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1 Introduction

The presence of a boundary in the context of (super)gravity has been studied with great
interest these last 40 years. In particular, the inclusion of boundary terms plays an im-
portant role for the study of the fruitful duality between string theory on asymptotically
AdS space-time and a quantum field theory living on the boundary (AdS/CFT corre-
spondence) [1-4]. The study of bulk and boundary theories has led to the development
of the so called holographic renormalization. Indeed, UV divergences in the field theory
(boundary) are related to IR divergences on the gravitational side (bulk) which can be dealt
through the holographic renormalization procedure [5-7], adding appropriate counterterms
to the boundary.

At the bosonic level, the introduction of the topological Gauss-Bonnet term to the
four-dimensional AdS gravity allows to regularize the action and the related conserved
charges [8-13]. Remarkably, the inclusion of the Gauss-Bonnet term does not require to
impose Dirichlet boundary conditions on the fields. On the other hand, the addition of
boundary terms to supergravity has been considered in different approaches [14-17]. In
particular, contrary to the Gibbons-Hawking prescription [18], it was pointed out that the
supergravity Lagrangian should be supersymmetric invariant without imposing Dirichlet
boundary conditions. Interestingly, it was recently shown in ref. [19] that the introduction
of a supersymmetric extension of the Gauss-Bonnet term in a N = 1 and N = 2 supergrav-
ity Lagrangian (with cosmological constant) allows to recover supersymmetry invariance.
This last result, together with the bosonic ones, suggests that the (super)symmetry in-
variance of the theory requires the addition of topological terms which besides provide the
counterterms that regularize the action.

The study of the boundary contributions needed to recover supersymmetry invariance
in the presence of matter or bigger supersymmetries remains poorly explored. In this work,



using a geometrical approach (rheonomic), we explore the boundary terms needed in order
to restore a particular enlarged supersymmetry known as AdS-Lorentz.

The AdS-Lorentz (super)algebra is obtained as a deformation of the Maxwell (su-
per)symmetries [20, 21|, and can be alternatively derived as an abelian semigroup expan-
sion (S-expansion) [22-25] of the AdS (super)algebra [26-29]. As shown in ref. [30, 31], it
is possible to introduce a generalized cosmological constant term in a Born-Infeld like grav-
ity action when the AdS-Lorentz algebra is considered. Analogously, the supersymmetric
extension of the AdS-Lorentz algebra allows to introduce a generalized supersymmetric
cosmological constant term in a four-dimensional supergravity theory [28].

We shall first present the explicit construction of the bulk Lagrangian in the rheonomic
framework. In this geometric approach to supergravity, the duality between a superalgebra
and the Maurer-Cartan equations is used to write down the curvatures in the superspace,
whose basis is given by the vielbein and the gravitino (bosonic and fermionic directions, re-
spectively). Subsequently, we will study the supersymmetry invariance of the Lagrangian in
the presence of a non-trivial boundary. In particular, we will show that the supersymmetric
extension of a Gauss-Bonnet like term is required in order to restore the supersymmetry in-
variance of the full Lagrangian. Interestingly, the supergravity action obtained reproduces
a MacDowell-Mansouri type action [32].

2 AdS-Lorentz supergravity and rheonomy approach

In the geometric framework the variational field equations obtained from the Lagrangian
are written in terms of exterior differential forms, excluding the Hodge duality operator.
Therefore they can be implemented either on the z-space manifold, or on any larger man-
ifold containing the z-space. In particular, if they are implemented on the full superspace,
one obtains algebraic relations between curvature components in z-space and curvature
components in directions orthogonal to xz-space. When it happens, the former completely
determines the latter, and a solution of the field equations on the xz-space submanifold can
be uniquely extended to a solution of the whole group manifold. The possibility of this
lifting is called rheonomy.

This rheonomic lifting can also be viewed as an z-space transformation of the fields,
which maps solutions of the z-space field equations into new solutions. From this point of
view, it is nothing other than the on-shell supersymmetry transformation.

The principal demand of any supergravity theory is the invariance of the Lagrangian
under supersymmetry transformations. In the rheonomic (geometric) approach, the bosonic
one-form V¢ (a = 0,1,2,3) and the fermionic one-form ¥ (v =1,...,4) define the super-
vielbein basis in superspace [33]. In this framework, the supersymmetry invariance is
satisfied requiring that the Lie derivative of the Lagrangian vanishes for diffeomorphisms
in the fermionic directions of superspace,

0L =1L=1dL+d(@L)=0. (2.1)
When a supergravity Lagrangian is considered on space-times without boundary, the con-

dition (2.1) trivially reduces to the first contribution such that «.L|,,, = 0. However, in
the presence of a non-trivial boundary the condition (2.1) requires a more subtle treatment.



Before analyzing N' = 1, D = 4 AdS-Lorentz supergravity in the presence of a non-
trivial boundary, we will first study the construction of the bulk Lagrangian and the cor-
responding supersymmetry transformation laws. First of all, we will apply the rheonomic
approach to derive the parametrization of the AdS-Lorentz curvatures by studying the
different sectors of the Bianchi Identities.

2.1 Curvatures parametrization

The four-dimensional AdS-Lorentz superalgebra is generated by {Jup, Pu, Zap, Qa}, whose
generators satisfy the (anti)commutation relations

[Jabs Jed) = Mbedad — NacTvd — MaJac + NadJoe » (2.2)
[ abs d] - nbc ad — nachd - nbdZac + nadecv (23)
[ abs d] - nbc ad — nachd - nbdZac + nadecy (24)
[Jabs Pe] = MoePa — NacPyo s [Pas Po) = Zap (2.5)
[ absy ] - nbc a nacpba (26)
1 1
[Jaba Qa] = _5 (’YabQ)a ) [Pav Qa] = _5 ('YaQ)a (27)
1
21> @l = — Q). (28)
1 ab a
{Qu@s) =5 |(1°C)  Zu = 2(+"C)os Pu| - (2.9)

Here C' stands for the charge conjugation matrix and v,, 745 are Dirac matrices. Let us no-
tice that the Lorentz type algebra £ = {Jup, Zap } is a subalgebra of the above superalgebra.
This subalgebra and its extensions to higher dimensions have been useful to derive General
Relativity from Born-Infeld gravity theories [34-36]. Further generalizations of the AdS-
Lorentz superalgebra containing more than one spinor charge ) can be found in ref. [28]
which can be seen as a deformation of the minimal Maxwell superalgebras [37-40]. Inter-
estingly, the following redefinition of the generators Juop — Jap, Zap — Z L Zuw, Py — Pa,
Qo — gQa provides us with the non-standard Maxwell superalgebra in the limit € — 0. Let
us note that the AdS-Lorentz superalgebra, corresponds to a supersymmetric extension of
the €4 algebra. The &, algebras have been of particular interest in order to derive different
Lovelock gravity actions from Chern-Simons and Born-Infeld gravity theories [31, 41].

Let us consider the Lorentz type curvatures in the superspace which are given by

R = dw® + wew?, (2.10)
R = D,V + k4V? — %%w, (2.11)

F = D k% 4 K%Lk (2.12)
p =Dt + (Kt (2.13)



where D, = d 4+ w is the Lorentz covariant exterior derivative. They satisfy the Bianchi

4
The most general Ansatz for the Lorentz type curvatures in the super-vielbein basis (V¢

identities:
DwRab — 0, (214)
DyR* = R4V® + F4VP + Rk + 9, (2.15)
Dy F = ROE™ — REE™ + Fek® — Foke, (2.16)
1 1 1
pr = 7Rab7ab1/) + E‘Fabvabw - ikabfyabp . (217)
)

of the superspace is given by

R%® = R® VeVe £ 8V + aegy™ep, (2.18)
R = R, VVI + 8" pVE + ey ™ap (2.19)
F = FOVVE L RV + ey ™y, (2.20)
p = papVVE + 867,V + Qup®yP . (2.21)

where € is the rescaling parameter. Setting R® = 0, we can withdraw some terms ap-
pearing in the curvatures, through the study of the scaling constraints. On the other
hand, the coefficients «, 3, £ and d appearing in the Ansatz can be determined considering
the parametrization involved in the Bianchi identities in the superspace (2.14)—(2.17) and
studying their various sectors. We obtain that the Bianchi identities are satisfied when:

R = R veyd 4 §yve, (2.22)
R =0, (2.23)
F = FOVeve L RV + ey, (2.24)
p=papVV’ = eV, (2.25)

—ab —ab _ .
where @ac = AaC = €™ (5LaveYs + PecYdYs — PaeYeys). In this way we have found the
parametrization of the curvatures and we can now consider the rheonomic construction of
the bulk Lagrangian in the geometric approach.

2.2 Rheonomic construction of the Lagrangian

Following the building rules for the construction of rheonomic Lagrangians [33], we start
by writing the most general Ansatz for the Lagrangian as follows

L£=v® 4+ FAuf) + FAFBVS% , (2.26)

where the super-index (p) denotes a p-form and F4 are the super AdS-Lorentz Lie algebra
valued curvatures defined by

R = dw™® + wiw®, (2.27)
R*=D,V* +kiVb — %%azp, (2.28)
F% = D k™ + ECED + 482V VP 4 ey (2.29)
¥ = Doty + K — vV, (2.30)



and where
V(4) = O‘leabcdvavbvcvd + a2a’yab¢vcvd€abcd + O‘BE’YQM/}VGVZ) ; (231)

F AVf ) = 1€apeaRPVVE + Y2€apeaF VOV + 750757,V + 70 Tyt V o
Y5 R0t + Y6 R yapt) + 17 RV Vi + Ys€anead Ry b+
+ Y PV Vi + Yio€abeaF 0y + 11 Fyapt) (2.32)

FAFBVS% = ﬁlRabRab + B2FabFab + BSEabcdRabRCd + 546abcdRabFCd+
+ Bs€apeaFPF + LU + B0 ¥ + SRR, , (2.33)

with «;, B, v, being constants. Note that the curvatures (2.27)-(2.30) are invariant under
the rescaling w® — w%, k% — k% Vo — Ve o) — w'/?¢) and € — w'e. Additionally,
the Lagrangian must scale with w?, being w? the scale-weight of the Einstein term. We
can prove that the term R®R, in (2.33) is linear in the curvature. Furthermore, due to
scaling constraints reasons, some of the terms in (2.33) disappear. Here we have to observe
that a theory in AdS includes a cosmological constant and, since the coefficients appearing
in the Lagrangian can be dimensional objects and scale with negative powers of €, some of
the terms in FAFB Vl(fl); can survive the scaling and contribute to the Lagrangian as total
derivatives. However, since we are now constructing the bulk Lagrangian, we can neglect
them and set FAFB I/S% = 0. We will show that these terms will be fundamental for the
construction of the boundary Lagrangian.

Let us consider now the scaling in (2.31) whose coefficients must be redefined in the
following way in order to give non-vanishing contributions to the Lagrangian:

ap = e}, ay=ed,, az=eay. (2.34)

2

In this way, all the terms in v scale as w®. Then, applying the scaling and the parity

conservation law to (2.31) and (2.32) we obtain
a3=0; wu=vn=7%=17=7="7="m0="11=0. (2.35)
Therefore, we are left with the Lagrangian
L = €apcaRVV + 7307279V + Y2€apea POV V'
+ 01 €apcaV VIV OV + abeeqpeatby YV VY, (2.36)
where we have consistently set v; = 1. Using the definition of the AdS-Lorentz curva-
tures (2.27)—(2.30), we can write

L = €apedRPVVE + 4307475 DbV + %fabcdkab@’chvd

+ 2cated ( Dk + KLED) VIV 4 (0 + 492) eqneaV VIV VY

+ (0/2 +v2 + %) Eeabeay" YV VL.



We can now determine the coefficients o), o, y2 and ~3 through the study of the field
equations. In order to obtain them, let us compute the variation of the Lagrangian with
respect to the different fields. The variation of the Lagrangian with respect to the spin

connection w® is given by
1
Sl = 2€apeqdw™ (DwVC + ’ygkaVf — 8731/}7%&) Ve, (2.37)

Here we see that, if 9 = 1 and v3 = 4, §,L = 0 leads to the field equation for the
AdS-Lorentz supertorsion:
€apea RVE = 0. (2.38)

The variation of the Lagrangian with respect to k%’ gives the same result.
On the other hand, the variation of the Lagrangian with respect to the vielbein V¢
leads to
2€abed(RVE + FPV) + 450 = 0, (2.39)

where we have used
€abedk VYD = Vyarskyant)

and where we have set o) = —2 and o, = —1, in order to recover the AdS-Lorentz
curvatures. In the same way, from the variation with respect to the gravitino field v we
find the following field equation:

8V Y275 ¥ + 47,759 R = 0. (2.40)
Summarizing, we have found the following values for the coefficients:
ap=-2, ay=-1, 1=1, =4 (2.41)

Thus we have completely determined the bulk Lagrangian Ly, of the theory, which can
be written in terms of the Lorentz type curvatures (2.10)—(2.13) as follows

Louik = €abedRVVE + €0peaFPVEVE 4 dihygyspV
+ 28%€apeaVOVIVVY 4 266 gpeathy™ WV VY. (2.42)
2.3 Supersymmetry transformation laws

The parametrizations we got in the previous section allow to obtain the supersymmetry
transformation laws. Indeed, in the rheonomic formalism, the transformations on space-

time are given by

opt = (Vo) + 1. FA, (2.43)
where ! = (eab,e“,eab,e). Then, restricting us to supersymmetric transformations we
have € = €? = % = () and

—ab
1.(R®) = 0" eV©, (2.44)
le(R") =0, (2.45)
I (F) = A%eve + 2ae9ep (2.46)
le(p) = —€7,€V, (2.47)



which provide the following supersymmetry transformation laws:

ab aab c
Sow™ = O%eve,

5eva = €7aw7
5.k = —2zeyiy + AeVe
1 1
0 = de + Zwabvabe + Zkabvabe + ev,eVe.

Under these transformation laws the Lagrangian is invariant up to boundary terms. The
presence of a boundary requires to check explicitly the condition (2.1).

3 Supersymmetry invariance in the presence of a boundary

In this section, following the approach presented in ref. [19], we analyze the supersymmetry
invariance of the Lagrangian in the presence of a non-trivial boundary. In particular, we
present the explicit boundary terms required in order to recover the full supersymmetry
invariance of the Lagrangian.

Let us consider the Lagrangian found in the previous section,

Lok = €abea RV VY + 45V 475
¥ €abed (f“bvcvd 28V Py 4 2é2vavbvcvd) . (3.1)
The supersymmetry invariance in the bulk is satisfied on-shell
R*=0.

Nevertheless, the boundary invariance of the Lagrangian under supersymmetry is not triv-
ially satisfied:

le£bulk|8/\/l4 #0. (3.2)

In order to recover the supersymmetric invariance of the theory, we require a more subtle
approach. Indeed, we have to add boundary terms to the bulk Lagrangian.

The only boundary contributions compatible with parity, Lorentz-like invariance and
N =1 supersymmetry are

d (wabN ed 4 wafwf wad> €abed = €abeaN N,

- = 1 ab 7. _ ¢
d (1) = P1sp + gCabeal’ bapyeip

where we have defined w® = w® + k% and N = R® 4 F% with R and F given
by egs. (2.10) and (2.12), respectively. One can notice that w?® and A% are related to
a Lorentz-like generator My, = Jup + Zap (see egs. (2.2)—(2.4)). Thus, let us consider the
following boundary Lagrangian

,dey = Q€gbed (RabRCd + 2€abcdRab.7:Cd + Eabcd]:ab]:ai)
1
—€

_ 1 _
3 abcdRabw’VCd¢ + 8€abcd]:ab¢’76d’(/)) . (33)

+8 (ﬁvsp +



Let us note that the structure of a supersymmetric Gauss-Bonnet like gravity appears.
Then, the full Lagrangian is given by

Lt = Louk + Lpay
— abyreysd TY7a abyreysd —xravsb T cd e rar b rerrd
—fabcdR VeV +4¢V YaY5P + €abed <f Veve 4+ 2eVeV T/J’Y w+2€ Vevevey >
+ Q€abed (RabRCd + 2€abed R F4 + €apea FOF Cd)

1 - 1 _
+ ﬁ <86abcdRab'¢76dw + geabcdfabw/70d¢ + 575:()) : (34)

Due to the é2-homogeneous scaling of the Lagrangian, we have that the coefficients o and
 must be related to =2 and !, respectively.

As we have previously pointed out, the supersymmetry invariance of the full Lagrangian
L requires the following condition

deLun = leLan = 1ed L + d (2eLrn) = 0. (3.5)

Naturally, the condition for supersymmetry in the bulk 2.dL¢n = 0 is satisfied since the
boundary contributions correspond to total derivatives. Thus the supersymmetry invari-
ance of the full Lagrangian Lg,; requires to verify the condition 2 (Lgy) = 0 on the
boundary. In particular, we have

te (Lran) = €apeate (R + F ) VV 4 46V 50350 + 49V 30751 (p)

+ €apeadeV oVl ) + 2, (T\’,ab +F ab) {aRCd + %@Z_W“% + aF Cd} €abed
+ geabcd (Rab + fab) E’}/Cdlb + 26% (ﬁ) V5P - (36)
Then, % o 0 implies the following constraints on the boundary:
(R“b + f“”) lom = _ L payn ﬂmabw (3.7)
20 16a ’
2 a
P|8M = BV Yo - (38)
The supersymmetry invariance requires ¢ (L) |gpm = 0. Thus we find
_ E —.ab cysd —17a § 117a b
te (L) lom = = o €abeay " PVVE + 46V 0750 + 5¢V Va5V e
+ 4é€abcdvavb€’76d¢ - <£€7ab¢> {aRCd + 1’%1[)'70d¢ + a]:Cd} €abed

D cnpoa [ RV 1+ Fohey iy} — gz, Vo,

Using the Fierz identity for N' = 1, v401)7?1) = 0, we have

g
te (Leat) lom = (46’ - 8604) €abea®y YV VT 4 BIZJV“%%Vb%ﬂ



Then, using the gamma matrices identity, we have that the supersymmetry invariance
implies the following relation between « and j3:

B

8
el il (3.9)

Solving for 8 we find

8eZa

5:16ea<1i I ) (3.10)

Let us note that the root vanishes for

which implies
b=

Interestingly, with these values for o and 8 we recover the following 2-form curvatures

N

N = R® 4 F +422VV? + epy™y, (3.11)

U =p—eViy, (3.12)
1_

R* = D,V + K4Vt — §m%p. (3.13)

which reproduce the AdS-Lorentz curvatures with

N = R® 4 Fab  where

b b b
RY = dw® + wi%w®,

ab __ ab _2yraysb — 7 ab
FY = FP +4e*VV° 4+ ey .

Finally, the full Lagrangian can be written as a MacDowell-Mansouri like form in terms of
the 2-form curvatures (3.11)—(3.12),

1 2 -
Lo = —5€abca NN + ZUy50 (3.14)
8e? €

whose boundary term corresponds to a supersymmetric Gauss-Bonnet like term,

1
Ebdy — @eabcd <RabRcd + 2RabJ,—_~cd + J,—_-ab;cd)

4/1 _ 1 _
+- <Seabcd7€“b¢70dw + geabea Wrfyeiah + P%P) : (3.15)

This term allows to recover the supersymmetric invariance of the theory in the presence
of a boundary. The same phenomenon occurs in pure gravity, where the Gauss-Bonnet
term assures the invariance of the Lagrangian in the presence of a non-trivial boundary.
Additionally, the supersymmetric extension of the Gauss-Bonnet term was introduced in
ref. [19], in order to restore the supersymmetry invariance in N' =1 and N' = 2, Osp (N[4)
supergravity in the presence of a boundary.



On the other hand, the bulk Lagrangian reproduces the generalized supersymmetric
cosmological term presented in ref. [28], and corresponds to a supersymmetric extension of
the results found in refs. [30, 42].

Let us note that an Inénii-Wigner (IW) contraction of the full Lagrangian (3.14) leads
to the Maxwell MacDowell-Mansouri Lagrangian presented in ref. [43], corresponding to
N =1 pure supergravity Lagrangian in the presence of a non-trivial boundary.

4 Comments and possible developments

In this paper we have first of all presented the explicit construction of the N =1, D = 4
AdS-Lorentz supergravity bulk Lagragian in the rheonomic framework. In particular, we
have shown an alternative way to introduce a generalized supersymmetric cosmological
term to supergravity. Subsequently, we have studied the supersymmetry invariance of the
Lagrangian in the presence of a non-trivial boundary. Interestingly, the supersymmetric
extension of a Gauss-Bonnet like term is required in order to restore the supersymme-
try invariance of the full Lagrangian. The addition of a topological boundary term in
a four-dimensional bosonic action is equivalent to the holographic renormalization in the
AdS/CFT formalism. Then, it seems that the presence of the k% fields through the F
curvature in the boundary would allow to regularize the supergravity action in the holo-
graphic renormalization language. Additionally, as was pointed out in refs. [44, 45], the
bosonic MacDowell-Mansouri action is on-shell equivalent to the square of the Weyl ten-
sor describing conformal gravity. Thus, the supergravity action a la MacDowell-Mansouri
would suggest a superconformal structure which represents an additional motivation in
our approach.

The results obtained here could be useful in order to study supergravity theories in
the presence of a non-trivial boundary in higher dimensions or coupled to matter. In
particular, it would be interesting to analyze the boundary terms necessary to restore the
supersymmetry invariance of a general matter coupled N’ = 2 supergravity considering the
bulk Lagrangians introduced in refs. [46, 47].
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