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Abstract: Anomalous chiral conductivities in theories with global anomalies are inde-

pendent of whether they are computed in a weakly coupled quantum (or thermal) field

theory, hydrodynamics, or at infinite coupling from holography. While the presence of

dynamical gauge fields and mixed, gauge-global anomalies can destroy this universality,

in their absence, the non-renormalisation of anomalous Ward identities is expected to be

obeyed at all intermediate coupling strengths. In holography, bulk theories with higher-

derivative corrections incorporate coupling constant corrections to the boundary theory

observables in an expansion around infinite coupling. In this work, we investigate the cou-

pling constant dependence and universality of anomalous conductivities (and thus of the

anomalous Ward identities) in general, four-dimensional systems that possess asymptoti-

cally anti-de Sitter holographic duals with a non-extremal black brane in five dimensions,

and anomalous transport introduced into the boundary theory via the bulk Chern-Simons

action. We show that in bulk theories with arbitrary gauge- and diffeomorphism-invariant

higher-derivative actions, anomalous conductivities, which can incorporate an infinite se-

ries of (inverse) coupling constant corrections, remain universal. Owing to the existence

of the membrane paradigm, the proof reduces to a construction of bulk effective theories

at the horizon and the boundary. It only requires us to impose the condition of horizon

regularity and correct boundary conditions on the fields. We also discuss ways to violate

the universality by violating conditions for the validity of the membrane paradigm, in par-

ticular, by adding mass to the vector fields (a case with a mixed, gauge-global anomaly)

and in bulk geometries with a naked singularity.
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1 Introduction

Anomalies. An anomaly is a quantum effect whereby a classically conserved current Jµ

ceases to enjoy its conservation, ∇µ〈Jµ〉 6= 0 [1–4]. To date, a multitude of different anoma-

lies have been discovered that can be classified into two main categories: local (gauge) and

global anomalies. A gauge anomaly corresponds to a gauged symmetry (and current) and

the consistency of a quantum field theory requires this anomaly to vanish. While global

anomalies are permitted, their existence still imposes stringent conditions on the structure

of quantum field theories due to the anomaly matching condition discovered by ’t Hooft [5].

The condition states that a result of an anomaly calculation must be invariant under the

renormalisation group flow and is thus independent of whether it is computed in the UV

microscopic theory or an IR effective theory.

Of particular importance to quantum field theory have been the chiral anomalies,

which are present in theories with massless fermions. The values of the current divergences

resulting from these anomalies are known to be one-loop exact. From the point of view of

the topological structure of gauge theories, one can suspect that this should be true very

generically due to the fact that the anomaly is related to the topologically protected index

of the Dirac operator. Perturbatively, non-renormalisation of the one-loop anomalies was

established in [6–8]. In a typical four dimensional chiral theory, there are two classically
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conserved currents: the axial Jµ
5 (associated with the γ5 Dirac matrix) and the vector

current Jµ. By including quantum corrections, their Ward identities can be written as

∇µ〈Jµ
5 〉 = ǫµνρσ(κFA,µνFA,ρσ + γFV,µνFV,ρσ + λRα1

α2µνR
α2

α1ρσ) ,

∇µ〈Jµ〉 = 0 ,
(1.1)

where FA,µν , FV,µν are the field strengths associated with the axial and the vector gauge

fields. Rα
βµν is the Riemann curvature tensor of the curved manifold on which the four

dimensional field theory is defined, and κ, γ and λ are the three Chern-Simons coupling

constants. While the axial current conservation is violated by quantum effects, the vec-

tor current remains conserved. Among other works, various arguments in favour of non-

renormalisation of one-loop anomalies have been presented in [9–16]. The situation is much

less clear when, as in [17], one considers the contributions of mixed, gauge-global anomalies.

In such cases, it was shown in [17] that one should expect anomalous currents to receive

radiative corrections at higher loops. The connection between this work and mixed, gauge-

global anomalies will be elaborated upon below. A further set of open questions related to

the non-renormalisation of anomalies enters the stage from the possibility of considering

non-perturbative effects in QFT.

From a historically more unconventional point of view, anomalies have recently also

been studied through the (macroscopic) hydrodynamic entropy current analysis [18, 19].1

The effects of gravitational anomalies on the hydrodynamic gradient expansion were then

studied by using the Euclidean partition function on a cone in [22]. Macroscopic trans-

port properties associated with anomalous conservation laws have now been analysed in

detail (at least theoretically) both at non-zero temperature and density. To date, the most

prominent and well-understood anomaly-induced transport phenomena have been associ-

ated with the chiral magnetic effect [9, 11, 23] and the chiral vortical effect [18, 24].

Chiral conductivities in field theory. In the low-energy hydrodynamic limit, we ex-

pect that to leading order in the gradient expansion of relevant fields, the expectation values

of these currents can be expressed in the form of Ohm’s law. The corresponding conduc-

tivities can then be defined in the following way: if a chiral system is perturbed by a small

external magnetic field Bµ = (1/2)ǫµνρσuνFρσ and a spacetime vortex ωµ = ǫµνρσuν∇ρuσ,

where uµ is the fluid velocity vector in the laboratory frame, then the expectation values

of the two currents change by 〈δJµ〉 and 〈δJµ
5 〉. Note that unlike in eq. (1.1), both the

axial and vector current conservation are now broken by the induced anomalies. To leading

(dissipationless) order, the change can be expressed in terms of the conductivity matrix

(

〈δJµ〉
〈δJµ

5 〉

)

=

(

σJB σJω
σJ5B σJ5ω

)(

Bµ

ωµ

)

, (1.2)

where σJB is known as the chiral magnetic conductivity, σJω as the chiral vortical conduc-

tivity and σJ5B as the chiral separation conductivity. The signature of anomalies can thus

1For a recent discussion of anomalies from the point of view of UV divergences in classical physics and

its connection to the breakdown of the time reversal symmetry, see [20, 21].
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be traced all the way to the extreme IR physics and analysed by the linear response theory.

This will be the subject studied in this work.

By following a set of rules postulated in [25] (see also [26]), a convenient way to express

the anomalous conductivities is in terms of the anomaly polynomials. We briefly review

these rules in appendix A. They allow one to compute the anomalous conductivities from

the structure of the anomaly polynomials in arbitrary (even) dimensions, independently of

the value of the coupling constant [22, 25–27].

In the IR limit, we may assume that the stress-energy tensor and the charge current

can be expressed in a hydrodynamic gradient expansion [28–31]. The constitutive relations

for a fluid with broken parity, in the Landau frame, are [18, 32–34]

Tµν = εuµuν + P∆µν − ησµν − ζ∆µν∇λu
λ +O(∂2) ,

Jµ
I = nIu

µ + σI∆
µν

(

uρFI,ρν − T ∇ν

(

µI

T

)

)

+ ξI,BB
µ
I + ξI,ωω

µ +O(∂2) ,
(1.3)

where the index I = {A, V } labels the axial and the vector currents (Jµ
5 = Jµ

A, J
µ = Jµ

V )

and their respective transport coefficients. In the stress-energy tensor, ε, P , η and ζ are

the energy density, pressure, shear viscosity and bulk viscosity. Furthermore, n, σ, T , µ

and Fµν are the charge density, charge conductivity, temperature, chemical potential and

the gauge field strength tensor. The vector field uµ is the velocity field of the fluid, the

transverse projector (to the fluid flow) ∆µν is defined as ∆µν = uµuν + gµν , with gµν

the metric tensor and σµν the symmetric, transverse and traceless relativistic shear tensor

composed of ∇µuν . Plugging the above constitutive relations into the anomalous Ward

identities, one can show that the anomalous conductivities are controlled by the transport

coefficients ξB and ξω (see e.g. [35]). It was shown in [18, 19] that by demanding the

non-negativity of local entropy production (and similarly, by using a Euclidean effective

action in [13, 22, 36]),2 the anomalous chiral separation conductivity σJ5B and the chiral

magnetic conductivity σJB become fixed by the anomaly coefficient γ:

σJ5B = −2γµ , σJB = −2γµ5 . (1.4)

On the other hand, the transport coefficient σJ5ω could not be completely determined by

the anomaly and thermodynamic quantities. Its form contains an additional constant term,

σJ5ω = κµ2 + c̃T 2, (1.5)

where c̃ is some yet-undetermined constant, which could run along the renormalisation

group flow. By using perturbative field theory methods [37, 38] and simple holographic

models [27, 35], it was then suggested that c̃ could be fixed by the gravitational anomaly

coefficients, λ.3 However, the gravitational anomaly enters the equations of motion (1.1)

with terms at fourth order in the derivative expansion while ξω and ξB enter the equation

2Note that the analysis in [13, 18, 36] only involves the axial gauge field. However, it is straightforward

to generalise their results to the case with both the axial and the vector current.
3We note that in the presence of chiral gravitinos, the relation between c̃ and the gravitational anomaly

coefficient λ is different from those studied in this work [38, 39].
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of motion at second order. Thus, if one analysed the hydrodynamic expansion in terms

of the näıve gradient expansion with all fluctuations of the same order, it would seem

to be impossible to express c̃ in terms of the gravitational anomaly. The above paradox

was resolved in [22]. There, the theory was placed on a product space of a cone and a

two dimensional manifold. The deficit angle δ was defined along the thermal cycle, β, as

β ∼ β + 2π(1 + δ). Demanding continuity of one-point functions in the vicinity of δ = 0

then fixed the unknown coefficient c̃ in terms of the gravitational anomaly coefficient λ (the

gradient expansion breaks down). The above construction can be extended to theories

outside the hydrodynamic regime in arbitrary even dimensions and in the presence of

other types of anomalies, so long as the theories only involve background gauge fields and

a background metric [26].

In the presence of dynamical gauge fields, the anomalous transport coefficients do not

seem to remain protected from radiative corrections. This is consistent with the fact that

the chiral vortical conductivity σJω, given otherwise by the thermal field theory result

σJω = 2γµ5µ , (1.6)

was also argued to get renormalised in theories with dynamical gauge fields by [40–42].4

Furthermore, these various pieces of information regarding the renormalisation of the chiral

conductivities are consistent with the findings of [17] (already noted above) and lattice

results [44–47]: in theories with dynamical gauge fields and mixed, gauge-global anomalies,

chiral conductivities renormalise.

Holography and universality of transport coefficients. Certain classes of strongly

interacting theories at finite temperature and chemical potential can be formulated using

gauge-gravity (holographic) duality. Thus, in comparison with the weakly coupled regime

accessible to perturbative field theory calculations, holography can be seen as a convenient

tool to investigate chiral transport properties at the opposite end of the coupling constant

scale. Within holography, anomalous hydrodynamic transport was first studied in the

context of fluid-gravity correspondence [48] by [32, 33, 49] who added the Chern-Simons

gauge field to the bulk. The two DC conductivities associated specifically with chiral mag-

netic and chiral vortical effects were then computed in the five-dimensional anti-de Sitter

Reissner-Nördstrom black brane background in [35, 50, 51]. The results were extended

to arbitrary dimensions in [27]. The work of [27] showed that these transport coefficients

could be extracted from first-order differential equations (as opposed to the usual second-

order wave equations in the bulk) due to the existence of a conserved current along the

holographic radial direction. In a similar manner, this occurs in computations of the shear

viscosity [52, 53] and other DC conductivities [54, 55]. We will refer to this situation as

the case when the membrane paradigm is applicable (see figure 1). The existence of the

membrane paradigm makes the calculation of chiral conductivities significantly simpler.

Reassuringly, the holographic results for the chiral conductivities agree with the results

obtained from conventional QFT methods described above and stated in eqs. (1.4), (1.5)

4For a discussion of temperature dependence and thermal corrections to the chiral vortical conductivity

in more complicated systems, see ref. [43].
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Figure 1. A schematic representation of the membrane paradigm: the image on the left-hand-side

corresponds to a holographic calculation (without the membrane paradigm) in which one has to

solve for the bulk fields all along the D dimensional bulk. On the right-hand-side (the membrane

paradigm case), the field theory observable of interest can be read off from a conserved current (along

the radial coordinate). Hence, we only need information about its dynamics at the horizon and the

AdS boundary. The membrane paradigm enables us to consider independent effective theories at

the two surfaces with (D − 1) dimensions. While the UV effective theory directly sources the dual

field theory, it is the IR theory on the horizon that fixes the values of dual correlators in terms of

the bulk black hole parameters. As in this paper, such a structure may enable us to make much

more general (universal) claims about field theory observables then if the calculation depended on

the details of the full D-dimensional dynamics.

and (1.6) [25, 37, 38]. More recently, these calculations were generalised to cases of non-

conformal holography (in which Tµ
µ 6= 0), giving the same results [56, 57]. A way to think

of such holographic setups is as of geometric realisations of the renormalisation group flows.

Universal holographic statements, most prominent among them being the ratio of

shear viscosity to entropy density, η/s = ~/(4πkB) [52–54], can normally be reduced to an

analysis of the dynamics of a minimally-coupled massless scalar mode and the existence of

the membrane paradigm. The fact that the membrane paradigm exists in some theories

for anomalous chiral conductivities thus naturally leads to the possibility of universality

of these transport coefficients in holography. Motivated by this fact, in this work, we

study whether and when non-renormalisation theorems for anomalous transport can be

established in holography.

Recently, a work by Gürsoy and Tarŕıo [57] made the first step in this direction by

proving the universality of chiral magnetic conductivity σJB in a two-derivative Einstein-

Maxwell-dilaton theory with an arbitrary scalar field potential and anomaly-inducing

Chern-Simons terms. The only necessary assumptions were that the bulk geometry is

asymptotically anti-de Sitter (AdS) and that the Ricci scalar at the horizon must be reg-

ular. Because this statement is valid for two-derivative theories, it applies to duals at

infinitely strong (’t Hooft) coupling λ and infinite number of adjoint colours, N . In this

sense, it is applicable within the same class of theories as the statement of universality

for η/s.

Higher-derivative corrections to supergravity actions arise when α′ corrections are com-

puted from string theory. Usually, this is done by either computing loop corrections to the

β-functions of the sigma model or by computing string scattering amplitudes and guessing
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the effective supergravity action that could result in the same amplitudes (see e.g. [58–60]).

Via the holographic dictionary, these higher-derivative corrections translate into (pertur-

bative) coupling constant corrections in powers of the inverse coupling constant (1/λ)

expanded around λ → ∞ [61]. The result of η/s = 1/(4π) (having set ~ = kB = 1) is

not protected from higher-derivative bulk corrections; it receives coupling constant correc-

tions both in four-derivative theories (curvature-squared) [62–65] and in the presence of the

leading-order top-down corrections to the N = 4 supersymmetric Yang-Mills theory with

an infinite number of colours (these R4 corrections are proportional to α′3 ∼ 1/λ3/2) [66].

An equivalent statement exists also in second-order hydrodynamics [29, 48]. There, a par-

ticular linear combination of three transport coefficients, 2ητΠ − 4λ1 − λ2, was shown to

vanish for the same class of two-derivative theories as those that exhibit universality of

η/s. It was then shown that the same linear combination of second-order transport coeffi-

cient vanishes to leading order in the coupling constant corrections even when curvature-

squared terms [67, 68] and R4 terms dual to the N = 4 ’t Hooft coupling corrections are

included in the bulk action [68]. However, by using the non-perturbative results for these

transport coefficients in Gauss-Bonnet theory [69], one finds that the universal relation

is violated non-perturbatively (or at second order in the perturbative coupling constant

expansion) [68].5

Our goal in this work is to study the universality of the four anomalous conductivities

σJB, σJω, σJ5B and σJ5ω in general higher-derivative theories, thereby incorporating an

infinite series of coupling constant corrections to results at infinite coupling (from two-

derivative bulk theories). What we will show is that the expressions (1.4), (1.5) and (1.6)

remain universal in any higher-derivative theory so long as the action (excluding the Chern-

Simons terms) is gauge- and diffeomorphism-invariant.6 All we will assume, in analogy

with [57], is that the bulk theory is asymptotically AdS (it has a UV conformal fixed

point) and that it permits a black brane solution with a regular, non-extremal horizon. In

its essence, the proof will reduce to showing the validity of the membrane paradigm and

then a study of generic, higher-derivative effective theories (all possible terms present in

the conserved current) at the horizon and the boundary (as depicted in figure 1). The

condition of regularity of these constructions at the horizon will play a crucial role in the

proof. By studying cases of theories for which the membrane paradigm fails, one can then

find theories in which universality may be violated.

Our findings can be seen as a test of holography in reproducing the correct Ward

identities for the anomalous currents. The fact that we find universality of chiral con-

ductivities with an infinite series of coupling constant corrections (albeit expanded around

infinite coupling) is an embodiment of the fact that when only global anomalies are present,

anomalous transport is protected from radiative corrections. An example related to the

5The violation of universality in second-order hydrodynamics was later also verified in [70] by using

fluid-gravity methods in Gauss-Bonnet theory.
6As we are mainly interested in theories in which the anomalous Ward identity retains the form of

eq. (1.1), the conditions of gauge- and diffeomorphism-invariance are imposed to avoid explicit violation

of eq. (1.1) by the bulk matter content (see section 4.4 for a discussion of such an example that includes

massive vector fields).
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presence of mixed, gauge-global anomalies, which will invalidate the membrane paradigm,

will be studied in section 4. Again, as expected from field theory arguments, a case like

that will naturally be able to violate the universality (or non-renormalisation) of chiral

conductivities.

Organisation of the paper. The paper is organised as follows: in section 2, we describe

the holographic theory at finite temperature and chemical potential that is studied in the

main part of this work. We then turn to the proof of the universality of chiral conductivities

in section 3. First, in section 3.1, we show how to compute anomalous conductivities by

using the membrane paradigm and specify the conditions that must be obeyed in order

for the membrane paradigm to be valid. In section 3.2, we then prove that a gauge- and

diffeomorphism-invariant action indeed satisfies those conditions and thus always gives the

same anomalous conductivities. In section 4, we study examples that obey and violate

the conditions required for universality. In particular, those that violate the universality

include either massive gauge fields or naked singularities in the bulk. The paper proceeds

with a discussion of results and future directions in section 5. Finally, appendix A includes

a discussion of anomaly polynomials and the replacement rule.

2 The holographic setup

In this work, we consider five dimensional bulk actions with a dynamical metric Gab, two

massless gauge fields Aa and Va that are dual to the axial and the vector current in the

boundary theory, respectively, and a set of scalar (dilaton) fields, φI :

S =

∫

d5x
√
−G

{

L[Aa, Va, Gab, φI ] + LCS[Aa, Va, Gab]
}

. (2.1)

The Lagrangian density L should be thought of as a general, diffeomorphism- and gauge-

invariant action that may include arbitrary higher-derivative terms of the fields. Since we

are interested in anomalous transport, (2.1) must include the Chern-Simons terms, LCS,

that source global chiral anomalies in the boundary theory. In holography, higher-than-

second-derivative bulk terms correspond to the (’t Hooft) coupling corrections to otherwise

infinitely strongly coupled states (λ → ∞). Since L may include operators with arbitrary

orders of derivatives (and corresponding bulk coupling constants), holographically com-

puted quantities describing a hypothetical dual of (2.1) are able to incorporate an infinite

series of coupling constant corrections to observables at infinite coupling.7 However, one

should still think of these corrections as perturbative in powers of 1/λ due to various poten-

tial problems that may arise in theories with higher derivatives, such as the Ostrogradsky

instability [71, 72].8

The second source of corrections are the quantum gravity corrections that need to be

computed in order to find the 1/N -corrections in field theory. If we consider S in eq. (2.1)

7In type IIB theory, higher-derivative bulk terms and corrections to infinitely coupled results in N = 4

theory are proportional to powers of α′ ∝ 1/λ1/2. See e.g. [61] and numerous subsequent works.
8See also [73] for a recent discussion of causality violation in theories with higher-derivative bulk actions,

in particular with four-derivative, curvature-squared actions.
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to be a local quantum effective action, expanded in a gradient expansion, we may also claim

that our holographic results incorporate certain types of (perturbative) 1/N corrections,

included in L. What is important is the expectation (or the condition) that the anomalous

Chern-Simons terms in LCS do not renormalise under quantum bulk corrections.

It will prove convenient to write the action (2.1) as

L[Aa, Va, Gab, φI ] ≡ LG[Rabcd] + Lφ[φI ] + LA[Aa, Rabcd, φI ] + LV [Va, Rabcd, φI ] , (2.2)

where LG now contains the Einstein-Hilbert term (along with the cosmological constant)

and higher-derivative terms of the metric, expressed in terms various contractions and

derivatives of the Riemann curvature Rabcd. Lφ contains kinetic and potential terms of a set

of neutral scalar fields, φI . By FA,ab and FV,ab, we denote the field strengths corresponding

to Aa and Va, respectively. Arbitrary derivatives of FA,ab and FV,ab may enter into LA and

LV , and along with the Chern-Simons terms,

LA[Aa, Rabcd, φI ] = LA[FA,ab,∇aFA,bc, . . . , Rabcd,∇aRbcde, . . . , φI , ∂aφI , . . .] ,

LV [Va, Rabcd, φI ] = LV [FV,ab,∇aFV,bc, . . . , Rabcd,∇aRbcde, . . . , φI , ∂aφI , . . .] ,

LCS[Aa, Va, Gab] = ǫabcdeAa

(

κ

3
FA,bcFA,de + γFV,bcFV,de + λRp

qbcR
q
pde

)

.

(2.3)

The ellipses ‘. . .’ stand for higher-derivative terms built from FA,ab, FV,ab, R, Rab, Rabcd and

φI .
9 Note also that we have chosen LA and LV so as not to mix the two gauge fields. If there

were mixing terms like FA,abF
ab
V in the Lagrangian, then the anomalous Ward identities

would no longer be those from eq. (1.1) and additional complications regarding operator

mixing would have to be dealt with. We note that the normalisation of the Levi-Civita

tensor is chosen to be ǫtrxyz =
√
−G.

Our goal is to study coupling constant corrections to the anomalous conductivities

that arise from the Ward identity in eq. (1.1). We therefore avoid any ingredients in the

action (2.2) that would explicitly introduce additional terms into (1.1). Beyond impos-

ing gauge- and diffeomorphism-invariance of (1.1), we will also restrict our attention to

Lagrangians LA and LV that contain no Levi-Civita tensor. An explicit example with

violated (bulk) gauge-invariance that can generate a mixed, gauge-global anomaly on the

boundary (altering the Ward identity (1.1)) will be studied in section 4.4.

Furthermore, we assume that the bulk theory admits a homogenous, translationally-

invariant and asymptotically anti-de Sitter black brane solution of the form

ds2 = r2f(r)dt̄2 +
dr2

r2g(r)
+ r2(dx̄2 + dȳ2 + dz̄2) ,

A = At(r)dt̄ , V = Vt(r)dt̄ , φI = φI(r) ,

(2.4)

with f(r) and g(r) two arbitrary functions of the radial coordinate r. At AdS infinity,

lim
r→∞

f(r) = lim
r→∞

g(r) = 1 . (2.5)

9Latin letters {a, b, c, . . .} are used to label the spacetime indices in the five-dimensional bulk theory

while the spacetime indices in the dual boundary theory are denoted by the Greek letters {µ, ν, ρ, . . .}. The
indices {i, j, k, . . .} represent the spatial directions of the boundary theory.
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The coordinates used in eq. (2.4), {x̄µ, r}, will be referred to as the un-boosted coordinates.

Near the (outer) horizon, we assume that the metric can be written in a non-extremal,

Rindler form

f(r) = f1(r − rh) + f2(r − rh)
2 +O(r − rh)

3, (2.6)

g(r) = g1(r − rh) + g2(r − rh)
2 +O(r − rh)

3. (2.7)

The Hawking temperature of this black brane background (and its dual) is given by

T =
r2h
4π

√

f1g1 . (2.8)

The classical equations of motion describing this system can be obtained by varying

the action (2.2). Firstly, the variations of the two gauge fields give10

d ⋆ H5 = 0 , d ⋆ H = 0 , (2.9)

where the two-forms H5 and H are defined as

H5 =
1

2

(

δ(LA)

δ(∇aAb)
−∇c

δ(LA)

δ(∇c∇aAb)
+ . . .

)

dxadxb + κ ⋆ ωA + γ ⋆ ωV + λ ⋆ ωΓ ,

H =
1

2

(

δ(LV )

δ(∇aV b)
−∇c

δ(LV )

δ(∇c∇aV b)
+ . . .

)

dxadxb + γ ⋆ (V ∧ dA) .

(2.10)

The ellipses again denote expressions coming from the higher-derivative terms. The three

abelian Chern-Simons three-forms are composed of the two gauge field one-forms A =

Aadx
a and V = Vadx

a, and the Levi-Civita connection one-form Γa
b = Γa

bc dx
c as

ωX = Tr

(

X ∧ dX +
2

3
X ∧X ∧X

)

, (2.11)

where X = {A, V,Γa
b}.11

Secondly, varying the metric gives the Einstein’s equation

Rab −
1

2
GabR+ . . . = TM

ab +
1

2
∇c(Σ

c
ab +Σ c

ba ) , (2.12)

where TM
ab is the stress-energy tensor for the scalars and the gauge fields, excluding the

Chern-Simons terms. The spin current Σ c
ab is defined as

Σ c
ab = −λ ǫ d1d2d3d4

a Fd1d2R
c

d3d4b . (2.13)

10In five spacetime dimensions, we define the Hodge dual of a p-form Ω = (p!)−1Ωa1...ap
dxa1∧. . .∧dxap as

⋆Ω =
1

p!(5− p)!

√
−GΩa1...ap

ǫ
a1...ap

ap+1...a5
dxap+1 ∧ . . . ∧ dxa5 .

11In terms of the index notation, the Chern-Simons form built out of the Levi-Civita connection is given by

ωabc = Γp1
p2a∂bΓ

p2
p1c + (2/3)Γp1

p2aΓ
p2
p3b

Γp3
p1c .
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We refer the reader to [27] for a more general definition of the spin current, its connection

to the anomaly polynomial in eq. (A.2) and expressions for Σ c
ab for different anomaly

polynomials. We assume that the equations of motion coming from the variations of the

scalar fields in (2.1) can also be solved, but we will make no further reference to that set

of equations. As stated above, the full system of equations is assumed to result in a non-

extremal, asymptotically AdS black brane solution and non-trivial, backreacted profiles for

the gauge and the scalar fields.

To find the set of anomalous conductivities {σJ5B, σJB, σJ5ω, σJω} in all hypothetical

duals of this holographic setup, it is convenient to consider the following perturbed metric

in the boosted (fluid-gravity) frame [27]:

ds2 = −2

√

f(r)

g(r)
uµdrdx

µ + r2f(r)uµuνdx
µdxν + r2∆µνdx

µdxν + 2r2h(r)uµωνdx
µdxν ,

(2.14)

where the projector ∆µν is defined as ∆µν = ηµν + uµuν , with ηµν the four-dimensional

Minkowski metric. Note that once we set the fluid to be stationary, i.e. uµeq = {−1, 0, 0, 0},
the metric (2.14) will return to the un-boosted form (2.4), but in the Eddington-Finkelstein

coordinates, as is usual in the fluid-gravity correspondence [48, 74]. The perturbations are

organised so that the fluid velocity uµ depends only on the boundary coordinates xµ and all

of the r-dependence is encoded in h(r). Since the vorticity is defined as ωµ = ǫµνρσuν∂ρuσ,

the last term in (2.14) corresponds to the metric perturbations at first order in the derivative

expansion (in the xµ coordinates). Similarly, the perturbed axial and vector gauge fields

can be written as12

A = −At(r)uµdx
µ + ã(xµ) + a(r)ωµdx

µ,

V = −Vt(r)uµdx
µ + ṽ(xµ) + v(r)ωµdx

µ.
(2.15)

One may use the one-forms ã and ṽ to define the magnetic field source Bµ = ǫµνρσuν∂ρṽσ
and the (fictitious) axial magnetic field source Bµ

5 = ǫµνρσuν∂ρãσ.

3 Proof of universality

In this section, we show that upon expanding the equations of motion (2.9) and (2.12) to

first order in the (boundary) derivative expansion, the conserved currents can be expressed

as a total radial derivative of some function. This type of a radially conserved quantity is

12Our choice of the metric and the gauge fields can be understood in the following way: if one considers

the perturbed metric and the gauge fields with all possible terms at first order in gradient expansions, they

have the form

ds2 = −2S(r)uµdx
µdr + F (r)uµuνdx

µdxν +G(r)∆µνdx
µdxν + 2H⊥

µ (r, x)uνdx
µdxν +Π(r)σµνdx

µdxν ,

A = C(r)uµdx
µ + a⊥

µ (r, x)dx
µ, V = D(r)uµdx

µ + v⊥µ (r, x)dxµ,

where H⊥

µ , a⊥

µ and v⊥µ are vectors orthogonal to the fluid velocity uµ. Using the equations of motion

for {H⊥

µ , a⊥

µ , v
⊥

µ }, one can show that they decouple from all other perturbations at the same order in the

gradient expansion (see e.g. [32, 33]). Thus, to compute anomalous conductivities, one can consistently

solve for only {H⊥

µ , a⊥

µ , v
⊥

µ }, setting the remaining perturbations to zero. To first order, this gives our

eqs. (2.14) and (2.15).
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necessary for the applicability of the membrane paradigm, used e.g. in [54] and many other

holographic studies. To express all four anomalous conductivities purely in terms of the

near-horizon data, our work will generalise the membrane paradigm result for the chiral

magnetic conductivity of Gürsoy and Tarŕıo [57]. This will then enable us to establish the

universality of the four transport coefficients in the presence of a general higher-derivative

bulk theory specified in section 2. Furthermore, the structure of the equations will single out

the properties that holographic theories must violate in order for there to be a possibility

that the dual conductivities may get renormalised.

Our proof can be divided into two steps: first (in section 3.1), we expand the equations

of motion for the gauge field (2.9) to first order in the (boundary coordinate) derivative

expansions and arrange them into a total-derivative form of a conserved current along the

radial direction. This radially conserved current can be written as a sum of the anomalous

Chern-Simons terms and terms that come from the rest of the action. We identify the

conditions that each of these terms has to satisfy in order for the anomalous conductivities

to have a universal form fixed by the Chern-Simons action. Proving the validity of these

conditions is then done in section 3.2 by analysing the horizon and the boundary behaviour

of the higher-derivative bulk effective action (and all possible resulting terms that can

appear in the conserved current).

3.1 Anomalous conductivities and the membrane paradigm

Let us begin by considering the axial and the vector currents, 〈δJµ
5 〉 and 〈δJµ〉, sourced by

a small magnetic field and a small vortex. As in [57], the membrane paradigm equations

follow from the two Maxwell’s equations in (2.9). For conciseness, we only show the details

of the axial current computation, which involves H5 from eq. (2.10). A calculation for the

vector current, involving H, proceeds along similar lines. In case of the vector current, we

will only state the relevant results.

To first order in the gradient expansion along the boundary directions xµ, both equa-

tions in (2.9) can be schematically written as

∂r
(
√
−GHra

5 (∂1)
)

+ ∂µ
(
√
−GHµa

5 (∂0)
)

= 0 , (3.1)

where Hra
5 (∂0) and Hµa

5 (∂1) are the components of the conserved current two-form in

eq. (2.10) that contain zero- and one-derivative terms (derivatives are taken with respect

to xµ).

As our first goal is to rewrite the problem in terms of a radially conserved quantity,

we need to consider the structure of second term in (3.1). We will set the index a to

the four-dimensional index ν. It is easy to see that only the Chern-Simons terms from

LCS can enter into this term at zeroth order in the (boundary) derivative expansion, i.e.

∂µ
(√

−GHµν
5 (∂0)

)

|κ=g=λ=0 = 0 (cf. eq. (2.3)). This is because Hµν
5 can only be constructed

out of the (axial) gauge field (2.15) and the metric tensor (2.14), containing no derivatives

along xµ. At zeroth-order in the derivative expansion, any two-tensor Xµν can thus be

decomposed as

Xµν = X1 u
µuν +X2∆

µν +X3 u
(µAν) +X4 u

[µAν] , (3.2)
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where Xi are scalar functions of the radial coordinate. For an anti-symmetric Xµν , as are

Hµν
5 and Hµν , X1, X2 and X3 must vanish and only X4 can be non-zero. Since such a

term can only come from LCS, L cannot contribute to the second term in (3.1). For a = ν,

the two terms in eq. (3.1) are therefore given by

∂r
[
√
−GHrν

5 (∂1)
]

=
∂

∂r

[

. . .+ κ(AtB
ν
5 +A2

tω
ν) + γ(VtB

ν + V 2
t ω

ν) + λ
g(r3f ′)2

2r2f
ων

]

,

∂µ
[
√
−GHµν

5 (∂0)
]

= κ(∂rAt)B
ν
5 + γ(∂rVt)B

ν = ∂r(κAtB
ν
5 + gVtB

ν) .

(3.3)

The ellipsis indicates the non-Chern-Simons terms. Hence, one can write the Maxwell’s

equation for the axial gauge field as a derivative of a conserved current along the r-direction:

∂rJ µ
5 (r) = 0 . (3.4)

The axial bulk current is defined as

J µ
5 (r) = J µ

5,mb(r) + J µ
5,r(r) + J µ

5,CS(r) , (3.5)

where the membrane current J µ
5,mb(r), the Chern-Simons current J µ

5,CS and J µ
5,r are de-

fined as

J µ
5,mb =

√
−G

(

∂LA

∂A′

µ

− ∂a
∂LA

∂(∂aA′

µ)
+ . . .

)∣

∣

∣

∣

h(r)→0

,

J µ
5,r =

√
−G

(

∂LA

∂A′

µ

− ∂a
∂LA

∂(∂aA′

µ)
+ . . .

)
∣

∣

∣

∣

a(r)→0

,

J µ
5,CS = 2κAtB

µ
5 + 2γVtB

µ +

(

κA2
t + λ

g(r2f ′)2

2f

)

ωµ.

(3.6)

Note that the primes indicate derivatives with respect to the radial coordinate.

The expectation value of the external boundary current 〈δJµ
5 〉 that we turned on to

excite anomalous transport (cf. eq. (1.2)) is obtained by varying the perturbed on-shell

action (2.2) with respect to the bulk axial gauge field fluctuation at the boundary. We find

that it is the membrane current J µ
5,mb evaluated at the boundary (r → ∞) that can be

interpreted as its expectation value:

〈δJµ
5 〉 = lim

r→∞

J µ
5,mb(r) . (3.7)

This result is of central importance to the existence of the membrane paradigm in our

discussion.

Let us now study how J µ
5,mb can be related to the full conserved current J µ from

eq. (3.5). What will prove very convenient is the gauge choice for A and V whereby (see

e.g. [50])

lim
r→∞

At(r) = 0 , lim
r→∞

Vt(r) = 0 . (3.8)

Such a choice results in13

lim
r→∞

J5,CS(r) = 0 , (3.9)

13For an alternative gauge choice, see e.g. formalism B from ref. [75].
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which together with the conservation equation (3.4) and eq. (3.7) implies that

〈δJµ
5 〉 = J µ

5,mb(rh) + J µ
5,r(rh)− J µ

5,r(∞) + J µ
5,CS(rh) . (3.10)

What we will prove in the next section (section 3.2) will be the statement that for any

theory specified by the action in (2.1),

J µ
5,mb(rh) + J µ

5,r(rh)− J µ
5,r(∞) = 0 , (3.11)

implying that the current 〈δJµ
5 〉 can be completely determined by only the Chern-Simons

current evaluated at the horizon,

〈δJµ
5 〉 = J µ

5,CS(rh) . (3.12)

The same reasoning and equations (3.7)–(3.12) apply also to the case of the vector current,

up to the appropriate replacements of Aa by Va, LA by LV and the axial Chern-Simons

current by

J µ
CS = 2γ(AtB

µ + VtB
µ
5 ) + 2γAtVt ω

µ. (3.13)

Let us for now assume that the condition (3.11) is satisfied and proceed to compute the

anomalous conductivities. In our gauge choice, the gauge fields at the horizon are related

to the two chemical potentials via

At(rh) = −µ5 , Vt(rh) = −µ . (3.14)

By using the near-horizon expansions (2.6) and (2.7), the last term in J µ
5,CS from (3.6) can

be related to the temperature

g(r2f ′)2

f
= r4f1g1 = 4(2πT )2. (3.15)

Furthermore, using the horizon values of the gauge fields from eq. (3.14) along with the

definitions of the anomalous conductivities from (1.2), we find

σJ5B = −2γµ , σJB = −2γµ5 ,

σJ5ω = κµ2
5 + γµ2 + 2λ(2πT )2, σJω = 2γµ5µ . (3.16)

Hence, so long as the condition (3.11) is satisfied, the bulk theory (2.1) gives precisely the

non-renormalised, universal conductivities stated in eqs. (1.4), (1.5) and (1.6).

3.2 Universality

We will now show that the condition (3.11) always holds in theories in which L (as defined in

eq. (2.1)) is gauge- and diffeomorphism-invariant. Thus, we will establish the universality of

the anomaly-induced conductivities σJ5B, σJB, σJ5ω and σJω from eq. (3.16) in theories with

arbitrary higher-derivative actions, dual to an infinite series of coupling constant corrections

expanded around infinite coupling. The condition (3.11) requires us to understand how

J µ
5,mb and J µ

5,r behave at the two ends of the five-dimensional geometry (boundary and

horizon). To make general statements about that, we construct an effective field theory

(or the effective current) in terms of the metric, gauge fields and dilatons with first-order

perturbations to quadratic order in the amplitude expansion. The two conditions that we

impose on the effective theory and the resulting currents are the following:

– 13 –



J
H
E
P
0
9
(
2
0
1
6
)
0
4
6

(1) The theory must be regular at the non-extremal horizon, by which we mean that

any Lorentz scalar present in the action (or a current) must be regular (non-singular)

when evaluated at the horizon.

(2) The bulk spacetime is asymptotically anti-de Sitter.

For conciseness, we again only analyse the axial gauge field, Aa. A completely equivalent

procedure can be applied to the case of the vector gauge field, Va.

From the definitions of J µ
5,mb and J µ

5,r in eq. (3.6), it is clear that the only relevant part

of the action (2.2) for this analysis is LA. Because the two currents are independent of the

Chern-Simons terms, they only depend on the terms encoded in Hra
5 (∂1) (see discussion

below eq. (3.1)). The possible terms in Hra
5 (∂1) that correspond to J µ

5,mb and J µ
5,r can be

written (schematically, up to correct tensor structures of CA,n and CG,n) as

Hrµ
5 (∂1) =

∞
∑

n=1

[

CA,n∂
n
r a(r) + CG,n∂

n
r h(r)

]

ωµ +Hrµ
5,CS(∂

1) , (3.17)

where Hrµ
5,CS is the irrelevant Chern-Simons part of Hrµ

5 , stated explicitly in eq. (3.3). Since

the action LA does not contain any Levi-Civita tensors, the terms in {CA,n, CG,n} can only

depend on a(r) and h(r). This implies that CA,n = CG,n = 0 when a(r) = h(r) = 0, to

first order in the boundary-coordinate derivative expansion. Hence, the problem reduces

to the question of finding all possible structure of the tensorial coefficients {CA,n, CG,n} at

the horizon and at the boundary.

It is now convenient to return to the un-boosted coordinates, {r, x̄µ}, used in eq. (2.4).

In these coordinates, the perturbed metric and the axial gauge field are (in analogy

with (2.14) and (2.15))

ds2 = −r2f(r)dt̄2 +
dr2

r2g(r)
+ r2(dx̄2 + dȳ2 + dz̄2) + 2ht̄i(r, x̄

i)dt̄dx̄i, (3.18)

A = Atdt+ ai(r, x̄
i)dx̄i, (3.19)

where the perturbations are now denoted by ht̄i, ai and vi with i = {x, y, z}. One can relate

{ht̄i, ai} to {h(r), a(r)} by using the appropriate coordinate transformations, which give

ht̄i = . . .+ r2h(r)uµων
∂xµ

∂t̄

∂xν

∂x̄i
+O(∂2) ,

ai = . . .+ a(r)ωµ
∂xµ

∂x̄i
+O(∂2) . (3.20)

Here, the ellipses denote the zeroth-order terms in the derivative expansion. It is convenient

to consider uµ − uµeq to be small, which gives

uµdx
µ = dt+ δuidx

i, dt = dt̄+
1

r2

√

1

f(r)g(r)
dr , dxi = dx̄i. (3.21)

This choice of the fluid velocity further gives ωt = Bt = 0. Thus, in the remainder in

this section, we will only write down the tensors {Hrµ
5 ,J µ

5 ,J µ
5,CS} with spatial components
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of µ = {i, j, k, . . .}. It immediately follows that Hri
5 (r, xµ) in the boosted coordinates and

Hri
5 (r, x̄µ) in the un-boosted coordinates have identical expressions. In analogy with (3.17),

expanding Hri
5 in the un-boosted coordinates to first order in amplitudes of ai and ht̄i,

Hri
5 [ai, hti] =

(

Irirj
A,1 ∂raj + Irirrj

A,2 ∂2
raj + . . .

)

+
(

Irit̄j
G,0 ht̄j + Irit̄rj

G,1 ∂rht̄j + Irit̄rrj
G,2 ∂2

rht̄j + . . .
)

+ (terms with derivatives along xi) . (3.22)

Note that Irij
A,0 = 0 because gauge-invariance of LA excludes the possibility of any explicit

dependence on ai (only derivatives of ai may appear). The ellipses represent terms with

higher derivatives in r and {IA,n, IG,n} are tensors contracted with ∂n
r ai and ∂n

r ht̄i. To

verify (3.22), we can use the coordinate transformations (3.20), which show that all relevant

terms from (3.17) are indeed contained in (3.22). Thus, one can determine the coefficients

{CA,n, CG,n} by applying (3.21) to (3.22) and matching the coefficients of ∂n
r a(r)ω

i and

∂n
r h(r)ω

i.

The structure of the {IG,n, IA,n} tensors near the horizon and the AdS-boundary can be

understood in the following way: in the un-boosted frame, we define five mutually orthog-

onal unit-vectors or vielbeins, ep̂a = δp̂a, where the hatted indices {p̂, q̂, . . .} = {0̂, 1̂, 2̂, 3̂, 4̂}
are used as (local flat space) bookkeeping indices. The full set of the five-dimensional

vectors with upper Lorentz indices can now be written as eap̂ =
[√

G
]ab

δp̂b:

e0̂ =
(

(r2f)−1/2, 0, 0, 0, 0
)

,

e1̂ = (0, 1/r, 0, 0, 0) ,

e2̂ = (0, 0, 1/r, 0, 0) ,

e3̂ = (0, 0, 0, 1/r, 0) ,

e4̂ =
(

0, 0, 0, 0, (r2g)1/2
)

.

(3.23)

These normal vectors allow us to write the tensors {IG,n, IA,n} as

Ia1a2...am
A,n =

∑

p̂1,...,p̂m

S p̂1...p̂m
A,n ea1p̂1 . . . e

am
p̂m

,

Ia1a2...am
G,n =

∑

p̂1,...,p̂m

S p̂1...p̂m
G,n ea1p̂1 . . . e

am
p̂m

,
(3.24)

where {SA,n,SG,n} are (spacetime) Lorentz-scalars. The regularity condition imposed at

the horizon demands that these scalar have to be non-singular at r = rh. The question

of whether IG,n and IA,n vanish at the horizon is therefore completely determined by the

values the projectors ea1p̂1 . . . e
am
p̂m

take when evaluated at the horizon. To demonstrate this

fact more clearly, let us write down the first few relevant components of the tensors IG,n

and IA,n explicitly:

Irit̄j
G,0 =

(

r−2
√

g/f
)

S 4̂i0ĵ
G,0 , Irij

A,0 = 0 ,

Irit̄rj
G,1 =

(

r−1
√

g2/f
)

S 4̂i04ĵ
G,2 , Irirj

A,1 = g S 4̂i4ĵ
A,1 ,

Irit̄rrj
G,2 =

(
√

g3/f
)

S 4̂i044ĵ
G,2 , Irirrj

A,2 = (rg3/2)S 4̂i44ĵ
A,2 ,

Irit̄rrrj
G,3 =

(

r
√

g4/f
)

S 4̂i0444ĵ
G,3 , Irirrrj

A,3 = (r2g2)S 4̂i444ĵ
A,3 ,

with r = rh. As before, the tensor Irij
A,0 = 0 because of the gauge-invariance of LA.
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With this decomposition, the problem of determining the non-zero terms in Hri
5 has

been reduced to simple power-counting. Namely, a tensor Ia1a2... can only be non-zero at

the horizon if the number of et̄
0̂
in its decomposition is equal to or greater than the number

of er
4̂
. The regularity of the scalars SA,n and SG,n at the horizon plays a crucial role here.

Hence, one can see that the only non-zero tensor from the set of {IA,n, IG,n} is Irit̄j
G,0 . The

conserved current evaluated at the horizon thus becomes

J i
5 =

√
−G

(
√

g

f
S4ĵ0̂i
G,0

)

h(rh)uµων
∂xµ

∂t̄

∂xν

∂x̄j
+ J i

5,CS(rh) . (3.25)

To see why the first term in (3.25) has to vanish, recall that as other scalars, the Ricci

scalar also has to be regular at the horizon. As pointed out in [57], this condition implies

that hti ∼ (r−rh) at the horizon. Therefore, the conserved current at the horizon is indeed

fully determined by the anomalous Chern-Simons term:

J i
5 = J i

5,CS(rh) . (3.26)

With Hrt
5 = 0, eq. (3.26) implies the first two terms from the condition (3.11) vanish:

J µ
5,mb(rh) + J µ

5,r(rh) = 0 . (3.27)

Similarly, we can determine the value of the current J µ
5,r at the boundary. Since J µ

5,r

includes only terms linear in h(r), it is enough to consider

Hri
5 =

(

Irit̄j
G,0 ht̄j + Irit̄rj

G,1 ∂rht̄j + Irit̄rrj
G,2 ∂2

rht̄j + . . .
)

+ . . . . (3.28)

Now, because the boundary is asymptotically AdS and higher-derivative terms considered

here do not change the scaling behaviour near the boundary, we can use the near-AdS

solution for h(r) [27]:

h(r) =
H
r4

+O(r−5) . (3.29)

Substituting the expansion for h(r) into (3.28), it immediately follows that the third term

in the condition (3.11) vanishes as well when it is evaluated at the boundary (note again

that Hrt
5 = 0):

J µ
5,r(∞) = 0 . (3.30)

Together, eqs. (3.27) and (3.30) imply the validity of the condition stated in eq. (3.11),

which completes our proof. The analysis of the vector current J µ and a proof of a condition

analogous to (3.11) follow through along exactly the same lines. This implies that all four

anomalous conductivities take the universal form of (3.16) for all holographic theories

specified in (2.1) so long as the (effective) theory is regular at the non-extremal horizon

and the bulk is asymptotically anti-de Sitter.

4 Examples and counter-examples

In this section, we turn our attention to explicit examples of theories that obey and violate

the conditions used in our proof in section 3 and thus result in universal and renormalised
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anomalous conductivities, respectively. We will first demonstrate their universality in two-

and four-derivative theories with a non-extremal horizon and then move on to describing

two holographic models, which violate the assumptions in the proof of eq. (3.11). More

precisely, in section 4.1, we compute the conductivities in the two-derivative Einstein-

Maxwell-Dilaton theory. In section 4.2, we then show explicitly how our proof works in the

case of the most general four-derivative action with Maxwell fields and dynamical gravity.

In both of those case, the conductivities are universal and the current at the horizon only

depends on the metric fluctuation, as established by our effective theory method in (3.25).

In section 4.3, we comment on the validity of our proof in gravity duals without a

horizon. We use the examples of the confining soft/hard-wall models and charged dilatonic

black holes at zero temperature. The membrane paradigm computation goes through as

before in the case of confining geometry. However, the conductivities no longer have any

temperature dependence, which would require us to augment the replacement rule discussed

in appendix A. As for the latter example, the family of theories considered suffers from

naked singularities in the bulk. Lastly, in section 4.4, we point out how the bulk terms

corresponding to field theories with a gauge-global anomaly violate the assumptions in our

proof. This is consistent with the known fact that anomalous conductivities in systems

with mixed anomalies receive corrections along the renormalisation group flow. We will

not review the details behind the holographic constructions of such systems but rather

focus on the reasons for why these models may violate the universality from the point of

view of section 3.2.

4.1 Einstein-Maxwell-dilaton theory at finite temperature

As for our first example, we consider the two-derivative Einstein-Mawell-dilaton theory

with a non-trivial dilaton profile:

LG = R− 2Λ , Lφ = −(∂φ)2 − V (φ) , (4.1)

LA = −1

4
ZA(φ)FA,abF

ab
A , LV = −1

4
ZV (φ)FV,abF

ab
V , (4.2)

having used the notation of the action in eq. (2.2). This is an extension of the case studied

in [57], which includes the gravitational anomaly and anomalous conductivities that follow

from a response to a small vortex.

The theory has two charges that are conserved along the radial direction at zeroth-order

in the boundary-derivative expansion. The expressions follow from the a = µ component

of the Maxwell’s equations:

Q5 = r3
√

g

f
ZA∂rAt , (4.3)

Q = r3
√

g

f
ZV ∂rVt . (4.4)

At first order in derivatives, the two conserved currents J µ
5 and J µ are given by

J µ
5 =

[

Q5h+ r3
√

fgZA∂ra
]

ωµ + J µ
5,CS ,

J µ =
[

Qh+ r3
√

fgZV ∂rv
]

ωµ + J µ
CS .

(4.5)
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Thus, we can immediately read off the membrane currents:

δJµ
5,mb = r3

√

g

f
ZA∂ra , (4.6)

δJµ
mb = r3

√

g

f
ZV ∂rv . (4.7)

Moreover, the regularity of the black hole horizon implies that that metric fluctuation has

to vanish at the horizon [57], i.e. h(rh) = 0. At the horizon, the two currents J µ
5 (rh)

and J µ(rh) are therefore completely determined by the anomalous terms J µ
5,CS(rh) and

J µ
CS(rh).

Next, we investigate the behaviour of J µ
5 and J µ at the boundary. Substituting the

near-boundary solutions (3.29) into (4.5), one can see that Q5h and Qh are sub-leading,

which implies that J µ
5 and J µ at r → ∞ become determined by the membrane currents

evaluated at the boundary.

4.2 Four-derivative Einstein-Maxwell theory

In this section, we consider the most general four-derivative theory of massless gravitons

and gauge fields. The action LA can be written as (see [60, 65, 76–78]):

LA = −1

4
FabF

ab + α4RFabF
ab + α5R

abFacF
c

b + α6R
abcdFabFcd + α7(FabF

ab)2

+ α8∇aFbc∇aF bc + α9∇aFbc∇bF ac + α10∇aF
ab∇cFcb + α11F

abFbcF
cdFda ,

(4.8)

and similarly LV . Note that in eq. (4.8), all indices A denoting that Fab is the axial field

strength have been suppressed. The conserved current two-form, Hab
5 , in this theory is

Hab
5 = −F ab + 4α4RF ab + 2α5(R

acF b
c −RbcF a

c ) + 4α6R
cdabFcd

+ 8α7FcdF
cdF ab − 4α8�F ab − 2α9∇c(∇aF cb −∇bF ca)

+ 2α10(∇b∇cF
ca −∇a∇cF

cb) + 8α11F
bcFcdF

da.

(4.9)

The current J i
5 is then

J µ
5 = J µ

5,Maxwell +
11
∑

n=4

αnJ µ
5,(n) + J µ

CS , (4.10)

where J µ
5,Maxwell is the axial current that follows from the two-derivative Maxwell action

analysed in section 4.1. The remaining terms, J µ
5,(n), all have the schematic form

J µ
5,(n) =

[

Cn,1h+ Cn,2∂rh+ Cn,3∂
2
rh+Dn,1∂ra+Dn,2∂

2
ra+Dn,3∂

3
ra

]

ωµ, (4.11)

where the coefficients Cn,i andDn,i depend on the background and parameters of the action.

The full expressions for these coefficients are lengthy and will not be presented here.

Near the non-extremal horizon (assumed to exist), the metric must behave as in

eqs. (2.6) and (2.7). What we find is that when evaluated at the horizon, all coefficients
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except Cn,1 vanish. This result therefore precisely agrees with the structure of J µ
5 pre-

dicted in (3.25), which followed from our general treatment of Hrµ
5 in section 3.2. At the

horizon, the full set of J µ
5,(n) is given by

J µ
5,(4)(rh) = −2r2h

√
g1A

′

t

f
3/2
1

(20f1g1 + 3f2g1rh + f1g2rh)h(rh)ω
µ,

J µ
5,(5)(rh) = −rh

√
g1A

′

t

f
3/2
1

(14rhf1g1 + 2r2hg1f2 + r2hf1g2)h(rh)ω
µ,

J µ
5,(6)(rh) = −2r2h

√
g1A

′

t

f
3/2
1

(8f1g1 + 3rhg1f2 + rhf1g2)h(rh)ω
µ,

J µ
5,(7)(rh) = −16rhg

3/2
1 (A′

t)
3

f
3/2
1

h(rh)ω
µ,

J µ
5,(8)(rh) = −28r3h

√
g1

f
3/2
1

(−g1f2 + f1g2 + 2f1g1A
′′

t /A
′

t)h(rh)ω
µ,

J µ
5,(9)(rh) =

1

2
J µ
5,(8) ,

J µ
5,(10)(rh) =

r2h
√
g1

f
3/2
1

(6f1g1 − rhg1f2 + rhf1g2 + 2rhf1g1A
′′

t /A
′

t)h(rh)ω
µ,

J µ
5,(11)(rh) = −1

2
J µ
5,(7) .

(4.12)

Finally, imposing the horizon Ricci scalar regularity condition (see the discussion after

eq. (3.25)), h(rh) = 0, we find that all Jµ
5,(n)(rh) = 0.

At the AdS boundary (r → ∞), we further find that all coefficients Cn,i ∼ r−m, where

m > 0. With this explicit verification, our results imply that the most general gauge- and

diffeomorphism-invariant four-derivative theory (4.8) satisfies the condition (3.11) and that

the anomalous conductivities in its dual all have the universal form of eq. (3.16).

4.3 Theories without horizons and theories with scaling geometries at zero

temperature

In this section, we consider two classes of backgrounds, each one a possible solution of

the Einstein-Maxwell-dilaton theory of section 4.1. The first one belongs to the family of

soft/hard wall model that are dual to a field theory with a mass gap [79–82]. The second

example is the scaling geometry that can arise as a solution of the Einstein-Maxwell-

dilaton theory at zero temperature (see e.g. [83]). What we show is that the criterion for

the universality of anomalous conductivities, i.e. eq. (3.11), is still satisfied in the gapped

system. However, the conductivities can no longer computed by using the replacement rule

in the form stated in eq. (A.4). For the scaling geometries, the universality may be violated

due to the presence of naked singularities. A way to retain a holographic theory at zero

temperature in which the condition (3.11) is satisfied is to put very strong constraints on

the geometry that avoid the naked singularity. These constraints restrict the allowed range

of value of the hyperscaling violation exponent, θ, and the dynamical critical exponent, z.
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Let us start with an example of the soft/hard wall geometry at zero density. In an

un-boosted frame, the metric for these models can be written as

ds2 = e−(M/u)ν
(

− u2dt̄2 +
du2

u2
+ u2(dx̄2 + dȳ2 + dz̄2)

)

, (4.13)

where the parameter M sets the scale of the mass gap. The nature of the spectrum is also

controlled by the parameter ν: while the gapped spectrum is continuous above the gap

when ν = 1, it is discrete when ν > 1. The hard wall model in which the AdS radius is

capped off at u ≪ M corresponds to the limiting value of ν → ∞ [81, 84].

One can change coordinates of the above metric to bring them to the form of (2.4) by

redefining the radial coordinate as r = e−
1

2
(M/u)νu. In the deep IR region, u ≪ M , the

functions f(r) and g(r) can be written as

fIR(r) = 1 , gIR(r) = g(u ≪ M) = ν2
(

M

u

)ν

eM/u. (4.14)

Despite there being no horizon, the dual of the above geometry can still have non-zero

temperature; it can be interpreted as a thermal state before undergoing a phase transition to

the black hole phase at high temperature, analogously to the Hawking-Page transition [85].

The two currents, J µ
5 and J µ, must now be evaluated at r = 0 and at the boundary

(r = ∞). Because the geometry is still asymptotically AdS, their near-boundary behaviour

is the same as in all the cases studied before. The fact that g(r) exponentially diverges in the

IR appears problematic at first. However, the volume form, which is proportional to
√
−G,

is exponentially suppressed. Evaluating J i
5 at u = 0, one finds that J µ

5,mb(0) +J µ
5,r(0) = 0

as in 3.2. Thus, the universality condition (3.11) is still satisfied.

On the other hand, the Chern-Simons current J µ
5,CS no longer behaves the same way.

Although the profiles of the gauge fields At, and Vt can be assumed to asymptote to a

constant value at r = 0, the derivative of f ′ can no longer be interpreted as the temperature

of the dual theory (substituting (4.14) into (3.6), we see that J µ
5,CS has no temperature

dependence). Therefore, in the confining phase, the replacement rules discussed in the

appendix A are no longer applicable even if the condition (3.11) is satisfied. The above

statements also apply to the AdS soliton-like geometries.

Next, we explore the scaling geometries at zero temperature. In the un-boosted frame,

the metric can now be written as

ds2 = r2(−rn0dt2 + dx̄2 + dȳ2 + dz̄2) +
dr2

rn1

, (4.15)

or in terms of θ and z,

n0 = 2 +
6(z − 1)

3− θ
, n1 = 2 +

2θ

3− θ
. (4.16)

As mentioned in [83], many of these geometries contain a naked singularity. As a result,

the scalars {SA,n,SG,n} used in eq. (3.24) no longer have to be finite. Such systems can

therefore easily violate the universality condition (3.11). Thus, the universality of the
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anomalous conductivities is no longer guaranteed in the presence of a naked singularity.

In this work, we do not study in detail what happens to anomalous conductivities in such

cases and whether they nevertheless remain universal for some geometries.

Are there special values of z and θ for which it is easy to see that the condition (3.11)

remains satisfied? In other words, what are the ranges of {z, θ} for which the theory has

no naked singularity? This problem was addressed in [86], where it was found that the

geometries that satisfy either one of the following two conditions,

n0 = n1 = 2 , n0 = n1 ≥ 4 , (4.17)

have no naked singularities. The authors assumed that the matter content has to satisfy

the null energy condition, which, for this geometry, is equivalent to imposing the following

two inequalities:

n0 ≥ n1 , (n0 − 2)(n0 + n1 + 4) ≥ 0 . (4.18)

The first solution in (4.17) is simply the empty AdS solution with z = 1 and θ = 0. The

second solution (or a family of solutions) is more involved and requires non-trivial matter

to support such geometries.

Of particular interest are charged dilatonic black holes with z → ∞, θ → −∞ and a

fixed ratio −θ/z = η, dual to strongly interacting theories with finite density (see e.g. [87,

88]). While such systems still satisfy the null energy condition, the geometries nevertheless

exhibit a naked singularity at zero temperature. This means that unless there is a way to

resolve the singularity, the universal structure of anomalous conductivities, although not

necessarily, may be violated at zero temperature for all values of η. One way to resolve this

issue, as mentioned in [87] for η = 1, is to lift the black hole solution to a ten- or eleven-

dimensional solution of string or M-theory [89]. To study such solutions, one also needs to

find the ten- and eleven-dimensional analogues of the Chern-Simons terms (LCS in (2.3)).

In case of a supergravity setup, this was studied in [90] and many subsequent works. An

explicit computation of chiral magnetic conductivity, σJB, in a top-down setup of probe

flavour branes can be found in [91]. More generally, it is plausible that the problems of IR

singularities can be avoided when they are of the “good type” [92].14 In such scenarios, it

may be the case that so long as the naked singularity can be cloaked by an infinitesimal

horizon, the existence of universality can be extended to very small temperatures. What

is clear is that at strictly zero temperature, the regularity of (small) metric perturbations

is no longer well-defined. We defer a more detailed study of these issues and of top-down

constructions to future works.

4.4 Bulk theories with massive vector fields

In this section, we comment on the universality of anomalous conductivities in field theories

with mixed, gauge-global anomalies. Such theories exhibit the following anomalous Ward

identity:

∂µ〈Jµ
5 〉 = βǫµνρσFµνFρσ + (global anomaly terms) , (4.19)

14We thank Umut Gürsoy for discussions on this point.

– 21 –



J
H
E
P
0
9
(
2
0
1
6
)
0
4
6

where Fµν is the field strength of the gluon fields (e.g. in QCD). The global anomaly terms

were stated in eq. (1.1). As shown by perturbative quantum field theory calculations [17,

19, 40, 41], the anomalous conductivities in such theories are known to be renormalised,

i.e. they receive quantum corrections.

Holographic models dual to theories with the anomalous Ward identity of the form

of eq. (4.19) were proposed and studied in [56, 90, 93–95]. In this work, we focus on the

bottom-up construction of [94], where the following terms are added to the bulk action (2.2):

∆S =

∫

d5x
√
−G

(

− m2

2
(Aa − ∂aθ)(A

a − ∂aθ)− κ

3
ǫabcde(∂aθ)FbcFde

)

(4.20)

We have set the vector and the gravitational Chern-Simons terms to zero, i.e. γ = λ = 0

(see eq. (1.1)). The scalar field θ is the Stückelberg axion.

A holographic theory with ∆S in the action can clearly evade the arguments of the

proof of universality from section 3. The reason is that the equation of motion for a

massive vector field cannot be written in the form of eq. (2.9). The right-hand-side of (2.9)

now contains terms which explicitly depend on Aa and one cannot reduce the equations

into a total derivative form, ∂rJ µ = 0. Hence, in models with massive vector fields,

dual to field theories with mixed, gauge-global anomalies, anomalous conductivities can

be renormalised. This is consistent with field theory calculations mentioned above. More

precisely, from the point of view of field theory, the operators associated with anomalous

transport are renormalised along the renormalisation group flow. In gravity, they depend

on the entire bulk geometry and thus the condition of horizon regularity is not sufficient

to ensure universality. In relation to our discussion about universality in field theory (see

the Introduction 1), it would be interesting to understand what precisely happens to the

arguments of the regularity of one-point functions on a cone in such cases.

5 Discussion

In this work, we studied the coupling constant dependence of the universality of chiral con-

ductivities associated with the anomalous axial and vector currents in holographic mod-

els with arbitrary higher-derivative actions of the metric, gauge fields and scalars. We

showed that so long as the action (excluding the Chern-Simons terms) was gauge- and

diffeomorphism-invariant, the membrane paradigm construction for the chiral conductivi-

ties remained valid, resulting in universal chiral conductivities (see eq. (3.16)). The proof

assumed the existence of a regular, non-extremal black brane with an asymptotically AdS

geometry. This result is valid for an infinite-order expansion of coupling constant correc-

tions to holographic results at infinite coupling. Hence, it is complementary to perturbative

field theory proofs (expanded around zero coupling) of the non-renormalisation of chiral

conductivities in systems with global anomalies and therefore of the anomalous Ward iden-

tities with the form of eq. (1.1). Furthermore, our paper also explored cases which may

violate universality, in particular, in cases with naked singularities and massive vector fields

that explicitly violate eq. (1.1) through mixed, gauge-global anomalies.

This work provides a consistency test of holography in its ability to reproduce the ex-

pected non-renormalisation of global Ward identities at the level of (non-zero temperature
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and density) transport in very general bulk constructions that include arbitrary higher-

derivative actions. Furthermore, we believe that the methods presented in this work can

be of wider use to other holographic statements of universality that employ the membrane

paradigm.

An important conceptual question that remains is the precise relation between the

regularity condition of our constructions at the horizon and properties of their dual field

theories. It is tempting to speculate that the regularity of the background geometry is

related to the regularity of one-point functions on a cone that fix c̃ and ensure universality

of anomalous conductivities in field theory (see discussion after eq. (1.5)).15

We end this paper by listing some problems that are left to future works. Most

importantly, there exists another anomalous conductivity in the stress-energy tensor, which

can be sourced by a small vortex, δTµν = σǫu(µων). The analysis of this conductivity was

not performed in this work. In the fluid-gravity framework, σǫ was studied in the Einstein-

Maxwell theory by [27]. Forming a conserved bulk current for computing components of the

stress-energy tensor tends to be significantly more complicated than for those of a boundary

current. However, it may be possible to achieve this by using the Hamiltonian methods

recently employed for the calculations of the thermo-electric DC conductivities [55, 96,

97] in two-derivative theories, which should be extended to computations of anomalous

transport in higher-derivative theories.

One may also wonder what happens to anomalous transport in inhomogeneous and

anisotropic systems. In standard non-anomalous transport, it is known that universal

relations can be violated, e.g. in η/s [98–103]. While analysing such systems is in general

significantly more difficult, the existence of the membrane paradigm, as e.g. in case of

the DC thermo-electric conductivities [55, 97, 104], may still enable one to prove general

statements about the behaviour of conductivities in disordered systems [105, 106]. These

methods remain to be explored in the context of anomalous transport.

In even-dimensional theories, anomalous conductivities are directly related to the

parity-odd hydrodynamic constitutive relation of [12, 18, 35]. These parity-odd terms

are related to global anomalies. In odd dimension, one can still construct hydrodynamics

with parity-odd terms, as e.g. in [107]. A well-known parity-odd transport coefficients is the

Hall viscosity [108, 109]. This quantity has relations to topological states of matter, such

as fractional quantum Hall systems (see e.g. [110] and references therein). A holographic

theory with non-zero Hall viscosity can be obtained by adding a topological term similar to

the dimensionally-reduced gravitational Chern-Simons term [111]. Recently, in [112], the

constitutive relation term associated with the Hall viscosity was generalised to a class of

hydrodynamic terms that resemble the Berry curvature. Despite these similarities, there

is no known non-renormalisation theorem for parity-odd transport coefficients in odd di-

mensions.

Lastly, we point out that many recent works have found novel structures in entan-

glement entropy of theories with anomalies [113–117]. As a result of non-renormalisation,

one may expect there to exist strong constraints on the structure of extremal bulk sur-

15We thank the anonymous JHEP referee for a discussion regarding this point.
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faces associated with entanglement entropy. It would be interesting to better understand

the connection between geometric constraints on holographic entanglement entropy and

non-renormalisation theorems for anomalies.
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A Anomaly polynomials and the replacement rule

As noted in the Introduction, the full set of chiral conductivities (1.2) can be encoded in

the anomaly polynomial defined in terms of the Chern-Simons action [3, 4, 25, 26]:

P(F,R) = dSCS[A,Γ] . (A.1)

If we restrict ourselves only to global anomalies in four spacetime dimensions, then the

anomaly polynomial can be written as

P =
κ

3
(FA ∧ FA ∧ FA) + γ(FA ∧ FV ∧ FV ) + λ(FA ∧Rµ

ν ∧Rν
µ) . (A.2)

The replacement rule states that, for an anomaly polynomial P, one can define the gener-

ating function G[µ5, µ, T ]:

G[µ5, µ, T ] = P
[

FA → µ5, FV → µ, trR2 → 2(2πT )2
]

, (A.3)

where T is the temperature and µ5, and µ are chemical potentials associated with the axial

and the vector currents Jµ
5 and Jµ. The anomalous conductivities can then be computed

by using

σJ5B = − ∂2G
∂µ5∂µ

, σJB = − ∂2G
∂µ∂µ

,

σJ5ω =
∂G
∂µ5

, σJω =
∂G
∂µ

. (A.4)

For the anomaly polynomial in (A.2), the anomalous conductivities are precisely those

stated in eq. (3.16).

In the work of [27], the replacement rule (A.3) with (A.4) was derived for a field theory

dual to the AdS Reissner-Nördstrom background. Our work can be seen a check of the

validity of this replacement rule prescription for more general, higher-derivative holographic

theories.
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