Erratum: The LPM effect in sequential bremsstrahlung

Peter Arnold ${ }^{a}$ and Shahin Iqbal ${ }^{a, b}$
${ }^{a}$ Department of Physics, University of Virginia, 382 McCormick Road, Charlottesville, Virginia 22904-4714, U.S.A.
${ }^{b}$ National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, 45320 Pakistan
E-mail: parnold@virginia.edu, smi6nd@virginia.edu

Erratum to: JHEP04(2015)070
ArXiv ePrint: 1501.04964
The denominator $X_{\mathrm{y}}\left(X_{\mathrm{y}} X_{\overline{\mathrm{y}}}-X_{\mathrm{y} \overline{\mathrm{y}}}^{2}\right)$ on the far right-hand side of (5.44d) should be $X_{\overline{\mathrm{y}}}\left(X_{\mathrm{y}} X_{\overline{\mathrm{y}}}-X_{\mathrm{y} \overline{\mathrm{y}}}^{2}\right)$. Analogously, the denominator $X_{\overline{\mathrm{y}}}\left(X_{\mathrm{y}} X_{\overline{\mathrm{y}}}-X_{\mathrm{y} \overline{\mathrm{y}}}^{2}\right)$ on the far right-hand side of (5.44e) should be $X_{\mathrm{y}}\left(X_{\mathrm{y}} X_{\overline{\mathrm{y}}}-X_{\mathrm{y} \bar{y}}^{2}\right)$. These errors propagate to the following corrections to the rest of the paper and significantly change the infrared behavior of the result.

The behavior $\alpha_{\mathrm{s}}^{2} / x^{3} y^{3 / 2}$ shown on the right-hand side of (1.7) and (9.11) should instead be $\alpha_{\mathrm{s}}^{2} \ln (y) / x y^{3 / 2}$. But both here and in (1.6), it would be more precise and informative to write $\ln (y / x)$ instead of $\ln (y)$.

The $x_{\min }^{-5 / 2}$ in the text following (9.11) then becomes $x_{\min }^{-1 / 2} \ln ^{2} x_{\text {min }}$, and so this divergence is almost as mild as the single-splitting divergence mentioned in the next sentence of the text.

There is another error in the paper concerning the calculation of the pole terms in section 7 . Section 7 successfully calculates a subset of the pole contributions associated with $\Delta t=0$ but misses others. This error requires a lengthy analysis to explain and correct, which may be found in ref. [41] below.

The effects of the above correction to (5.44) and the correction [41] to the pole terms are that the number 10.437054610798 in footnote 35 should be -10.892657927744 , the corresponding statement in the main text that $[d \Gamma / d x d y]_{\text {crossed }}$ is positive for $(x, y)=$ $(0.3,0.6)$ is no longer true, and figure 27 and its caption should be replaced by those below.

There are some purely typographic errors. In eqs. (5.7), (5.8) and (5.9a), all occurrences of \boldsymbol{B}_{1} in those equations should be replaced by \boldsymbol{B}^{\prime}. Eq. (6.10) should include a factor of E on the right-hand side. The $\Omega_{ \pm}$appearing on the right-hand side of (E.9) should be Ω_{-}.

Figure 27. Our numerical results (solid line) for the total crossed diagram contribution to $d \Gamma / d x d y$ [in units of $C_{\mathrm{A}}^{2} \alpha_{\mathrm{s}}^{2} \sqrt{\hat{q}_{\mathrm{A}} / E}$] vs. y for fixed $x=10^{-4}$. The $d \Gamma \propto y^{-3 / 2} \ln (y / x)$ dashed line shows the $y^{-3 / 2} \ln (y / x)$ behavior of the $y \ll x \ll 1$ power law quoted in (9.11). The $d \Gamma \propto y^{-1} \ln (x / y)$ dashed line shows the $x^{-1} \ln (y / x)$ behavior of the same power law if one switches the labels x and y. We have only shown results for $y \leq 0.5$; results for $y>0.5$ are given by the permutation symmetry $y \leftrightarrow z \equiv 1-x-y$ of the problem.

Finally, an embarrassingly misleading choice of notation was made in section 2.2 , starting in (2.16). The $d^{2} \Gamma_{\text {el }} / d^{2} \boldsymbol{b}_{\perp}$ defined in (2.17) is not a "differential rate with respect to impact parameter" and should not have been called that, and the notation $d^{2} \Gamma_{\mathrm{el}} / d^{2} \boldsymbol{b}_{\perp}$ should not have been used. A better notation is to replace $d^{2} \Gamma_{\mathrm{el}} / d^{2} \boldsymbol{b}_{\perp}$ and $d^{2} \bar{\Gamma}_{\mathrm{el}} / d^{2} \boldsymbol{b}_{\perp}$ by simply Γ_{el} and $\bar{\Gamma}_{\mathrm{el}}$ throughout this section. In the new notation, $\Gamma_{\mathrm{el}}(0, t)$ is the rate of elastic scattering from the medium, and $\Gamma_{\mathrm{el}}(\boldsymbol{b}, t)$ is the Fourier transform of the differential rate $d^{2} \Gamma_{\mathrm{el}} / d^{2} \boldsymbol{q}_{\perp}$ with respect to transverse momentum transfer \boldsymbol{q}_{\perp}.
[41] P. Arnold, H.C. Chang and S. Iqbal, The LPM effect in sequential bremsstrahlung: dimensional regularization, arXiv:1606. 08853 [inSPIRE].

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

