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Abstract: We introduce a formulation for spinning gravitating objects in the effective

field theory in the post-Newtonian scheme in the context of the binary inspiral problem.

We aim at an effective action, where all field modes below the orbital scale are integrated

out. We spell out the relevant degrees of freedom, in particular the rotational ones, and the

associated symmetries. Building on these symmetries, we introduce the minimal coupling

part of the point particle action in terms of gauge rotational variables, and construct the

spin-induced nonminimal couplings, where we obtain the leading order couplings to all

orders in spin. We specify the gauge for the rotational variables, where the unphysical

degrees of freedom are eliminated already from the Feynman rules, and all the orbital field

modes are integrated out. The equations of motion of the spin can be directly obtained

via a proper variation of the action, and Hamiltonians may be straightforwardly derived.

We implement this effective field theory for spin to derive all spin dependent potentials up

to next-to-leading order to quadratic level in spin, namely up to the third post-Newtonian

order for rapidly rotating compact objects. In particular, the proper next-to-leading order

spin-squared potential and Hamiltonian for generic compact objects are also derived. For

the implementations we use the nonrelativistic gravitational field decomposition, which is

found here to eliminate higher-loop Feynman diagrams also in spin dependent sectors, and

facilitates derivations. This formulation for spin is thus ideal for treatment of higher order

spin dependent sectors.
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1 Introduction

The anticipated direct detection of gravitational waves (GWs) may be realized soon with

the upcoming operation of second-generation ground-based interferometers, such as the

twin Advanced LIGO [1] detectors in the US, Advanced Virgo [2] in Europe, and in a few

years also KAGRA [3] in Japan. This will open a new era of observational gravitational

wave astronomy, where also space-based detectors, such as eLISA [4, 5] are planned to
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extend the observed frequency range to the low frequency band. Binaries of compact objects

are the most promising sources in the accessible frequency band of such experiments. The

post-Newtonian (PN) approximation of General Relativity stands out among the various

and complementary approaches to model these systems, as it enables to treat analytically

the inspiral phase of their evolution [6].

The search for GW signals from such sources employs the matched-filtering technique,

and thus accurate theoretical template waveforms are crucial to obtain a successful detec-

tion. Even relative high order PN corrections, such as the fourth PN (4PN) order, have an

impact on the waveform templates for the binary inspiral, and further they are required to

gain information about the inner structure of the components of the binary [7]. Moreover,

astrophysical observations indicate that such black hole components have near extreme

spin [8]. Hence, PN spin effects for rapidly rotating compact objects, which first appear at

1.5PN order, should be obtained at least to 4PN order, which was recently completed in

the non-spinning case [9].

Several efforts have been made in recent years to push ahead the formulation for

gravitating spinning objects in the context of the binary inspiral problem. An action

formalism plays a central role in the various approaches, building in particular on the

seminal works in [10] and [11] for flat and curved spacetime, respectively, and see also

section 11 of [6] for a review of spinning compact binaries for gravitational radiation. The

self-contained Effective Field Theory (EFT) approach for the binary inspiral as introduced

in [12, 13] for non-spinning objects seems then to provide a solid path to obtain such

a formulation. In the EFT formulation manifest power counting in the small expansion

parameter (here v ≪ c = 1) is achieved by performing a decomposition of the gravitational

field at the level of the action into modes with definite scaling properties, followed by

integrating out the off-shell modes [12].

The EFT approach provides a systematic methodology to construct the action to arbi-

trarily high accuracy, in terms of operators with Wilson coefficients ordered by relevance,

which is indispensable beyond the point-mass approximation. In that respect it should be

pointed out, that even just the point-mass approximation, which past work was using, is

naturally incorporated already in the EFT framework. It should also be noted that some

effective action with derivative expansion to model finite size effects was already discussed

in [14] in the context of alternative theories of gravity. The EFT approach also provides a

natural framework to handle the regularization required for higher order corrections in the

PN approximation within the standard renormalization scheme. It formulates the pertur-

bative calculation efficiently by applying the standard tools from Quantum Field Theory,

such as Feynman diagrams (a related basic diagrammatic expansion was used already

in [15]). Consequently, the EFT approach then benefits from existent developed Feynman

integral calculus at its disposal. For spinning objects such EFT techniques were first used

in [16], and revised in [17], where eventually a Routhian approach from [18] was adopted.

Our goal in this work is indeed to obtain an EFT formulation for gravitating spinning

objects for the binary inspiral problem, building on [12, 13], and on several observations

made in a series of works, mainly [19–21] and [22]. The essential obstacle that one has to

deal with in extending the formulation from a gravitating point-mass to a spinning object
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in terms of an EFT point particle approach is just the intrinsic conflict between the actual

spinning object, which must be extended for its rotational velocity not to be superluminal,

and its view as a point particle. The elusive notion of a ‘center’, which would serve as a

reference point within the object, in relativistic physics, similar to the center of mass in

Newtonian physics, is the origin of ambiguities in the description of relativistic spinning

objects. Ever since the first treatment in 1959 of the leading order (LO) PN correction,

which involves spin, in the spin-orbit sector, the essential choice of such a center has been

a puzzling issue, see Tulczyjew’s paper and errata in [23].

In this work we aim at an effective action, that incorporates the essential requirement,

that all field modes below the orbital scale are integrated out. We aim to attain accuracy

at the 4PN order for rapidly rotating compact objects, and indeed the formulation in this

paper holds as it stands to this high PN order, and it may hold until dissipative effects

start to play a role as of the 5PN order [24]. Here, we spell out the relevant degrees of

freedom (DOFs), in particular the rotational ones, and most importantly the associated

symmetries. Building on these symmetries, we start with the minimal coupling part of

the point particle action, stressing the role of the worldline spin as a further worldline

rotational DOF. We proceed to construct the spin-induced nonminimal couplings, where

we obtain the LO couplings to all orders in spin. We then introduce the gauge freedom

of the rotational variables into the action, and express it in terms of gauge rotational

variables. Again, this spin gauge invariance was not addressed previously in the action.

From introducing this spin gauge freedom we get that the minimal coupling part of the

spin in the action, would contribute to the finite size effects, which is just the manifestation

of the aforementioned conflict between the actual spinning extended object and its view

as a point particle. We then fix a canonical gauge for the rotational variables, where the

unphysical DOFs are eliminated already from the Feynman rules, and all the orbital field

modes are conveniently integrated out.

The equations of motion (EOM) of the spin are then directly obtained via a proper

variation of the action, where they take on a simple form. The corresponding Hamiltonians

are also straightforwardly obtained from the potentials, derived via this formulation, due to

the canonical gauge fixing. We implement this EFT formulation for spin to derive all spin

dependent potentials up to next-to-leading order (NLO) to quadratic level in spin, i.e. up

to the 3PN order for rapidly rotating compact objects. In particular, the proper next-

to-leading order spin-squared potential and Hamiltonian for generic compact objects are

also derived. For the implementations we use the nonrelativistic gravitational (NRG) field

decomposition [25, 26], which is found here to eliminate higher-loop Feynman diagrams also

for spin dependent sectors, and facilitates derivations. Hence, with the simple EOM of the

spin, and the additional advantageous usefulness of the Hamiltonian for the straightforward

obtainment of gauge-invariant quantities, and for implementations within the effective one-

body formulation [27], the EFT formulation for spin here is ideal for treatment of higher

order spin dependent sectors. Indeed, the application of the EFT formulation for spin

presented here has led to the completion of the spin dependent conservative sector up to

the 4PN order in the recent works [28, 29], and [30], which obtained the LO cubic and

quartic in spin, NNLO spin-orbit, and NNLO spin-squared sectors, respectively.
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The outline of the paper is as follows. In section 2 we present the setup and goal of our

EFT formulation for gravitating spinning objects, and detail the relevant DOFs, and the

associated symmetries. In section 3 we start by presenting the minimal coupling part of the

action, and then express it in terms of rotational gauge variables, which yields an extra term

from minimal coupling. In section 4 we construct the spin-induced nonminimal coupling

part of the action, where we obtain the LO couplings to all orders in spin. In section 5

we fix all ingredients in order to integrate out the orbital field modes: we disentangle

the tetrad field from the worldline tetrad, we fix the gauge of the tetrad field and of the

rotational variables, and present the resulting Feynman rules. We also discuss how the

EOM of the spin are then directly obtained after the orbital modes have been integrated

out. In section 6 we implement this EFT for spin to derive all spin dependent potentials

and Hamiltonians up to NLO to quadratic level in spin, i.e. up to the 3PN order for rapidly

rotating compact objects. In section 7 we summarize our main conclusions.

Throughout this paper we use c ≡ 1, ηµν ≡ Diag[1,−1,−1,−1], and the convention for

the Riemann tensor is Rµ
ναβ ≡ ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

λαΓ
λ
νβ − Γµ

λβΓ
λ
να. Greek letters denote

indices in the global coordinate frame, lowercase Latin letters from the beginning of the

alphabet denote indices in the local Lorentz frame, and upper case Latin letters from the

beginning of the alphabet denote the worldline tetrad frame. All indices run from 0 to 3,

while spatial tensor indices from 1 to 3, are denoted with lowercase Latin letters from the

middle of the alphabet. Square brackets on indices denote that they are in the worldline

tetrad frame. Uppercase Latin letters from the middle of the alphabet denote particle

labels. The scalar triple product appears here with no brackets, i.e. ~a×~b · ~c ≡ (~a×~b) · ~c.

2 Setup of EFT for gravitating spinning objects

2.1 Setup and goal

We begin by recalling the general setup of an EFT for the binary inspiral problem in

terms of a tower of EFTs, building on [12, 13]. The binary inspiral problem involves two

intermediate scales below the radiation wavelength scale, λ, which are the scale of internal

structure of each of the compact components of the binary, rs ∼ m, where m is the mass

of the compact object, and the orbital separation scale, r. It holds that r ∼ rs/v
2 ∼ λv,

where v is the typical nonrelativistic orbital velocity at the inspiral phase, that is v ≪ 1.

Hence, there is a hierarchy of scales in the binary inspiral problem, which makes it ideal

for an EFT treatment. We note that we consider here gravitating objects, which are in

general spinning.

Therefore, to obtain an EFT describing the radiation from the binary, one should

proceed in two stages:

1. First, we should have an EFT that removes the scale of the compact objects, rs,

from the purely gravitational action of the isolated compact object, which is just the

Einstein-Hilbert action

S [gµν ] = − 1

16πG

∫
d4x

√
gR. (2.1)
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We integrate out the strong field modes, gsµν , where gµν ≡ gsµν + ḡµν , by writing down

an effective action containing the most general set of worldline operators consistent

with the symmetries of the theory. According to the decoupling theorem [31] the ef-

fective action can be expressed by introducing an infinite tower of worldline operators

Oi(σ), such that

Seff

[
yµ, eµA, ḡµν

]
= − 1

16πG

∫
d4x

√
ḡR [ḡµν ] +

∑

i

Ci

∫
dσOi(σ)

︸ ︷︷ ︸
Spp≡point particle action

, (2.2)

where yµ and eµA are the particle worldline coordinate and worldline tetrad degrees

of freedom (DOFs), discussed in the following section. All UV dependence shows

up only in the Wilson coefficients Ci(rs) in the point particle action, Spp, and the

worldline operators Oi(σ) must respect the symmetries of the relevant DOFs at this

scale. In sections 2.2 and 2.3 below we elaborate on the degrees of freedom and the

symmetries, considering gravitating spinning objects.

We note that a spinning point particle is characterized by two parameters, its mass,

m, and spin length, S2, to be defined in sections 3.1 and 4.1. Yet, since S . m2 ∼ r2s ,

then indeed rs is the only scale in the full theory. In addition, dissipative effects

from the absorption of gravitational waves by the compact objects, as considered in

e.g. [24], which modify the mass and spin of the objects, enter only as of the 5PN

order. Hence, the mass and spin length can be considered as constant for all relevant

implementations.

2. The following EFT in the tower should have the orbital scale of the binary removed.

The metric field is again decomposed into the modes

ḡµν ≡ ηµν + Hµν︸︷︷︸
orbital

+ h̃µν︸︷︷︸
radiation

, (2.3)

and we note that

∂tHµν ∼ v

r
Hµν , ∂ρh̃µν ∼ v

r
h̃µν , (2.4)

whereas

∂iHµν ∼ 1

r
Hµν . (2.5)

This EFT of the binary, which is regarded now as a single composite object, is

obtained by explicitly integrating out the field modes below the orbital scale, Hµν .

Starting from an effective action of a binary, given by

Seff

[
yµ1 , y

µ
2 , e(1)

µ
A, e(2)

µ
A, ḡµν

]
= − 1

16πG

∫
d4x

√
ḡR [ḡµν ] + S(1)pp + S(2)pp, (2.6)

the effective action of the composite object is defined by the functional integral

eiSeff(composite)[yµ,e
µ
A
,h̃µν ] ≡

∫
DHµν eiSeff[yµ1 ,y

µ
2 ,e(1)

µ
A
,e(2)

µ
A
,ḡµν ], (2.7)

– 5 –
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considering the classical limit, i.e. evaluating the relevant Feynman diagrams in the

tree level approximation. Here yµ and eµA are the worldline coordinate and tetrad,

i.e. ηABeA
µ(σ)eB

ν(σ) = ηµν + h̃µν , of the composite particle, respectively.

To obtain the final EFT in the tower, an EFT of radiation, the field DOFs should all

be integrated out. Therefore, in general one has to proceed to a third stage, where also

the radiation modes, h̃µν , are integrated out. Yet, in the conservative sector, where no

radiation modes are present, and from which the conservative dynamics is inferred, the

EFT construction process ends after the aforementioned two stages, that is after having

integrated out the field modes below the orbital scale.

Indeed, in this paper we focus on the imperative two stage process for the conservative

sector, where the end goal of this process should be an effective action, i.e. an action

without any remaining orbital scale field DOFs. Naturally, this also involves eliminating

all unphysical DOFs from the action, in particular those associated with the rotational

DOFs, see section 3 in [22]. By definition, e.g. in eqs. (2.3) and (2.7), an effective action

should not contain any remaining field DOFs of modes of the scale, which it removes.

These should all be integrated out.

It should also be noted that this construction of the EFT, starting from the scale of

the internal structure of the compact objects, rs, should be supplemented below this scale

for compact stars, rather than just black holes. This becomes relevant, when nonminimal

couplings should be taken into account, and we comment on that in section 4.

2.2 Degrees of freedom

We should specify and keep track of our degrees of freedom in the process of constructing

the EFTs. We should consider here three kinds of DOFs:

1. The gravitational field. For the effective action in eq. (2.2) we have the field DOFs in

the purely gravitational action, and in the non-spinning point particle actions, simply

represented by the metric gµν(x) (the overbar notation of the metric is dropped here

and henceforth). For the point particle actions beyond the mass monopole, which

also involve the spins, the tetrad field, ηabẽa
µ(x)ẽb

ν(x) = gµν(x), which couples to

the multipoles of the objects, also represents the field DOFs. After gauge fixing the

purely gravitational action, and the tetrad field, both the metric and the tetrad fields

are left with 6 DOFs.

2. The particle worldline coordinate. yµ(σ) is a function of an arbitrary affine parameter

σ. The time coordinate is used to fix the gauge of the affine parameter, and we have

the 3 DOFs, giving the position of the particle. The particle worldline position does

not in general coincide with the ‘center’ of the object, that is the reference point

within the actual extended object. The ‘center’ is uniquely defined in Newtonian

physics, but not in relativity theory.

3. The particle worldline rotating DOFs. Initially, we consider the worldline tetrad, an

orthonormal frame ηABeA
µ(σ)eB

ν(σ) = gµν , localized on the particle worldline, con-

necting the body-fixed and general coordinate frames. From this tetrad we define the

– 6 –
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worldline angular velocity Ωµν(σ), and then we add its conjugate, the worldline spin,

Sµν(σ), as a further DOF. We then have 6 + 6 DOFs. The field DOFs, represented

by the tetrad field, which satisfies ẽa
µ (y(σ)) = Λa

A(σ)eA
µ(σ), are then disentangled

from the worldline tetrad DOFs, such that we are left with the worldline Lorentz

matrices DOFs, ηABΛA
a(σ)ΛB

b(σ) = ηab, and the conjugate worldline spin, Sab(σ),

projected to the local frame. After gauge fixing the rotational DOFs, we are left only

with the 3 + 3 physical DOFs.

2.3 Symmetries

The aforementioned degrees of freedom should be coupled in all possible ways allowed by

the symmetries of the problem in order to construct the effective action. The following

symmetries should then be considered:

1. General coordinate invariance, and in particular parity invariance is also included,

which holds for macroscopic objects in General Relativity, and is relevant for non-

minimal couplings in the point particle action, see section 4.

2. Worldline reparametrization invariance. This is used to construct the minimal cou-

pling as well as the non minimal coupling parts of the point particle action, see

sections 3.1 and 4, respectively.

3. Internal Lorentz invariance of the local frame field. We use the 3+3 DOFs of local

Lorentz transformations to fix the gauge of the tetrad field, which in general has 16

DOFs, such that it is represented by the 10 DOFs of the metric (before gauge fixing),

see section 5.1.

4. SO(3) invariance of the body-fixed spatial triad, eµ[i], consisting of the 3 spacelike

vectors. This follows from the 3 rotational DOFs to orient the massive particle in

space in the body-fixed frame. In consequence, the worldline spin DOFs are SO(3)

tensors in the body-fixed frame, which is also relevant for nonminimal couplings in

the point particle action, see section 4. This is also discussed in section 3.2 in relation

with the spin gauge invariance.

5. Spin gauge invariance, that is an invariance under the choice of a completion of the

body-fixed spatial triad through a timelike vector. This is a gauge of the rotational

variables, i.e. of the worldline tetrad and of the worldline spin. It is considered in

section 3.2, and further discussed in section 5.2.

6. We assume that the isolated object has no intrinsic permanent multipole moments

beyond the mass monopole and the spin dipole. This is used in sections 3.1 and 4.

Permanent multipole moments may be included through constant SO(3) tensors. Yet,

recall that mass and spin are conserved for isolated objects, but higher multipoles

are not.

We stress that time-reversal symmetry is not assumed here, but instead terms which violate

it are shown not to contribute at the considered order, see also section 4.

– 7 –
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3 Formulation of EFT for spin

3.1 EFT with the worldline spin as a further DOF

First, we briefly review the essential basic definitions as in, e.g. section III of [20]. We

start by considering the worldline tetrad, an orthonormal frame eµA(σ), localized on the

particle worldline, connecting the body-fixed and general coordinate frames, such that

ηABeµAe
ν
B = gµν with ηAB ≡diag[1,-1,-1,-1] the flat spacetime Minkowski metric. We recall

that the reciprocal tetrad is defined by eµA ≡ ηABeµB. The projections of any tensor onto

the tetrad frame, and the converse projection onto the coordinate frame are then defined

as, e.g. for a vector, VA ≡ eµAVµ, and Vµ ≡ eAµVA, respectively.

We proceed to define the antisymmetric angular velocity tensor by

Ωµν ≡ eµA
DeAν

Dσ
, (3.1)

where D/Dσ is the covariant derivative with respect to the worldline parameter σ, and

this is a generalization of the flat spacetime definition given by Ωab ≡ Λa
A

dΛAb

dσ
[10, 11].

Considering the degrees of freedom and symmetries of the problem, noted in the previous

section, the point particle Lagrangian should be a function of the coordinate velocity,

uµ ≡ dyµ/dσ, the angular velocity from eq. (3.1), and the metric, that is Lpp [u
µ,Ωµν , gµν ],

where the dependence in the metric is extended beyond minimal coupling to include the

Riemann tensor and further covariant derivatives. The spin is then defined as the conjugate

to the angular velocity, i.e.

Sµν ≡ −2
∂L

∂Ωµν
. (3.2)

The minus sign in this definition is chosen to give the correct form in the nonrelativistic

limit. It is then beneficial to construct the Lagrangian with the spin as a further worldline

DOF since it makes sense to utilize the spin dipole moment, sourcing the gravitons, similar

to the mass monopole, as a classical source on the worldline. Another advantage is then

that the spin becomes an independent variational variable, and the equations of motion

(EOM) of the spin are then directly and conveniently obtained via an appropriate variation

of the effective action [22].

Therefore, the point particle action from eq. (2.2) can be written as

Spp =

∫
dσ

[
−m

√
u2 − 1

2
SµνΩ

µν + LSI [u
µ, Sµν , gµν (y

µ)]

]
, (3.3)

where the first two terms are just the point-mass and rotational minimal couplings retained

from flat spacetime [10, 11], which are inferred from reparametrization invariance. LSI

stands for the nonminimal coupling part of the action, which according to the symmetries

spelled out in section 2.3 contains only spin-induced multipoles, and as will be further

illustrated in section 4, only depends on the worldline DOFs uµ and Sµν . The conjugate

to the 4-velocity uµ is the linear momentum, given by

pµ ≡ − ∂L

∂uµ
. (3.4)

– 8 –
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Clearly, it is Lagrangian dependent and is modified as higher multipoles, i.e. nonminimal

couplings, are introduced, and we have

pµ = m
uµ√
u2

+O(S2). (3.5)

For an isolated compact object the linear momentum pµ can be obtained from surface

integrals at spatial infinity. In this case finite size effects are not taken into account, and

the mass is matched as m2 = pµp
µ.

We note that we can also express the rotational minimal coupling term, using the

spin projected to the body-fixed frame, where the spin is a permanent multipole moment.

Indeed, the components of the spin in this frame are constant, which can be seen most

directly using the EOM following from the action in eq. (3.3). Using the Ricci rotation

coefficients, defined by

ωµ
ab ≡ ebνDµe

aν , (3.6)

it holds that

1

2
SµνΩ

µν =
1

2
SABω

AB
µ uµ. (3.7)

We shall see that only the spatial SO(3) components in the body-fixed frame are non-

vanishing here. Considering the scalar mass monopole from eq. (3.3), and this form, where

the spin dipole is also represented as a constant antisymmetric SO(3) tensor, we shall be

able to construct the nonminimal coupling part of the action in a rather straightforward

manner, as will be detailed in section 4.

As we are working in an action approach, there is no impediment to the implementa-

tion of gauge constraints on the rotational DOFs. Moreover, as we shall see these gauge

constraints should be implemented at the level of the point particle action in order to ul-

timately arrive at an effective action without any remaining orbital scale field degrees of

freedom. We shall also see in the following section 3.2, that in order to arrive at a generic

point particle action, where the gauge of the rotational variables is not fixed, we should

initially implement the covariant gauge. Yet it is crucial to point out that in the point

particle Lagrangian in eq. (3.3), we have both DOFs of the angular velocity and of the

spin, and therefore it is necessary to implement gauge fixing both on the worldline tetrad

DOFs and on the spin DOFs, rather than only on the latter ones. We shall explicitly see in

section 5.2, that we cannot obtain an effective action formulated with the worldline spin, if

the gauge of the spin is fixed without gauge fixing its conjugate DOFs. These are principal

statements in this paper.

3.2 Unfixing the gauge of the rotational variables

As we noted in section 2.3 there is a spin gauge freedom in the choice of a timelike vector for

the worldline tetrad. This is a choice of a ‘center’ point within the spinning object, which

must have a finite size due to its spin. This gauge is fixed using some spin supplementary

conditions (SSC), corresponding to a gauge choice of the timelike basis vector for the

worldline tetrad. The covariant SSC by Tulczyjew [32], given by

Sµνp
ν = 0, (3.8)
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where pν is the linear momentum from eq. (3.4), is the only SSC, for which existence and

uniqueness of a corresponding ‘center’ were proven rigorously in general relativity [33, 34].

Together with the corresponding gauge condition on the worldline tetrad timelike basis

vector, which reads

eµ[0] = pµ/
√
p2, (3.9)

we see that this gauge is equivalent to the requirement that the spin in the body-fixed

frame, as in eq. (3.7), is a spatial SO(3) tensor.

General coordinate invariance is an important symmetry of the effective action, and it

makes sense to specify the point particle action for this covariant SSC. However, we also

expect to have a spin gauge symmetry in the effective action, such that indeed there is gauge

freedom in the choice of the timelike vector for the worldline tetrad. This gauge symmetry

was not addressed in previous work, which approached to extend the EFT formulation for

spinning objects. Therefore, we start out with the covariant gauge, having a covariant

theory at hand, and then transform to a generic gauge, thus introducing the spin gauge

freedom into the action. Hence, we illustrate a procedure for directly constructing an

action, which is manifestly invariant under both coordinate and rotational variables gauge

transformations.

We are approaching the change of a spin gauge from a new perspective. We are

effectively applying a boost to the body-fixed tetrad, and then we see how the rotational

minimal coupling term 1
2SµνΩ

µν in the action in eq. (3.3) is affected. This approach is in

fact suggested by the EFT philosophy since an important ingredient in the EFT setup is the

SO(3) invariance of the worldline spatial triad, rather than SO(1,3) Lorentz invariance of

the worldline tetrad. Since the velocity of the particle is already set as the time derivative

of its position coordinate, the additional boost degrees of freedom of the internal SO(1,3)

indices of the worldline tetrad are actually redundant gauge ones. Only the orientation of

the particle is physical, and can be described by an internal SO(3) group. Then the action

should be formulated in terms of e[i]
µ, which possess SO(3) indices i, without the timelike

basis vector e[0]
µ. Hence we have the idea that a fixation of e[0]

µ should be connected to the

gauge choice of the spin variable or SSC. We are going to show that this is indeed the case.

We therefore connect different choices for e[0]
µ by effectively boosting eA

µ in the following.

Consider a boost in the 4-dimensional covariant form. It is given by

La
b(q, w) ≡ δab + 2qawb −

(qa + wa)(qb + wb)

1 + qw
, (3.10)

where qw ≡ qaw
a, and qaqa = wawa = 1, i.e. qa, wa are timelike unit 4-vectors. We will

now make use of the definition in eq. (3.10) with general coordinate indices instead of

Lorentz indices. Then Lµ
ν(q, w) is strictly speaking not a Lorentz transformation, but it

is taken as the tensor projected by the appropriate tetrad onto the coordinate frame, see

e.g. [35]. We can then transform eAµ from a gauge condition

eAµq
µ = η[0]A ⇔ e[0]µ = qµ, (3.11)

to the condition

êAµw
µ = η[0]A ⇔ ê[0]µ = wµ, (3.12)
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with the help of the transformation

êAµ = Lµ
ν(w, q)e

Aν . (3.13)

The algebraic properties of Lµ
ν(q, w) then guarantee that

ηAB ê
AµêBν = gµν , (3.14)

if the analogous relation holds for eAµ.

Further, notice that from eqs. (3.11) and (3.12) we have

Dqµ

Dσ
= −Ωµνqν , (3.15)

Dwµ

Dσ
= −Ω̂µνwν , (3.16)

where similarly to eq. (3.1), we have Ω̂µν ≡ êA
µDêAν

Dσ
. For the angular velocity we get

Ωµν = Lµ
ρ(q, w)L

ν
σ(q, w)Ω̂

ρσ + Lµ
ρ(q, w)

DLνρ(q, w)

Dσ
, (3.17)

and since it holds that

Lµ
ρ(q, w)

DLνρ(q, w)

Dσ
= 2

Dwµ

Dσ
qν− 2wµqνqρ

1 + qw

Dwρ

Dσ
− qν + wν

1 + qw

D(qµ + wµ)

Dσ
−(µ ↔ ν), (3.18)

then the transformation between the covariant angular velocities finally reads

Ωµν = Ω̂µν +

[
qµ + wµ

1 + qw

(
Dqν

Dσ
+ Ω̂νρqρ

)
− (µ ↔ ν)

]
. (3.19)

From this we can easily obtain the effect on the minimal coupling term as

1

2
SµνΩ

µν =
1

2

(
Sµν −

Sµρw
ρ

1 + qw
qν +

Sνρw
ρ

1 + qw
qµ

)
Ω̂µν − Sµρw

ρ

1 + qw

Dqµ

Dσ
, (3.20)

where the SSC Sµνq
ν = 0 was used. Notice that both the gauge condition on the tetrad,

e[0]µ = qµ, and the SSC should be used at the level of the action in order to transform the

minimal coupling term.

The last equation suggests to define a new spin tensor as the prefactor of the trans-

formed angular velocity Ω̂µν , that is

Ŝµν ≡ Sµν −
Sµρw

ρ

1 + qw
qν +

Sνρw
ρ

1 + qw
qµ. (3.21)

If indeed we fix qµ = pµ/
√
p2, i.e. we start with Tulczyjew’s covariant SSC, then the new

spin variable reads

Ŝµν = Sµν −
Sµρw

ρ

√
p2 + pw

pν +
Sνρw

ρ

√
p2 + pw

pµ, (3.22)

and satisfies the generic spin supplementary condition

Ŝµν
(
pν +

√
p2ê[0]ν

)
= 0, (3.23)
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together with the gauge constraint for the tetrad

ê[0]µ = wµ, (3.24)

which provide together the necessary 3+3 gauge constraints to eliminate the redundant

unphysical DOFs in the angular velocity and spin tensors, see section 5.2 for further analysis

of specific sensible gauges.

Notice also that the spin transforms as expected under a shift of the ‘center’ position,

δzµ ≡ ẑµ − yµ, namely as

Ŝµν = Sµν − δzµpν + δzνpµ. (3.25)

By comparing eqs. (3.25) and (3.22) we can read off δzµ as

δzµ =
Sµρwρ√
p2 + pw

. (3.26)

Notice that due to the initial covariant SSC it holds that δzµpµ = 0, that is the shift of

the ‘center’ of the object is orthogonal to the linear momentum, and thus indeed spacelike.

Hence, the ‘center’ of the spinning particle is shifted from the worldline position of the

particle for a non-covariant gauge of the particle rotating DOFs.

Therefore we see that by choosing a gauge for the tetrad in eq. (3.24), we also specify

the choice of SSC in eq. (3.23), the spin variable in eq. (3.22), and the position of the

‘center’ in eq. (3.26). At this point we have arrived at

1

2
SµνΩ

µν =
1

2
ŜµνΩ̂

µν − δzµ
Dpµ
Dσ

. (3.27)

Thus, we have introduced spin gauge freedom into the rotational minimal coupling term

of the point particle action in eq. (3.3). An alternative construction of the spin gauge

symmetry in flat spacetime, based on the canonical formalism, is given in [36].

In order to also introduce this gauge freedom beyond minimal coupling according to

eq. (3.3), see section 4, we need to express our initial spin variable in terms of the generic

one in eq. (3.22). We recall that we consider that also the nonminimal coupling terms have

been initially constructed for a covariant gauge with a spin variable, satisfying Tulczyjew’s

covariant SSC. Then we note that from the contraction of eq. (3.22) with pν , we get that

the shift of position of the ‘center’ can be written as

δzµ =
Sµρwρ√
p2 + pw

= − Ŝµρpρ
p2

, (3.28)

which leads to

Sµν = Ŝµν −
Ŝµρp

ρpν
p2

+
Ŝνρp

ρpµ
p2

. (3.29)

The transformation to the new generic spin can therefore be written without the wµ gauge

DOFs. This is so since eq. (3.29) is a projection of the generic spin variable Ŝµν onto the

spatial hypersurface of the rest frame. This projection removes the gauge DOFs, since all

gauges agree in the rest frame, hence the projected spin variable is spin gauge invariant.
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It follows that indeed the action should be constructed using Sµν . Recall that the spin

variable, which satisfies the covariant SSC, when projected to the body-fixed frame, is a

spatial constant SO(3) tensor.

Finally, the transformation to the generic worldline triad reads

e[i]
µ = ê[i]

µ − ê[i]
ρpρ

pµ +
√
p2ê[0]

µ

p2 +
√
p2pν ê[0]ν

, (3.30)

where we have for the temporal component that e[0]
µ = pµ/

√
p2, and e[i]

µpµ = 0. Notice

that only in this relation the new worldline tetrad time vector ê[0]
ν = wµ appears explicitly.

Hence, the point particle action beyond minimal coupling from eq. (3.3) is constructed from

Sµν and e[i]
µ, but these are now understood in terms of eqs. (3.29) and (3.30). Actually,

eq. (3.30) is not required for spin interactions beyond minimal coupling, but it is needed

for dynamical tidal interactions.

Finally, the worldline variables and fields in the point particle action are still taken at

yµ. That is, for a non-covariant gauge the worldline position would be shifted from the

location ẑµ of the ‘center’, which one commonly attributes to Ŝµν . Instead, if one chooses

to eliminate the covariant derivative in eq. (3.27) at the level of the point particle action by

making a shift of the worldline to the location of the ‘center’, then the worldline variables

and fields are implicitly parallel transported to ẑµ. Yet, this is not judicious in order to

integrate out all the orbital field modes from the effective action, which can be obtained

only if the rotational gauge fixing is implemented at the level of the point particle action.

Further, at this stage it is preferable to keep the point particle action in its general form.

For further discussion on this point, see also next section 3.3, and section 5.2.

Using the coordinate velocity in the rotational gauge fixing. So far, we have made

all derivations regarding the rotational gauge fixing in terms of the linear momentum pµ
for generality. Yet, from eqs. (3.3) and (3.4) we can tell, that the difference pµ −muµ/u

is quadratic in the spin, and linear in the field. Then from Tulczyjew SSC, Sµνp
ν = 0,

we can deduce, that this difference may be relevant only as of cubic order in the spin,

and in that case, only as of NLO, due to the resulting nonlinear coupling of the field to

spin. Therefore, for all current cases of interest, up to the 4PN order for rapidly rotat-

ing compact binaries, we can replace the linear momentum in Tulczyjew SSC with its

LO coordinate velocity approximation. In particular, note that this applies to the use-

ful eqs. (3.29), (3.23), (3.27), (3.30), which change the spin variable, fix the redundant

temporal spin components, S0i, transform the rotational minimal coupling term, and the

worldline tetrad, respectively.

3.3 Extra term from minimal coupling

Let us now focus on the second term on the right hand side of eq. (3.27), which involves a

covariant derivative of the linear momentum, that is

Ŝµνpν
p2

Dpµ
Dσ

= −δzµ
Dpµ
Dσ

. (3.31)
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This term essentially adds the Thomas precession of the spin in curved spacetime. In flat

spacetime the spin does not precess in the absence of a torque, and this term essentially

does not contribute. In curved spacetime there is a torque: the force of curvilinear motion

on the worldline due to the gravitational field operating on the ‘arm’, which is the shift

from the worldline to the ‘center’. Hence, in curved spacetime this term is relevant, and

it should be taken into account to all orders in spin. If the covariant derivative of the

momentum is eliminated, using the EOM at the level of the point particle action, which

corresponds to a redefinition of the position [22, 37], it contributes once spin dipole effects

are taken into account in the EOM, and thus from eq. (3.31) we see that it first appears in

the NLO spin-squared sector. That is, it manifestly contributes as a finite size effect once

the spin of the ‘particle’ is taken into account, as a spinning ‘particle’ cannot actually be

considered a ‘particle’ anymore, but instead it must have an extended finite size, hence its

‘arm’ ∼ S/m, where S is the spin length, defined in eq. (4.5).

It is important to point out the relation of our results to the work by Yee and Bander

in [18], which advocated a Routhian approach for the obtainment of the EOM of the spin,

and considered up to and including the quadrupolar level. If we consider our eqs. (3.29) for

the spin variable, and eq. (3.31) for the extra term from minimal coupling, we can see that

they are similar to eqs. (7) and (9) of [18], where their corresponding terms are considered

only in the local Lorentz frames, and in the approximation pµ ≃ muµ/u.

Yet, it is necessary to make the significant distinction between our formulation here,

and their related procedure. Yee and Bander present the change of the spin variable, and

the addition of the extra term as an ad hoc procedure to ensure the covariant SSC is

satisfied, and to obtain the EOM of the spin via the Poisson brackets, while staying at

the so(1,3) level, and not actually implementing the covariant SSC. The work in [17, 38]

followed their procedure for the treatment of spin, but substituted the worldline acceleration

in the extra term similar to eq. (3.31), using the Mathisson-Papapetrou EOM [39–41] for

a pole-dipole approximation, given by

Dpµ
Dσ

= −1

2
Rµνρκu

νSρκ. (3.32)

This substitution is a linear approximation in the shift of the worldline, where terms beyond

linear in the shift were dropped from the action via the application of the covariant SSC.

Thus, an extra Riemann dependent term was introduced, linear in the covariant SSC, which

contributes to the NLO spin-squared sector.

First, here we see that since this term originates from minimal coupling, it actually

carries no Wilson coefficient. More importantly, it should be stressed that there is no need

to require the preservation of the SSC in the action, and restrict it to the covariant one. The

gauge constraints on the worldline tetrad and the SSC should be implemented at the level

of the point particle action as was put forward in [19]. Then, using the internal symmetry

of the worldline tetrad to incorporate the spin gauge freedom in the point particle action,

we obtain here an extra term from minimal coupling. Moreover, here we shall obtain

an effective action with the physical SO(3) rotational variables, and where all orbital field

modes are absent. We then conveniently obtain the EOM of the spin via a proper variation

of the action, which take on a very simple form, see section 5.4.
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4 EFT for spin: nonminimal couplings

In this section we proceed to construct the point particle action for the spinning particle

beyond minimal coupling, which accounts for the finite size effects of the gravitating object.

These nonminimal couplings carry Wilson coefficients, which encode the internal structure

of the object, and should be found by matching the effective theory with the full theory.

Here we consider nonminimal couplings of the self-induced multipoles from spin, which

contribute as of the 2PN order for rapidly rotating compact objects. Tidal nonminimal

couplings, as considered in [24], contribute only as of the 5PN order, and thus are not of

interest for current implementations. It should be noted however that the Wilson coeffi-

cients of tidal nonminimal couplings can be large, and tidal interactions are also expected

to be important for gravitational wave astronomy.

We first spell out the general considerations for the construction of these nonminimal

couplings, building on [12, 13, 42, 43]. The point particle action in eq. (3.3) is augmented

with higher order operators, where derivatives of the field are added along with higher

multipoles. Hence, these new terms are suppressed by powers of the ratio of the scale

of the source to the orbital separation, namely they are naturally ordered by their PN

relevance. Then, we present the LO nonminimal couplings to all orders in the spin. These

were already implemented in [28] by means of the EFT formulation we present here, where

the cubic and quartic in spin sectors were fully obtained for generic compact binaries.

As we consider the nonminimal couplings, where the internal structure of the objects

starts to play a role, let us comment further on the physics of actual astrophysical extended

objects. For generic stars the tower of EFTs presented in section 2.1 starts below the scale

rs, from a fluid description of matter down to elementary particle interactions. That is,

one must add an EFT for matter to eq. (2.1), e.g. an ideal fluid action. The scale of the

object can be integrated out explicitly for idealized Newtonian stars [44], which leads to

a point-mass action augmented by harmonic oscillator DOFs, corresponding to oscillation

modes of the star, which couple to the tidal forces. This is found to approximately hold

also for stars in general relativity [45]. It should be noted that when the orbital frequency

is in resonance, an infinite number of terms would be needed in eq. (2.2), which indicates

that further DOFs should be added to the EFT. This is analogous to resonances in EFTs

in particle physics [46], and was overlooked in [12, 42].

4.1 Construction of spin nonminimal couplings

We start by discussing the possible spin-induced multipoles. First, from section 2.3 we

recall that the action should be parity invariant. Every operator must therefore contain an

even number of odd parity tensors, i.e. of the Levi-Civita tensor ǫαβγλ =
√−g[αβγλ], where

g is the determinant of gµν , and [αβγλ] is the totally antisymmetric Levi-Civita symbol

with [0123] = +1. Therefore, we should consider possible dual tensors, in particular the

dual of the spin tensor, given by

∗Sαβ ≡ 1

2
ǫαβµνS

µν . (4.1)
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Its contraction with the 4-velocity is the spin vector, given by

Sµ ≡ ∗Sµν pν√
p2

≃ ∗Sµν uν√
u2

. (4.2)

Due to the orthogonality of the spin tensor Sµν to uν from the covariant SSC, we shall see

that the spin vector Sµ is the only combination, with which uν can enter the spin-induced

multipoles. Notice that Sµuµ = 0, i.e. Sµ is a spacelike vector. Also note that the inverse

of the dual is ∗∗Sαβ = −Sαβ . Using the SSC, i.e. the orthogonality of Sµν to uµ, at the

level of the action, we have then

Sµα ∗Sαν = − 1

4
δνµSαβ ∗Sαβ = 0, (4.3)

SµαS
α = 0, (4.4)

SµS
µ = − 1

2
SµνS

µν ≡ −S2, (4.5)

see e.g. [10] for similar identities in flat spacetime, and we defined the spin length S2 with

the minus sign from the spacelike spin vector.

Now, from the Cayley-Hamilton theorem we expect that higher powers of the spin

tensor are dependent. Then, let us examine higher powers of the spin tensor in the sense

of matrix multiplication. We have

Sα
µS

µ
β = −SαSβ − S2

(
δαβ − uαuβ

u2

)
, (4.6)

Sα
µS

µ
νS

ν
β = −S2Sα

β, (4.7)

where we also note that the square of the spin is symmetric. Indeed, we see that from the

last relation we can read off the minimal polynomial of the spin matrix Sα
µ as

X(X + iS)(X − iS) = 0, (4.8)

which is of degree 3, that is lower than the degree of the characteristic polynomial (4).

That means one of the eigenvalues of Sα
µ is degenerate. Indeed, for the eigenvalue 0 we

have both Sα
µu

µ = 0, and Sα
µS

µ = 0. The two remaining eigenvalues of Sα
µ are the

pure imaginary values ±iS, as expected for the antisymmetric spin matrix. Therefore, the

determinant of the spin tensor is zero. A similar analysis for the dual spin tensor leads to

no further independent contractions as expected.

In conclusion, from the above analysis we see that the independent combinations of

spin that we can use to construct the operators are just the even-parity spin tensor Sµν ,

the odd-parity spin vector Sµ, and the even-parity square of the spin tensor Sα
µS

µ
β , where

these spin tensors should not be contracted among themselves.

It should be stressed that we implement the covariant SSC at the level of the point

particle action, which reduces the number of possible spin-induced multipoles. Yet, since

ultimately the spin-induced multipoles should be expressed in terms of the gauge invariant

projected spin in eq. (3.29), which is algebraically orthogonal to uµ, then these possibilities

would be omitted for all gauge spin variables.
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Further, from section 2.3 we recall the SO(3) invariance of the body-fixed frame triad.

Since we consider our spinning extended body to be a point particle, then there exists a

locally inertial frame, which is comoving and in which the spin does not precess [47]. Yet,

finite size effects lead to spin precession in this frame. From this comoving, approximately

inertial frame, one can move to a corotating one, that is to the body-fixed frame. In

the latter, the spin components are constant even in the presence of finite size effects.

Moreover, in this locally flat frame we have the SO(3) invariance as Wigner little group,

therefore tensors form SO(3) irreducible representations [48]. Indeed, in agreement with

our analysis of the spin tensor in matrix representation, we find from eq. (4.8), that the

spin tensor transforms as a massive vector particle, i.e. like a vector in space. We recall

from eqs. (3.3) and (3.7), that the minimal coupling part of the action is given with the

scalar mass monopole, and the spin dipole, represented by constant SO(3) tensors in the

body-fixed frame, where the antisymmetric spin is also spatial in the covariant SSC. Hence,

the spin-induced higher multipoles should naturally be considered in the body-fixed frame.

Just like in the minimal coupling part of the action, we start from the covariant gauge,

where we have for the body-fixed tetrad that e[0]
µ = uµ/

√
u2, and e[i]

µuµ = 0. Then it is

easy to see that in the body-fixed frame it holds for the spin vector from eq. (4.2), that

S[0] = 0, and for the spatial components

S[i] =
1

2
ǫ[ijk]S[jk], (4.9)

where this actually holds in every locally flat frame, and the indices are just Euclidean here.

Therefore, the spin vector is also constant in the body-fixed frame. Hence, the spin-induced

higher multipoles are symmetric traceless constant spatial tensors in the body-fixed frame.

It should be noted that the constant scalar spin length S2, which is the trace of the square

of the spin tensor, is absorbed in the mass, and the Wilson coefficients, and is therefore

omitted from these traceless tensors.

These even and odd spin-induced multipoles couple to the even and odd parity electric

and magnetic curvature tensors, respectively, and their covariant derivatives. The electric

and magnetic curvature tensors are usually defined with the Weyl tensor, yet the field here

is a vacuum solution at LO, hence Ricci tensor terms can be made to vanish using field

redefinitions, and so the use of Weyl and Riemann tensors is equivalent. Then, we define

the electric component of the Riemann tensor as

Eµν ≡ Rµανβu
αuβ , (4.10)

and the magnetic component of the Riemann tensor as

Bµν ≡ 1

2
ǫαβγµR

αβ
δνu

γuδ, (4.11)

where here the dual of the Riemann tensor ∗Rγµδν ≡ 1
2ǫαβγµR

αβ
δν is used. In the current

work, we consider only couplings linear in Riemann, that is as we noted we are not con-

cerned with the tidal response to external gravitational fields, which does not contribute

at the PN orders of interest.
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From the definitions in eqs. (4.10), (4.11), one obtains that both the electric and

magnetic components of the Riemann tensor are symmetric, traceless, and orthogonal to

the 4-velocity, using the symmetries of the Riemann tensor, the first Bianchi identity, and

their being a vacuum field solution. These SO(3) tensors are then also considered in the

body-fixed frame, where only their projection on the spatial triad is non-vanishing due to

the covariant gauge of the tetrad. It follows then that they are symmetric and traceless

also with respect to their internal spatial indices.

Next, we also consider the covariant derivatives of the electric and magnetic tensors.

These are also projected to the body-fixed frame, i.e. D[i] = eµ[i]Dµ, where we clarify

that the covariant derivative shall not act on the 4-velocity, contained in Eµν and Bµν ,

since it is a function of the worldline parameter σ only. As for the time derivative

D[0] = uµDµ ≡ D/Dσ, it is just the covariant derivative along the worldline. Now, at

linear order in the curvature time derivatives of the curvature can be integrated by parts

to time derivatives of the particle variables. Terms including such higher order time deriva-

tives of the worldline variables can be removed via variable redefinitions with a shift of,

e.g. the worldline coordinate, using lower order EOM, and get absorbed into other Rie-

mann dependent finite size operators without higher order time derivatives of the worldline

variables, namely into their Wilson coefficients. Therefore, we can consider here only the

spatial derivatives, projected orthogonally to uµ.

The indices of the covariant derivatives are also symmetrized among themselves, and

with respect to the indices of the electric and magnetic tensors. The first symmetrization

follows since the commutation of covariant derivatives leads to further curvature terms, and

as only terms linear in the curvature are considered here, such contributions can be taken

to vanish. The second symmetrization with indices from the covariant derivatives, and

from the electric and magnetic components, follows from the differential Bianchi identity

of the Weyl tensor in vacuum, which leads to equations analogous to Maxwell’s:

ǫ[ikl]D[k]E[lj] = Ḃ[ij], (4.12)

ǫ[ikl]D[k]B[lj] = − Ė[ij]. (4.13)

Notice that the left hand side contains the commutator of derivative and curvature com-

ponents indices. Since as was explained time derivatives of the curvature can be ignored at

linear order in the curvature, symmetrization follows. Actually, the indices of the covariant

derivatives and of the electric and magnetic tensors would anyway be symmetrized here

upon contraction with the symmetric spin-induced multipoles. It is also clear from the

above discussion, that also in the generic case, where tidal effects are taken into account,

the independent curvature tensors are taken as the spatial derivatives of E[ij] and B[ij] with

all indices symmetrized, and their time derivatives, as in [49].

Finally, from further contracting from eq. (4.12) we also get

D[i]E[ij] = D[i]B[ij] = 0, (4.14)

analogous to Maxwell’s equations, and so we also have similarly

�E[ij] = �B[ij] = 0. (4.15)
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Hence, these tensors with covariant derivatives are also traceless. Therefore, the indices of

the curvature components, and of their covariant derivatives, should also not be contracted

among themselves.

At this stage it becomes clear how to use these building blocks, which we have detailed,

to construct the nonminimal couplings with spin in the point particle action. Due to parity

invariance the tensors, which contain the even-parity electric or the odd-parity magnetic

curvature components, should be contracted with an even or odd number of the spin

vector Sµ in eq. (4.2), respectively, of an equal tensor rank. Yet, noting eq. (4.6), one

can equivalently use the square of the spin tensor Sα
µS

µ
β instead of the tensor product

of two spin vectors, since these differ by trace and 4-velocity terms, which vanish in the

contraction with the traceless and orthogonal to uµ curvature tensors.

From reparametrization invariance and the definitions of the electric and magnetic

components in eqs. (4.10) and (4.11), we note that all these nonminimal couplings should

be divided by the factor u ≡
√
u2.

Finally, as we noted for the minimal coupling part of the action, and at the end of

section 3.2, these nonminimal couplings should be expressed in terms of the rotational

gauge variables, using eq. (3.29).

4.2 Nonminimal couplings to all orders in spin

Based on the considerations from the previous section, we can actually write down the LO

spin-induced nonminimal couplings in eq. (3.3) to all orders in spin in the following:

LSI =
∞∑

n=1

(−1)n

(2n)!

CES2n

m2n−1
Dµ2n · · ·Dµ3

Eµ1µ2√
u2

Sµ1Sµ2 · · ·Sµ2n−1Sµ2n

+
∞∑

n=1

(−1)n

(2n+ 1)!

CBS2n+1

m2n
Dµ2n+1 · · ·Dµ3

Bµ1µ2√
u2

Sµ1Sµ2 · · ·Sµ2n−1Sµ2nSµ2n+1 , (4.16)

where in the first term of the first sum it is understood that the covariant derivatives do not

exist. The mass exponent in the prefactor is actually set such that the Wilson coefficients

are rendered dimensionless. The factorial in the prefactor is fixed from the symmetry of

the spin-induced multipole. Also, the sign is alternating for each pair of spins that is added

with a corresponding pair of derivatives, which can be seen from considering the definition

of the multipole expansion in Fourier space, and then passing to coordinate space. In

principle, the numerical factor is fixed such that the Wilson coefficients equal unity for

the black hole case. It should be noted that the relation between all Wilson coefficients

in eq. (4.16), and the multipole moments used in numerical simulations [50–52], should be

worked out using a formal matching procedure. It is clear from [51], that this can present

subtleties, and is therefore left for future work. However, the numerical values for the

multipoles in [50–52] are expected to lead to good estimates for the Wilson coefficients

through an ad hoc identification.

As we already noted these operators are naturally ordered by their PN relevance. For

each multipole with N spins, we have N derivatives of the field, hence it is suppressed by

the ratio r
(2N−N)
s /rN = v2N with respect to the Newtonian point-mass term. Yet, in the
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magnetic odd-parity curvature component, which is coupled to the odd in spin multipoles,

the LO coupling must involve the gravito-magnetic vector of the NRG fields (see section 5.1

below, and eq. (5.6) there, to recall the NRG fields), rather than the scalar, which appears

as the LO coupling in the even-parity case [28]. At LO the gravito-magnetic vector must

be contracted with its LO mass coupling, which already carries one further power of v.

Therefore, the even multipoles with 2n spins enter at the (2n)PN order, whereas the

odd multipoles with (2n + 1) spins enter at the (2n + 1.5)PN order for rapidly rotating

compact objects.

Now, we are interested in particular in the spin-induced nonminimal couplings, which

contribute up to the 4PN order for rapidly rotating compact objects, i.e. in the quadrupole,

octupole, and hexadecapole. The LO nonminimal coupling of the spin-induced quadrupole,

which gives rise to the well-known LO spin-induced finite size effect [53, 54], was noted

in [38], though in a different form than what we derive here. The LO nonminimal couplings

of the spin-induced octupole and hexadecapole were presented in [28] only recently, where

they were also obtained using the EFT formulation for spin, which we introduce here. Let

us present then these LO nonminimal couplings explicitly.

LO spin-squared. From eq. (4.16) we can read the LO nonminimal coupling for the

spin-induced quadrupole as

LES2 =− CES2

2m

Eµν√
u2

SµSν , (4.17)

where the quadrupolar deformation constant due to spin from [54], introduced in [38]

as the Wilson coefficient CES2 , equals unity in the black hole case. For 1.4 solar mass

neutron stars a numerical computation yields CES2 ≃ 4 − 8, depending on the equation

of state [50, 51]. This nonminimal coupling contributes as of the 2PN order for rapidly

rotating compact objects.

LO cubic in spin. From eq. (4.16) we read the LO nonminimal coupling for the spin-

induced octupole as

LBS3 =− CBS3

6m2

DλBµν√
u2

SµSνSλ. (4.18)

This nonminimal coupling was introduced in [28], and also recently confirmed in an equiv-

alent form in [55]. The Wilson coefficient CBS3 introduced in [28], which encodes the

octupolar deformation due to spin, equals unity in the black hole case, where its value for

neutron stars was obtained in [51, 52]. This nonminimal coupling contributes as of the

3.5PN order for rapidly rotating compact objects.

LO quartic in spin. Finally, from eq. (4.16) we also read the LO nonminimal coupling

for the spin-induced hexadecapole as

LES4 =
CES4

24m3

DλDκEµν√
u2

SµSνSλSκ. (4.19)
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This nonminimal coupling was also introduced in [28] with the Wilson coefficient CES4 ,

which encodes the hexadecapolar deformation due to spin. Also here this Wilson coefficient

equals unity in the black hole case, and its value for neutron stars was obtained in [52]. This

nonminimal coupling contributes as of the 4PN order for rapidly rotating compact objects.

5 Integrating out the orbital scale

In order to obtain an EFT of radiation, including the conservative sector, we should proceed

now to integrate out the field modes below the orbital scale. First, we recall that

ηAB ê
AµêBν = gµν , (5.1)

that is the worldline tetrad contains field DOFs, in addition to the worldline rotational

DOFs. In order to integrate out the field DOFs, we should disentangle them from the

rotational DOFs. For that, we consider a tetrad field, ẽaµ, such that

ηabẽ
a
µẽ

b
ν = gµν , (5.2)

and we have that

êA
µ = Λ̂A

bẽb
µ, (5.3)

where

ηABΛ̂A
aΛ̂B

b = ηab. (5.4)

Then the rotational DOFs are contained in Λ̂A
b. Notice that êA

µ and Λ̂A
a are only defined

on the worldline, whereas ẽa
µ is a field over spacetime. Actually here ẽa

µ is the fundamental

field, unlike the nonspinning case, which can be formulated only in terms of the metric.

An important consequence of this change in the representative DOFs of the field is an

additional gauge freedom due to the internal Lorentz invariance of the local tetrad. This

will be discussed in section 5.1 below.

Let us then go on to disentangle the field from the worldline DOFs in the action. Then

the minimal coupling term from eq. (3.27) can be rewritten as [20]

1

2
ŜµνΩ̂

µν =
1

2
ŜabΩ̂

ab
flat +

1

2
Ŝabωµ

abuµ, (5.5)

where we have used the Ricci rotation coefficients, defined in eq. (3.6), Ω̂ab
flat = Λ̂Aa dΛ̂A

b

dσ
is

the locally flat spacetime angular velocity tensor, and Ŝab = ẽµa ẽνb Ŝµν is the spin projected

to the local frame. It should be stressed that one should also switch to the spin and angular

velocity in the local frame as the fundamental variational variables. Note also that in this

form the canonical SO(1,3) form already emerges, as the first term on the right hand side

of eq. (5.5) is the kinematic term, which represents the Poisson brackets, and the Legendre

transform in the angular velocity Ω̂ab
flat is already automatically performed.

Yet the separation of the field from the particle worldline DOFs is not complete.

The gauge of the worldline temporal Lorentz matrix, Λ̂[0]
a = wa = ẽaµw

µ, may contain

further field dependence, and the temporal components of the local spin also contain in
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general further field dependence [22]. We recall that following [18], in the application

of a Routhian approach for spin in [17, 38] the SSC are applied at the level of the EOM,

similar to traditional methods working at the level of the EOM, see e.g. [56–58]. Therefore,

similarly both require further computation of the metric or tetrad field in order to extract

the physical EOM [22]. This is in conflict with the definition of the EFT in eq. (2.7), since

that means that the field has actually not been completely integrated out, and indeed

an EFT, i.e. an effective action at the orbital scale has not been obtained. As was put

forward and implemented in [19], the field would be completely disentangled from the

worldline DOFs once a gauge for the worldline rotational variables is fixed at the level of

the Feynman rules. It should be noted that also in the ADM Hamiltonian formalism the

constraints for the spin and for its conjugate DOFs are applied prior to the obtainment of

the potential, e.g. in [59, 60]. The gauge fixing of the rotational variables will be further

illustrated in section 5.2 below.

5.1 Tetrad field gauge

We recall from eqs. (2.4) and (2.5) that the field modes at the orbital scale are instantaneous

at leading order. Therefore, a Kaluza-Klein like reduction over the time dimension at this

stage makes a very sensible decomposition of spacetime in the nonrelativistic limit [25, 26].

This parametrization of the metric, given by

ds2 = gµνdx
µdxν ≡ e2φ(dt−Aidx

i)2 − e−2φγijdx
idxj , (5.6)

defines the nonrelativistic gravitational (NRG) fields φ, Ai, and γij ≡ δij+σij . It should be

noted that an exponential parametrization of the metric coefficients was already introduced

in [61]. Indeed, the NRG fields proved to be advantageous for PN applications both in the

non-spinning [25, 26], and spinning cases [19, 20, 28]. In addition to providing physical

insight and exhibiting a useful hierarchy in the worldline couplings, the NRG fields simplify

the propagators, the interaction vertices, and their extraction. We will also see here in

section 6.4, that the NRG fields reduce the number of Feynman diagrams in topologies of

higher loop order. In addition, the worldline mass couplings are simple and immediate to

obtain. We would like to have these benefits for the worldline spin couplings as well, hence

we should gauge the tetrad field in a sensible manner adapted to the NRG space+time

decomposition of the metric.

The time gauge of Schwinger [62], which is also used with the ADM space+time field

decomposition, see e.g. in [60], provides such a sensible gauge for a tetrad of NRG fields.

Using the internal local Lorentz invariance of the tetrad field, the time gauge is defined

by locking the time axes of the local coordinate systems to the time axis of the general

coordinate systems. We take ẽa
0 to be a timelike vector in the local frame, and then it is

possible to choose each local frame so that the spatial components of ẽa
0 vanish. That is,

in the time gauge we take

ẽ(i)
0(x) = 0. (5.7)
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Then, we have from eqs. (5.2), (5.6), and (5.7), and again using the local Lorentz symmetry,

that all the components of the tetrad can be chosen as

ẽaµ =

(
eφ −eφAi

0 e−φ√γ
ij

)
, (5.8)

where
√
γ
ij

is the symmetric square root of γij , for which we should solve. Indeed, using

the 3+3 degrees of gauge freedom of the internal Lorentz symmetry, we are left with the

10 DOFs of the metric, out of the 16 DOFs of a general tetrad. Hence, we have a closed

form tetrad for the NRG fields apart from
√
γ
ij
, which is conveniently defined, with some

trivial components ẽa0 = eφ(1,~0).

5.2 Fixing the gauge of the rotational variables

In a classical setting one can fix the rotational gauge by simply inserting the rotational

constraints in the action before integrating out the field. It should be stressed that if

the rotational gauge is not fixed prior to integrating out the field, the orbital field still

appears at the level of the EOM, where the SSC should be applied, indicating that the

EFT computation is incomplete [22], and see also section 5.4 below.

We recall from eq. (5.5), that we now use the Lorentz matrices, connecting the worldline

and local frames, Λ̂A
a, and the spin Ŝab projected to the local frame, as our rotational

variables. These still contain gauge freedom, that should be fixed by the gauge conditions

applied in the local frame, given in the form

Λ̂[0]a = wa, (5.9)

Ŝab
(
pb +

√
p2Λ̂[0]b

)
= 0. (5.10)

For similar conditions in the flat spacetime case, see [36]. As we already noted these gauge

constraints should be implemented at the level of the action in order to ultimately arrive at

an effective action without any remaining orbital scale field modes. We will also see now,

that we cannot obtain an effective action formulated with the worldline spin as a further

DOF, if we gauge fix the spin without gauge fixing its conjugate DOFs.

We go on now to consider the three sensible options to fix this gauge: the covariant

gauge, the canonical gauge, and the gauge of no mass dipole, which we formulate here

below. The canonical gauge, which is associated with canonical variables, is of particular

interest due to the advantages of such variables for the obtainment of the spin EOM, and

of a corresponding Hamiltonian. We will see that in either case, we will ultimately have to

switch to the rotational variables in the canonical gauge in order to completely integrate

out the field, and get an effective action. Intuitively, this is the consequence of having

our point particle action in eq. (3.3), formulated in terms of the spin in addition to its

conjugate as independent variables, as we noted for the form of eq. (5.5).

Covariant gauge. We can choose in eq. (5.9)

Λ̂[0]a =
pa√
p2

. (5.11)
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In this case we are back with Tulczyjew’s covariant SSC, and the original Lorentz matrices

and spin variables, such that it holds for the Lorentz matrices that

Λ[0]
a =

pa√
p2

⇔ Λ[i]ap
a = 0. (5.12)

Yet, we note that in this case the matrix Λ[i]
(j) is not an SO(3) rotation matrix.

Instead, from eqs. (5.4) and (5.12), we get that

Λ[k]
(i)Λ[k](j) = δij +

p(i)p(j)

p2
. (5.13)

Hence the Lorentz matrices depend on the field through pa = ẽaµp
µ. This is not desirable

for an EFT approach, as the field DOFs are not separated from the particle DOFs, which

would hinder integrating out the field. Moreover, Λ[i]
(j) is mixing rotational and linear

motion DOFs. We can already note that the only way out of this predicament is to

redefine ΛA
a by boosting to the local rest frame. This is what we shall do now, and what

is done in the canonical gauge, which we discuss next.

Thus, let us stick here with the covariant gauge for the spin variable. On the upside,

we note that the extra term from minimal coupling in eq. (3.31) drops, since the SSC is

implemented in the action. Then, let us evaluate 1
2SabΩ

ab
flat from eq. (5.5). Using eq. (3.20)

for the locally flat frames, with wa = δa0 and qa = pa/
√
p2, and implementing the covariant

SSC in the action, we then obtain

1

2
SabΩ

ab
flat =

1

2


S(i)(j) −

S(i)(k)p
(k)p(j)

p(0)

(√
p2 + p(0)

) +
S(j)(k)p

(k)p(i)

p(0)

(√
p2 + p(0)

)


 Ω̂

(i)(j)
flat

+
S(i)(j)p

(j)

p(0)

(√
p2 + p(0)

) dp(i)

dσ
, (5.14)

where the temporal terms of Ωab
flat were dropped due to taking wa = δa0 , and

Ω̂
(i)(j)
flat = Λ̂[k](i)dΛ̂[k]

(j)

dσ
. (5.15)

This is precisely doing the transformation of the Lorentz matrix in eq. (4.5), using

eqs. (4.2), (4.3) from [22], where the matrix Λ̂[i]
(j) is now an SO(3) rotation matrix. Indeed,

if we also make the spin transformation from eq. (4.6) of [22] in eq. (5.14), we get agreement

with eq. (4.7) there. Let us note then that also in eq. (5.14) here, we get an additional term

with a derivative of the momentum instead of the extra term from minimal coupling in

eq. (3.31), that dropped due to the covariant SSC implemented. It is also already clear that

Ω̂
(i)(j)
flat will appear in the spin vertices, and therefore also in the final potential. Therefore,

it is clear that the spin variable should indeed be redefined as in [22] in order to simplify

the Feynman rules, and to easily obtain the EOM of spin, see section 5.4. This ultimately

amounts to going to the canonical gauge.
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Canonical gauge. Let us choose in eq. (5.9) the canonical gauge, that is

Λ̂[0]
a = δa0 ⇔ Λ̂A

(0) = δ0A. (5.16)

Essentially, this means that we have boosted the Lorentz matrices ΛAa to the local rest

frame, such that they became rotation matrices, decoupled from the linear motion DOFs,

and also from the field DOFs. From eqs. (5.16) and (3.22) in the local frame we also get a

new spin variable Ŝab, which from eqs. (5.16) and (5.10) satisfies the canonical SSC, given

in the local frame by

Ŝab
(
pb +

√
p2δ0b

)
= 0. (5.17)

This is a generalization of the Pryce-Newton-Wigner SSC [63, 64] for curved spacetime.

It should be noted that a similar SSC was suggested in eq. (4.7) of [65] for a canonical

formalism of a test particle at linear order in the particle spin. Note that their eq. (4.7),

formulated in terms of the local tetrad field, is not to be confused with eq. (3.23) here,

which is a generic SSC, formulated in terms of the worldline tetrad, where the gauge of

the worldline tetrad is not fixed. Further, in [65] they choose the conjugate gauge of the

worldline Lorentz matrices as the covariant one. Here the choice of gauge for the worldline

tetrad or Lorentz matrices fixes also the spin gauge, namely the corresponding SSC.

Then again similar to eq. (5.14) the temporal components of the Lorentz matrices

simply drop, and we get
1

2
ŜabΩ̂

ab
flat =

1

2
Ŝ(i)(j)Ω̂

(i)(j)
flat . (5.18)

This means that we have now the familiar kinematics of a three-dimensional top. The

canonical gauge is then useful to disentangle the particle and field DOFs, and is therefore

optimal for a formulation of the EFT in terms of the worldline spin, since as discussed for

the covariant gauge above, ultimately we have to switch to the rotational variables in the

canonical gauge. Hence, we shall fix the spin gauge to the canonical one.

No mass dipole gauge. As a further illustration for a non-covariant spin gauge, we can

choose in eq. (5.9)

Λ̂[0]
a =

2p0δ
a
0 − pa√
p2

. (5.19)

In this case we are boosting to the local frame, where the mass dipole vanishes, and from

eqs. (5.19) and (5.10) we have

Ŝa0 = 0. (5.20)

This is the SSC known from [66].

Shift of the position coordinate. Once a specific non-covariant gauge is fixed for the

rotational DOFs, the ‘center’ of the spinning object, with respect to which the multipoles

are considered, will no longer coincide with the spatial origin of the worldline tetrad. Hence

one should eventually make a shift in the position coordinate from the worldline coordinate

to the position coordinate of the ‘center’. This shift of position, would actually be enforced

by the reduction of acceleration terms, originating from the extra minimal coupling term in

eq. (3.31). It is sensible then to make this shift of position only after the EFT computation
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is through, so that there is no ambiguity in shifting from the worldline coordinate, and in

the implementation of the rotational gauge fixing at the level of the point particle action.

We shall see in section 6, that performing the linear shift of position just corresponds to the

insertion of lower order EOM for the position. Yet, it should be noted that the quadratic

shift of individual positions would contribute to the spin-squared interaction as of the NLO.

As we noted in section 4 the nonminimal couplings in the action are naturally expressed

in terms of the projected rotational variables, which we fix to the covariant gauge. Let

us then work out the components of the spin, Sab, in terms of the spin variable in the

canonical gauge. From the canonical SSC in eq. (5.17) we have

Ŝa(0) = −
Ŝa(i)u

(i)

u+ u(0)
= −Ŝab

ub

u
, (5.21)

and using this in eq. (3.29), we find

S(i)(j) = Ŝ(i)(j) − Ŝ(i)(k)

u(j)u
(k)

u
(
u+ u(0)

) + Ŝ(j)(k)

u(i)u
(k)

u
(
u+ u(0)

) , (5.22)

S(i)(0) = −
Ŝ(i)(j)u

(j)

u
. (5.23)

Note that here all velocities are the local tetrad projected ones, not the coordinate veloci-

ties. Naturally, one would obtain similar relations upon using the covariant gauge first to

eliminate the S0i components, and then transforming to the canonical gauge variables at

the 3-dimensional level as in [22]. Similarly, using eq. (5.16) in eq. (3.30), leads to eq. (4.5)

of [22], which we write here as

Λ[i](j) = Λ̂[i](k)

(
δ(k)(j) +

u(k)u(j)

u
(
u+ u(0)

)
)
. (5.24)

Let us also work out explicitly the minimal coupling term in terms of the spatial

components of the local spin variable in the canonical gauge. From eqs. (3.27), (3.31),

and (5.5), we already have

1

2
SµνΩ

µν =
1

2
ŜabΩ̂

ab
flat +

1

2
Ŝabωµ

abuµ +
Ŝabu

b

u2
Dua

Dσ
, (5.25)

and note that
Dua

Dσ
= u̇a + ωµ

caucu
µ. (5.26)

Next we use eqs. (5.18) and (5.21) for the canonical gauge, and get from eqs. (5.25)

and (5.26) that

1

2
SµνΩ

µν =
1

2
ŜabΩ̂

ab
flat −

Ŝabu
au̇b

u2
+

1

2
ωµ

abuµ
(
Ŝab − 2Ŝac

ucub
u2

)

=
1

2
Ŝ(i)(j)Ω̂

(i)(j)
flat −

Ŝ(i)(j)u
(i)u̇(j)

u
(
u+ u(0)

)

+
1

2
ωµ

(i)(j)uµ

(
Ŝ(i)(j) − 2

Ŝ(i)(k)u
(k)u(j)

u
(
u+ u(0)

)
)

+ ωµ
(0)(i)uµ

Ŝ(i)(j)u
(j)

u
. (5.27)
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Also here for the minimal coupling term it naturally holds, that the same relation is ob-

tained upon first eliminating the S0i components with the covariant gauge, and then using

the 3-dimensional transformations to the canonical gauge variables as in [22].

5.3 Feynman rules

From the previous sections 4, 5.1, and 5.2, we can derive all the Feynman rules required

up to quadratic level in the spin to NLO. For the nonminimal couplings, which are cubic

and quartic in the spin from section 4, and the consequent Feynman rules to LO, we refer

to [28], where the cubic and quartic in spin sectors were fully obtained for generic compact

binaries. For the Feynman rules, concerning the purely gravitational action in harmonic

gauge, and the point-mass nonspinning action worldline couplings from eq. (3.3), we refer

to section II of [20]. Similar to [20, 28] we use here the NRG fields [25, 26], and the related

tetrad field in the time gauge introduced in section 5.1. Similarly, for the worldline affine

parameter we choose the coordinate time t = y0, i.e. σ = t, such that we have u0 = 1,

ui = dyi/dt ≡ vi. Here we give the Feynman rules for the worldline spin couplings, since

only these are modified with respect to previous works, such that they are given here

explicitly in terms of the spatial components of the local spin variable in the canonical

gauge. Hence from now on we drop the hat notation on the rotational variables, and the

round brackets on their indices, and in addition all indices are Euclidean.

From eq. (5.27) we see that we have contributions from kinematic terms involving spin

without field coupling. To the order we are considering, these are given by

Lkin = −~S · ~Ω− 1

2

(
1 +

3

4
v2
)
ǫijkSkv

jai, (5.28)

where Sij = ǫijkSk, Ωij = ǫijkΩk, and ai ≡ v̇i. Then, for the one-graviton couplings to the

worldline spin the Feynman rules required in this work to NLO are

=

∫
dt ǫijkSk

(
1

2
∂iAj +

3

4
vivl (∂lAj − ∂jAl) + vi∂tAj

)
, (5.29)

=

∫
dt ǫijkSkv

i
(
2∂jφ+ v2∂jφ− 2ajφ

)
, (5.30)

=

∫
dt

1

2
ǫijkSkv

l∂iσjl, (5.31)

where the oval (gray) blob represents the spin on the worldline. For the two-graviton

couplings to the worldline spin, the Feynman rule required here to NLO is:

=

∫
dt 2ǫijkSk φ∂iAj . (5.32)
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Note that the two-scalar coupling to the worldline spin vanishes in our gauge, which is a

desirable feature, reducing the number of total diagrams.

From the ES2 nonminimal coupling in eq. (4.17) the Feynman rules for the one-graviton

couplings to the worldline spin-squared are given by

=

∫
dt

CES2

2m

[
SiSj

(
∂i∂jφ

(
1 +

3

2
v2
)
− 3∂j∂kφ vivk − 2∂i∂tφ vj

)

− S2

(
∂i∂iφ

(
1 +

3

2
v2
)
− ∂i∂jφ vivj + 2∂i∂tφ vi + 2∂2

t φ

)]
, (5.33)

=

∫
dt − CES2

2m

[
SiSj

(
∂i∂jAkv

k − ∂i∂kAjv
k − ∂i∂tAj

)

−S2
(
∂i∂iAkv

k − ∂i∂kAiv
k − ∂i∂tAi

)]
, (5.34)

where the square (black) box represents the ES2 spin coupling on the worldline. Note

that the last terms in the first and second lines of eq. (5.33), and the last four terms on

eq. (5.34), are missing from eqs. (40), (39), respectively, in [38]. We should stress that

time derivatives of spin should not be dropped before all higher order time derivatives

are treated rigorously in the resulting action. Finally, for two-graviton couplings from the

worldline ES2 term the Feynman rule required for the NLO spin-squared sector is:

=

∫
dt

CES2

2m

[
3SiSj (∂iφ∂jφ+ φ∂i∂jφ)− S2

(
(∂kφ)

2 + 3φ∂i∂iφ
)]

. (5.35)

5.4 EOM of the spin

Using the Feynman rules detailed in the previous section to evaluate the relevant Feynman

diagrams, a spin dependent effective action is obtained of the form:

Seff(spin) =

∫
dt

[
−1

2

2∑

I=1

SIijΩ
ij
I − V

(
~xI , ~̇xI , ~̈xI , . . . , SIij , ṠIij , . . .

)]
, (5.36)

where here we express the result again in terms of the spin tensor, using Si =
1
2ǫijkSjk.

As explained already in sections 3.1, 5.2 of [22], similar to the EOM of the position, the

EOM of the spin should be obtained from a variation of the action, in terms of which the

EFT approach is naturally formulated. It should be underlined that one should make an

independent variation of this action with respect to the spin, and to its conjugate variables,

the rotation matrices. Then the following simple form for the EOM of the spin is obtained

Ṡij
I =− 4S

k[i
I δj]l

δ
∫
dt V

δSkl
I

= −4S
k[i
I δj]l

[
∂V

∂Skl
I

− d

dt

∂V

∂Ṡkl
I

+ . . .

]
, (5.37)

see eq. (5.9) in [22].

It should be stressed that the spin EOM in eq. (5.37) are free of the unphysical spin

DOFs S0i, and that this is essential in an EFT which removes the orbital scale field.
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However, if one disregards this basic requirement of an EFT, one might also leave the S0i

components of the spin tensor as independent DOFs till after the obtainment of the EOM,

as advocated in [17]. In that case the spin dependent action obtained after the evaluation

of the relevant Feynman diagrams is of the form [22]:

S(spin) =

∫
dt

[
−1

2

2∑

I=1

SIabΩ
ab
I − V

(
~xI , ~̇xI , ~̈xI , . . . , SIab, ṠIab, . . .

)]
. (5.38)

If we follow the Routhian approach in [17], then we should derive the EOM of the spin

in terms of the Poisson brackets of the so(1, 3) spin algebra. Since as of NLO we have

higher order time derivatives of the spin in the potentials, which actually contribute in the

potentials as of NNLO, it is in fact improper to derive the EOM of the spin using Poisson

brackets [22].

Again, we can instead make an independent variation of this action with respect to

the spin, and to its conjugate Lorentz matrices, to obtain the following EOM of the 4-

dimensional spin tensor [22]:

Ṡab
I =4S

c[a
I ηb]d

δ
∫
dt V

δScd
I

= 4S
c[a
I ηb]d

[
∂V

∂Scd
I

− d

dt

∂V

∂Ṡcd
I

+ . . .

]
. (5.39)

However and more importantly, in that case after the obtainment of the EOM a further

EFT computation of the metric at the orbital scale would be required in order to eliminate

the S0i components, and to extract the physical EOM, as was demonstrated in section

3 of [22], since the S0i components contain orbital scale field DOFs. This situation is

actually similar to traditional methods, e.g. in [56–58], where the unconstrained EOM are

derived in harmonic coordinates, and then the SSC are inserted, using the metric, which

is explicitly computed for the derivation of the unconstrained EOM. This implies that the

EFT computation is in fact incomplete when a so(1,3) potential is presented. In the current

formulation of an EFT for spin we avoid this undesirable outcome, and directly obtain the

physical EOM in the form of eq. (5.37).

6 Spin potentials to NLO

In this section we begin to implement the EFT for gravitating spinning objects, which we

formulated in the previous sections. We start with the computation of all spin dependent

potentials up to quadratic level in the spin to NLO, that is to the 3PN order for rapidly

rotating compact objects. We will use the Feynman rules from section 5.3, with the NRG

fields, and the canonical spin gauge. In particular, we also detail here the NLO spin-squared

sector, where the NRG fields also turn out to be advantageous, and to remove one-loop

topology diagrams, similar to the non-spinning point mass case.

We start by evaluating the Feynman diagrams, as well as the kinematic contributions

from eq. (5.28), for each of the sectors. We obtain potentials, which contain only physical

DOF, and higher order time derivatives of the variables of the particles, just like the non-

spinning potentials. From this point these potentials are handled in the standard manner in
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Figure 1. LO spin-orbit Feynman diagrams. These diagrams should be included together with

their mirror images. Note that the value of diagram (a) does not change with respect to [20].

a PN scheme. The EOM of the position, and of the spin, can then be directly obtained via

a proper variation of the action, see section 5.4. The higher order time derivatives should

be removed at the level of the EOM then, so that the EOM are well-defined. Equivalently,

here we first eliminate higher order time derivatives via redefinitions of the position and

spin variables at the level of the action, see section 5 in [22]. Again, the EOM of the position

and spin can be obtained via a proper variation of the action. Further, the Hamiltonian is

obtained by a straightforward Legendre transform.

6.1 LO spin sectors

6.1.1 LO spin-orbit sector

The LO spin-orbit sector has been worked out in similar terms in section 4 of [20] with the

final action in eq. (72) there. We have the same two Feynman diagrams, shown in figure 1,

such that from the diagrams we get the total value presented in eq. (71) of [20]. Note that

the value of diagram (a) does not depend on the spin gauge, and can be found in eq. (65)

of [20]. The value of diagram (b), which depends on the spin gauge, is given by

Figure 1(b) =2
Gm2

r2
~S1 · ~v1 × ~n+ 1 ↔ 2, (6.1)

where ~r ≡ ~y1−~y2, r ≡
√
~r2, and ~n ≡ ~r/r. In addition, we have a kinematic contribution in

eq. (5.28) from the extra minimal coupling term as noted in eq. (72) of [20], which equals

Lkin =
1

2
~S1 · ~v1 × ~a1 + 1 ↔ 2, (6.2)

and is acceleration dependent.

The potential and Hamiltonian. All in all, as in eq. (72) of [20], we obtain the

potential

V LO
SO =− 2

Gm2

r2
~S1 · [~v1 × ~n− ~v2 × ~n]− 1

2
~S1 · ~v1 × ~a1 + 1 ↔ 2. (6.3)

The EOM can be obtained via a variation of the action. We go on to perform a shift of

the positions, ∆~yI , according to

~y1 → ~y1 +
1

2m1

~S1 × ~v1, (6.4)

– 30 –



J
H
E
P
0
9
(
2
0
1
5
)
2
1
9

and similarly for particle 2 with 1 ↔ 2, corresponding to the shift in eq. (3.28). The

contribution to the action, which is linear in the shifts, removes the acceleration terms,

and is equivalent to substituting in the Newtonian EOM of the position. It reads

∆V LO
SO (∆~yI) =

1

2
~S1 · ~v1 × ~a1 +

Gm2

2r2
~S1 · ~v1 × ~n+ 1 ↔ 2. (6.5)

The potential in eqs. (6.3) and (6.5) was first derived in [23]. Then, with a trivial Legendre

transform we obtain the Hamiltonian

HLO
SO =− Gm2

r2
~S1 ·

[
3

2

~p1 × ~n

m1
− 2

~p2 × ~n

m2

]
+ 1 ↔ 2. (6.6)

We note that at this point the EOM can be obtained from the Poisson brackets, where

we have now that the position and momentum variables are canonical conjugate to each

other, namely

{yiI , pjJ} = δijδIJ , (6.7)

and that the spin variables also satisfy the canonical Poisson bracket relations, namely

{Si
I , S

j
J} = ǫijkSk

I δIJ . (6.8)

Note that further terms linear in each of the shifts in eq. (6.4) contribute to all NLO

spin sectors, and correspond to substituting in EOM from the non-spinning 1PN order, and

LO SO sectors. They also contribute to the LO cubic in spin sector, corresponding to the

insertion of EOM from the LO spin1-spin2 and spin-squared sectors, as noted in [28]. In

addition, terms quadratic in each of the shifts contribute to the NLO spin-squared sector.

After this shift at LO, one can proceed at NLO to eliminate the remaining higher order time

derivatives by insertion of EOM, where one should use the shifted form of the potential.

6.1.2 LO quadratic in spin sectors

In the LO spin1-spin2 and spin-squared sectors, which contain a single Feynman diagram

each, there is no dependence in the spin gauge, hence there is no change in figure 1 of [19],

nor in figure 1 of [28], respectively. The LO spin1-spin2 potential can be found in eq. (11)

of [19], and reads

V LO
S1S2 = − G

r3

[
~S1 · ~S2 − 3~S1 · ~n~S2 · ~n

]
, (6.9)

where V = −L, and the LO spin-squared potential can be found in eq. (2.15) of [28],

and reads

V LO
SS = −

C1(ES2)

2

Gm2

r3m1

[
S2
1 − 3

(
~S1 · ~n

)2
]
+ 1 ↔ 2. (6.10)

The Hamiltonians are identical to the potentials, since they are independent of the veloci-

ties. These potentials were first derived in [53].
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Figure 2. NLO spin-orbit Feynman diagrams. These diagrams should be included together with

their mirror images. Note that the values of diagrams (b), (e), (g), and (i)–(o) do not change with

respect to [20].

6.2 NLO spin-orbit sector

Next we compute the NLO spin-orbit sector, for which we essentially have similar Feynman

diagrams as detailed in [20], but some changes are found.

First, there is a further kinematic contribution at NLO from eq. (5.28), which equals

Lkin =
3

8
~S1 · ~v1 × ~a1 v

2
1 + 1 ↔ 2. (6.11)

Then, we have 15 Feynman diagrams in total in this sector shown in figure 2. Note that

the two-scalar spin coupling diagram, which appears as figure 3(b2) in [20], is absent

here, since the corresponding spin coupling vanishes in our gauge. The one-loop diagrams,

which appear on the bottom row of figure 2, do not change their value with respect to

the corresponding figure 4 in [20], since they contain only LO spin couplings, which are

independent of the spin gauge. The values of these diagrams can be found in eqs. (101)-

(107) of [20]. The same is true for diagrams (b), (e), and (g), and their values can be found

in eqs. (91), (83), and (94) of [20], respectively. We should note that in eq. (91) of [20]

terms containing ~a2 × ~n, Ṡij were already dropped upon the use of LO EOM. Yet, these

contribute at NNLO, and moreover all higher order time derivatives should be handled

rigorously on the same footing in the resulting action [22, 67]. Hence, we rewrite here the

complete formal result of diagram (b), reading

Figure 2(b) =
Gm2

r2

[
~S1 · ~v1 × ~v2 ~v2 · ~n− ~S1 · ~v2 × ~n~v1 · ~v2 + 3~S1 · ~v2 × ~n~v1 · ~n~v2 · ~n

]

+
Gm2

r

[
~S1 · ~v1 × ~a2 + ~S1 · ~a2 × ~n~v1 · ~n− ~̇S1 · ~v2 × ~n~v2 · ~n

]

−Gm2
~̇S1 · ~a2 × ~n. (6.12)

The following diagrams change value due to the spin gauge, and they are evaluated here as

Figure 2(a) = − Gm2

r2

[
3~S1 · ~v1 × ~n~v1 · ~v2 + ~S1 · ~v2 × ~n v22 + ~S1 · ~v1 × ~v2 ~v1 · ~n

]

+ 4
Gm2

r

[
~S1 · ~a1 × ~v2 + ~̇S1 · ~v1 × ~v2

]
, (6.13)
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Figure 2(c) =
(
v21 + 3v22

) Gm2

r2
~S1 · ~v1 × ~n+ 2

Gm2

r
~S1 · ~v1 × ~a1, (6.14)

Figure 2(d) =
Gm2

r2

[
~S1 · ~v1 × ~n~v1 · ~v2 + ~S1 · ~v1 × ~v2 ~v1 · ~n− 3~S1 · ~v1 × ~n~v1 · ~n~v2 · ~n

]

+
Gm2

r

[
~S1 · ~v2 × ~a1 + ~S1 · ~a1 × ~n~v2 · ~n− ~̇S1 · ~v1 × ~v2 + ~̇S1 · ~v1 × ~n~v2 · ~n

]
,

(6.15)

Figure 2(f) = 8
G2m2

2

r3
~S1 · ~v2 × ~n, (6.16)

Figure 2(h) = − 2
G2m1m2

r3
~S1 · ~v1 × ~n. (6.17)

The potential. Summing all contributions from the kinematic term and Feynman dia-

grams, we obtain the following potential:

V NLO
SO = − Gm2

r2

[
~S1 · ~v1 × ~n v21 − 2~S1 · ~v1 × ~n~v1 · ~v2 + ~S1 · ~v1 × ~n v22

− 3~S1 · ~v1 × ~n~v1 · ~n~v2 · ~n+ ~S1 · ~v2 × ~n~v1 · ~v2 − ~S1 · ~v2 × ~n v22

+3~S1 · ~v2 × ~n~v1 · ~n~v2 · ~n+ ~S1 · ~v1 × ~v2 ~v2 · ~n
]

+
G2m2

2

2r3

[
~S1 · ~v1 × ~n− ~S1 · ~v2 × ~n

]
+

3

8
v21 ~S1 · ~a1 × ~v1

+
Gm2

r

[
2~S1 · ~a1 × ~v1 − 3~S1 · ~a1 × ~v2 + ~S1 · ~a2 × ~v1 − ~S1 · ~a1 × ~n~v2 · ~n

−~S1 · ~a2 × ~n~v1 · ~n− ~̇S1 · ~v1 × ~n~v2 · ~n+ ~̇S1 · ~v2 × ~n~v2 · ~n− 3 ~̇S1 · ~v1 × ~v2

]

+Gm2
~̇S1 · ~a2 × ~n+ 1 ↔ 2. (6.18)

As we noted in the LO spin-orbit sector, we go on to perform a shift of the positions

according to eq. (6.4), and get contributions linear in the shift from the 1PN order potential,

corresponding to the insertion of 1PN order EOM. This contribution reads

∆V NLO
SO (∆~yI) =

1

4
~S1 · ~v1 × ~a1 v

2
1

+
Gm2

r

[
3

2
~S1 · ~v1 × ~a1 −

7

4
~S1 · ~v1 × ~a2 −

1

4
~S1 · ~v1 × ~n~a2 · ~n

]

+
Gm2

r2

[
3

4
~S1 · ~v1 × ~n v21 − 2~S1 · ~v1 × ~n~v1 · ~v2 + ~S1 · ~v1 × ~n v22

+2~S1 · ~v1 × ~v2 ~v1 · ~n− 3

2
~S1 · ~v1 × ~v2 ~v2 · ~n− 3

4
~S1 · ~v1 × ~n (~v2 · ~n)2

]

− G2m2 (m1 +m2)

2r3
~S1 · ~v1 × ~n+ 1 ↔ 2. (6.19)

After the shift from LO, we proceed to eliminate the remaining higher order time derivatives

by insertion of EOM, where we use the shifted form of the potential. For completeness

we present the explicit NLO redefinition of position, which removes the higher order time
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derivatives of position in the potential. It reads

~y1 → ~y1 +
1

8m1

~S1 × ~v1v
2
1 +

Gm2

m1r

(
1

2
~S1 × ~v1 − 3~S1 × ~v2 − ~S1 × ~n~v2 · ~n

)

+
G

r

(
11

4
~S2 × ~v2 − ~S2 × ~n~v2 · ~n+

1

4
~n ~S2 · ~v2 × ~n

)
, (6.20)

and similarly for particle 2 with 1 ↔ 2. The contribution to the action, which is linear in

this shift, removes the acceleration terms, and is equivalent to substituting in the EOM of

the position.

Finally, we note that at NLO spin-orbit there also appear higher order time derivatives

of spin, of which a generic rigorous treatment was shown in [22], see section 5 there.

According to this treatment, and considering the relevant terms in eq. (6.18), we realize

that whereas the position shift of eq. (6.4) was formally a 1PN order shift of the position,

here a 2PN order redefinition of the spin is required. Terms quadratic in the spin shift thus

contribute only at the next-to-NNLO (NNNLO) level. Therefore, we can consider only the

linear in spin shift, which amounts to the insertion of the EOM of the spin. Here only the

LO Newtonian EOM of the spin contribute, that is Ṡij = 0. Again, for completeness we

present the explicit redefinition of spin, which removes its higher order time derivatives in

the potential. We use the notation from [22] for the antisymmetric generator of rotation

ωij
1 , which transforms the spin variable, and reads

ωij
1 =

Gm2

r

(
3vi1v

j
2 + vi1n

j ~v2 · ~n− vi2n
j ~v2 · ~n− (i ↔ j)

)
, (6.21)

and similarly for particle 2 with 1 ↔ 2. The contribution to the action, linear in this shift,

removes the precession terms, and is equivalent to substituting in the EOM of the spin.

The Hamiltonian. At this stage one can perform a straightforward Legendre transform,

see e.g. section 6 in [22]. Then, we obtain the following Hamiltonian:

HNLO
SO =

Gm2

r2

[
5

8
~S1 ·

~p1 × ~n

m1

p21
m2

1

+ 3~S1 ·
~p1 × ~n

m1

~p1 · ~n
m1

~p2 · ~n
m2

− 3

4
~S1 ·

~p1 × ~n

m1

(
~p2 · ~n
m2

)2

− ~S1 ·
~p2 × ~n

m2

~p1 · ~p2
m1m2

− 3~S1 ·
~p2 × ~n

m2

~p1 · ~n
m1

~p2 · ~n
m2

+2~S1 ·
~p1 × ~p2
m1m2

~p1 · ~n
m1

− 5

2
~S1 ·

~p1 × ~p2
m1m2

~p2 · ~n
m2

]

+
G2m1m2

r3

[
7

2
~S1 ·

~p1 × ~n

m1
− 6~S1 ·

~p2 × ~n

m2

]

+
G2m2

2

r3

[
5~S1 ·

~p1 × ~n

m1
− 35

4
~S1 ·

~p2 × ~n

m2

]
+ 1 ↔ 2. (6.22)

To verify equivalence with the ADM Hamiltonian result, which was first obtained in [59],

after the corresponding EOM were obtained in [56, 68], we resolve the difference between

the result in [59], and the result here, using canonical transformations, see e.g. section 7

in [22]. Using the generator of canonical transformations given in eq. (7.8) there with the
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Figure 3. NLO spin1-spin2 Feynman diagrams. Diagrams (e) and (f) should be included together

with their mirror images. Note that the values of diagrams (b), (d), and (f) do not change with

respect to [19].

same notations, we find that the difference is resolved with the coefficients of the generator

being set to

g1 =
5

4
, g3 =

3

4
, (6.23)

and the remaining coefficients set to zero, hence indeed the equivalence is established.

6.3 NLO spin1-spin2 sector

We go on to handle the NLO spin1-spin2 sector, for which we have similar Feynman

diagrams as in [19], but again some of the values of the diagrams are modified.

There are 6 Feynman diagrams in this sector shown in figure 3. Again, the values of

diagrams (b), (d) and (f), in figure 3 do not change with respect to [19], since they contain

only LO spin couplings, which are independent of the spin gauge. Their values can be

found in eqs. (25), (14), and (32), respectively, of [19]. Again, in eq. (25) of [19] terms

with time derivatives of spin were already dropped upon the use of LO EOM, and hence

we rewrite here the complete formal result of diagram (b), given by

Figure 3(b) = − G

2r3

[
~S1 · ~S2~v1 · ~v2 − ~S1 · ~v1~S2 · ~v2 − ~S1 · ~v2~S2 · ~v1 − 3~S1 · ~S2~v1 · ~n~v2 · ~n

+ 3~S1 · ~v1~S2 · ~n~v2 · ~n+ 3~S1 · ~v2~S2 · ~n~v1 · ~n+ 3~S1 · ~n~S2 · ~v1~v2 · ~n

+3~S1 · ~n~S2 · ~v2~v1 · ~n+3~S1 · ~n~S2 · ~n~v1 · ~v2−15~S1 · ~n~S2 · ~n~v1 · ~n~v2 · ~n
]

− G

2r2

[
~̇S1 · ~S2~v2 · ~n− ~̇S1 · ~v2~S2 · ~n− ~̇S1 · ~n~S2 · ~v2 + 3 ~̇S1 · ~n~S2 · ~n~v2 · ~n

]

+ 1 ↔ 2− G

2r

[
~̇S1 · ~̇S2 + ~̇S1 · ~n~̇S2 · ~n

]
. (6.24)

The values of the following diagrams are modified due to the spin gauge, and now read

Figure 3(a) =
G

2r3

[
7~S1 · ~S2v

2
1 − 7~S1 · ~v1~S2 · ~v1 − 12~S1 · ~S2 (~v1 · ~n)2 + 9~S1 · ~v1~S2 · ~n~v1 · ~n

+12~S1 · ~n~S2 · ~v1~v1 · ~n− 9~S1 · ~n~S2 · ~nv21
]
+ 1 ↔ 2

+ 2
G

r2

[
~̇S1 · ~S2~v1 · ~n− ~̇S1 · ~n~S2 · ~v1 + ~S1 · ~S2~a1 · ~n− ~S1 · ~n~S2 · ~a1

]
+ 1 ↔ 2,

(6.25)
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Figure 3(c) =− 8
G

r3

[
~S1 · ~S2~v1 · ~v2 − ~S1 · ~v2~S2 · ~v1 −

3

2

(
~S1 · ~S2~v1 · ~n~v2 · ~n

−~S1 · ~v2~S2 · ~n~v1 · ~n− ~S1 · ~n~S2 · ~v1~v2 · ~n+ ~S1 · ~n~S2 · ~n~v1 · ~v2
)]

,

(6.26)

Figure 3(e) =− 4
G2 (m1 +m2)

r4

[
~S1 · ~S2 − 3~S1 · ~n~S2 · ~n

]
. (6.27)

We note that in diagrams (c) and (d) double scalar triple products were transformed to

scalar products according to the appropriate identity, e.g. in eq. (6.11) of [22].

The potential. Summing all Feynman diagrams, we obtain the following potential:

V NLO
S1S2 =− G

r3

[
7

2
~S1 · ~S2 v

2
1 −

15

2
~S1 · ~S2 ~v1 · ~v2 +

7

2
~S1 · ~S2 v

2
2 −

7

2
~S1 · ~v1 ~S2 · ~v1

+
5

2
~S1 · ~v1 ~S2 · ~v2 +

9

2
~S1 · ~v2 ~S2 · ~v1 −

7

2
~S1 · ~v2 ~S2 · ~v2 − 6~S1 · ~S2 (~v1 · ~n)2

+
21

2
~S1 · ~S2 ~v1 · ~n~v2 · ~n− 6~S1 · ~S2 (~v2 · ~n)2 +

9

2
~S1 · ~v1 ~S2 · ~n~v1 · ~n

− 9

2
~S1 · ~v1 ~S2 · ~n~v2 · ~n− 15

2
~S1 · ~v2 ~S2 · ~n~v1 · ~n+ 6~S1 · ~v2 ~S2 · ~n~v2 · ~n

+ 6~S1 · ~n ~S2 · ~v1 ~v1 · ~n− 15

2
~S1 · ~n ~S2 · ~v1 ~v2 · ~n− 9

2
~S1 · ~n ~S2 · ~v2 ~v1 · ~n

+
9

2
~S1 · ~n ~S2 · ~v2 ~v2 · ~n− 9

2
~S1 · ~n ~S2 · ~n v21 +

21

2
~S1 · ~n ~S2 · ~n~v1 · ~v2

−9

2
~S1 · ~n ~S2 · ~n v22 +

15

2
~S1 · ~n ~S2 · ~n~v1 · ~n~v2 · ~n

]

+ 2
G2 (m1 +m2)

r4

[
~S1 · ~S2 − 4~S1 · ~n ~S2 · ~n

]

− G

r2

[
2~S1 · ~S2 ~a1 · ~n− 2~S1 · ~S2~a2 · ~n+ 2~S1 · ~a2 ~S2 · ~n− 2~S1 · ~n ~S2 · ~a1

+ 2 ~̇S1 · ~S2 ~v1 · ~n− 1

2
~̇S1 · ~S2 ~v2 · ~n+

1

2
~S1 · ~̇S2 ~v1 · ~n− 2~S1 · ~̇S2 ~v2 · ~n

+
1

2
~̇S1 · ~v2 ~S2 · ~n− 1

2
~S1 · ~n ~̇S2 · ~v1 − 2 ~̇S1 · ~n ~S2 · ~v1 +

1

2
~̇S1 · ~n ~S2 · ~v2

−1

2
~S1 · ~v1 ~̇S2 · ~n+2~S1 · ~v2 ~̇S2 · ~n−

3

2
~̇S1 · ~n ~S2 · ~n~v2 · ~n+

3

2
~S1 · ~n ~̇S2 · ~n~v1 · ~n

]

+
G

2r

[
~̇S1 · ~̇S2 + ~̇S1 · ~n ~̇S2 · ~n

]
. (6.28)

As noted, we go on to perform a shift of the positions according to eq. (6.4), and get

contributions linear in each of the shifts from the Newtonian and LO spin-orbit potentials,

corresponding to the insertion of the EOM from these sectors. This contribution reads

∆V NLO
S1S2 (∆~yI) =

G

r3

[
~S1 · ~S2 v

2
1 −

3

2
~S1 · ~S2 ~v1 · ~v2 + ~S1 · ~S2 v

2
2 − ~S1 · ~v1 ~S2 · ~v1

+
3

2
~S1 · ~v2 ~S2 · ~v1 − ~S1 · ~v2 ~S2 · ~v2 −

3

4
~S1 · ~S2 ~v1 · ~n~v2 · ~n
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+ 3~S1 · ~v1 ~S2 · ~n~v1 · ~n− 9

4
~S1 · ~v2 ~S2 · ~n~v1 · ~n− 9

4
~S1 · ~n ~S2 · ~v1 ~v2 · ~n

+ 3~S1 · ~n ~S2 · ~v2 ~v2 · ~n− 3~S1 · ~n ~S2 · ~n v21 +
21

4
~S1 · ~n ~S2 · ~n~v1 · ~v2

− 3~S1 · ~n ~S2 · ~n v22

]
. (6.29)

After the LO shift, we proceed to eliminate the remaining higher order time derivatives,

including the time derivatives of spin, which appear here too, by insertion of EOM, where

one should use the shifted form of the potential. For completeness we present the ex-

plicit NLO redefinition of position, which removes its higher order time derivatives in the

potential. It reads

~y1 →~y1 + 2
G

m1r2

(
~n ~S1 · ~S2 − ~S2

~S1 · ~n
)
, (6.30)

and similarly for particle 2 with 1 ↔ 2. The contribution to the action, linear in this

shift, removes the acceleration terms, and is equivalent to substituting in the EOM of

the position.

Here again only the LO Newtonian EOM of spin contribute. Again, for completeness

we present the explicit redefinition of spin, which removes its higher order time derivatives,

using the antisymmetric generator of rotation ωij
1 , which reads

ωij
1 =

G

r2

((
2Sik

2 vj1n
k − 1

2
Sik
2 vj2n

k − 3

2
Sik
2 njvk2 +

3

2
Sik
2 njnk ~v2 · ~n

)
− (i ↔ j)− Sij

2 ~v2 · ~n
)
,

(6.31)

and similarly for particle 2 with 1 ↔ 2. The contribution to the action, linear in this shift,

removes the precession terms, and is equivalent to substituting in the EOM of the spin.

The Hamiltonian. Again, at this stage one can perform a straightforward Legendre

transform to obtain the following Hamiltonian:

HNLO
S1S2 =− G

r3

[
5

2
~S1 · ~S2

p21
m2

1

− 6~S1 · ~S2
~p1 · ~p2
m1m2

+
5

2
~S1 · ~S2

p22
m2

2

− 5

2

~S1 · ~p1
m1

~S2 · ~p1
m1

+
5

2

~S1 · ~p1
m1

~S2 · ~p2
m2

+ 3
~S1 · ~p2
m2

~S2 · ~p1
m1

− 5

2

~S1 · ~p2
m2

~S2 · ~p2
m2

− 6~S1 · ~S2

(
~p1 · ~n
m1

)2

+
45

4
~S1 · ~S2

~p1 · ~n
m1

~p2 · ~n
m2

− 6~S1 · ~S2

(
~p2 · ~n
m2

)2

+
3

2

~S1 · ~p1
m1

~S2 · ~n
~p1 · ~n
m1

− 9

2

~S1 · ~p1
m1

~S2 · ~n
~p2 · ~n
m2

− 21

4

~S1 · ~p2
m2

~S2 · ~n
~p1 · ~n
m1

+ 6
~S1 · ~p2
m2

~S2 · ~n
~p2 · ~n
m2

+ 6~S1 · ~n
~S2 · ~p1
m1

~p1 · ~n
m1

− 21

4
~S1 · ~n

~S2 · ~p1
m1

~p2 · ~n
m2

− 9

2
~S1 · ~n

~S2 · ~p2
m2

~p1 · ~n
m1

+
3

2
~S1 · ~n

~S2 · ~p2
m2

~p2 · ~n
m2

− 3

2
~S1 · ~n ~S2 · ~n

p21
m2

1

+
21

4
~S1 · ~n ~S2 · ~n

~p1 · ~p2
m1m2

−3

2
~S1 · ~n ~S2 · ~n

p22
m2

2

+
15

2
~S1 · ~n ~S2 · ~n

~p1 · ~n
m1

~p2 · ~n
m2

]

+
G2 (m1 +m2)

r4

[
7~S1 · ~S2 − 13~S1 · ~n ~S2 · ~n

]
. (6.32)
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Figure 4. NLO spin-squared Feynman diagrams. These diagrams should be included together

with their mirror images.

Again, to show equivalence with the ADM Hamiltonian in [69], we use the generator of

canonical transformations in eq. (7.6) of [22] with the same notations. We find that the

difference is resolved with the coefficients of the generator being set to

g2 = 1, g3 = 1, (6.33)

and the remaining coefficients set to zero.

6.4 NLO spin-squared sector

Finally, we compute the NLO spin-squared interaction, which was first approached in [38].

Here we treat it by means of the current EFT formulation for spin, and in terms of the NRG

fields. Since the spin-squared coupling is actually no different than a mass quadrupole, it

is in fact even more advantageous to use the NRG fields in this sector than in the linear in

spin sectors, since similarly to the non-spinning point-mass sectors higher-loop diagrams

are removed, e.g. as in the Einstein-Infeld-Hoffmann 1PN order potential, where a one-loop

diagram is absent with the use of NRG fields [25].

We find that there are 6 Feynman diagrams in this sector shown in figure 4. These

diagrams are evaluated as follows:

Figure 4(a) =
C1(ES2)

2

Gm2

r3m1

[
5

2
S2
1v

2
1 +

3

2
S2
1v

2
2 −

(
~S1 · ~v1

)2
− 3S2

1 (~v1 · ~n)2

+3~S1 · ~v1 ~S1 · ~n~v1 · ~n− 9

2

(
~S1 · ~n

)2
v21 −

9

2

(
~S1 · ~n

)2
v22

]

+ C1(ES2)
Gm2

r2m1

[
~S1 · ~a1~S1 · ~n+ ~̇S1 · ~v1~S1 · ~n+ ~̇S1 · ~n~S1 · ~v1 − Ṡ2

1 ~v1 · ~n
]

+ C1(ES2)
Gm2

rm1
S̈2
1 , (6.34)

Figure 4(b) = −
C1(ES2)

4

Gm2

r3m1

[
S2
1~v1 · ~v2 − 2~S1 · ~v1~S1 · ~v2 − 3S2

1~v1 · ~n~v2 · ~n

+ 6~S1 · ~v1~S1 · ~n~v2 · ~n+ 6~S1 · ~v2~S1 · ~n~v1 · ~n+ 3
(
~S1 · ~n

)2
~v1 · ~v2

−15
(
~S1 · ~n

)2
~v1 · ~n~v2 · ~n

]

+
C1(ES2)

4

Gm2

r2m1

[
2 ~̇S1 · ~v2~S1 · ~n+ 2 ~̇S1 · ~n~S1 · ~v2

−6 ~̇S1 · ~n~S1 · ~n~v2 · ~n− Ṡ2
1 ~v2 · ~n

]
, (6.35)
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Figure 4(c) = − 2C1(ES2)
Gm2

r3m1

[
S2
1 − 3

(
~S1 · ~n

)2
]
~v1 · ~v2

− 2C1(ES2)
Gm2

r2m1

[
~̇S1 · ~v2~S1 · ~n+ ~̇S1 · ~n~S1 · ~v2 − Ṡ2

1 ~v2 · ~n
]
, (6.36)

Figure 4(d) =− C1(ES2)
G2m2

2r4

[
S2
1 − 3

(
~S1 · ~n

)2
]
, (6.37)

Figure 4(e) = − 2C1(ES2)
G2

r4
m2

2

m1

[
S2
1 − 3

(
~S1 · ~n

)2
]
, (6.38)

Figure 4(f) =
G2m2

r4

(
~S1 · ~n

)2
, (6.39)

where Ṡ2
1 = 2 ~̇S1 · ~S1 is the time derivative of the spin length from eq. (4.5), and S̈2

1 is

its second time derivative. Note that due to the use of NRG fields, we do not have one-

loop diagrams with the spin-squared coupling since as explained it is actually no different

than a mass quadrupole. Thus, we do not have here diagrams similar to the two one-loop

diagrams, which appear in figure 4(a), (b), of [38]. Therefore, the number of diagrams is

reduced in this sector too, eliminating in particular those, which are more complicated to

evaluate.

The potential. Summing all Feynman diagrams, we obtain the following potential:

V NLO
SS =−

C1(ES2)

2

Gm2

r3m1

[
5

2
S2
1 v

2
1 −

9

2
S2
1 ~v1 · ~v2 +

3

2
S2
1 v

2
2 −

(
~S1 · ~v1

)2
+ ~S1 · ~v1 ~S1 · ~v2

− 3S2
1 (~v1 · ~n)2 +

3

2
S2
1 ~v1 · ~n~v2 · ~n+ 3~S1 · ~v1 ~S1 · ~n~v1 · ~n− 3~S1 · ~v1 ~S1 · ~n~v2 · ~n

− 3~S1 · ~v2 ~S1 · ~n~v1 · ~n− 9

2

(
~S1 · ~n

)2
v21 +

21

2

(
~S1 · ~n

)2
~v1 · ~v2 −

9

2

(
~S1 · ~n

)2
v22

+
15

2

(
~S1 · ~n

)2
~v1 · ~n~v2 · ~n

]
+

C1(ES2)

2

G2m2

r4

[
S2
1 − 3

(
~S1 · ~n

)2
]

+ 2C1(ES2)
G2m2

2

r4m1

[
S2
1 − 3

(
~S1 · ~n

)2
]
− G2m2

r4

(
~S1 · ~n

)2

− C1(ES2)
Gm2

r2m1

[
~S1 · ~a1 ~S1 · ~n+ ~̇S1 · ~v1 ~S1 · ~n− 3

2
~̇S1 · ~v2 ~S1 · ~n+ ~̇S1 · ~n ~S1 · ~v1

−3

2
~̇S1 · ~n ~S1 · ~v2 −

3

2
~̇S1 · ~n ~S1 · ~n~v2 · ~n− Ṡ2

1 ~v1 · ~n+
7

4
Ṡ2
1 ~v2 · ~n

]

− C1(ES2)
Gm2

m1r
S̈2
1 + 1 ↔ 2. (6.40)

We note that we can already take Ṡ2 = S̈2 = 0 since as we noted dissipative effects from the

absorption of gravitational waves by the compact objects, which modify the spin length,

are relevant only as of the 5PN order, and thus to our approximation the spin length S2 is

constant. After we make the shift of positions according to eq. (6.4), we get contributions

linear in the shifts from the LO spin-orbit potential, equivalent to the insertion of EOM
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from this sector. This contribution reads

∆V NLO
SS (∆~yI) =

Gm2

r3m1

[
S2
1 v

2
1 − S2

1 ~v1 · ~v2 − (~S1 · ~v1)2 + ~S1 · ~v1 ~S1 · ~v2 + 3~S1 · ~v1 ~S1 · ~n~v1 · ~n

−3~S1 · ~v2 ~S1 · ~n~v1 · ~n− 3(~S1 · ~n)2 v21 + 3(~S1 · ~n)2 ~v1 · ~v2
]

− 1

2m1

[
S2
1 ~̇a1 · ~v1 − ~S1 · ~̇a1 ~S1 · ~v1

]
+ 1 ↔ 2. (6.41)

Finally, we note that there is an addition to this sector also from terms quadratic in the

shift in eq. (6.4), originating from the Newtonian sector. It is given by

∆V NLO
SS

(
(∆~yI)

2
)
=− Gm2

8r3m1

[
2S2

1 v
2
1 − 2(~S1 · ~v1)2 − 3S2

1(~v1 · ~n)2 + 6~S1 · ~v1 ~S1 · ~n~v1 · ~n

−3(~S1 · ~n)2v21
]
− 1

8m1

[
S2
1 a

2
1 − (~S1 · ~a1)2

]
+ 1 ↔ 2. (6.42)

After this shift, we proceed to eliminate the remaining higher order time derivatives, in-

cluding time derivatives of spin by insertion of the LO Newtonian EOM of the spin. For

completeness we present the explicit NLO redefinition of position, which removes its higher

order time derivatives. It reads

~y1 →~y1 + C1(ES2)
Gm2

m2
1r

2
~S1

~S1 · ~n+
Gm2

8m2
1r

2

(
~S1

~S1 · ~n− ~nS2
1

)
+

3

8m2
1

(
~S1

~S1 · ~a1 − ~a1 S
2
1

)
,

(6.43)

and similarly for particle 2 with 1 ↔ 2. The contribution to the action, linear in this

shift, removes the acceleration terms, and is equivalent to substituting in the EOM of the

position. For the explicit redefinition of spin we have, using the antisymmetric generator

of rotation ωij
1 , that

ωij
1 = C1(ES2)

Gm2

m1r2

((
−Sik

1 vj1n
k − Sik

1 njvk1 +
3

2
Sik
1 vj2n

k +
3

2
Sik
1 njvk2 +

3

2
Sik
1 njnk ~v2 · ~n

)

−(i ↔ j) + 2Sij
1 ~v1 · ~n− 3Sij

1 ~v2 · ~n
)
− Gm2

4m1r2

(
Sik
1 vj1n

k − Sik
1 njvk1 − (i ↔ j)

)

− 1

4m1

(
Sik
1 vj1a

k
1 + Sik

1 aj1v
k
1 − (i ↔ j)

)
, (6.44)

and similarly for particle 2 with 1 ↔ 2. The contribution to the action, linear in this

shift, removes the precession terms, and is equivalent to substituting in the EOM of the

spin. Note that the redefinitions in eqs. (6.43) and (6.44) contain terms with accelerations.

These terms are required in order to remove from the potential terms, which are quadratic

in the accelerations.

The Hamiltonian. Again, one can perform a straightforward Legendre transform to

obtain the Hamiltonian:

HNLO
SS =−

C1(ES2)

2

Gm2

r3m1

[
5

2
S2
1

p21
m2

1

− 9

2
S2
1

~p1 · ~p2
m1m2

+
3

2
S2
1

p22
m2

2

−
(
~S1 · ~p1
m1

)2

+
~S1 · ~p1
m1

~S1 · ~p2
m2

− 3S2
1

(
~p1 · ~n
m1

)2

+
3

2
S2
1

~p1 · ~n
m1

~p2 · ~n
m2

+ 3
~S1 · ~p1
m1

~S1 · ~n
~p1 · ~n
m1
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− 3
~S1 · ~p1
m1

~S1 · ~n
~p2 · ~n
m2

− 3
~S1 · ~p2
m2

~S1 · ~n
~p1 · ~n
m1

− 9

2
(~S1 · ~n)2

p21
m2

1

+
21

2
(~S1 · ~n)2

~p1 · ~p2
m1m2

− 9

2
(~S1 · ~n)2

p22
m2

2

+
15

2
(~S1 · ~n)2

~p1 · ~n
m1

~p2 · ~n
m2

]

+
Gm2

r3m1

[
5

4
S2
1

p21
m2

1

− 3

2
S2
1

~p1 · ~p2
m1m2

− 5

4

( ~S1 · ~p1
m1

)2

+
3

2

~S1 · ~p1
m1

~S1 · ~p2
m2

− 9

8
S2
1

(
~p1 · ~n
m1

)2

+
3

2
S2
1

~p1 · ~n
m1

~p2 · ~n
m2

+
15

4

~S1 · ~p1
m1

~S1 · ~n
~p1 · ~n
m1

− 3

2

~S1 · ~p1
m1

~S1 · ~n
~p2 · ~n
m2

− 3
~S1 · ~p2
m2

~S1 · ~n
~p1 · ~n
m1

− 21

8
(~S1 · ~n)2

p21
m2

1

+3(~S1 · ~n)2
~p1 · ~p2
m1m2

]

+
C1(ES2)

2

G2m2

r4

[
S2
1 − 3

(
~S1 · ~n

)2
]
+ C1(ES2)

G2m2
2

r4m1

[
2S2

1 − 5
(
~S1 · ~n

)2
]

+
G2m2

r4

[
2S2

1 − 3
(
~S1 · ~n

)2
]
+

G2m2
2

r4m1

[
S2
1 −

(
~S1 · ~n

)2
]
+ 1 ↔ 2. (6.45)

For the NLO spin-squared sector we need to construct the general infinitesimal generator of

canonical transformations in order to show equivalence with the ADM Hamiltonian in [70].

Similar to the considerations in section 7 of [22], we have the following general form for

this generator:

gNLO
SS =

Gm2

r2m1

[
S2
1

(
g1

~p1 · ~n
m1

+ g2
~p2 · ~n
m2

)
+ ~S1 · ~n

(
g3

~S1 · ~p1
m1

+ g4
~S1 · ~p2
m2

)

+(~S1 · ~n)2
(
g5

~p1 · ~n
m1

+ g6
~p2 · ~n
m2

)]
, (6.46)

where this generator should be taken with 1 ↔ 2. We find then that the difference of

Hamiltonians is resolved with the coefficients of the generator fixed to

g3 = C1(ES2), (6.47)

and the remaining ones fixed to zero.

7 Conclusions

In this paper we have presented a formulation for gravitating spinning objects in the

effective field theory in the post-Newtonian scheme. We aimed to attain accuracy at

the 4PN order for rapidly rotating compact objects, and indeed the formulation holds as it

stands to this high PN order. Such high PN orders are required for the successful detection

of gravitational radiation.

A crucial aspect in our EFT formulation for spinning objects is that we indeed eventu-

ally obtain an effective action, where all field modes below the orbital scale are integrated

out. This is achieved by introducing several new ingredients, on which this work strongly
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builds. First, we point out the relevant degrees of freedom, taking special notice of the

rotational ones, and most importantly the associated symmetries. Building on these sym-

metries, we introduce the minimal coupling part of the point particle action in terms of

gauge rotational variables, and construct the spin-induced nonminimal couplings, where

we obtain the LO couplings to all orders in spin. We then introduce the gauge freedom

of rotational variables into the point particle action. Altogether, we construct the point

particle effective action following symmetry considerations for spinning objects for the first

time. Finally, we fix a canonical gauge for the rotational variables, where the unphysical

DOFs are eliminated already from the Feynman rules, and all the orbital field modes are

conveniently integrated out.

The EOM of spin are then directly obtained via a proper variation of the action, where

they take on a simple form. Moreover, the corresponding Hamiltonians are also straight-

forwardly obtained from the potentials derived via this formulation, due to the canonical

gauge fixing of the rotational variables. The EFT formulation for spin is implemented here

to derive all spin dependent potentials up to NLO to quadratic level in spin, i.e. up to the

3PN order for rapidly rotating compact objects. In particular, proper NLO spin-squared

potential and Hamiltonian are also derived. For these implementations we use the NRG

field decomposition, which is found to eliminate higher-loop Feynman diagrams also in the

spin dependent sectors, and facilitates derivations. Therefore, with the additional advanta-

geous usefulness of the obtained Hamiltonians, which relate to GW observables, the EFT

formulation for spin here is ideal for the treatment of higher order spin dependent sectors.

In order to complete the spin dependent conservative sector, i.e. potentials to 4PN

order, it remains to apply this EFT formulation for spin at NNLO up to quadratic level

in spin, which was initiated in [67]. Indeed, this was recently obtained in [29], and [30],

for the spin-orbit, and spin-squared sectors, respectively, in addition to the LO cubic and

quartic in spin sector in [28]. Further, one may proceed to obtain a formulation of an EFT

of radiation for spin for the radiative sector along the lines of this work. Implementation on

the radiative sector covering up to 4PN order would then follow. Finally, it is left for future

research to reach a better physical understanding of the various gauges of the rotational

variables, and of the extra term from minimal coupling, which arises from introducing the

spin gauge freedom in the action, and contributes to finite size effects with spin.
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