2, . . . , n},

k⋃
i=1

Bk

]
. (A.4)

10A1+A2 stands for a new set with elements from A1 followed by elements from A2, keeping the ordering.
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The construction of parent set is already done, but we can go a step further. Because of

the cyclic invariance, we can always fix 1 in the first position of Σ as the convention. All

above operations can be easily implemented in Mathematica.

It is better to understand above algorithm with an example. Let us consider the

following six-point CHY-integrand with non-trivial numerator

I =
z14z35

z12z213z15z16z23z24z26z
2
34z

2
45z

2
56

, (A.5)

where explicitly, we have

β12 = 1 , β13 = 2 , β14 = −1 , β15 = 1 , β16 = 1 , β23 = 1 ,

β24 = 1 , β26 = 1 , β34 = 2 , β35 = −1 , β45 = 2 , β56 = 2 , (A.6)

and all others zero. It has six subsets of simple poles {1, 3}, {3, 4}, {4, 5}, {5, 6}, {1, 2, 3},
{1, 5, 6}, and from them we can construct three compatible combinations as

B1 ≡ {{1, 3}, {4, 5}, {1, 2, 3}} , B2 ≡ {{1, 3}, {5, 6}, {1, 2, 3}} , B3 ≡ {{3, 4}, {5, 6}, {1, 5, 6}} .
(A.7)

Following the strategy, we have

B1 : {{1, 3}} consider {4,5}−−−−−−−−−−→ {{1, 3}, {4, 5}} consider {1,2,3}−−−−−−−−−−−→ {{1, 3, 2}, {4, 5}} ,

B2 : {{1, 3}} consider {5,6}−−−−−−−−−−→ {{1, 3}, {5, 6}} consider {1,2,3}−−−−−−−−−−−→ {{1, 3, 2}, {5, 6}} ,

B3 : {{3, 4}} consider {5,6}−−−−−−−−−−→ {{3, 4}, {5, 6}} consider {1,5,6}−−−−−−−−−−−→ {{3, 4}, {5, 6, 1}} .

So we can construct the parent set {1, 3, 2, 4, 5, 6} for {{1, 3}, {4, 5}, {1, 2, 3}}, parent

set {1, 3, 2, 5, 6, 4} for {{1, 3}, {5, 6}, {1, 2, 3}}, and {3, 4, 5, 6, 1, 2} = {1, 2, 3, 4, 5, 6} for

{{3, 4}, {5, 6}, {1, 5, 6}}. Since

{1, 3, 2, 4, 5, 6} 2↔3−−−→ {1, 2, 3, 4, 5, 6} ,

{1, 3, 2, 5, 6, 4} 2↔3−−−→ {1, 2, 3, 5, 6, 4} 4↔6−−−→ {1, 2, 3, 5, 4, 6} 4↔5−−−→ {1, 2, 3, 4, 5, 6} ,

and the last one is already in canonical order, we have

N [1]
inv = β23 = 1 , N [2]

inv = β23 + β46 + β45 = 3 , N [3]
inv = 0 . (A.8)

The sign of each term is given by (−1)6+1+N [i]
inv , so we get the correct result

1

s13s45s123
+

1

s13s56s123
− 1

s34s56s156
. (A.9)

Before end, let us present an example of the parity invariance of inversion fac-

tor. Consider again the afore-mentioned example and the compatible combination

{{1, 3}, {4, 5}, {1, 2, 3}}. Among the 6! = 720 permutation sets of {1, 2, 3, 4, 5, 6}, there
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are 96 sets which could be the parent set of A. Restricting to the convention that 1 is

always placed in the first position, we still get 16 parent sets as

{1, 2, 4, 6, 5, 3} , {1, 2, 5, 4, 6, 3} , {1, 2, 5, 6, 4, 3} , {1, 2, 6, 4, 5, 3} ,
{1, 3, 2, 4, 6, 5} , {1, 3, 2, 5, 4, 6} , {1, 3, 2, 5, 6, 4} , {1, 3, 2, 6, 4, 5} ,
{1, 3, 4, 6, 5, 2} , {1, 3, 5, 4, 6, 2} , {1, 3, 5, 6, 4, 2} , {1, 3, 6, 4, 5, 2} ,
{1, 4, 6, 5, 2, 3} , {1, 5, 4, 6, 2, 3} , {1, 5, 6, 4, 2, 3} , {1, 6, 4, 5, 2, 3} .

The inversion factors Ninv are consequently

Ninv = 1, 3, 3, 5, 1, 3, 3, 5, 3, 5, 5, 7, 3, 5, 5, 7 , (A.10)

which are all odd integers. Similarly, for compatible combination {{3, 4}, {5, 6}, {1, 5, 6}},
there are in total also 16 parent sets requiring 1 in the first position, as

{1, 2, 3, 4, 5, 6} , {1, 2, 3, 4, 6, 5} , {1, 2, 4, 3, 5, 6} , {1, 2, 4, 3, 6, 5} ,
{1, 3, 4, 2, 5, 6} , {1, 3, 4, 2, 6, 5} , {1, 4, 3, 2, 5, 6} , {1, 4, 3, 2, 6, 5} ,
{1, 5, 6, 2, 3, 4} , {1, 5, 6, 2, 4, 3} , {1, 5, 6, 3, 4, 2} , {1, 5, 6, 4, 3, 2} ,
{1, 6, 5, 2, 3, 4} , {1, 6, 5, 2, 4, 3} , {1, 6, 5, 3, 4, 2} , {1, 6, 5, 4, 3, 2} ,

and the inversion factors for them are respectively

Ninv = 0, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 6, 4, 6, 6, 8 , (A.11)

which are all even integers. Thus the parity invariance of inversion factor is clearly shown.11

B The identities from monodromy relation and cross-ratio identities

In [30], an identity for generic pole s12···k is constructed from monodromy relations, as12

Id{1,...,k} = −
∑

σ∈ÔP({2,...,k} , {k+1,...,n−1})

PT (1, σ1, . . . , σn−2, n)

PT (1, . . . , n)s1···k

(
s1···k +

∑
{i,j}|σi>σj

sσiσj

)
,

(B.1)

where ÔP(A,B) denotes the sets from ordered permutation of two sets A,B, i.e., all

permutations among A,B while keeping the ordering of A and B respectively, excluding

the trivial one {2, 3, . . . , n− 1}. PT (1, 2, . . . , n) denotes the Parke-Taylor-like factor

PT (1, 2, . . . , n) =
1

z12z23 · · · zn−1,nzn1
. (B.2)

The fact that similar monodromy relations exist in CHY-integrands as those in string

and gauge theory amplitudes is itself very interesting, while practically the identities

11Although this is confirmed by numerous computations, we should remark that there is not yet a proof

on it.
12A derivation of the relation can be found in [32].
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from monodromy relations can be applied to the decomposition of CHY-integrands with

higher-order poles. In fact, the systematic decomposition algorithm proposed in section 3

can as well proceed with the identities of monodromy relations as input, without any

practical modifications. Here we shall briefly compare the decomposition algorithm with

these two kinds of identities.

As mentioned, in a n-point scattering system, for a generic pole si1i2···ik , there exists

k(n−k) cross-ratio identities. The cross-ratio identity is almost symmetric, invariant under

permutations on A \ {j} and A \ {p}. While for the identity of monodromy relation (B.1),

because of the ordered permutation ÔP(A,B), each ordering of A,B would define an

identity for pole si1i2···ik . So naively, one would expect k!(n − k)! different identities of

monodromy relations for a pole si1i2···ik . However, as far as there are enough identities to

choose, this will not affect much the efficiency of decomposition algorithm.

The most important point related to the efficiency of computation via decomposition

algorithm is the number of terms in an identity. Especially for the CHY-integrands with

large n and large Υ order of poles, the number of resulting terms of simples poles is very

sensitive to the number of terms in identities. Furthermore, the more terms in an identity,

the more troubles we would meet, since the chance of producing CHY-integrands with

other higher-order poles will increase. For si1i2···ik pole in n-point scattering, the number

of terms in the identity of monodromy relation (MR) is

#[MR] =
(n− 2)!

(k − 1)!(n− k − 1)!
− 1 , (B.3)

while the number of terms in the cross-ratio identity (CR) is

#[CR] = (n− k − 1)(k − 1) . (B.4)

It can be seen that (B.3) grows factorially while (B.4) grows algebraically. This matters

a lot in the decomposition algorithm. For example, below is a table listing the number of

terms in the identity of pole si1i2···ik when n = 16,

k 2 3 4 5 6 7 8

#[MR] 13 90 363 1000 2001 3002 3431

#[CR] 13 24 33 40 45 48 49

Although for pole si1i2 , there is no difference, when considering a CHY-integrand with

higher-order pole si1i2···ik for large k, the difference becomes dramatic. For example, let us

consider a 16-point CHY-integrand

I16 =
1

z212z
2
23z

2
34z

2
45z

2
56z

2
67z

2
78z

2
9,10z

2
10,11z

2
11,12z

2
12,13z

2
13,14z

2
14,15z

2
15,16z18z89z9,16z1,16

, (B.5)

with its 4-regular graph as shown in figure 6. It has a double pole s12345678, and a multi-

plication of cross-ratio identity

I16 = I16 × I16[{1, 2, 3, 4, 5, 6, 7, 8}, 1, 9] (B.6)

instantly produces 49 terms with simple poles. While for identity of monodromy relations

the decomposition is much more difficult, leading to 3431 terms.
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Figure 6. The 4-regular graph of a 16-point CHY-integrand.

C (Parke− Taylor) × (Parke− Taylor) geometry and its recurrence re-

lation

In this section, let us consider the basic two-cycle CHY-integrands given by

(Parke− Taylor)× (Parke− Taylor) = PT2 ,

i.e., graphs such as the following examples,

, (C.1)

and

, (C.2)

and

. (C.3)

Although they can be computed trivially by integration rules of simple poles, let us repeat

here by the means of recurrence relations of Λ-algorithm, with similar idea that can be
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generalized to other recurrence relations of more complicated geometry. Clearly, the num-

ber of all possible non-zero allowable configurations is (n− 2). From the Λ-algorithm, it is

very well-known that each cut splits the original graph into two sub-graphs, which are of

the same type, i.e., (Parke − Taylor)2.

Before writing this new recurrence relation, we give some definitions which will be

useful. Let oi be the set of ordered elements given by

oi := {5, 6, 7, . . . i+ 4} , where i ∈ {1, . . . , n− 5} , n > 5 , (C.4)

and we defined o0 = ∅. Note that o1 = {5},o2 = {5, 6} and so on. We also denote oi as

the ordered complement of oi

oi := {5, 6, 7, . . . , n− 1} \ oi , (C.5)

for example

o0 = {5, . . . , n− 1} , o1 = {6, . . . , n− 1} , . . . , on−5 = ∅ . (C.6)

With these definitions, the recurrence relation13 takes the form,

IPT2

n (1, 2, . . . , n) =
IPT2

n−1 ([1, 2], 3, . . . , n)

s̃34···n
+
IPT2

n−1 (1, [2, 3], . . . , n)

s̃4···n1
(C.7)

+
n−5∑
i=0

IPT2

n−i−1(1, 2, [3, 4,oi],oi, n)× IPT2

i+3 ([oi, n, 1, 2], 3, 4,oi)

s̃34oi
,

where

IPT2

3 (a, b, c) = 1 ,

which is the 3-point function. It is very important to note that

IPT2

4 (1, 2, 3, 4) = B(4, 2|1, 3) . (C.8)

Finally, from the CHY-integrands given in (C.1), (C.2), (C.3) and the recurrence rela-

tion in (C.7), it is simple to check the five, six and seven-point examples

IPT2

5 (1, 2, 3, 4, 5) =
IPT2

4 ([1, 2], 3, 4, 5)

s̃345
+
IPT2

4 (1, [2, 3], 4, 5)

s̃451
+
IPT2

4 (1, 2, [3, 4], 5)

s̃34
, (C.9)

IPT2

6 (1, 2, 3, 4, 5, 6) =
IPT2

5 ([1, 2], 3, 4, 5, 6)

s̃3456
+
IPT2

5 (1, [2, 3], 4, 5, 6)

s̃4561
+
IPT2

5 (1, 2, [3, 4], 5, 6)

s̃34

+
IPT2

4 (1, 2, [3, 4, 5], 6)× IPT2

4 ([6, 1, 2], 3, 4, 5)

s̃345
, (C.10)

13Let us remember that the Λ-algorithm is an iterative process.
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and

IPT2

7 (1, 2, 3, 4, 5, 6, 7) =
IPT2

6 ([1, 2], 3, 4, 5, 6, 7)

s̃34567
+
IPT2

6 (1, [2, 3], 4, 5, 6, 7)

s̃45671

+
IPT2

6 (1, 2, [3, 4], 5, 6, 7)

s̃34

+
IPT2

5 (1, 2, [3, 4, 5], 6, 7)× IPT2

4 ([6, 7, 1, 2], 3, 4, 5)

s̃345

+
IPT2

4 (1, 2, [3, 4, 5, 6], 7)× IPT2

5 ([7, 1, 2], 3, 4, 5, 6)

s̃3456
. (C.11)

D Recurrence relation for IPT2⊕PT2

3,3 ,IPT2⊕PT2

4,3 ,IPT2⊕PT2

5,3 and IPT2⊕PT2

6,3

In this section, we provide the results for the CHY-integrands

IPT2⊕PT2

3,3 , IPT2⊕PT2

4,3 , IPT2⊕PT2

5,3 and IPT2⊕PT2

6,3 , which are needed in order to obtain

the final expression of (4.18). Applying the recurrence relation given in (4.17) one obtains

IPT2⊕PT2

3,3 (σ1, σ2, σ3|σ4, σ5, σ6) =
IPT2⊕PT2

2,3 ([σ3, σ1], σ2|σ4, σ5, σ6)
s̃σ3σ1

+
IPT2⊕PT2

2,3 (σ1, [σ2, σ3]|σ4, σ5, σ6)
s̃σ2σ3

+
IPT2⊕PT2

2,3 ([σ1, σ2], σ3|σ4, σ5, σ6)
s̃σ3σ4σ5σ6

, (D.1)

and

IPT2⊕PT2

4,3 (σ1, σ2, σ3, σ4|σ5, σ6, σ7)=
IPT2⊕PT2

2,3 ([σ3, σ4, σ1], σ2|σ5, σ6, σ7)×IPT2

4 (σ1, [σ2, σ5, σ6, σ7], σ3, σ4)

s̃σ3σ4σ1

+
IPT2⊕PT2

3,3 (σ1, [σ2, σ3]σ4|σ5, σ6, σ7)× IPT2

3 ([σ1, σ4, σ5, σ6, σ7], σ2, σ3)

s̃σ2σ3

+
IPT2⊕PT2

2,3 (σ1, [σ2, σ3, σ4]|σ5, σ6, σ7)× IPT2

4 ([σ1, σ5, σ6, σ7], σ2, σ3, σ4)

s̃σ2σ3σ4

+
IPT2⊕PT2

2,3 ([σ1, σ2, σ4], σ3|σ5, σ6, σ7)× IPT2

4 (σ1, σ2, [σ3, σ5, σ6, σ7], σ4)

s̃σ3σ5σ6σ7

+
IPT2⊕PT2

3,3 ([σ1, σ2]σ3, σ4|σ5, σ6, σ7)× IPT2

3 (σ1, σ2, [σ3, σ4, σ5, σ6, σ7])

s̃σ3σ4σ5σ6σ7
, (D.2)

as well as

IPT2⊕PT2

5,3 (σ1, σ2, σ3, σ4, σ5|σ6, σ7, σ8) (D.3)

=
IPT2⊕PT2

2,3 ([σ3, σ4, σ5, σ1], σ2|σ6, σ7, σ8)× IPT2

5 (σ1, [σ2, σ6, σ7, σ8], σ3, σ4, σ5)

s̃σ3σ4σ5σ1

+
IPT2⊕PT2

4,3 (σ1, [σ2, σ3]σ4, σ5|σ6, σ7, σ8)× IPT2

3 ([σ1, σ4, σ5, σ6, σ7, σ8], σ2, σ3)

s̃σ2σ3

+
IPT2⊕PT2

3,3 (σ1, [σ2, σ3, σ4], σ5|σ6, σ7, σ8)× IPT2

4 ([σ1, σ5, σ6, σ7, σ8], σ2, σ3, σ4)

s̃σ2σ3σ4
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+
IPT2⊕PT2

2,3 (σ1, [σ2, σ3, σ4, σ5]|σ6, σ7, σ8)× IPT2

5 ([σ1, σ6, σ7, σ8], σ2, σ3, σ4, σ5)

s̃σ2σ3σ4σ5

+
IPT2⊕PT2

2,3 ([σ1, σ2, σ4, σ5], σ3|σ6, σ7, σ8)× IPT2

5 (σ1, σ2, [σ3, σ6, σ7, σ8], σ4, σ5)

s̃σ3σ6σ7σ8

+
IPT2⊕PT2

3,3 ([σ1, σ2, σ5], σ3, σ4|σ6, σ7, σ8)× IPT2

4 (σ1, σ2, [σ3, σ4, σ6, σ7, σ8], σ5)

s̃σ3σ4σ6σ7σ8

+
IPT2⊕PT2

4,3 ([σ1, σ2], σ3, σ4, σ5|σ6, σ7, σ8)× IPT2

3 (σ1, σ2, [σ3, σ4, σ5, σ6, σ7, σ8])

s̃σ3σ4σ5σ6σ7σ8

,

and

IPT2⊕PT2

6,3 (σ1, σ2, σ3, σ4, σ5, σ6 |σ7, σ8, σ9) (D.4)

=
IPT2⊕PT2

2,3 ([σ3, σ4, σ5, σ6, σ1], 2 |σ7, σ8, σ9)× IPT2

6 (σ1, [σ2, σ7, σ8, σ9], σ3, σ4, σ5, σ6)

s̃σ3σ4σ5σ6σ1

+
IPT2⊕PT2

5,3 (σ1, [σ2, σ3], σ4, σ5, σ6 |σ7, σ8, σ9)× IPT2

3 ([σ1, σ4, σ5, σ6, σ7, σ8, σ9], σ2, σ3)

s̃σ2σ3

+
IPT2⊕PT2

4,3 (σ1, [σ2, σ3, σ4], σ5, σ6 |σ7, σ8, σ9)× IPT2

4 ([σ1, σ5, σ6, σ7, σ8, σ9], σ2, σ3, σ4)

s̃σ2σ3σ4

+
IPT2⊕PT2

3,3 (σ1, [σ2, σ3, σ4, σ5], σ6 |σ7, σ8, σ9)× IPT2

5 ([σ1, σ6, σ7, σ8, σ9], σ2, σ3, σ4, σ5)

s̃σ2σ3σ4σ5

+
IPT2⊕PT2

2,3 (σ1, [σ2, σ3, σ4, σ5, σ6] |σ7, σ8, σ9)× IPT2

6 ([σ1, σ7, σ8, σ9], σ2, σ3, σ4, σ5, σ6)

s̃σ2σ3σ4σ5σ6

+
IPT2⊕PT2

2,3 ([σ1, σ2, σ4, σ5, σ6], σ3 |σ7, σ8, σ9)× IPT2

6 (σ1, σ2, [σ3, σ7, σ8, σ9], σ4, σ5, σ6)

s̃σ3σ7σ8σ9

+
IPT2⊕PT2

3,3 ([σ1, σ2, σ5, σ6], σ3, σ4 |σ7, σ8, σ9)× IPT2

5 (σ1, σ2, [σ3, σ4, σ7, σ8, σ9], σ5, σ6)

s̃σ3σ4σ7σ8σ9

+
IPT2⊕PT2

4,3 ([σ1, σ2, σ6], σ3, σ4, σ5 |σ7, σ8, σ9)× IPT2

4 (σ1, σ2, [σ3, σ4, σ5, σ7, σ8, σ9], σ6)

s̃σ3σ4σ5σ7σ8σ9

+
IPT2⊕PT2

5,3 ([σ1, σ2], σ3, σ4, σ5, σ6 |σ7, σ8, σ9)× IPT2

3 (σ1, σ2, [σ3, σ4, σ5, σ6, σ7, σ8, σ9])

s̃σ3σ4σ5σ6σ7σ8σ9

.

These results are checked numerically.
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