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1 Introduction

The gauge-gravity duality [1] is a promising way to make a connection between general rel-

ativity and quantum field theory. According to AdS/CFT correspondence, the black holes

in AdS spacetime are dual to strongly-coupled large N gauge theories at finite temperature.

The thermodynamics of black hole predicts phase transition in AdS spacetime, such as the

Hawking-Page phase transition in Schwarzschild-AdS spacetime [2], which can be explained

as the gravitational dual of QCD confinement/deconfinement transition [3, 4]. Black ther-

modynamics is also studied for charged black holes, and a first order phase transition was

found in Reissner-Nordström AdS (RN AdS) spacetime [5, 6].

Recently, this analogy is extended to more general cases. By identifying the negative

cosmological constant as an effective pressure P = − Λ
8π , the thermodynamics of black

hole can be established on the extended phase space [7, 8]. The physical meaning of the

thermodynamical volume that is conjugate to the effective pressure P remains to be fully

understood, but it is conjectured to satisfy the reverse isoperimetric inequality [9]. In

this consideration, the black hole mass is taken as the enthalpy H rather than the internal

energy. The extended phase space thermodynamics has been investigated for many different

spacetimes [10–28], and in many cases the extended phase space thermodynamic behavior

is very similar to van der Waals liquid-gas system.

Up to now the dual field theory interpretation of the van der Waals-like phase transition

remains unknown. However, progress has been made in this direction recently. In ref. [29],

it was found that the holographic entanglement entropy (HEE) as a function of temperature

behaves qualitatively the same as black hole entropy in the context of a charged black hole

in AdS background with finite volume. In this case, the HEE undergoes van der Waals-like

phase transitions, and an inflexion point appears on the temperature-HEE curve at the

same critical temperature. More recently, the similarity between the two kinds of entropies

has been investigated further by considering Maxwell’s equal area law, which holds for black

hole entropy, and seems to be still valid on the HEE-temperature curve [30]. The numerical

– 1 –



J
H
E
P
0
9
(
2
0
1
6
)
0
6
0

results show that for RN-AdS black holes this “equal area law” on the HEE-temperature

curve holds up to an accuracy of around 1%, however, it fails for dyonic RN-AdS black

holes. Therefore, to get a better understanding of the field theory interpretation of the van

der Waals-like phase transitions, it is important to examine whether these ideas applies to

other gravity models. This connection has been extended to other cases [31–34], including

the extended phase space. It seems that the HEE can be a nice probe of the extended

phase space.

Motivated by the above considerations and progresses, we extended the study of van

der Waals-like behavior for HEE to Gauss-Bonnet AdS black holes with a spherical horizon

in (4+1)-dimensions. The thermodynamics of this particular black hole spacetime has been

studied in the extended phase space in [14]. It was shown that for GB-AdS black holes,

the P − V criticality and phase transition only occurs when the black hole has a spherical

horizon. When the charge of the black hole is turned off, only in (4+1)-dimension the

P − V criticality and phase transition takes place.

The inclusion of Gauss-Bonnet term is a non-trivial generalization of Einstein gravity.

As a consequence, one must employ the HEE formula for general higher derivative grav-

ity [35–38]. We will show that that the equal area law on the temperature-HEE plane fails

but a van de Waals-like behavior on both the temperature-HEE and the temperature-black

hole mass curves indeed holds.

The rest of the paper is organized as follows: in section 2, we review the black hole

thermodynamics for spherically symmetric GB-AdS black holes, and discuss the critical

behavior and Maxwell equal area law on the entropy-temperature plane. In section 4, we

briefly review the holographic entanglement entropy in Gauss-Bonnet gravity and present

the HEE formula for our setup. In section 4, The numerical results are presented, which

include, in particular, the numerical evidence for the failure of the equal area law on

the temperature-HEE plane and the correctness of the first law of entanglement entropy,

which has never been established before. By employing the linear relationship between

HEE and black hole mass, we give an explanation for why the equal area law fails on the

the temperature-HEE plane. In the final section, we present some concluding remarks.

2 Thermodynamics for Gauss-Bonnet AdS black holes

In this section, we give a brief review of the thermodynamics of Gauss-Bonnet AdS Black

holes. The detailed calculation can be found in [14, 39, 40]. The action of Gauss-Bonnet

gravity in (d+ 1) dimensions can be written as [39]

I =
1

16πG

∫
dd+1x

√
−g [R− 2Λ + αGBLGB] (2.1)

where αGB is the Gauss-Bonnet coefficient and

LGB = R2 − 4RabR
ab +RabcdR

abcd (2.2)

is known as Gauss-Bonnet density. The Gauss-Bonnet coefficient can be identified with the

inverse string tension with positive value in string theory, so we shall only consider the case
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αGB > 0 in this paper. For later convenience, we reparametrize the negative cosmological

constant as Λ = −d(d−1)/(2L2) and the Gauss-Bonnet coefficient as α = αGB(d−2)(d−3).

Gauss-Bonnet gravity admits pure AdS solution with Riemann tensor Rabcd =

−(gcagbd − gcbgad)/L̃2 and the radius L̃ is given by

L̃2 =
2α

1−
√

1− 4α
L2

. (2.3)

It follows that the Gauss-Bonnet coefficient must satisfy α 6 L2/4 in order that the pure

AdS solution exists. Besides, there exists another constraint by demanding the causality

of dual field theory [41]

− (3d+ 2)(d− 2)

4(d+ 2)2
L2 6 α 6

(d− 2)(d− 3)(d2 − d+ 6)

4(d2 − 3d+ 6)2
L2. (2.4)

In this paper, we will be interested in the AdS black hole solutions which takes the

form [14, 39, 42–46]

ds2
(d+1) = −f(d+1)(r)dt

2 +
1

f(d+1)(r)
dr2 + r2hijdx

idxj , (2.5)

where

f(d+1)(r) = k +
r2

2α

(
1±

√
1 +

64πGαM

(d− 1)Σkrd
− 4α

L2

)
, (2.6)

hij is the metric on the (d−1)-dimensional hypersurface with constant curvature (d−1)(d−
2)k and volume Σk with k = −1, 0, 1, M is black hole mass. Among the two branches of

solutions, only the “−” branch is ghost free, so we shall only consider this case in this work.

Moreover, we shall restrict ourselves only to the spherically symmetric case by taking k = 1.

In AdS background, the black hole event horizon r+ is the largest root of f(d+1)(r).

The enthalpy and temperature can be obtained by using two equations f(d+1)(r+) = 0 and

T =
f ′
(d+1)

(r+)

4π , which yield

H ≡M =
(d− 1)Σ1r

d−2
+

16π

(
1 +

α

r2
+

+
16πPr2

+

d(d− 1)

)
, (2.7)

T =
16πPr4

+/(d− 1) + (d− 2)r2
+ + (d− 4)α

4πr+(r2
+ + 2α)

, (2.8)

where the pressure P is defined as P = − Λ
8π .

The black hole entropy [39] and thermodynamic volume can also be easily calculated

S =
Σ1r

d−1
+

4

[
1 +

2(d− 1)α

(d− 3)r2
+

]
, (2.9)

V =

(
∂H

∂P

)
S

=
Σ1r

d
+

d
. (2.10)
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Figure 1. (a) Isobaric curves on (4+1)-dimensional Gauss-Bonnet AdS black hole with different

pressure. From bottom to top the corresponding pressure are 0.7Pc(blue), Pc(orange), 1.2Pc(red).

The dashed horizontal line(green) located at T = Tc. (b) Zoom in of the P = 0.7Pc(blue) curve in

(a). The dashed horizontal line corresponds to T = T ∗. (c) Gibbs free energy along the isobaric

curve in (b), The dashed vertical line corresponds to T = T ∗.

These quantities satisfy the first law of black hole thermodynamics in the extend phase

space [40], i.e.

dH = TdS + V dP, (2.11)

or, in terms of Gibbs free energy G(T, P ) = H − TS,

dG = V dP − SdT. (2.12)

As discussed in [14], there exists some P − V critical behavior and first-order phase

transition in this extended phase space in d+ 1 = 5 dimensions, which is similar to the van

der Waals liquid-gas system. One can perform similar analysis on the T −S plane by fixing

P in eq. (2.12). The critical point can be determined by solving following two equations(
∂T

∂S

)
P

= 0,

(
∂2T

∂S2

)
P

= 0. (2.13)

For ease of the forthcoming numerical calculations, we set α = 1,Σ1 = 1 in the rest of the

paper. Then the above equations give rise to the following critical pressure and critical

radius for the black hole,

Pc =
1

48π
, rc =

√
6. (2.14)

The corresponding critical temperature is then

Tc =

√
6

12π
. (2.15)

In ref. [40], the Maxwell’s equal area law for Gauss-Bonnet AdS black holes is studied

on the P −V plane. In the following we shall reconstruct it on the T −S plane. Figure 1(a)

gives the isobaric curves on the T −S plane at pressures P = 0.7Pc, Pc, 1.2Pc are presented.
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It can be seen that, when P is lower than the critical pressure Pc, there may exist three

black holes of different sizes at the same temperature. However, the medium sized black

hole is unstable since its heat capacity C = T (∂S/∂T ) is negative. Naturally, one wishes

to know how Gibbs free energy varies along the isobaric curve. As is shown in figure 1(c),

there is an intersection point at T = T ∗ < Tc on the isobaric Gibbs free energy versus

temperature curve, which implies that at this temperature the small black hole may jump

into a large black hole. This is a first order phase transition similar to the phase transition

studied in the P − V plane. The value of T ∗ can be determined by the Maxwell’s equal

area law since the Gibbs free energy remains unchanged during the phase transition. By

referring to the closed regions formed by the isobaric T −S curve and the isotherm T = T ∗

as I′′ and II′′ (see figure 1(b)), the equal area law can be expressed symbolically as

A(I′′) = A(II′′), (2.16)

where

A(I′′) ≡
∫ S3

S1

|T (S)− T ∗| dS, A(I′′) ≡
∫ S2

S3

|T (S)− T ∗| dS,

S1, S2 and S3 are respectively the smallest, largest and the intermedium solution of the

equation T (S) = T ∗. Equivalently, we can also re-express eq. (2.16) as

AL ≡ T ∗(S2 − S1) =

∫ S2

S1

T (S)dS ≡ AR. (2.17)

However, when calculating the relative disagreements between the areas of the two closed

regions, one should avoid using this latter expression, because neither AL nor AR corre-

sponds to the area of any of the closed regions.

When P = Pc, there is an inflection point on the isobaric curve, and the area of both

closed regions mentioned shrinks to zero. In this case, the size of the three black holes at

the same temperature becomes identical, and the phase transition becomes continuous and

is of the second order. If the pressure P increases further so that P > Pc holds, T becomes

a monotonous function of S, and there can be only a single black hole at each temperature,

therefore the phase transition no longer occurs.

3 HEE in Gauss-Bonnet AdS gravity

Nowadays much attention has been focused on the research of entanglement entropy, which

appears in many fields of physics, such as quantum field theory [47, 48], condensed matter

physics [49], and quantum information [50]. For a quantum system with density matrix ρ,

the entanglement entropy of a subsystem A is defined as

SA = −TrρA ln ρA, (3.1)

where ρA is the reduced density matrix of A, which is defined by tracing over the degrees

of freedom in the complementary subsystem Ā of A, i.e.

ρA = TrĀρ. (3.2)

– 5 –
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In the framework of AdS/CFT, Ryu and Takayanagi conjectured that the entanglement en-

tropy of the dual field theory can be calculated holographically from the gravity side [51, 52]

using the formula

SA =
Area(Σ)

4G
, (3.3)

where Σ is the co-dimension 2 minimal surface whose boundary coincides with the en-

tangling surface between A and Ā, and G is the Newton constant of the bulk theory.

This formula applies to Einstein gravity. This geometric description is reminiscent of the

Bekenstein-Hawking entropy for black holes since both are proportional the area of some

surfaces. Moreover, the similarity between the two kinds of entropies can go beyond Ein-

stein gravity [38]. For Lovelock gravity the holographical entanglement entropy is calcu-

lated by minimizing a certain surface functional which is originally used to compute black

hole entropy in Lovelock gravity [53] (this surface functional is denoted as SJM in [38]).

The general formula for HEE in higher curvature gravity is given in [36, 37], which is based

on the generalized gravitational entropy introduced in [35]. For Gauss-Bonnet gravity the

holographic entanglement entropy takes the form [36, 38]

SA =
1

4G

∫
Σ

dd−1x
√
h(1 + αR) +

α

2G

∫
∂Σ
K, (3.4)

where K is the trace of the extrinsic curvature of Σ and R is intrinsic curvature of Σ.

Note, however, that in previous studies, the dual field theory lives on a flat d-dimensional

boundary, and what we would like to study in the following is the case when the dual

theory lives on a d-dimensional spacetime with compact spatial section.

To be more specific, we shall restrict ourselves to the spherically symmetric (i.e. k = 1)

(4+1)-dimensional GB-AdS black hole spacetime with line element

ds2 = −f(5)(r)dt
2 +

dr2

f(5)(r)
+ r2(dθ2 + sin2 θ(dϕ2 + sin2 ϕ dω2)). (3.5)

The subsystem A is a subset on the boundary of the bulk spacetime at r = r0 (here r0

plays the role of UV cutoff) and is chosen to have a spherical boundary S2 which plays the

role of entangling surface. Therefore, in coordinates as used in eq. (3.5), the entangling

surface can be parameterized as a constant θ hypersurface θ = θ0 with coordinates 0 ≤
ϕ ≤ π, 0 ≤ ω < 2π. Let us remark that, in principle, the boundary of the bulk spacetime

should be taken at r =∞. However, setting r =∞ directly in the metric would effectively

remove the M dependence and meanwhile render most of the metric components divergent.

Therefore taking an appropriate UV cutoff at r = r0 is a usual practice.

Because of the spherical symmetries, the radial coordinates at any point on Σ depends

only on θ but not on ϕ and ω. Therefore, the induced metric on Σ can be written as

habdx
adxb =

(
1

f(5)(r(θ))
r′2(θ) + r2(θ)

)
dθ2 + r(θ)2 sin2 θdΩ2, (3.6)

where the prime denotes the derivative with respect to θ and dΩ2 is the line element on a

unit two-sphere. The scalar curvature of Σ can be calculated as

R = 2e−2F − 4∇2F − 6(∂F )2, (3.7)

– 6 –
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where

e2F = r2(θ) sin2 θ, ∇2F =
1√
hθθ

∂θ

(√
hθθh

θθ∂θF
)
, (∂F )2 = hθθ(∂θF )2. (3.8)

To obtain the extrinsic curvature K, we define the outward pointing normal vector at ∂Σ:

na =
√
hθθδθa, na =

√
hθθδθa. (3.9)

Using this normal vector, the extrinsic curvature K on ∂Σ is defined as

K = (hab − nanb)∇anb. (3.10)

Combining the above data, the HEE formula eq. (3.4) for the subsystem A can be

rearranged into

SA = π

∫ θ0

0
dθ

[(
r′2

f(5)
+ r2

)1/2

(2α+ r2 sin2 θ)

+2α

(
r′2

f(5)
+ r2

)−1/2 (
r cos θ + r′ sin θ

)2 ]
, (3.11)

which is to be minimized and integrated out. Notice that we have set the Newton constant

G = 1 in the last formula.

The minimization of SA involves a variational process which yields a very complicated

second order differential equation for the function r(θ). This differential equation should

then be solved using the boundary conditions

r′(0) = 0, r(θ0) = r0 (3.12)

and then be substituted back into eq. (3.11) to get the final result. However, as r0 ap-

proaches infinity, the direct evaluation of SA will become divergence. Thus a regularization

by subtracting the entanglement entropy corresponding to the “zero mass black hole” (i.e.

pure AdS background) is necessary. The outcome of the combined operations as described

above will be the regularized HEE

δS = SA − SA|M=0. (3.13)

Due to the overwhelming complicatedness of the related differential equation, the only way

to work out the above process is to resort to numerical methods.

4 Numerical results

In this section, we shall study the temperature vs regularized HEE relationship using

numerical method. For RN-AdS [30] and massive gravity [32], the T − δS curve was shown

to possess van der Waals-like behavior at T < Tc, and it was conjectured that an equal

area law might also hold on the T − δS plane because numerical calculations show that

the relative disagreement between the area of the two closed regions formed by the T − δS

– 7 –



J
H
E
P
0
9
(
2
0
1
6
)
0
6
0

0.000 0.004 0.008 0.012

δS

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30
T
/T

c

(a)

0.000 0.004 0.008 0.012

δS

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

T
/T

c

(b)

I

II

Figure 2. T − δS curves at θ0 = 0.1. (a) From bottom to top, the pressures corresponding to each

curves are: 0.7Pc, 0.9Pc, Pc, 1.1Pc and 1.3Pc. The dashed horizontal line is located at T = Tc. (b)

Zoom in of the P = 0.7Pc curve in (a). The dashed horizontal line corresponds to T = T ∗.
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Figure 3. T − δS plots at θ0 = 0.5. (a) From bottom to top, the pressures are: 0.7Pc, 0.9Pc, Pc,

1.1Pc and 1.3Pc. The dashed horizontal line corresponds to T = Tc. (b) Zoom in of the P = 0.7Pc

curve in (a). The dashed horizontal line corresponds to T = T ∗.

curve and the T = T ∗ line is as small as 1%, where T ∗ is the same phase equilibrium

temperature in the corresponding extended phase space thermodynamics of the black hole

spacetime. Now we would like to see whether similar van der Waals behavior and/or the

equal areal law appears in the situation of spherical GB-AdS black hole spacetime.

We shall still focus on the (4 + 1)-dimensional case. Within the parameter region

0.7 < T/Tc < 1.3, 0.7 < P/Pc < 1.3, the numerical value of the radius r+ of the event

horizon of the spherical GB-AdS black hole can be shown to be less than 10. Thus we set

r0 = 300, which is large enough as compared to the radius of the event horizon.

In figure 2 and figure 3, we present the plots of temperature versus regularized HEE

δS at several fixed pressures. These two figures corresponds to different sizes of the entan-

glement surface characterized by θ0 = 0.1 and θ0 = 0.5 respectively. It can be seen that,

– 8 –



J
H
E
P
0
9
(
2
0
1
6
)
0
6
0

P/Pc T ∗/Tc A(I) A(II) (A(I)-A(II))/A(I)

0.6 0.8485 1.2490× 10−4 1.1468× 10−4 8.18%

0.7 0.8972 5.7431× 10−5 5.4452× 10−5 5.12%

0.8 0.9381 2.1475× 10−5 2.0790× 10−5 3.19%

0.9 0.9721 4.5825× 10−6 4.5162× 10−6 1.45%

Table 1. Areas and their relative disagreement for the regions I and II at θ0 = 0.1.

P/Pc T ∗/Tc A(I) A(II) (A(I)-A(II))/A(I)

0.6 0.8485 7.9775× 10−2 7.3208× 10−2 8.25%

0.7 0.8972 3.6551× 10−2 3.4670× 10−2 5.14%

0.8 0.9381 1.3582× 10−2 1.3229× 10−2 2.59%

0.9 0.9721 2.9091× 10−3 2.8782× 10−3 1.06%

Table 2. Areas and their relative disagreement for the regions I and II at θ0 = 0.5.

when the pressure is lower than the critical pressure Pc, there can be three different δS

if the temperature takes value in a certain range. As P approaches Pc from below, the

three different values of δS move closer, until they merge into a single value at P = Pc.

When P > Pc, T becomes monotonic in δS. Such behavior is qualitatively similar to the

temperature versus black hole entropy curves as shown in figure 1.

Next we would like to examine whether there is an equal area law on the T − δS

plane. The two closed regions I and II formed by the T − δS curve and the horizontal

line T = T ∗ are explicitly marked in figure 2(b) and figure 3(b) for the cases θ0 = 0.1

and θ0 = 0.5 respectively. The phase equilibrium temperature T ∗, the areas of both closed

regions and their relative disagreement are presented numerically at the given pressures

P/Pc = 0.6, 0.7, 0.8, 0.9 respectively in table 1 and table 2. It can be seen from these

tables that, as the pressure approaches Pc from below, the relative disagreement between

the areas of the two closed regions decreases. However, at lower pressures, the relative

disagreement can become significantly large, and consequently the equal area law cannot

hold on the T − δS plane.

Although we presented the numerical results only for two distinct values of θ0 =

0.1, 0.5, this does not imply that these values of θ0 are special in any sense. Actually

we have carried out the numerical process for some other values of θ0, and the results are

qualitatively the same. Therefore we conclude that the break down of equal area law on the

T − δS plane should be a generic phenomenon for the HEE associated with the spherically

symmetric GB-AdS black hole spacetime.

Besides the qualitative T − δS behavior, let us examine another important aspect of

HEE in the case of spherically symmetric GB-AdS black holes, i.e. the so-called entangle-

ment thermodynamics. In ref. [54] (see also [55]), the first law of entanglement entropy

has been proposed, which states that the increase of HEE is proportional to the increase of

the energy of the subsystem, i.e. δS ∝ ∆EA, provided mld � 1, where m is proportional

to the black hole mass and l is related to the size of the subsystem A which is of the order

– 9 –
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Figure 4. δS and T versus M at P = 0.7Pc. (a) δS vs M with θ0 = 0.1; (b) δS vs M with

θ0 = 0.5. (c) T vs M , the dashed horizontal line corresponds to T = T ∗ ' 0.8972Tc. The two

closed regions are marked as I′ and II′ respectively.

z = z∗ in d = 4 (z∗ is the Poincare radial coordinate which marks the position of the co-

dimension 2 hypersurface). In our convention, we have r ∼ 1/z and so the above condition

becomes M
r(0)d

� 1 (we still take d = 4). It should be noted that the calculation in [54]

was performed in spacetime with planar boundary in contrast to the compact boundary in

our case. Therefore, it is interesting to see whether the first law of entanglement entropy

still holds in our case. It should be remarked that the increase ∆EA of the subsystem A

of the dual field theory is proportional to the black hole mass M [55, 56], therefore what

we would like to explore is whether there is a linear relationship between the regularized

HEE δS and the black hole mass M .

Figure 4(a) and figure 4(b) give the plot of δS as function of M at the fixed pressure

P/Pc = 0.7 in the cases of θ0 = 0.1 and θ0 = 0.5 respectively. It turns out that for both

small and large subsystem A, there is a very good linear relationship between δS and the

black hole mass M . In fact, this linear relationship shows up under all parameter ranges

as presented in tables 1 and 2. This indicates that the first law of entanglement entropy

indeed holds in our case.

Now since δS is proportional to M , one naturally expects that the T −M relationship

must be qualitatively similar to the T − δS relationship. A little calculation indicates that(
∂T

∂M

)
P

=

(
∂T

∂S

)
P

(
∂S

∂M

)
P

= 0, (4.1)(
∂2T

∂M2

)
P

=

(
∂T

∂S

)
P

(
∂2S

∂M2

)
P

+

(
∂2T

∂S2

)
P

(
∂S

∂M

)2

P

= 0, (4.2)

where the last equality holds at the critical point on the T −S plane, thanks to eq. (2.13).

Exploring the expressions (2.7) and (2.8), one can show that there is an oscillatory segment

on each T −M curve if P < Pc. Furthermore, comparing the areas of the closed regions I′

and region II′ in in figure 4(c), we find that the relative disagreements are roughly of the

same order as in the cases of the T − δS curves. For detailed numerical results, see table 3.
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P/Pc T ∗/Tc A(I′) A(II′) (A(I′)-A(II′))/A(I′)

0.6 0.8485 6.8084× 10−2 6.2521× 10−2 8.17%

0.7 0.8972 3.3759× 10−2 3.2034× 10−2 5.11%

0.8 0.9381 1.3451× 10−2 1.3090× 10−2 2.68%

0.9 0.9721 3.0562× 10−3 3.0282× 10−3 0.91%

Table 3. Areas and their relative disagreement for the regions I′ and II′ on T −M plane.

It should be pointed out that there is no reason to think of the areas A(I′) and A(II′)

as being equal in black hole thermodynamics. Therefore, the linear relationship between

δS and M may serve as a good reason in judging that there is no equal area law on the

T − δS plots.

At this stage, it seems necessary to address the following problem: why the equal area

law on the T −δS plane seems to hold in the case of charged AdS black hole [30] whilst it is

not the case for spherically symmetric Gauss-Bonnet black hole? To our understanding, this

apparent controversy has nothing to do with the choice of gravity models. The seemingly

holding equal area law in [30] is the consequence of the insufficient exploration on the range

of the charge parameter Q (which plays similar role as the pressure P in the present work).

In figure2 of [30], only the case Q = 0.9Qc had been checked numerically (however with

several values of θ0). Had we explored only the case P = 0.9Pc in our work, one might

draw the conclusion that the equal area law should also hold on the T − δS plane for

spherically symmetric Gauss-Bonnet black hole up to the relative disagreement around 1%

(see the bottom rows of tables 1 and 2). In fact, if one looks only at these bottom rows,

the relative disagreements between the two closed areas are even smaller than that found

in [30]. However, exploring broader ranges of the parameter P has revealed the fact that

the equal area law does not hold actually.

To support the above statements, we have re-worked out the numerics for the RN-AdS

black hole. One thing to remark here is that [30] has used a different cutoff scheme, i.e.

instead of introducing a UV cutoff over r as we do in this paper, the author of [30] has

chosen to use a cutoff θc over the angular variable θ. Anyway, complying completely with

the conventions of [30], we obtained numerical results which fully support the statements

given in the last paragraph. Table 4 contains the numerical results for the two closed areas

on the T − δS plane and their relative disagreements for (3+1)D RN-AdS black hole. For

simplicity, we present the results only for θ0 = 0.1 and θc = 0.099, the cases for other

choices of θ0 have also been checked and the results are qualitatively the same. The value

of the charge parameter varies from 0.6Qc to 0.9Qc, where the bottom row corresponds

exactly to the same parameter set presented in the first row of table 1 of [30] (A(I) and

A(II) respectively are denoted A1 and A2 in [30]).1 Table 5 presents the parallel results

1The numerical values for A(I) and A(II) in the bottom row of table 4 are about 0.6% less than the values

given in [30]. We suspect that this difference might be originated from the choice of different numerical

integration algorithms. The numerical program which we use for producing the table is available upon

request to all readers, just send us an e-mail.
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Q/Qc T ∗/Tc A(I) A(II) (A(I)-A(II))/A(I)

0.6 1.0955 3.0415× 10−5 2.5353× 10−5 16.64%

0.7 1.0724 1.5835× 10−5 1.4180× 10−5 10.45%

0.8 1.0488 6.6235× 10−6 6.2605× 10−6 5.48%

0.9 1.0247 1.5817× 10−6 1.5528× 10−6 1.86%

Table 4. A check for the “equal area law” on the T −δS plane for (3+1)D RN-AdS black hole with

θ0 = 0.1 and θc = 0.099. Qc and Tc are the critical charge and critical temperature respectively

whose values are presented in [30]. T ∗ is the RN-AdS black hole phase equilibrium temperature.

Q/Qc T ∗/Tc A(I′) A(II′) (A(I′)-A(II′))/A(I′)

0.6 1.09545 3.9449× 10−3 3.2885× 10−3 16.64%

0.7 1.07238 2.0538× 10−3 1.8393× 10−3 10.44%

0.8 1.04881 8.5909× 10−4 8.1203× 10−4 5.48%

0.9 1.02470 2.0515× 10−4 2.0134× 10−4 1.86%

Table 5. The case for RN-AdS black hole on the T −M plane.

on the T −M plane. From the last two tables one can see that, if broader ranges for the

parameter Q had been explored in [30], one would not have drawn the conclusion that the

equal area law holds on the T − δS plane (nor on the T −M plane). The reason for the

breakdown for the equal area law in the RN-AdS case can also be attributed to the linear

relationship between δS and M , which has also been numerically checked to hold at very

high accuracy.

5 Concluding remarks

In this work, we extended the study of analogy between black hole entropy and HEE to

(4+1)-dimensional spherically symmetric Gauss-Bonnet AdS black hole spacetime. The

thermodynamics of the black hole is reviewed, which emphasis on the behaviors on the

T−S plane. Then the regularized HEE δS against the black hole temperature is calculated

numerically. The results show that the isobaric T−δS curves behave qualitatively the same

as the isobaric T − S curve and exhibits van der Waals-like structure, however there is no

reason to believe there is an analogy of equal area law on the T − δS plane.

We also find that the regularized HEE δS is proportional to the black hole mass M ,

which may be understood as the first law of holographic entanglement entropy. Note that

for a spacetime with compact boundary, the first law of holographic entanglement entropy

has never been established before. The linear relation between δS and M may also serve

as an explanation for the failure of equal area law on the T − δS plane.

Notes added. After the first version of this manuscript have appeared on arXiv, we

have noticed the more recent work [57], which also studied the holographic entanglement

entropy versus temperature relationship for the (charged) spherically symmetric Gauss-

Bonnet black holes. There the authors claimed the correctness of the equal area law on the
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T − δS plane. However, the areas compared in that paper are AL and AR defined in (2.17)

(with S replaced by δS), rather than the correct A(I) and A(II) used in the present paper.

The “relative error” between AL and AR differs from the relative disagreement between

A(I) and A(II) by adding the whole area below the isotherm T = T ∗ (which is a huge

quantity as compared to the area of the closed region) in the denominator, this explains

why the relative errors presented in [57] are so small.
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