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1 Small vs. large field inflation

Models of slow roll inflation can be divided into two broad categories: small field and large

field, where the small or large is relative to the Planck scale, Mp (there are many good

reviews; on this point, see, for example, [1]). These two classes of theories differ dramati-

cally in whether or not they predict observable gravity waves. Each class of models poses

theoretical challenges as well. In large field models, if φ is the inflaton, the field responsible

for inflation, then one can’t analyze an effective action for φ in powers of φ/Mp. It is not,

in fact, quite clear in what framework (outside of some larger theory of quantum gravity)

one might understand such theories. As we will review, small field models also cannot be

completely understood without a complete underlying theory of gravity. That said, the

problem of inflation in these theories can be described by a small number of parameters.

The BICEP2 announcement of the possible observation of gravity waves in the CMB [2]

brought the question of large vs small field inflation to the forefront. While there is no longer

any claim to an observation [3], there are intense efforts to further constrain (or observe)

B mode polarization in the CMBR. The BICEP2 result was suggestive of an energy sale

of inflation would be about 2× 1016GeV; Planck set limits of order 1/2 of this [4].
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A great deal has been written on the subject of large field inflation, trying to accommo-

date the original BICEP2 claim, and suggesting, in any case, that such radiation should be

observable. This work can again be divided into two broad categories (with some overlap):

natural inflation [5] and chaotic inflation [6]. Natural inflation involves axion-like fields,

with decay constants larger than Mp. Because such decay constants seem hard to real-

ize in string theory [7], much work has focussed on monodromy inflation and its variants

(though see [8]), in which axions transit many times their nominal periods [9], or theories

with multiple axions (or fields which can wander circuitously through field space) [10].

Chaotic inflation involves fields with monomial potentials with very small coefficients. As

implemented in [9], monodromy inflation is actually a realization of chaotic inflation, with

a monomial potential for the inflaton. It is argued that the features of the inflaton poten-

tial, in this case, can be understood within an ultraviolet complete theory, string theory.

Related ideas for achieving inflation have been considered in [11–13].

In this note, we examine a different arena for inflation: non-compact string moduli

spaces. Classically, string compactifications with zero cosmological constant (c.c.) typi-

cally exhibit moduli of various sorts. Such light fields might exist quantum mechanically.

One possible explanation for this is low energy supersymmetry, where the light non-compact

moduli would be superpartners of axions. We will take this as our working model through-

out this paper.1 By low we mean that during inflation, the soft breaking terms, while

possibly quite large compared to the scale at which supersymmetry is ultimately broken,

are well below the energy scale of inflation. Supersymmetry breaking during inflation has

been discussed in [15], where it is stressed that, for slowly varying fields, it is possible to

use a supersymmetric effective action to describe the dynamics of the inflaton. This ac-

tion can be organized in terms of a superpotential, Kahler potential, and higher derivative

operators. The natural mass (curvature) scale for the moduli potential is of order HI , the

Hubble constant during inflation. Given that slow-roll inflation requires an inflaton mass

significantly less than HI , the models we consider, like essentially all models of inflation,

will require some level of tuning of parameters. The inflaton may be part of a chiral multi-

plet responsible for supersymmetry breaking during inflation, i.e. its fermionic partner may

be an approximate goldstino. This multiplet need not not necessarily contain the Goldstino

(longitudinal component of the gravitino) responsible for supersymmetry breaking at lower

scales (we will not make any particular assumption about the final scale of supersymmetry

breaking, other than that it is low compared to the scale of inflation).

Ours is certainly not the first work to consider moduli as candidate inflatons. Some

discussion occurs already in [16]. More recently, models relying on quite specific features of

particular string models have been considered in some detail [17, 18]. Our goal here is to de-

lineate some general issues. Some of the models have features which correspond to some of

the general features discussed here, but we do not believe that all have been treated before.

We begin, in section 2 with a brief review of conventional small field inflation models,

and in particular of hybrid models. The essence of such models is that inflation occurs on

1An example of a landscape of non-supersymmetric vacua, in many cases with light moduli, appears

in [14]; there are likely other non-supersymmetric possibilities, including simply anthropic selection.
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a pseudomoduli space [19]. Standard analyses are restricted to small field inflation, and

we ask what are the features intrinsic to such a regime. We also review the challenges of

understanding the spectral index in these theories.

We then make a short excursion into axion physics in section 3. We note that there

is a remarkably close parallel between large and small field inflation and large and small

field solutions to the strong CP problem. The large and small fields we refer to here are

precisely the non-compact (pseudo) moduli accompanying the axions (saxions), and large

and small, again, means relative to the Planck scale. Indeed, existing small field solutions

to the strong CP problem are quite complex and suffer from a lack of plausibility. Large

field solutions (implemented in string theory) require far less theoretical gymnastics. They

involve, however, regimes which are inherently inaccessible to weak coupling methods.

Indeed, there is tension between the requirement of small exponentials (large values of

non-compact moduli) and the absence of small parameters in the theory [20]. Within our

present understanding, the large-field axion solution is at best a plausible hypothesis.

We argue that there are clear lessons from axion physics for inflation, and turn to

modular inflation in section 4. We will assume some We begin by noting that the non-

compact moduli of string theory models have properties that would seem well suited to

inflation. We have in mind situations with at least some approximate supersymmetry, so

that these moduli are accompanied by compact moduli (axions). Such moduli naturally

have Planck scale variations. At the same time, for large values of the moduli, the energy

scale is low compared to the Planck scale; in other words, the requirement of very small

couplings is replaced by a condition on the moduli fields.We will argue that if inflation

occurs in such a region of the (pseudo) moduli space, it can be described in the language of

effective field theory, and one can formulate the required properties of that theory. We will

describe simple model field theories which are consistent with the data on inflation. We

stress, however, that these are only models. Extracting such a structure from an underlying

theory is beyond present theoretical technology. The degree of (apparent) tuning in these

models is readily characterized. We will see that, in such a framework, the lower the scale

of inflation, the greater the degree of tuning.

Inflation on string moduli spaces provides a setting to address a much discussed issue:

the seeming incompatability of large field inflation and the axion solution of the strong CP

problem [21]. We recall that in such a framework, the Peccei-Quinn symmetry is necessarily

an accident of the features of moduli fixing (and in particular the fixing of the saxion).

These features need not hold during inflation, so the Peccei-Quinn symmetry may be badly

broken during this period, and axion fluctuations suppressed [22]. We discuss some of the

features required of the effective field theory to achieve this.

We do not, of course, have a detailed string construction which we can understand

at the level required to test this picture. Instead, in the rest of this note, we describe

the conditions on the field content and effective action of such theories required to obtain

suitable inflation, consistent with current observations, including recent Planck and a pos-

sible observation of gravitational radiation. We will then include a requirement that the

universe, in its present stage, include an axion, with suitable properties to solve the strong

CP problem, and behavior in the early universe which suppresses would-be isocurvature
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fluctuations. Some aspects of inflation on non-compact moduli spaces have been considered

in [18], though with a somewhat different focus.

2 Hybrid inflation: small field and large field

Most models of large scale inflation are based either on polynomial potentials (“chaotic

inflation”) or axionic shift symmetries (“natural” inflation, and its variants including multi-

axions and monodromy). (For a recent attempts to reconcile small field models with a

large scale of inflation, see [23, 24]). But there is another possibility, raised by experience

in supersymmetric field theories and string theory, involving non-compact moduli.

Indeed, one interesting class of inflationary models are so-called hybrid models [25–

29]. These are often described in terms of fields and potentials with rather detailed, special

features, but in [19, 30], hybrid inflation was characterized in a more conceptual way.

Inflation is active all such models on a pseudomoduli space, in a region where superymmetry

is badly broken (i.e. broken by a larger amount than in the present universe) and the

potential is slowly varying; in fact, this is the defining feature of these theories. For

example, much has been made in these models of the role of a “waterfall field”, but in

practice, inflation often ends well before reaching the regime where this field is active. All

that is really required is that the fields settle into a region with much smaller cosmological

constant after inflation ends.

Essentially all hybrid models in the literature are small field models; this allows quite

explicit constructions using rules of conventional effective field theory, but it is not clear

that small field inflation is selected by any deeper principle. The goal of this paper is to

consider large field models. This is made all the more important given that the small field

models would be ruled out by observation of B-mode polarization (many were already ruled

out by the Planck measurement of the spectral index, ns [4], but for surviving alternatives,

see, for example, [30–32]).

It is worth reviewing the simplest small-field hybrid model. Such a model is super-

symmetric (this allows the natural appearance of a classical pseudomoduli space), with two

fields, I (which will play the role of the inflaton) and φ (usually referred to as the “waterfall

field.” The superpotential is taken to be:

W = I(κφ2 − µ2) (2.1)

Classically, for large I, the potential is independent of I; the quantum mechanical cor-

rections control the potential. κ is constrained to be extremely small in order that the

fluctuation spectrum be of the correct size; κ is proportional, in fact, to VI , the energy

during inflation. The quantum corrections determine the slow roll parameters.

One expects corrections at least in powers of Mp. If I ≪ Mp, one can organize the

effective field theory in powers of I. Particularly critical are higher powers of I in the

Kähler potential. The quartic term in K,

K =
α

M2
p

I†II†I (2.2)

– 4 –



J
H
E
P
0
9
(
2
0
1
5
)
2
0
8

gives too large an η, for example, unless α is suitably small [19, 33]. It is also necessary to

suppress high powers of I in the superpotential. In general, terms of the form

δW =
In

Mn−3
p

(2.3)

will be allowed, and at least the low n terms must be suppressed. This might occur as a

result of discrete symmetries. The leading power of I in the superpotential controls, for

example, the scale of inflation. Higher powers allow larger scales; a scale of 1015 requires

n ≥ 11 [19]. In [30], it was argued, based on a systematic study of the effective action, that

obtaining ns < 1, consistent with Planck, required a balancing of Kähler and superpotential

corrections.

In small field inflation models, it is still necessary to have control over Planck scale

corrections, and tuning of parameters (at least at the part in 10−2 level) seems required.

One needs a large discrete symmetry to account for a low scale of inflation, and a very small

dimensionless parameter, progressively smaller as the scale of inflation beomes smaller. So

the theoretical arguments for small field over large field inflation are hardly so persuasive.

Given both the theoretical situation and the ongoing searches for tensor modes, it is clearly

interesting to explore the possibility of inflation on moduli spaces with Planck scale fields

undergoing variations of order Planck scale or larger. Such moduli spaces are quite familiar

from string theory. Though a reliable construction may be difficult, we can look to such

theories for insights into how such a theory of inflation might look.

3 Small field and large field solutions to the strong CP problem

The situation in small vs large field inflation is reminiscent — and as we will see closely

related to — that of the QCD axion. To solve the strong CP problem, it is not enough to

postulate the existence of a light pseudoscalar; one must account for an accidental global

symmetry which is of extremely high quality [34]. Here, too, there are small field and large

field solutions. Most models designed to obtain a Peccei-Quinn symmetry are constructed

with small axion decay constant, fa ≪ Mp (analogous to the small value of I). In such

constructions, fa is related to the expectation value of some field, φ (possibly a fundamental

scalar or a composite operator). In this case, near the scale fa one can write an effective

field theory, organized in powers of φ/Mp, where we have taken the relevant scale to be

Mp. If the scale is lower, the problem of obtaining a suitable Peccei-Quinn symmetry, i.e. a

solution of sufficient quality [34], is more daunting. It has long been appreciated that it is

necessary to suppress many operators in order to have a sufficiently light axion to solve the

strong CP problem. This can be achieved through discrete symmetries, but the symmetries

must be quite intricate. For example, with a single ZN , with supersymmetry one needs

minimally N = 11 or N = 12; without supersymmetry N must be somewhat larger [35, 36].

String theory has long suggested a different, large field, perspective on the axion prob-

lem [37]. This is particularly easy to describe in cases where there is some approximate

supersymmetry (unbroken supersymmetry at scales at least somewhat below the string

scale). In any theory with approximate supersymmetry, axions are accompanied by (non-

compact) moduli. In string theory (with unbroken supersymmetry), there are frequently
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axions. These axions exhibit continuous shift symmetries in some approximation (e.g. per-

turbatively in the string coupling). These are non-perturbatively broken, but often there is

a discrete shift symmetry which is exact. In other words, there is a dimensionless field, a,

such that a → a+2π is an exact symmetry of the theory.2 In this formulation, fa depends

on the precise form of the axion kinetic term. The (non-compact) moduli which accompany

these axions typically have Planck scale vev’s (in a sense we will make precise in a moment).

The size of terms in the effective action associated with these fields is controlled by the

2π periodicity of the axions. If we denote the full chiral axion superfield by A = s + ia,

this periodicity implies that, for large s, in the superpotential the axion appears as e−nA

for integer n. In constructing models which include supersymmetry breaking, solving the

strong CP problem requires suppressing only a small number of possible terms [38, 39].

Surveying known string compactifications, we might expect that there are several mod-

uli which must be stabilized. This is generally not a weak coupling problem. In the

framework of models with approximate supersymmetry (as above, this means supersym-

metry broken at scales well below the string scale), the racetrack [40] idea and the KKLT

model [41] are scenarios for obtaining moduli stabilization in systematic approximations in

a small parameter. In both of these scenarios, the superpotential for the moduli plays an

important role. Whether indeed there are systems which realize these ideas with suitable

parameters which can be taken arbitrarily small is unknown.

But, in any case, one might think the axion multiplet is special. If the superpotential

plays a significant role in stabilization of the saxion, it is difficult to understand why

the axion should be light. More plausibly, the saxion might be stabilized by features of

the Kähler potential (Kähler stabilization), in such a way that the imaginary part is not

affected. In perturbative string models, for example, the Kähler potential is often a function

of A+A†. There is no guarantee that would-be corrections to K which stabilize A do not

violate this symmetry substantially, but this is a widely adopted hypothesis.

What would it mean to say that the dependence of the superpotential on s is sup-

pressed? We might imagine that there is some other modulus, T = t + ib, appearing in

the superpotential as e−T , where e−T might set the scale for supersymmetry breaking. We

would also expect terms of order e−nA, e−A+T . One possibility to account for the lightness

of the axion would be that s > t, say s = 2t. Alternatively, S and T might be comparable,

but n > 1. Then T might be stabilized approximately supersymmetrically in the manner

discussed by KKLT:

W (T ) = Ae−T/b +W0 (3.1)

with small W0, leading to

T ≈ b log(W0). (3.2)

The potential for s would arise from terms in the supergravity potential such as:

Vs = eK
∣

∣

∣

∣

∂K

∂AW

∣

∣

∣

∣

2

gA A∗

+ . . . (3.3)

2In models exhibiting monodromy, this shift typically must be accompanied by transformations of other

fields under which the vacuum state is not invariant.
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For suitable K(A,A∗), V might exhibit a minimum as a function of s. If s is, say, twice

t at the minimum, e−A is severely suppressed, as is the potential for the (QCD) axion,

a. The fermionic component of A might be the goldstino (longitudinal component of the

gravitino), but additional fields might well play a role. In such a picture, the gravitino

mass would be of order e−t up to powers of t and s (and possibly other fields), with the

axion potential exponentially suppressed relative to m3/2.

Any such stabilization is inherently non-perturbative, and one might expect it to occur,

generically, for small s. On the other hand, the fact that gauge couplings are small in

nature and the existence of hierarchies suggest that e−s is small (and similar factors for

other moduli). In particular, we might hope that an effective lagrangian analysis would be

valid, in a Wilsonian action with cutoff scale well below Mp, and that we could organize

the action in powers of e−S , e−T .3 For example, one might imagine that e−t accounts for

the scale of supersymmetry breaking, while e−t accounts for the quality of the Peccei-

Quinn symmetry. We will the existence of such small exponentials for granted, as is rather

standard in discussions of string phenomenology and cosmology, in this section, and discuss

the issue in more detail in section 5.

3.1 A remark on distances in the modulus geometry

Typical metrics for non-compact moduli fall off as powers of the field for large field. Defining

s to be dimension one,

gA,A∗ = C2M2
p /s

2 (3.4)

for some constant, C. So large s is far away (a distance of order C Mp log(s/Mp) away)

in field space. If, for example, the smallness of e−(s+ia) is to account for an axion mass

small enough to solve the strong CP problem, we might require s ∼ 110 Mp or larger,

corresponding to a distance of order 8Mp from s = Mp if C =
√
3.

4 Non-compact moduli as inflatons

We can summarize the previous section by saying that, if string theory and its

(pseudo)moduli spaces are relevant to nature, the strong CP problem points to Planck

scale regions of field space as the arena for phenomenology. Given this, it is important to

consider non-compact moduli spaces as the setting for inflation. As for the axion, we will

assume some approximate supersymmetry. As in ordinary, supersymmetric hybrid infla-

tion, supersymmetry breaking is described by the F component of the inflaton field (or a

closely related field) [30]. One can write an effective field theory for the light fields (fields

with masses of order HI or smaller) which is supersymmetric, with supersymmetry break-

ing described in terms of these supersymmetry breaking fields [15]. This structure, indeed,

explains why the moduli masses are typically of order HI . As is typical of such theories,

tuning is required to account for the small values of the slow roll parameters (essentially

3It is quite possible — even likely — that there are situations where e−S is small in a region of the moduli

space but the coefficients of e−nS are correspondingly large. This is known to occur in some string world

sheet analyses involving non-trivial compactifications. This would invalidate the underlying assumptions

here in cases where it occurred.
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why the inflaton is significantly lighter than HI). These issues will be discussed further in

our subsequent discussion.

Our earlier discussion suggests some of the ingredients for such a structure:

1. In the present epoch, one or more moduli responsible for hierarchical supersymmetry

breaking.

2. In the present epoch, a modulus whose superpotential is highly suppressed, whose

compact component is the QCD axion. This is not necessary for inflation, but is the

essence of a modular (large field) solution to the strong CP problem.

3. At an earlier epoch, a stationary point for some subset of fields in the effective action

with higher scale supersymmetry breaking and a positive cosmological constant. The

current limits on gravitational radiation imply a suppression by at least 108 relative

to M4
p . Setting this aside, we might contemplate significantly lower scales.

4. At an earlier epoch, a field with a particularly flat potential which is a candidate for

slow roll.

Fields need not play the same role in the inflationary era that they do now. For example,

the Peccei-Quinn symmetry might be badly broken during inflation. Then the axion will

be heavy during this period and isocurvature fluctuations may not be an issue. In such a

case the initial axion misalignment, θ0, would be fixed rather than being a random variable.

Any would-be energy density is still eight orders of magnitude belowM4
p . This suggests

that moduli have large vev’s, i.e. quantities like e−A, e−T we encountered before are quite

small, though much larger than at present. We might, for example, have a pair of moduli,

A, T responsible for supersymmetry breaking, and an additional field, I, which will play

the role of the inflaton. During inflation,

HI ∼ W ∼ e−t (4.1)

for example. For typical Kähler potentials, the curvature of the t and i potentials will be

of order HI . We will exhibit a model with lower curvature below.

A successful model of this sort requires a complicated interplay between effects due to

the Kähler potential and superpotential. Corresponding to the general requirements we

listed above, we need, for this set of degrees of freedom:

1. The potential must possess at least two local, supersymmetry breaking minima in

A and T , one of higher, one of lower, energy. The former is the setting for the

inflationary phase; the latter for the current, nearly Minkowski, universe.

2. In the inflationary domain, the potential for I, on the other hand, must be compar-

atively flat over some range.

3. In the inflationary domain, the imaginary parts of A and T should be comparable in

mass to HI (or slightly larger) , if the system is to avoid difficulties with isocurvature

fluctuations. This would arise if e−s ≈ e−t.
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4. In the present universe, the imaginary part of A should be quite light, along the lines

described in the previous section. The imaginary part of I should be (as we will

argue in more detail below) extremely light in the lower minimum.

5. There are additional constraints from the requirement that inflation ends. For some

value of Re I, the inflationary minimum for T andAmust be destabilized (presumably

due to Kähler potential couplings of I to A and T ). At this point, the system must

transit to another local minimum of the potential, with nearly vanishing cosmological

constant.

6. The process of transiting from the inflationary region of the moduli space to the

present day one is subject to serious constraints. Even assuming that there is a

path from the inflationary regime to the present one, the system is subject to the

well-known concerns about moduli in the early universe [42, 43]. If they are suffi-

ciently massive (as might be expected given current constraints on supersymmetric

particles), they may reheat the universe to nucleosynthesis temperatures, avoiding

the standard cosmological moduli problem. T and A are vulnerable to the moduli

overshoot problem [43], for which various solutions have been proposed.

5 Effective theories for modular inflation

In the previous section, we have listed some requirements for a successful theory of modular

inflation. Needless to say, we don’t know how to extract such a theory from string theory.

In this section, we will content ourselves with writing down theories which satisfy (some

of) the various requirements separately. We first discuss the question of the validity of

effective field theory in the regimes of interest. Then we turn to features of the Kähler

potential and superpotential necessary to satisfy the requirements of modular inflation.

5.1 The effective action on the moduli space

In any possible theory of quantum gravity, the effective action has, at best, limited appli-

cability. Moduli stabilization as described above occurs, more or less by definition, in a

region where standard perturbative methods are not valid [20]. In particular, in the large

field regime in string theory, the metric for the moduli tends uniformly to zero and does not

exhibit interesting structure. In cosmological situations, the motion on the moduli space

exhibits singularities [44]. Finally, there are more general reasons of principle to question

the use of effective field theory methods [45].

If moduli are stabilized in a region where weak coupling methods are not valid, in

what sense might an effective action be useful or even meaningful? Without solving a

(non-supersymmetric) string theory, this is a hard question to answer, but we can at least

formulate a set of underlying — and widely held — assumptions which would provide a

rationale for such a treatment. It is easiest to articulate the underlying assumptions —

and some of their limitations — if we consider a moduli space which asymptotically is

approximately supersymmetric.
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The standard assumptions of string phenomenology are that moduli are stabilized in

regions where the observed gauge couplings are weak; usually it is also assumed that there is

an approximate supersymmetry with a hierarchy of scales. Suppose, first, that this occurs

due purely to high energy effects, without, for example, the action of a strongly interacting

gauge theory. Then the effective low energy theory might consist of moduli only (plus

supergravity). Ignoring gravity at first, we can argue self consistently for the validity of a

low energy effective theory, in much the way one argues for the non-linear pion lagrangian.

In particular, we can study slowly varying classical field configurations. The existence

of a light gravitino in regions of the field space implies that the effective lagrangian (in

these regions) will be supersymmetric (with supersymmetry breaking described within the

action itself). The fields can then be organized into chiral multiplets; the superpotential

is constrained by the axion shift symmetries. This implies that for a range of fields, the

superpotential is exponentially small.4 It is difficult to make arguments about the Kähler

potential. Indeed, it has been argued [46] that large corrections to the Kähler potential

might be the source of moduli stabilization and we have already invoked this possibility.

Now including gravity, the effective action has, at best, limited validity. For effective

actions involving moduli and gravity, apart from stable AdS and Minkowski space, typical

motions on the space will begin or end in singularities, where necessarily the effective field

theory treatment breaks down [44]. The understanding/resolution of such singularities

may require a framework such as eternal inflation or something yet unknown. In addition,

the moduli space itself is expected to have singularities. For example, in a one complex

dimensional space, with a constant superpotential, if the metric behaves asymptotically as

1/(S+S†)2, there cannot be a stationary point unless the metric vanishes somewhere [46].5

One might expect these sorts of singularities even if there are multiple moduli, but they

may be isolated, and there may be (and we will assume there are) cosmological histories

which avoid them. They might be connected with the appearance of new massless states,

or some strong coupling (or both).

So we content ourselves with the assumption that for the period of cosmic history of

interest (inflation up to the present time) the motion of the system be through non-singular

regions of the space. We require our effective description only be valid during this period.6

Such smooth behavior is indeed a requirement for inflation; if the metric on the space

of fields becomes singular, fields become strongly coupled and it is hard to imagine that

the slow roll conditions can be satisfied. It would seem to be a feature of the more recent

history of the universe as well. For the discussion of inflation, it is necessary that there

be trajectories which avoid the singular regions. To summarize, we assume that for the

relevant period of cosmic history, motion on the pseudomoduli space can be described by

a non-singular effective field theory. This does not mean that the moduli space is non-

singular everywhere, nor that the full cosmic history is smooth (or that this history is

everywhere describable through this effective theory).

4Though it might be the sum of exponentially small terms with large coefficients.
5The issue of the vanishing metric was raised by Kaplunovsky in a private communication.
6An attempt to formulate a more global picture of cosmology in quantum gravity is the holographic

cosmology of [47].
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5.2 Stabilizing moduli in the current universe

We have already discussed stabilization of the moduli A and T within the context of

large field solutions of the strong CP problem. We implemented stabilization of T in a

manner similar to that of KKLT. We required that the terms in A in the superpotential

be exponentially suppressed relative to e−T/b, so that s was stabilized by Kähler potential

effects, while the leading contributions to the a potential arise from QCD. We require, for

a successful inflationary model, that Re I also be fixed by Kähler potential effects. The

goldstino is a linear combination of I and A. The imaginary part of I must be extremely

light, so it does not constitute an appreciable part of the energy density today.

5.3 Stabilizing moduli during inflation

During inflation, we require e−T be small, but much larger than its value in the present

universe. This might be achieved, in an approximately supersymmetric fashion, with a

superpotential of the form:

W = ǫe−T + e−2T + e−(T+A) + e−A +W0. (5.1)

Here ǫ ∼ 10−2, and W0 is far smaller. Then there is a local minimum at e−T , e−A ∼ ǫ. At

this minimum, the masses of all of the components of T,A, and in particular, the axion,

are comparable and can readily be somewhat large compared to the scale of inflation (by

powers of T , s).

I should not appear in the superpotential (or should be further suppressed). Sufficient

flatness of the I potential to account for inflation places severe restrictions on the Kähler

potential. We will discuss models for the Kähler potential and the inflaton potential in the

next section.

5.4 Requirements for the transition period

Couplings of the inflaton to the fields S and T must destabilize the inflationary minimum

and end inflation. Given the restrictions we are imposing on the superpotential, this

requires that couplings in the Kähler potential, such as

(I + I†)2((S + S†)2, (T + T †)2) (5.2)

contribute negatively to the s and tmasses at the later stages of inflation, in such a way that

the system can transit smoothly from one state to the other. The details of the terms in the

action which dominate during this period are likely to be rather involved, with mixings, for

example, among the various fields during this phase. During the inflationary phase itself

the requirement is that K is such that I is much lighter than the other fields (whose masses

are of order HI , the Hubble scale during inflation, or larger). One can contemplate different

possibles for the masses of these fields and their stabilization in the present universe. Given

that, for this discussion, the Kahler potential is an arbitrary function of the fields, we do

not see any difficulty in principle with satisfying these conditions. In the next section, we

will be more explicit about possible behaviors of K and W during the inflationary era.
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It should be stressed that the requirements for destabilization are, like those for stabi-

lization, not consistent with a systematic expansion in 1/s, 1/t. In the region of large s, t,

in particular, one would expect these fields to have masses parametrically large compared

to m3/2, and the Kähler couplings could not destabilize this minimum. We should stress

again, as well, that typical Kahler potentials may lead to difficulties in settling into the

correct, final vacuum [43]. The Kahler potential may have to be somewhat singular. This

question will be explored elsewhere.

6 Inflationary models: large r

We consider, first, as a benchmark, the case where r is in the range of the reported BICEP2

result, corresponding to field excursions several times Mp. In this regime, it is easy to

construct models consistent with the data on r and ns as well as the fluctuation spectrum.

As an example, we take the Kähler potential for I to be:

K = −N 2 log(I + I∗). (6.1)

Writing

I = eφ/N (6.2)

the kinetic term for φ is simply (∂φ)2. N will serve as the small parameter accounting for

slow roll. In the limit of very small N , the potential for φ becomes flat.

Indeed, the φ potential, with the assumption that all moduli besides I are fixed (and

have masses greater than H), and that I does not appear in the superpotential, with the

Kahler potential above is

V (φ) = e−NφV0, (6.3)

V0 being the minimum of the S, T potential. So the slow roll parameters are:

ǫ =
1

2
N 2; η = N 2 = 2ǫ. (6.4)

Note

n− 1 = −2ǫ. (6.5)

If ns = 0.96, as measured by the Planck satellite [4], ǫ = −0.02, and r = 16ǫ = 0.32. This

is well above the recent quoted limit on r from the joint BICEP2/Planck analysis [3]. In

section 7, we will discuss modifications which, with tuning, permit smaller values of r. From

this viewpoint, one would expect r to be as large as permitted by present observations.

A model with features similar to that of this section (with cosh rather than exponential

potential) has been discussed in [48]. Ref. [18] discusses a number of issues in large field

inflation, and writes models with features similar to those of this section.

6.1 Connection to chaotic inflation

Chaotic inflation [6] has, for decades, provided a simple model for slow roll inflation, and

its prediction of transplanckian field motion and observable gravitational radiation now

may be validated. As we look at the moduli inflation model of the previous section (and

– 12 –
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more generally moduli models of large field inflation), we see, in fact, a realization of the

ideas of chaotic inflation. Again, the potential behaves as

V ∼ H2
IM

2
p e

−Nφ (6.6)

We have seen that the exponent changes, during inflation, by a factor of about 3/2. So we

can make a crude approximation, expanding the exponent and keeping only a few terms.

If we focus on each monomial in the expansion, the coefficient of φp, in Planck units, is:

λp =
10−8N p

p!
, (6.7)

where N is the number of e-foldings. We can compare this with the required coefficients

of chaotic inflation driven by a monomial potential, φp. In this case,

λp =
3× 10−7p2

(2Np)
p

2
+1

(6.8)

These coefficients are not so different. For example, for p = 1, the moduli coefficient is

about 2 × 10−9, while for the chaotic case it is about four times smaller; the discrepancy

is about a factor of two larger for p = 2. So we see that these numbers, which would one

hardly expect to be identical, are in a similar ballpark.

So moduli inflation provides a rationale for the effective field theories of chaotic in-

flation. The typical potential is not a monomial, but one has motion on a non-compact

field space, over distances of several Mp, with a scale, in Planck units, roughly that ex-

pected for chaotic inflation. The structure is enforced by supersymmetry and discrete shift

symmetries.

7 Moduli inflation: small r

It is now clear that r < 0.1 [3], and it is conceivable that it is significantly smaller. Still,

as we explain in this section, moduli inflation provides a setting, where fields would be of

order Mp, but their excursions would be small (as we will see, of order Mp or less). An

interesting question is whether these models are more or less tuned than models with a

higher scale. We will argue, in fact, that the lower scale models are more highly tuned;

this might be an argument in favor of high scale inflation.

In the large r model of the previous section, ǫ and η were naturally comparable. In

small r models, given our knowledge of ns, we have ǫ ≪ η. We can be rather explicit if

we assume that the superpotential (as in the previous models) is roughly constant during

inflation (WI), and similarly that the order parameter for supersymmetry breaking, FZ , is

roughly constant. Then

V = eK

[

∣

∣

∣

∣

∂K

∂I
WI

∣

∣

∣

∣

2

gII
∗

+ V0.

]

. (7.1)

Here V0 is a combination of the supersymmetry breaking terms and −3|WI |2.
In the moduli cosmology framework, an inflationary model is characterized by a choice

of Kähler potential and superpotential. The requirements that V produce the desired
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values of ǫ and η yield constraints on K. In general, smaller ǫ implies greater tuning of the

Kähler potential. The Planck results for ns, in addition, require that η be negative. To

demonstrate that these requirements can be met, we study a class of Kähler potentials:

K(I, I∗) = −N 2 log(I + I∗) +
A

I + I∗
+

B

(I + I∗)2
. (7.2)

We treat N as fixed, as well as I. We then take B = B(A) such that ns = 0.96, and vary

A. In order to achieve small ǫ we demand that we sit near a point where V ′ ≡ ∂V/∂φ = 0.

At such a point, ǫ = dǫ
dA = 0. So

ǫ =
1

2

d2ǫ

dA2
δA2. (7.3)

We see, in this way, that studying just this subset of parameters, the tuning in A goes as√
ǫ. Considering the full set of parameters, the tuning is arguably somewhat more severe.

We indeed find that for a range of parameters, one can have suitable ns with small ǫ.

As an example of a point with V ′ = 0,

N = .0256; i = 7.70304; A = .00048800; B = 0.000554. (7.4)

So, for example, if V = (1014 GeV)4, then A = .00048795, indicating the required degree

of tuning, about a part in 105, as expected.

To summarize this section, small field inflation can be achieved within the moduli

models. The fields should be thought of as Planck scale, but the excursions are Planck

scale or less. These models are more tuned than the higher scale models, so this is an a

priori argument in favor of higher scale inflation.

8 Conclusions

Explaining inflation from an underlying microscopic theory is an extremely challenging

problem, quite possibly inaccessible to our current theoretical technologies. As we have

reviewed, even in so-called small field inflation, it requires control over Planck scale phe-

nomena. Within string theory, this requires understanding of supersymmetry breaking

(whether large or small) and fixing of moduli in the present universe as well as at much

earlier times. It requires an understanding of cosmological singularities, and almost cer-

tainly of something like a landscape.

That said, as we reviewed, the essence of hybrid inflation is motion on a (non-compact)

pseudomoduli space. In string theory, at least at the classical level, such moduli spaces

are ubiquitous, and the features of these moduli suggest a picture for inflation in which

the (canonical) fields have Planck scale motions. We have stressed a parallel between

small/large field inflation and small/large field solutions to the strong CP problem. The

existence of moduli in string models is strongly suggestive of the large field solutions to

both problems. The proposal we have put forward here is similar to the large field solutions

of the strong CP problem.

We have noted that in such a picture, several moduli likely play a role in inflation,

achieving the needed degree of supersymmetry breaking and slow role. We have seen that
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small r is more tuned than large r, giving some weight to the former possibility. We have

stressed the contrast with small field inflation, where extreme tuning to achieve low scale

inflation is replaced by the requirement of an extremely small dimensionless coupling.

Returning to the strong CP problem, we have stressed that any would-be Peccei-Quinn

symmetry is an accident, and that the accident which holds in the current configuration

of the universe need not hold during inflation; this would resolve the axion isocurvature

problem.

We conclude by asking, in such a framework, what one means by a model and what

might be tests or predictions of the framework. More precisely, the inflationary paradigm

is highly successful; the question is whether we can provide some compelling microscopic

framework and whether it is testable. As always in inflationary model building, this is a

difficult question. First, one is typically introducing a great deal of structure with which

to explain a small number of parameters. One has additional fields, which may, in the

present universe, be quite heavy, and also may be weakly interacting with Standard Model

particles. Moduli inflation suffers from the same issues. Indeed, our point of view has not

been to obtain a particular, detailed model, but to ask what features might be generic in a

plausible scenario for the implementation of inflation in the sorts of effective field theories

which seem to emerge from string theory (or quantum theories of general relativity more

generally). Two features which would seem generic would be:

1. Higher scales of inflation are preferred.

2. High scale axions (even an axiverse [49]).

In a more detailed picture, one might hope to connect some lower energy phenomenon,

such as supersymmetry breaking, with inflation. This would require significant more work

to embed these models in theories with supersymmetry breaking, and to understand in

more detail the end of inflation and the transition to a state more closely resembling our

current universe.
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