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1 Introduction

The spectacularly successful Standard Model (SM) has received a recent fillip with the dis-

covery of the long-sought for Higgs boson [1–3]. Yet, certain questions remain unanswered.

These pertain to the existence of Dark Matter, the origin of the baryon asymmetry in the

Universe, the existence of multiple generations of fermions, the hierarchy in fermion masses

and mixing, and, last but not the least, the stability of the Higgs sector under quantum
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corrections. Over the years, several attempts have been made to answer these questions,

albeit only with partial success. One such stream of thought envisages a world in more

than three space dimensions as a possible panacea to some of the ills of the SM, and, in

this paper, we concentrate on this possibility.

While such theories were first proposed nearly a century ago [4–6] in the quest to unify

electromagnetism and gravity, the early efforts were quickly shown to lead to a dead end

and were abandoned. The situation changed with the introduction of String Theory as a

quantum theory of gravity as well as a possible ultraviolet completion of the SM. With

the theory defined, of necessity, in at least ten dimensions, compactification of the extra

dimensions is paramount before it can be deemed a description of the observed world. With

the compactification scale being close to the Planck scale in most early constructions, the

new dimensions, understandably played virtually no role in low-energy physics. However,

warped compactification [7, 8], wherein the SM fields were confined to the usual (3 + 1)

dimensions with only gravity being allowed to propagate in the (five-dimensional) bulk, led

not only to a “resolution” of the hierarchy problem, but also to interesting consequences at

colliders owing to distinct O( TeV) resonances in the form of Kaluza-Klein (KK) excitations

of the graviton.

The last feature moved both the ATLAS [9] and CMS [10] experiments to investigate

the existence of such Randall-Sundrum (RS) graviton resonances, especially through the

dilepton and diphoton decay channels. In particular, the ATLAS experiment ruled out

graviton masses below 1.03 (2.23) TeV at 95% C.L. with the lower bound being dependent

on the ratio of the five-dimensional curvature and the fundamental mass scale. This ratio

is constrained, on the upper side, by the applicability of a semiclassical treatment (only

recourse available in the absence of a full quantum theory of gravity) and, on the lower,

by the undesirability of fine-tuning. For reasonable values of this ratio, the mass of the

first graviton excitation should, preferably, be a few times that of the Higgs boson; and

certainly no higher than a few TeVs. Thus, the continued absence of any such resonance

at the TeV scale begins to call into question the validity of this scenario as a cure for the

Higgs mass stabilization problem. However, it should be realized that the RS model is

only the simplest of possible warped world scenarios. In particular, there is no reason that

there should be only one such extra dimension [11–31]. For one, in a scenario with double

(or more) warping [31], it was shown recently that the aforementioned ATLAS bounds are

naturally evaded [32]. This motivates us to study the features of six-dimensional theories.

Although the mechanism for the formation of branes and the localization of fermions

thereon is well understood, it is interesting to consider allowing them to propagate in the

full six dimensions. The corresponding flat space theories have several interesting conse-

quences. For example, the analogue of Witten anomaly cancellation leads to a prediction

of the number of chiral generations [33], while suppressing the proton decay rate to below

the current constraints [34]. Furthermore, some of these constructions [35] naturally lead

to a small cosmological constant. The rich collider phenomenology [36–39], apart from

the existence of a viable cold dark matter candidate [40–42] renders these scenarios phe-

nomenologically attractive. On the other hand, with the KK excitations for each species

now expanding to a “tower of towers”, the quantum corrections to the SM amplitudes
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—most importantly to the electroweak precision variables— are potentially large, calling

into question the consistency with low-energy phenomenology. However, as ref. [43] demon-

strated for a five-dimensional theory, it is possible to suppress the coupling between the

zero modes of the SM fields and the KK towers. This is of particular importance in the

context of the aforementioned quantum corrections. Thus, it is of interest to investigate

whether considering a warped space would allow us to preserve some of the advantages of

going into six dimensions while simultaneously protecting us from the pitfalls. This paper

is the first step towards this goal, and we set up the entire formulation here and comment

on some of the consequences. While ref. [45] did consider bulk SM fields in such a geometry,

the analysis therein had taken recourse to an approximation of the metric, thereby leading

to a significant simplification of the equations of motion. However, as was demonstrated in

ref. [32], the said approximation, apart from being untenable close to the brane we live on,

led to a drastic change in the form of the graviton wavefunctions (and, hence, their cou-

plings). As we shall show, much the same happens for bulk gauge bosons as well, leading

to very interesting phenomenological consequences. The detailed phenomenology would be

presented in subsequent papers.1

The rest of the article is constructed as follows. To begin with, we present a very

brief review of the doubly warped space. Sections 3 & 4 discuss, respectively, the bulk

fermions and gauge bosons in this theory, without taking into consideration the spontaneous

breaking of the gauge symmetry which, in turn, is discussed in section 5. The interactions

are delineated in section 6 and the Feynman rules listed. Finally, we conclude in section 7.

2 Brief review: nested warping in six dimensions

We consider a compactified six-dimensional space-time with successive warpings and Z2

orbifolding in each of the two extra dimensions, viz. M1,5 → [M1,3×S1/Z2]×S1/Z2. Dual

requirements of nested warping along with a manifestly exhibited four-dimensional (xµ)

Lorentz symmetry restricts the line element to the form [31]

ds2 = b2(x5)
[
a2(x4)ηµνdx

µdxν +R2
ydx

2
4

]
+ r2

zdx
2
5 , (2.1)

where the compact directions are represented by the dimensionless coordinates x4,5 ∈ [0, π]

with Ry and rz being the corresponding moduli. It is interesting to examine the rationale for

the two orbifoldings. A nontrivial a(x4), when accompanied by compactification, demands

(as in the RS case), the orbifolding in the x4-direction. Furthermore, it necessitates the

presence of localized energy densities at the orbifold fixed points, and in the present case,

these appear in the form of tensions associated with the two end-of-the-world 4-branes at

x4 = 0, π. Similarly, even without any orbifolding in the x5-direction, a nontrivial b(x5) for

a compactified x5 automatically requires that a 4-brane should exist at x5 = π, whereas

none needs to exist at x5 = 0. The situation changes though if one wishes to introduce such

a brane. While the latter could exist even in the absence of such an orbifolding, it would

1It should be pointed out that six dimensional warped models with spherical compactifcations [46, 47], do

try to explain the number of fermion families [48]. However, with these models having only a single warping,

the aforementioned constraints on the RS scenario continue to hold, albeit with some modifications.
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be free to traverse in the x5-direction in the absence of a constraining potential. Thus, if

such a brane is to be introduced, it is easiest to do so if the second S1 is orbifolded too.

The total bulk-brane action for the six dimensional space time is, then, given by

S = S6 + S5

S6 =

∫
d4x dx4 dx5

√
−g6 (M4

6R6 − Λ)

S5 =

∫
d4x dx4 dx5

√
−g5 [V1(x5) δ(x4) + V2(x5) δ(x4 − π)]

+

∫
d4x dx4 dx5

√
−g̃5 [V3(x4) δ(x5) + V4(x4) δ(x5 − π)] ,

(2.2)

where Λ is the (six dimensional) bulk cosmological constant and M6 is the fundamental

scale (quantum gravity scale) in six dimensions. The five-dimensional metrics in S5 are

those induced on the appropriate 4-branes which lend a rectangular box shape to the space.

If the bulk cosmological constant Λ is negative, the solutions for the 6-dimensional

Einstein field equations are given by [31]

a(x4) = e−c|x4| c =
Ryk

rz cosh kπ
≡ αk

cosh(kπ)

b(x5) =
cosh (kx5)

cosh (kπ)
k = rz

√
−Λ

10M4
6

≡ ε rzM6 ,
(2.3)

where we have introduced the dimensionless constants α and ε for future reference. Clearly,

the validity of the semiclassical treatment (to the extent of neglecting quantum corrections

to the bulk gravity action) requires the bulk curvature to be significantly smaller than

the fundamental scale M6 and it has been argued in the literature to imply that ε <∼ 0.1.

Similarly, the ratio of the two moduli should not be too large so as to not reintroduce a

large hierarchy.

As in the RS scenario, the brane tensions in eq. (2.2) are specified by the junction

conditions. The smoothness of the warp factor at x5 = 0 obviates the necessity for a

V3(x4), while the fixed point at x5 = π requires a negative tension, viz.

V3(x4) = 0, V4(x4) =
−8M4

6k

rz
tanh (kπ) . (2.4)

In contrast, the two 4-branes sitting at x4 = 0 and x4 = π require equal and opposite

energy densities, just as in the RS case. However, the x5-warping dictates that, rather

than being constants, these energy densities must be x5-dependent, viz.

V1(x5) = −V2(x5) = 8M2
6

√
−Λ

10
sech(kx5) . (2.5)

Such tensions could originate from different kinds of physics [31]. The most simple would

be a scalar field with a non trivial potential, wherein the solution of eq. (2.3), along with

the expressions for V1,2(x5), is nothing but a self consistent solution for the gravity-scalar

system. While a wide variety of potentials can have such a kink-like solution [31], it is
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Figure 1. Contour plots in the (ε, α) plane for fixed values of k with Ry set to satisfy the hierarchy

eq. (2.7).

intriguing to note that even a simple quartic form can do the job. (In section 5, we shall

encounter a variant of this mechanism.) And while other scenarios, such as a Born-Infeld

action, can also lead to a similar effective potential, we shall not explore those here.

The (derived) 4-dimensional Planck scale can be related to the fundamental scale M6

through

M2
Planck ∼

M4
6 rz Ry
2 c k

(
1− e−2 c π

) [ tanh kπ

cosh2 kπ
+

tanh3 kπ

3

]
. (2.6)

The point in this 2-dimensional (x4–x5) plane associated with the lowest energy scale is

given by x4 = π, x5 = 0. Assuming us to be located at this juncture immediately gives the

required hierarchy factor (i.e., the mass rescaling due to warping) to be

w =
e−cπ

cosh kπ
. (2.7)

For the large w that we need, this equation, along with the relation between c and k

(eq. (2.3)) demands that, unless there is a very large hierarchy between the moduli, the

warping is substantial in only one of the two directions, and rather sub-dominant in the

other. In other words, we can have either (i) a large (∼ 10) value for k accompanied by an

infinitesimally small c or (ii) a large (∼ 10) value for c with a moderately small (<∼ 1.0) k.

The relationship between the parameters of the theory are displayed in figure 1.

In summary, we are dealing with a brane world which is doubly warped, with the

warping being large along one direction and small in the other. The very structure of the

theory typically requires a small hierarchy between the two moduli, both of which remain

comparable to the fundamental length scale in the theory. It should be realized that the

two branches, namely (i) a large k and a small c, or (ii) a large c and a small k, are

fundamentally different.
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3 The fermions

As is well-known, fermions, of necessity, are defined as representations of the Poincare

algebra, as applicable to the tangent space. Hence, we begin by briefly reviewing the

construction in flat space before embarking on the more germane issue of the warped space.

3.1 Flat six-dimensions

In the current case, the spin-1/2 representation is defined by six 8×8 matrices Γa, satisfying

a Clifford algebra

{Γa,Γb} = 2 ηab

where ηab = diag(−1,+1,+1,+1,+1,+1). We choose to work with a particular represen-

tation of the algebra defined by

Γµ̂ = γµ̂ ⊗ σ3 Γ4 = 1⊗ σ1

Γ5 = 1⊗ σ2 Γ7 = γ5 ⊗ σ3 ,
(3.1)

where γµ̂ (with µ̂ denoting the subspace of the flat space) are the four-dimensional Dirac

matrices (in the Weyl representation) and γ5 (Γ7) is the parity operator in four (six)

dimensions.2 The direct product is defined in a trivial sense and, for example,

γµ̂ ⊗ σ3 =

(
γµ̂ 0

0 −γµ̂

)
.

It is straightforward to construct the Dirac spinor Ψ(xµ̂, x4, x5) satisfying the flat space

Dirac equation [
Γµ̂∂

µ̂ + Γ4∂4 + Γ5∂5 −m
]

Ψ(xµ̂, x4, x5) = 0 . (3.2)

The representation of the Lorentz generators given by Σab = i
2 [Γa,Γb], viz.

Σµ̂ν̂ =
i

2
[Γµ̂,Γν̂ ] = Sµ̂ν̂ ⊗ σ0 Σµ̂4 =

i

2
[Γµ̂,Γ4] = −γµ̂ ⊗ σ2

Σµ̂5 =
i

2
[Γµ̂,Γ5] = γµ̂ ⊗ σ1 Σ45 =

i

2
[Γ4,Γ5] = 1⊗ σ3

(3.3)

is, of course, reducible, as is the case for all even dimensions. In other words, this space

admits chiral representations Ψ± and thus, we may directly export the SM quantum number

assignments. This is quite unlike the five-dimensional case. Of course, on compactification,

each such six-dimensional chiral representation would, in general, yield low-lying states

carrying either value for the four-dimensional chirality unless boundary conditions (such as

those pertaining to the orbifold fixed points) prevent this. Before we consider such details,

we need to set up the Dirac equation in the warped six-dimensional space which we do next.

2Note that this implies that Γ0 is antihermitian, while the other ΓM are hermitian.
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3.2 Fermions in the warped space

To define these, we need to consider the sechsbeins (namely, the transformations to the

tangent space) eaM which satisfy the conditions

eaM ebN g
MN = ηab , eaM ebN η

ab = gMN ,

leading to

eaµ = a(x4) b(x5) δaµ , ea4 = Ry b(x5) δa4 , ea5 = rz δ
a
4 . (3.4)

Denoting the inverse sechsbeins by EMa , we define the spin connections ωbcM through the

covariant derivatives of EMa , viz.,

ωbcM ≡ ENb (gPN E
P
c );M = gRN E

N
b (∂M ERc + ΓRMT E

T
c ) . (3.5)

For the metric of eq. (2.1), the only nontrivial components of the spin connections are

given by

ωbc4 =
Ry
rz

ḃ δ5
[b δ

4
c] , ωbcµ = ηµν

(
a′

Ry
δν[b δ

4
c] +

a ḃ

rz
δν[b δ

5
c]

)
, (3.6)

where primes (dots) denote derivatives with respect to x4 (x5). The Dirac Lagrangian in

the warped geometry is, then, given by

LDirac = i Ψ̄+ ΓaEMa

(
∂M + wbcM [Γb,Γc]

)
Ψ+ (3.7)

for the positive chirality field Ψ+ and, analogously, for Ψ− as well. The corresponding

equation of motion is

ΓaEMa DMΨ+ =

[(
Γµ

ab
∂µ +

Γ4

Ryb
∂4 +

Γ5

rz
∂5

)
+

1

2

(
4Γ4 a′

abRy
+ 5Γ5 ḃ

brz

)]
Ψ+ = 0 .

Anticipating Kaluza-Klein reduction, we write the positive chirality Weyl spinor as

Ψ+ =
1√
Ryrz

∑
n,p

[
Fn,pl (x4, x5)ψn,pl (xµ)⊗ Sup + Fn,pr (x4, x5)ψn,pr (xµ)⊗ Sdn

]
, (3.8)

with

Sup ≡ (1 0)T , Sdn ≡ (0 1)T . (3.9)

Here, Fn,pr (x4, x5) encapsulate the wavefunction dependences on the extra dimensions,

with the subscripts (l, r) referring to the (four-dimensional) chirality of the putative four-

dimensional fields ψn,pl,r whereas the factor
√
Ry rz (ensuring the correct mass dimension)

would have arisen if the compactified directions were flat instead. The Dirac equation then

reduces to

0 =

[(
γµ

a
∂µψ

n,p
l

)
Fn,pl + ψn,pr

{
1

Ry

(
∂4 + 2

a′

a

)
− i b

rz

(
∂5 +

5 ḃ

2 b

)}
Fn,pr

]
⊗ Sup (3.10)

+

[
−
(
γµ

a
∂µ ψ

n,p
r

)
Fn,pr + ψn,pl

{
1

Ry

(
∂4 + 2

a′

a

)
+ i

b

rz

(
∂5 +

5 ḃ

2 b

)}
Fn,pl

]
⊗ Sdn .
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Expectedly, the two Weyl fields ψn,pl/r (at each level) combine to give a Dirac fermion,

and this results in

γµ∂µψ
n,p
l/r = Mn,pψ

n,p
r/l

0 =
Mn,p

a
Fn,pl +

1

Ry

(
∂4 + 2

a′

a

)
Fn,pr − i b

rz

(
∂5 +

5

2

ḃ

b

)
Fn,pr

0 =
−Mn,p

a
Fn,pr +

1

Ry

(
∂4 + 2

a′

a

)
Fn,pl + i

b

rz

(
∂5 +

5

2

ḃ

b

)
Fn,pl .

(3.11)

Effecting a separation of variables, we write

Fn,pl/r (x4, x5) = [a(x4)]−2 [b(x5)]−5/2 f̃n,pl/r (x4)fpl/r(x5) (3.12)

as this particular parametrization not only removes the spin connection terms from the

equations of motion, but also effectively isolates the derivative discontinuities in the wave-

functions at the boundaries. This leads to(
1

Ry
∂4 − i

b

rz
∂5

)
f̃n,pr (x4)fpr (x5) +

Mn,p

a
f̃n,pl (x4)fpl (x5) = 0(

1

Ry
∂4 + i

b

rz
∂5

)
f̃n,pl (x4)fpl (x5)− Mn,p

a
f̃n,pr (x4)fpr (x5) = 0 .

(3.13)

Clearly, fpr/l(x5) = 1 and f̃n,pr/l (x4) = 1 satisfy the above for Mn,p = 0 and these, if permitted

by the boundary conditions, would denote the ground state.

For nonzero Mn,p, these coupled equations can be diagonalized in a fashion analogous

to that for the flat space case, albeit at the cost of introducing slightly more complicated

operators, viz.

0 = (aD−aD+ +M2
n,p) f̃

n,p
r (x4)fpr (x5)

0 = (aD+aD− +M2
n,p)f̃

n,p
l (x4)fpr (x5)

D± ≡ 1

Ry
∂4 ∓ i

b

rz
∂5 .

(3.14)

On separating, these yield

0 = a(x4) ∂4

[
a(x4) ∂4f̃

n,p
l/r (x4)

]
+R2

y

[
M2
np −m2

pa
2(x4)

]
f̃n,pl/r (x4)

0 = b(x5)∂5

(
b(x5)∂5 + ic sgn(x4)

rz
Ry

)
fpr (x5) +m2

pr
2
zf

p
r (x5)

0 = b(x5)∂5

(
b(x5)∂5 − ic sgn(x4)

rz
Ry

)
fpl (x5) +m2

pr
2
zf

p
l (x5) .

(3.15)

Clearly, the x5-equations can be factorized and their solutions, in the bulk, would satisfy3

b(x5) ∂5fl/r =

[
i
c rz
2Ry

κl/r

]
fl/r

3The ostensible derivative discontinuities which would, putatively, have exchanged fl and fr at the

boundary, is actually of no consequence at all as the physical range corresponds to x4 ≥ 0.
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where the exponent has been factorized for future convenience. The constants κl/r are

solutions of quadratic equations, and are given by

κ±r = −1±

√
1 + 4

m2
pR

2
y

c2

κ±l = 1±

√
1 + 4

m2
pR

2
y

c2
.

(3.16)

This leads to
fl(x5) = d+

l exp
[
iκ+
l Θk(x5)

]
+ d−l exp

[
iκ−l Θk(x5)

]
fr(x5) = d+

r exp [iκ+
r Θk(x5)] + d−r exp [iκ−r Θk(x5)]

Θk(x5) ≡ tan−1

(
tanh

kx5

2

)
.

(3.17)

To determine the constants d±l/r, we need to impose the boundary conditions, which, for

phenomenological reasons, must be different for each chiral projection. To be specific, for

the SU(2)L-doublet fields, we impose Neumann conditions for fl and Dirichlet for fR. This,

later on, would ensure that the zero-mode four-dimensional fermion would be a left-handed

field.4 In other words, we demand ∂5fl|x5=0,π = 0 and fr|x5=0,π = 0. Thus,

∂5fl|x5=0 = 0 =⇒ d−l κ
−
l = −d+

l κ
+
l

∂5fl|x5=π = 0 =⇒ 0 = κ−l sin
(
(κ−l − 1)Θk(π)

)
.

Clearly, the trivial solution κ−l = 0, corresponds to mp = 0 and fl(x5) = 1. Other solutions

are given by √
1 + 4

m2
pR

2
y

c2
=

pπ

Θk(π)
(3.18)

with p ∈ Z+, thereby quantizing mp. Similarly, for fr we have

fr|x5=0 = 0 =⇒ d+
r = −d−r

fr|x5=π = 0 =⇒ 0 = sin
((
κ+
r + 1

)
Θk(π)

)
leading to (as expected) a mass quantization condition identical to that for the left-chiral

fields. Of course, the mp = 0 state does not exist for the fr, implying, in turn, the

phenomenologically required condition of there being no massless right-handed SU(2)L-

doublet field.

Given a mp, we can now solve the first of eqs. (3.15), to f̃n,pl/r in terms of Bessel functions,

namely

f̃n,pl (x4) = ec|x4|/2
[
c1Jνp(xnpe

c(|x4|−π)) + c2Yνp(xnpe
c(|x4|−π))

]
f̃n,pr (x4) = ec|x4|/2

[
c3Jνp(xnpe

c(|x4|−π)) + c4Yνp(xnpe
c(|x4|−π))

]
νp ≡

√
1

4
+
m2
pR

2
y

c2
=

p π

2 Θk(π)

xnp ≡Mnp
Ry
c
ecπ ,

(3.19)

4For the SU(2)L-singlets, the condition would be opposite resulting in only the right-handed component

having a zero-mode.
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where cis are the constants of integration. It is interesting to note that for mp = 0,

we get back the wave functions corresponding to the five-dimensional RS theory [49]. In

particular, the massless mode (i.e., M0,0 = 0 and obtainable only for m0 = 0) has, as

expected, a flat profile.

3.3 KK masses for the fermions

As we shall see in the next section, the issue of spontaneous symmetry breaking is a tricky

one, for the inclusion of a bulk Higgs has been shown [43] to resuscitate the hierarchy

problem. Localizing the higgs onto a brane obviates the problem, though. Given this, we

continue under the assumption of the six-dimensional fields to be strictly massless and, thus,

the only contribution to the masses of the four-dimensional components would be those

due to the compactification. Incorporating the effect of the Higgs field is a straightforward

exercise, and would be undertaken in section 5. In any case, with the compactification

scale being much larger than the electroweak scale, the Higgs contribution would be of

little importance to any but the lowest mode and can be treated as a perturbation.

Determining the spectrum, as usual, needs the imposition of the boundary conditions.

While we already have done so for the x5-modes, the x4-component is still unrestricted.

Noting that the orbifolding demands that the fermion wavefunctions be even in the x4-

direction, these must satisfy

∂4f̃
n,p
l (x4)|x4=0 = 0 , ∂4f̃

n,p
r (x4)|x4=π = 0 . (3.20)

Rather than attempt to solve for the above for the most general choice of c and k, we

restrict ourselves to the two cases that are of relevance in resolving the hierarchy problem,

viz. small k (large c) on the one hand and large k (small c) on the other.

3.3.1 Small k and large c

The aforementioned boundary conditions, respectively, give

−c2

c1
=
e−cπxnp

[
Jνp−1(xnpe

−cπ)− Jνp+1(xnpe
−cπ)

]
+ Jνp(xnpe

−cπ)

e−cπxnp
[
Yνp−1(xnpe−cπ)− Yνp+1(xnpe−cπ)

]
+ Yνp(xnpe

−cπ)
(3.21)

and
−c2

c1
=
xnp

[
Jνp−1(xnp)− Jνp+1(xnp)

]
+ Jνp(xnp)

xnp
[
Yνp−1(xnp)− Yνp+1(xnp)

]
+ Yνp(xnp)

. (3.22)

As e−cπ is negligibly small in this regime, the corresponding Yν are very large. Conse-

quently, in this regime, the two equations above are simultaneously satisfied only if

xnp
[
Jνp−1(xnp)− Jνp+1(xnp)

]
+ Jνp(xnp) = 0 , (3.23)

thereby determining the quantized values for xnp (for a given νp determined, in turn,

by eqs. (3.19) & (3.18)). For a particular choice of the parameters, these are exhibited

in figure 2.

For the right-chiral fields, relations analogous to eqs. (3.21) & (3.22) would obtain. It

is easy to see that the corresponding set of xnps identically match those in eq. (3.23), but

for the zero mode.
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Figure 2. (Left panel) A sample Kaluza-Klein spectrum that satisfies eq. (3.23) originating from

a six-dimensional chiral fermion, for k = 0.3, α = 49 and ε = 0.0775 (see eq. (2.3)). Only the first

five n levels corresponding to each p are shown. (Right panel) The dependence of the mass of the

lowest KK mode on ε. In both the panels, Ry set to satisfy the hierarchy eq. (2.7).

3.3.2 Large k and small c

Since c is now almost infinitesimally small, a(x4) ≈ 1 is a very good approximation and

eq. (3.14) can be simplified down to

∂2
4 f̃

n,p
l/r (x4) = −(M2

np −m2
p)R

2
yf̃

n,p
l/r (x4) .

This, of course, yields plane wave solutions, which is as expected since such a small warping

means that the space is essentially flat. Hence, the spectrum is given by

M2
np ≈

n2

R2
y

+m2
p .

As Ry is very small, we could as well neglect the n 6= 0 modes in any discussion of TeV

scale physics. In other words, for all practical purposes, the fermions act as if they are

confined onto a brane.

4 The gauge bosons

To begin with, we examine the mass spectrum of the gauge bosons postponing discussion of

all interactions until later. Hence, it is convenient to consider only a U(1) theory in the six

dimensional bulk. Similarly, rather than concerning ourselves with the issue of symmetry

breaking in the bulk, we would introduce an explicit mass term so as to understand the

consequences of a bulk mass term.

The gauge boson Lagrangian is given by

L =
−1

4

√
−gFMNF

MN + Lgf . (4.1)

– 11 –



J
H
E
P
0
9
(
2
0
1
5
)
2
0
2

While the structure of the gauge-fixing term is, a priori, undetermined, it is often useful

to restrict ourselves to a covariant choice, so as to manifestly respect the symmetries

of the theory, which, at first sight, would seem to be diffeomorphism invariance. Note,

however, that the presence of the boundary branes (and the orbifolding), actually reduces

the symmetry away from the bulk to only a four-dimensional general coordinate invariance.

Hence, we introduce a curved-space analog of the oft-used (at least in the case of flat

extra dimensions [50]) generalized Rζ gauge which, while respecting the four-dimensional

general coordinate invariance, also serves to eliminate the cumbersome kinetic mixing terms

between Aµ and A4,5. To be specific, we have

Lgf =
−
√
−g

2ζ

[
gµν

{
∂µAν −

ζ

2

(
Γ4
µνA4 + Γ5

µνA5

)}
+ ζ (g44D4A4 + g55D5A5)

]2

=
−Ryrzb

2ζ

[
ηµν∂µAν +

ζ

b

(
∂4
a2bA4

R2
y

+ ∂5
a2b3A5

r2
z

)]2

.

(4.2)

This does not exhaust all of the gauge symmetries. On compactification down to four

dimensions, the components A4,5 would, naturally, give rise to a ‘tower of towers’ of scalars

transforming under the adjoint representation of the gauge group. On the other hand, the

very act of the higher modes of Aµ becoming massive could be viewed as the result of a

Higgs mechanism wherein the adjoint Goldstone has been absorbed. In other words, in the

unitary gauge, only one linear combination of A4,5 may survive. But as in the case with

UED, this conclusion is dependent on the gauge choice. In particular, for ζ = 1, both sets

of the scalars survive. Adopting, for the time, the Minkowski metric, the quadratic term

for the vector field is now given by

LAµ =
−Ryrz

2

[
bAκ(−∂2ηκλ + ∂λ∂κ)Aλ+

a2b

R2
y

(∂4Aκ)(∂4A
κ)+

a2b3

r2
z

(∂5Aκ)(∂5A
κ)

]
, (4.3)

while for the adjoint scalars, with field redefinitions

Ã4 ≡
√
rz
Ry

A4 , and Ã5 ≡
√
Ry
rz

A5 , (4.4)

it is

LÃ4
=
−1

2

[
a2b(∂µÃ4) (∂µÃ4) +

a4b3

r2
z

(∂5Ã4

)2
+

1

R2
yb

{
∂4(a2bÃ4)

}2
]
, (4.5)

LÃ5
=
−1

2

[
a2b3(∂µÃ5) (∂µÃ5) +

a4b3

R2
y

(∂4Ã5

)2
+

1

r2
zb

{
∂5(a2b3Ã5)

}2
]
, (4.6)

and reminiscent of the action for a scalar field. There also exists a mixing term

Lmix = 2
1

Ryrz
a3a′Ã4∂5(b3Ã5) , (4.7)

and, hence, ideally, one should rediagonalize the Ã4—Ã5 system. However, as a zeroth

approximation, one may neglect Lmix altogether and derive the wavefunctions and prop-

agators from LÃ4
and LÃ5

alone. Using the thus derived wavefunctions in Lmix, it can
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be seen that this term is numerically rather subdominant. Allied with the fact that the

zero modes of Ã4,5 would not survive and only the heavy KK-modes come into play, the

neglect of Lmix has almost no discernible consequence as far as low energy phenomenology

is concerned. We shall, thus, continue with this approximation, while bearing in mind that

Lmix ought to be taken into account when dealing with subleading effects as also in the

context of questions such as unitarity.

To the quadratic kinetic terms, we may add a mass term (presumably originating from

spontaneous symmetry breaking in the bulk), viz.

LM = −
√
−g
2

M2ANA
N . (4.8)

We may now express the field in terms of the eigenstates of the extra-dimensional parts of

the aforementioned differential operators. These are but the analogues of the “plane wave”

solutions and given by

Aκ =
1√
Ryrz

∑
n,p

A(n,p)
κ (xµ) ηn,p(x4)χp(x5)

Ã4 =
∑
n,p

Ã
(n,p)
(4) (xµ) η(4)

n,p(x4)χ(4)
p (x5) ,

Ã5 =
∑
n,p

Ã
(n,p)
(5) (xµ) η(5)

n,p(x4)χ(5)
p (x5) ,

(4.9)

with the components satisfying the orthogonality relations

∫
dx5 b(x5)χp(x5)χp′(x5) = δpp′∫
dx4 ηn,p(x4) ηn′,p′(x4) = δnn′ δpp′∫

dx5 b(x5)χ(4)
p (x5)χ

(4)
p′ (x5) = δpp′∫

dx4 a
2(x4) η(4)

n,p(x4) η
(4)
n′,p′(x4) = δnn′ δpp′∫

dx5 b
3(x5)χ(5)

p (x5)χ
(5)
p′ (x5) = δpp′∫

dx4 a
2(x4) η(5)

n,p(x4) η
(5)
n′,p′(x4) = δnn′ δpp′ .

(4.10)

The corresponding equations of motion for the vector modes are

1

r2
z

∂5(b3 ∂5χp) −M2 b3 χp = −m2
p b χp

1

R2
y

∂4(a2∂4ηn,p)−m2
p a

2 ηn,p = −m2
npηn,p ,

(4.11)
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whose solutions could be written as

χp(x5) =
1

B̄p
sech3/2(kx5)

(
c1 P

u/2
νp (tanh kx5) + c2Q

u/2
νp (tanh kx5)

)
ηn,p(x4) =

ec|x4|

Bnp

(
Jνn(yn) + cnpYνn(yn)

)
yn ≡ mnp

rz
k
ec|x4| cosh(kπ) = mnp

Ry
c
ec|x4|

νn =

√
1 +

r2
z

k
m2
p cosh2(kπ)

νp =
−1

2
+ νn

u =

√
9 +

4M2r2
z

k2
,

(4.12)

where c1,2 (we explicitly retain both as this is useful in studying the boundary conditions)

and cnp are arbitrary constants while B̄p and Bnp provide the normalization. The as-

sociate Legendre functions, appearing also in the description of the fermions, or at any

stage of the six-dimensional theory, are reminiscent of the x5-dependence of the graviton

wavefunctions [32] and are a feature of the nested warping.

The equations of motion for the adjoint scalar A4 are

1

r2
z

∂5

(
b3∂5(χ(4)

p )
)
−M2b3χ(4)

p = −m̃2
p b χ

(4)
p

1

R2
y

∂4(∂4a
2η(4)
n,p)− a2m̃2

pη
(4)
n,p = −m̃2

npη
(4)
n,p ,

(4.13)

leading to

χ(4)
p (x5) =

1

Ēp
sech3/2(kx5)

[
s1 P

ṽ/2
ν̃p

(tanh kx5) + s2Q
ṽ/2
ν̃p

(tanh kx5)
]

η(4)
n,p(x4) =

1

Enp
e2c|x4| [Jν̃n(yn) + snpYν̃n(yn)]

ν̃n =

√
r2
z

k2
m̃2
p cosh2(kπ)

ν̃p =
−1

2
+

√
1 +

r2
z

k2
m̃2
p cosh2(kπ) = νp

ṽ =

√
9 +

4M2r2
z

k2
= u .

(4.14)

where s1,2 and snp are constants of integration, while Enp and Ep serve to normalize. Sim-

ilarly, the equations of motion for the adjoint scalar A5 are seen to be

1

r2
z

∂5

(
b−1∂5(b3χ(5)

p )
)
−M2b2χ(5)

p = −m̄2
p χ

(5)
p

1

R2
y

∂4(a4∂4η
(5)
n,p)− a4m̄2

pη
(5)
n,p = −m̄2

npa
2η(5)
n,p ,

(4.15)
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leading to

χ(5)
p (x5) =

1

D̄p
sech5/2(kx5)

[
d1 P

v̄/2
ν̄p (tanh kx5) + d2Q

v̄/2
ν̄p (tanh kx5)

]
η(5)
n,p(x4) =

1

Dnp
e2c|x4| [Jν̄n(yn) + dnpYν̄n(yn)]

ν̄n =

√
4 +

r2
z

k2
m̄2
p cosh2(kπ)

ν̄p =
−1

2
+

√
1 +

r2
z

k2
m̄2
p cosh2(kπ) = νp

v̄ =

√
1 +

4M2r2
z

k2
.

(4.16)

Once again, d1,2 and dnp are constants of integration, while D̄p and Dnp provide normaliza-

tions. With these conditions in place, the quadratic part of the Lagrangian for the vector

fields can be expressed in terms of the KK-towers as

LAµ =
∑
n,p

[
−1

4
F (n,p)
µν Fµν(n,p) − 1

2
m2
npA

(n,p)
µ Aµ(n,p) − 1

2
(∂µA

µ(n,p))2

]
,

while, for the adjoint scalars, we have

LA5 = −1

2

(
∂µÃ

(n,p)
4

)2 − 1

2
m̃2
npÃ

(n,p)2
4 ,

and

LA5 = −1

2

(
∂µÃ

(n,p)
5

)2 − 1

2
m̄2
npÃ

(n,p)2
5 .

4.1 Gauge and adjoint scalar masses

Our aim, now, is to compute the allowed values for mnp, m̃np and m̄np. In each case, one

must first find the x5-equation eigenvalues (mp, m̃p and m̄p respectively) using the bound-

ary conditions for the corresponding wavefunctions and, then, find the desired spectrum in

terms of these. For ease of appreciation, we perform the exercise in the reverse order. We

first establish the general conditions and then examine the situation for the two particular

cases of interest (in terms of the relative sizes of k and c).

In doing so, it should be borne in mind that the bulk mass term M , that we have con-

sidered until now, would identically disappear, to be replaced, in the electroweak sector,

by the spontaneous breaking term. The latter, in all our constructions, would be confined

to a brane, and its effective scale would, naturally, turn out to be the electroweak scale to

be compared with the much larger compactification scales R−1
y or r−1

z . Thus, it stands to

reason that the effect of the spontaneous breaking term in the spectrum and the wavefunc-

tions would be negligible, except, perhaps, for the ground state. Indeed, as the experience

with the RS case [56] has shown, its role there too is subdominant. Consequently, we will

postpone a discussion of such terms until section 4.1.5.
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4.1.1 Boundary conditions in the x4-direction

As of now, we have not considered the existence of any localized fields.5 Consequently,

the wavefunctions ηn,p(x4) must be differentiable, especially at the ends of the world. This

implies that

− cnp =
αnp e

c (|x4| −π)Jνp− 1
2
(αnpe

c (|x4| −π))− (−1
2 + νp)Jνp+ 1

2
(αnpe

c (|x4| −π))

αnpec (|x4| −π)Yνp− 1
2
(αnpec (|x4| −π))− (−1

2 + νp)Yνp+ 1
2
(αnpec (|x4| −π))

(4.17)

for each of x4 = 0, π. Here, we have defined

αnp ≡ mnp
Ry
c
ec π . (4.18)

Once νp is known, the two conditions of eq. (4.17), together, determine ηn,p(x4) as well as

serve to quantize αnp (and, hence, mnp).

Similarly, since a(x4)2 η
(4)
n,p(x4) and η

(5)
n,p(x4) are even functions, their derivatives have

to vanish at both the fixed points (x4 = 0, π) and this gives

snp = − Jν̃n−1(α̃npe
c (|x4| −π))− Jν̃n+1(α̃npe

c (|x4| −π))

Yν̃n−1(α̃npec (|x4| −π))− Yν̃n+1(α̃npec (|x4| −π))

∣∣∣
x4=0,π

(4.19)

and

dnp = − ᾱnp e
c (|x4| −π)Jν̄n+1(ᾱnpe

c (|x4| −π))− (2 + ν̄n)Jν̄n(ᾱnpe
c (|x4| −π))

ᾱnpec (|x4| −π)Yν̄n+1(ᾱnpec (|x4| −π))− (2 + ν̄n)Yν̄n(ᾱnpec (|x4| −π))

∣∣∣
x4=0,π

(4.20)

for η
(4)
n,p and η

(5)
n,p respectively. Here,

α̃np = m̃np
Ry
c
ec π and ᾱnp = m̄np

Ry
c
ec π . (4.21)

Again, once ν̃n and ν̄n is known, the two conditions in eq. (4.19) and eq. (4.20) together

determine η
(4,5)
n,p (x4) as well as quantize the masses.

4.1.2 Boundary conditions in the x5-direction

As χp(x5) are even functions of x5, their derivatives would vanish at x5 = 0. This trans-

lates to

cot θp ≡
c1

c2
=
−π
2

cot
π (νp + u/2)

2
. (4.22)

An analogous condition would be obtained for the derivative at x5 = π, but that is best

analyzed separately for small and large k, which we come to later.

We have already seen that since η
(4,5)
n,p (x4) are even functions, they need to satisfy

Neumann boundary conditions at x4 = 0, π. Thus, the absence of massless adjoint scalars

5The situation would change when we introduce the Higgs field and we shall explicitly take this into

consideration in section 5.
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necessitates that we impose Dirichlet boundary condition (a consequence of the orbifolding)

on χ
(4,5)
p (x5), namely χ

(4,5)
p (0) = 0 = χ

(4,5)
p (π). This, then, implies that

−s2

s1
=
P
ṽ/2
ν̃p

(0)

Q
ṽ/2
ν̃p

(0)
=
P
ṽ/2
ν̃p

(tanh kπ)

Q
ṽ/2
ν̃p

(tanh kπ)
,
−d2

d1
=
P
v̄/2
ν̄p (0)

Q
v̄/2
ν̄p (0)

=
P
v̄/2
ν̄p (tanh kπ)

Q
v̄/2
ν̄p (tanh kπ)

.

In other words, the eigenvalue spectrum is given by

P
ṽ/2
ν̃p

(0)Q
ṽ/2
ν̃p

(tanh kπ)−Qṽ/2ν̃p
(0)P

ṽ/2
ν̃p

(tanh kπ) = 0 (4.23)

for A4 and

P
v̄/2
ν̄p (0)Q

v̄/2
ν̄p (tanh kπ)−Qv̄/2ν̄p (0)P

v̄/2
ν̄p (tanh kπ) = 0 (4.24)

for A5.

At this point, it is worthwhile to remember our earlier discussion about the limit of

vanishing bulk mass (M = 0). This immediately leads to v̄ = 1 in eqs. (4.16). Now, if

we look for m̄p = 0 (for the Ã5 spectrum), then we need to concentrate on ν̄p = 1/2 in

eq. (4.24) above, or,

P
1/2
1/2 (0)Q

1/2
1/2(tanh kπ)−Q1/2

1/2(0)P
1/2
1/2 (tanh kπ) = 0 .

However, since the function P
1/2
1/2 (x)/Q

1/2
1/2(x) is monotonic, this equation can never be

satisfied for any k. In other words, m̄p = 0 is strictly disallowed. Equivalently, not only is

the unwanted zero mode A
(0,0)
5 (xµ) absent, but all the modes Ã

(n,0)
5 (xµ) do not exist.6

Similarly, for the Ã4 spectrum, M = 0 would imply ṽ = 3, leading to the Q
ṽ/2
1/2 vanishing

identically. The imposition of the aforementioned boundary condition then implies that

the corresponding χ
(4)
0 (x5) must vanish identically too. Thus, once again, the requirement

that there be no massless χ(4) scalar has the consequence that the entire putative tower

comprising of the modes Ã
(n,0)
4 (xµ) disappears identically.

For both cases, the argument is quite robust and carries through even in the presence

of brane-localized spontaneous symmetry breaking term.

As for the rest of the spectrum, this, along with that for the gauge boson excitations,

is best analyzed separately for large and small k, and this we come to next.

4.1.3 Small k and large c

Since the Legendre functions are well-behaved in this domain, we could use the Neumann

boundary conditions for χp(x5) at x5 = π in a straightforward fashion, and this implies

0 = cot θp (1− 2νp)τπ P
u/2
νp (τπ) + cot θp (2 + 2νp − u)P

u/2
νp+1(τπ)

+ (1− 2νp)τπ Q
u/2
νp (τπ) + (2 + 2νp − u)Q

u/2
νp+1(τπ)

(4.25)

where τπ ≡ tanh(k π). This equation has to be solved numerically to obtain the discrete

set of values allowed to νp.

6This is reminiscent of the fermion spectrum.
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Figure 3. (Left panel)The spectrum of vector gauge bosons with zero bulk mass for k=0.3, α = 49

and ε = 0.0775. Only the first five n levels corresponding to each p are shown. (Right panel) The

dependence of the mass of the lowest KK mode on ε. In both the panels, Ry set to satisfy the

hierarchy eq. (2.7).

For a given νp, to solve for mnp, we need to consider both of eqs. (4.17). Note that, for

the (k, c) values under discussion, the combination R−1
y e−cπ roughly gives the electroweak

scale [32]. Thus, if mnp are to be important in low-energy phenomenology, αnp <∼ O(1). On

the other hand, with ec π being very large, the argument of the Bessel functions essentially

vanishes at x4 = 0. This implies that cnp ≈ 0, and using this in the boundary condition at

x4 = π, we have

2αnpJνp−1/2(αnp) + (1− 2νp)Jνp+1/2(αnp) = 0 . (4.26)

Solving this, for a given νp, would lead to the gauge boson KK tower starting with A
(1,0)
µ .

Let us, now, turn our attention to the adjoint scalars. Quite similar to the case for the

vector modes, the two eqs. (4.19) are satisfied only if snp = 0 and, hence,

Jν̃n−1(α̃np)− Jν̃n+1(α̃np) = 0 . (4.27)

Similarly, the two eqs. (4.20) are satisfied only if dnp = 0 and, hence,

ᾱnpJν̄n+1(ᾱnp)− (2 + ν̄n) Jν̄n(ᾱnp) = 0 . (4.28)

In either case, no solution exists for n = 0, and, thus, the first nonzero components of the

adjoint scalar fields would be A
(0,1)
4 (xµ) and A

(0,1)
5 (xµ).

The quantized masses that satisfy the equations. (4.26), (4.27) and (4.28) are shown

in figures 3 and 4.
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Figure 4. As in the left panel of figure 3, but for the adjoint scalars Ã
(n,p)
4 (left panel) and Ã

(n,p)
5

(right panel) instead.

4.1.4 Large k and small c

Denoting τ = tanh(k x5), we may re-express the wavefunctions χp(x5) as

χp(τ) =
1

Np
(1− τ2)

3
4

[
cot θp P

u/2
νp (τ) +Qu/2νp (τ)

]
.

For x5 = π, we are very close to τ = 1. Defining f(τ) ≡ dχp/dτ , we then have

f(τ)
∣∣∣
τ=1−ε

=
1

2
√

2π
(2νp − 1)(3 + 2νp) cot θp +O(ε) ,

which automatically vanishes for the zero mode as the corresponding νp = 1/2. For the

higher modes to satisfy the Dirichlet boundary condition, we require cot θp = 0, or in

other words νp = 2 p− 1/2, where p ∈ Z+.

Since we are now in the very small c regime, the warping in the x4 direction is virtually

nonexistent, and the modes with n 6= 0 will have a mass ∼ nR−1
y and, hence, will decouple

from the theory. This is exactly analogous to the case for the corresponding graviton

modes [32].

The boundary conditions for the adjoint scalars simplifies to

Q
ṽ/2
ν̃p

(0)P
ṽ/2
ν̃p

(tanh kπ) = 0

and

Q
v̄/2
ν̄p (0)P

v̄/2
ν̄p (tanh kπ) = 0 ,

and, once again, no mode exists for m̄p = 0 and m̃p = 0. Since the n 6= 0 modes decouple

from low energy physics, the first non vanishing modes are A
(0,1)
4,5 (xµ).
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4.1.5 Bulk masses

At this stage, let us reexamine the consequences of a nonzero bulk mass term M (irre-

spective of whether it has been occasioned by an explicit or spontaneous breaking of the

symmetry). The mass parameter M makes its presence felt in the context of the four-

dimensional masses mnp primarily through the quantities u and v̄ (see eqs. (4.12), (4.14)

& (4.16)). For the large k case, even if M is of the order of the natural cutoff, the quanti-

ties u, v do not differ substantially from their M = 0 limit values of 3 and 1 respectively.

Naively, this would lead one to presume that the existence of even a seemingly large M

would not alter the low-lying part of the KK-tower spectrum to any significant degree.

However, as has been shown in [43], this argument is fraught with danger, and much the

same follows here. As can be appreciated easily, with M being the bulk mass term, the

mass of any given mode mnp > M . Indeed, in the absence of warping, we would expect

m00 = M and m2
np = M2 + n2/R2

y + p2/r2
z . With M−1 being of the same order as the

compactification radii, the mass of the first excitation, in the absence of warping, would be

of similar order as that of the zero mode. Thus, if warping is supposed to bring down the

mass of the zero mode, as perceived in four-dimensions, from M to MZ (Z-boson mass),

it would also, typically, bring down the first excitation to well below a TeV, resulting in

severe phenomenological contradictions. In other words, a bulk M , if present, would need

to be much smaller than the compactification scale, thereby bringing back the hierarchy

problem in a new guise. A similar argument holds for the large c case too.

All of the analysis presented above carries through for a nonabelian theory as well.

The additional features are the gauge boson self-interactions (a discussion of which we

postpone until section 6) and ghost fields. The latter, we consider next.

4.2 Ghosts

As is well-known, a covariant gauge fixing condition for a nonabelian theory always gives

rise to ghost fields. Accounting for the spontaneous symmetry breaking, the gauge-fixing

term can be written as

Lgf =

√
−g

2ζ
GaGa

Ga(A) =

(
ηµν

a2b2
∂µA

a
ν +

{
∂4

(
a2bAa4

)
R2
ya

2b3
+
∂5

(
a2b3Aa5

)
r2
za

2b3

})
− ζgYMT

a
ijφ0iχj ,

(4.29)

with T aij being the Yang Mills group generators in the representation of the scalar fields φi.

The latter are decomposed into the vacuum values φ0i and the perturbations χi around it

(φi = φ0i + χi). Evidently, the gauge boson mass matrix is given by

(M2)ab = g2
YM
T aijT

b
kjφ0iφ0k .

Note that the scalars φi need not be bulk fields, but may be confined to branes (as we shall

argue for in section 5), with the appropriate delta-functions being included accordingly.
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Under a gauge transformation,

AaM → AaλM = AaM +
1

gYM

∂Mθ
a + fabcAbMλ

c (4.30)

φi → φi + δφi = φi − λaT aijφj (4.31)

where fabc are the structure constants. Using the notations of ref. [51], the corresponding

Faddev-Popov (FP) determinant is

det

(
δGa(Aθ)

δλb

)
=

det

(
1

gYM

[
ηµν

a2b2
∂µDabν +

1

a2b3

{
∂4(a2bDab4 ) + ∂5(a2b3Dab5 )

}
− (M2)ab +O(χ)

])
,

where DacM = ∂Mδ
ac + gfabcAbM . Though they are important in their own right, since a

study of the higgs interactions does not constitute the main aim of this paper, we neglect

the O(χ) term. Writing the determinant as a gaussian integral over an anticommuting

scalar (θ) in the adjoint representation of the gauge group yields the Lagrangian for the

ghost field, namely

Lg.f. =
√
−g θ̄a(xM )

[
�ab − (M2)ab

]
θb(xM ) .

The ghost kinetic term, then, is

Lgh.kin =Ryrz θ̄
a

[
a2b3ηµν∂µ∂ν+

a4b3

R2
y

(
∂2

4 +
2∂4a

a
∂4

)
+
a4b5

r2
z

(
∂2

5 +
3 ∂5b

b
∂5

)
−(M2)ab

]
θb.

Decomposing, in anticipation, as

θa(xµ, x4, x5) =
1√
Ryrz

∑
n,p

θa (n,p)(xµ) ηn,p(x4)χp(x5) , (4.32)

it is easy to see that ηn,p and and χp satisfy the same equations of motion (and orthonor-

mality properties) as the corresponding wavefunctions for the vector modes (see eqs. (4.10)

& (4.11)). In other words, not only are their masses identical to those for the corresponding

vector modes, the wavefunction modes are the same too. This, of course, is as expected.

5 Higgs

In the preceding section, we had, for the sole purpose of determining the spectrum, included

an explicit mass term for the gauge boson, without ascribing any dynamic origin to it. The

simplest mechanism to generate masses while preserving a gauge symmetry, of course, is

to introduce a Higgs field and effect a spontaneous breaking of the symmetry. The most

straightforward, and seemingly natural, way to do so would be to consider a bulk Higgs

field. However, this immediately leads to a problem (also seen in the context of bulk SM

fields in the RS scenario [43]) in that the consequent masses of the first excited modes of
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the gauge bosons typically turn out to be well below7 1 TeV, in stark contradiction to the

direct bounds from gauge boson (most typically, generic Z ′) searches.8

The alternative, then, is to localize the Higgs on one of the 4-branes, or, perhaps even

to a 3-brane at one of the junctions. A junction localized Higgs would lead to a gauge

field equation of motion analogous to a two dimensional Poisson equation with a point

source term. With the rotational symmetry being absent, a solution of such an equation

consistent with the boundary conditions, though, is a complicated one.

5.1 3-brane localization

Notwithstanding the anticipated technical problems, we begin by considering a 3-brane

localized Higgs with a Lagrangian given by

Lh = δ(x4 − π)δ(x5)
√
−g4

(
gνρDνΦ(xµ)†DρΦ(xµ) + V (Φ(xµ))

)
,

V (Φ) = λ
(

Φ†Φ− ṽ2
)2

Dµ = ∂µ − i gYMAµ(xν , x4, x5) .

(5.1)

Rewriting Φ(xµ) = [ṽ + h(xµ)] / [a(π) b(0)] allows us to canonically quantize the Higgs field,

with the Higgs mass being given by

mh =
√
λ ṽ

e−cπ

cosh(kπ)
≡
√
λ v . (5.2)

Instead of solving the consequent equations of motion for the gauge fields with the delta

function sources included, we consider the latter to be localized perturbations to the system

with the symmetry intact. This is a valid approximation as the effect of the spontaneous

breaking of the gauge symmetry is parametrized by v; since it is suppressed down to the

electroweak scale, its contribution to the KK-gauge boson masses would be small compared

to those due to compactification (even after the warping). To the first order, then, the mass

spectra that we computed in section 4.1 do not get disturbed in the bulk, but for a small

correction9 due to symmetry breaking in the brane. Similarly, the wavefunction profile

would change only close to the brane. With the new contribution to the gauge boson mass

term being ∫
dx4dx5g

2
YM

√
−ggµνδ(x4 − π)δ(x5)Φ†ΦAµAν ,

it could be expressed in terms of the component fields (see eq. (4.9)) as

m2
s.b.(n1, p1;n2, p2) =

g2
YM
v2

Ryrz
ηn1,p1(π) ηn2,p2(π)χp1(0)χp2(0) . (5.3)

7The argument is exactly the same as the one in the preceding section arguing against a naturally large

bulk mass term (howsoever generated) for the gauge bosons.
8Some of these constraints on bulk Higgs can be evaded, though, e.g. if one considers soft-wall scenar-

ios [52–55]. However, most such constructions, typically, need additional inputs, whether it be in the form

of gauge-Higgs unification or the localization of the Higgs close to the singularity, and, for certain models,

even additional dynamics to generate and stabilize the soft-wall setup itself.
9This, of course, pertains only to the KK-excitations. For the zero-modes, this would be the only

mass term.
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It comes as no surprise that this term mixes the KK modes, for this is a generic feature

of brane localized Higgs fields. To the zeroth order, the gauge wavefunctions remain un-

changed and have no discontinuities on the branes. Of course, to obtain the physical gauge

boson states and their masses, one would need to diagonalize the mass matrix including the

terms of eq. (5.3). While a closed form solution is not obvious, inspiration may be taken

from the see-saw mechanism; although the hierarchy between the compactification and the

Higgs contributions is not as large as in the neutrino sector, it is still sufficiently large for

such approximate solutions to be valid. And while the absolute contribution of the Higgs

grows for the higher-p modes, primarily because χp are localized near x5 = 0, this growth

is relatively slow and consequently the ratio ms.b./mnp becomes smaller. Thus, neglect-

ing the Higgs contribution for the higher modes is progressively a better approximation,

and obtaining good estimates of the gauge boson masses and eigenstates is a relatively

straightforward task.

Going beyond the first order approximation renders the algebra to be rather cum-

bersome, without providing us any real insight. To gain the latter, we would need to

take recourse to some approximation. One such could be a smearing of the delta-function

localized Higgs field.

5.2 4-brane localization

Choosing to work in the regime wherein the warping in the x5-direction is small, we con-

sider a configuration such that the factor δ(x5) in eq. (5.1) is smeared onto a nonsingular

but localized function. This, of course, is equivalent to considering the Higgs-field to be

localized onto the 4-brane at x4 = π (rather than on the 3-brane at the junction), with

a further concentration of its wavefunction close to x5 = 0. The relevant part of the

symmetry breaking Lagrangian can now be parametrized as

Lm =
√
−g5

M̃2(x5)

2
gµνAµAνδ(y − π) , (5.4)

with M̃(x5) encapsulating the x5-dependent profile of the Higgs vacuum expectation value.

Assuming, for the moment, that M̃ = m/
√
b(x5) where m is a constant (we shall comment

later on the origin of such a profile), the equations of motion for the gauge boson modes

are altered from those in eq. (4.11) to

m2a2δ(y − π) = m2
np −m2

pa
2 +

1

R2
yηn,p

∂4

(
a2∂4ηn,p

)
−m2

p =
1

r2
zbχp

∂5

(
b3∂5χp

)
.

(5.5)

Indeed, the particular form of M̃(x5) was chosen so as to render the equation of motion

separable and, hence, easily solvable. The form of the second equation above is evidently

the same as that in eq. (4.11) but for the bulk mass term M in the latter. As for the first

equation, for a given mnp, it differs from its predecessor (see eq. (4.11)) only as far as the

boundary term is concerned. Consequently, the bulk solutions are exactly the same as in
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eq. (4.12) but with u = 3. The boundary conditions on χp(x5) remain exactly the same as

before (see section 4.1.2), namely

χ′p|x5=0 = 0 = χ′p|x5=π ,

and, thus, the mp-spectrum is unchanged. To obtain the full spectrum, we must consider

the boundary conditions on ηn,p, and one of these now changes to accommodate the brane

localized term, to wit,

η′n,p|x4=0 = 0 , and η′n,p|x4=π = m2R2
y ηn,p(π) . (5.6)

Since mp=0 = 0, we have, for the modes ηn0,

J0(e−cπαn0)
[
2cαn0Y0(αn0)+R2

ym
2Y1(αn0)

]
=Y0(e−cπαn0)

[
2cαn0J0(αn0)+R2

ym
2J1(αn0)

]
,

where, as before, αn0 ≡ mn0Rye
cπ/c. Since the lightest mass mode is to be identified with

the W/Z bosons, we have α00 � 1 (as c ∼ 10). Expanding the Bessel functions, we obtain

m2
00 ≈

1

2π
m2 e−2cπ .

Clearly, for the W boson, m2 = g2
2v

2, whereas for the Z boson, m2 = (g2
2 + g2

1)v2, with g2,1

being the weak and hypercharge coupling constants respectively.

In essence, the new boundary condition on ηn,p manifests itself in a change in the gauge

boson spectrum through

αnpJνp−1/2(αnp) +

(
1

2
+
R2
ym

2

2c
− νp

)
Jνp+1/2(αnp) = 0 , (5.7)

as distinct from eq. (4.26). With there being no singularities in the x5-direction, all the χp
modes remain unchanged (in particular, χ0 is flat), and all effects of the brane localized

mass term for the gauge bosons manifest themselves in altering the quantized values of

αnp, and, hence, in the form of ηn,p. Quite in parallel to the RS case [56], the change in the

wavefunction for the zero modes (W±(0,0), Z(0,0)) is concentrated close to the brane and,

in magnitude, restricted to O(M2
W ). Away from the brane, even this relative change falls

off exponentially.

As can be gleaned from the discussions in this section, a generic brane localized Higgs

profile would lead to equations for the gauge bosons that do not admit simple closed form

solutions. While the particular choice of 〈φ〉 = v/
√
b(x5) may seem an ad hoc one, we end

this section delineating a mechanism to achieve this. The effective potential for a scalar

field φ localized on the 4-brane at x4 = π could be written as

Veff = −rz a4(π) b4
[

1

2r2
z

∂5φ∂5φ+ V (φ)

]
,

where V (φ) is the potential term appearing in the (flat space) Lagrangian. To find what

potential would give rise to the required form for 〈φ〉, we may treat Veff as the Lagrangian

for a one-dimensional particle. Varying with respect to φ, we get

1

r2
z

∂5(b4∂5φ)− b4V ′(φ) = 0 .
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Demanding that the solution be of the form φ ∝ 1/
√
b(x5), we have

V (φ) =
k2

r2
z

(
5 sech2kπ

24 v4
φ6 − 7

8
φ2

)
.

At first sight, it might seem disquieting that the form of V (φ) is fixed so uniquely. However,

as previous experience has shown, such is often the case if exact closed form solutions

to a complicated system (such as the gravity-scalar system under consideration here).

Deviations from the form above are, of course, permissible, but only at the cost of increasing

complexity of the solution (or numerical approximations). We desist from exploring such

possibilities as these do not make qualitative differences to the main features of interest.

6 Interactions

6.1 Gauge-fermion

The relevant piece of the Dirac Lagrangian for the positive chirality six-dimensional field

is given by

L 3 i gYM

√
−g Ψ̄+E

µ
aΓaΨ+Aµ ,

where the group representation has been suppressed. (A similar account holds for the

negative chirality field as well.) Writing the term above in its component form, we have

L 3
∑
{ni,pi}

gV,f{ni,pi}ψ̄
n1,p1
l/r γµψn2,p2

l/r An3,p3
µ , (6.1)

with the four dimensional charges being given by

gV,f{ni,pi} =
gYM√
Ryrz

∫ π

0
dx4

∫ π

−π
dx5a

3b4Fn1,p1
l/r (x4, x5)Fn2,p2

l/r (x4, x5)ηn3,p3(x4)χp3(x5) . (6.2)

It is evident that, for the gauge boson zero mode, we have

gV,f{ni,pi} →
gYM√
Ryrz

√
k

2π tanh(kπ)
δn1,n2δp1,p2 . (6.3)

This universal coupling of the zero mode is, of course, mandated by gauge invariance.

For the adjoint scalar A4, we start from

L 3 igYM

√
−g Ψ̄+E

4
aΓaΨ+A4 .

Rewriting in terms of the four-dimensional fields, we have

L 3
∑
{ni,pi}

g4,f{ni,pi}ψ̄
n1,p1
l/r γ5ψn2,p2

r/l Ãn3,p3
4 , (6.4)

where the four dimensional coupling constants are given by

g4,f{ni,pi} =
gYM√
Ryrz

∫ π

0
dx4

∫ π

−π
dx5a

4b4Fn1,p1
l (x4, x5)Fn2,p2

r (x4, x5)η(4)
n3,p3(x4)χ(4)

p3 (x5).

(6.5)
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k = 0.3, α = 49, w = 1.82× 10−14

(n, p) mnp( TeV) Cnp

(1, 0) 4.47 3.87× 100

(2, 0) 10.2 4.98× 10−1

(0, 1) 10.1 7.89× 10−1

(1, 1) 17.0 3.03× 10−1

k = 0.56, α = 50.4, w = 4.48× 10−14

(n, p) mnp( TeV) Cnp

(1, 0) 8.55 3.77× 100

(2, 0) 19.6 4.93× 10−1

(0, 1) 14.6 2.35× 100

(1, 1) 26.9 7.19× 10−1

Table 1. Sample spectra for the small k case for a particular bulk curvature (ε = 0.0775) with Ry

set to satisfy the hierarchy eq. (2.7). The ratio Cnp (coupling of vector gauge boson to massless

fermion bilinear) is as defined in eq. (6.8).

Similarly, for the adjoint scalar A5, we start from

L 3 igYM

√
−g Ψ̄+E

5
aΓaΨ+A5 .

Redefining (as before)
Ry
rz
A5 → Ã5, and writing in terms of the components, we have

L 3
∑
{ni,pi}

g5,f{ni,pi}ψ̄
n1,p1
l/r ψn2,p2

r/l Ãn3,p3
5 , (6.6)

where the four dimensional coupling constants are given by

g5,f{ni,pi} =
gYM√
Ryrz

∫ π

0
dx4

∫ π

−π
dx5a

4b5Fn1,p1
l (x4, x5)Fn2,p2

r (x4, x5)η(5)
n3,p3(x4)χ(5)

p3 (x5).

(6.7)

What is of particular interest, especially in the context of collider searches, is the

coupling of a relatively low-lying KK gauge boson to a pair of SM fermions (in other

words, the zero modes). Some examples of gauge boson spectra and their couplings to the

lowest modes of the fermion current are given in tables 1 & 2. The measure of importance,

apart from the mass of the level-(n, p) KK gauge boson mass, is the scaling Cnp of its

coupling with the SM fermions, viz.

Cnp ≡
gV,f{0,0,n},{0,0,p}

gV,f{0,0,0},{0,0,0}
. (6.8)

Concentrating on the small k scenario (table 1), it is interesting to note the rela-

tive closeness of the excitations (beyond the first one) as compared to the RS case with

bulk gauge bosons and fermions. And as in the latter case (and unlike in the flat extra-

dimensional scenarios), the coupling of a SM fermion pair to the gauge excitations are

not universal. In particular, the coupling to the first excitation is enhanced compared to

that for the zero mode, while those to the higher ones are suppressed. Furthermore, the

enhancement for the (1, 0) mode is only slightly smaller than that for the corresponding

five-dimensional theory, with this effect having only a marginal dependence on the value

of k. This is not surprising since the leading dependence of the couplings on k is common
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Figure 5. The matter coupling C10 to the first vector gauge mode as a function of ε for a fixed k.

to the ground and the (1, 0) state. On the other hand, if the extent of warping is kept

constant, the value of c progressively decreases from the RS value as k increases from zero.

Consequently, Cnp decreases, although only slowly. This is shown in figure 5. Although

a substantial decrease in C10 is possible (thereby making these bosons less accessible to

collider searches etc.), that would require a relatively large k. However, as already men-

tioned, if c and k are to be of the same order, a very large hierarchy between Ry and rz
would be required, thereby bringing back the hierarchy problem in a different guise. In

other words, the aesthetically pleasant region of the parameter space would lead to gauge

bosons discoverable in the next run of the LHC.

The situation is very different in the large k regime. Since the warping in the x4-

direction is very small, the n 6= 0 modes are all super-heavy and decouple from the TeV scale

physics. In other words, just like the situation for the gravitons [32], essentially only one

tower of gauge bosons (or, fermions for that matter) remains. Moreover, the couplings of

the KK-tower are enhanced to nonperturbative levels. This is demonstrated, for a moderate

hierarchy, in table 2. Pushing the fundamental scale M6 even higher would, typically, result

in the couplings growing even further, with the only way out of this eventuality being the

introduction of a big hierarchy between the moduli. Indeed, one had seen the germ of this

problem even in the graviton sector [32]. Thus, bulk fermions or gauge bosons in the large

k regime is ill-suited for a perturbative treatment.

6.2 Triple gauge boson couplings

The trilinear self interaction term can be written as

L 3 gYMf
abc

[
Ryrz bη

µαηνρ(∂µA
a
ν)AbρA

c
α +

rz
Ry

a2bηµν
{

(∂µA
a
4)Ab4A

c
ν + (∂4A

a
µ)Ab4A

c
ν

}
+
Ry
rz
a2b3ηµν

{
(∂µA

a
5)Ab5A

c
ν + (∂5A

a
µ)Ab5A

c
ν

}]
,
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k = 6, α = 16.8, ε = 0.001

(n, p) mnp( TeV) Cnp

(0, 1) 22.0 1.71× 103

(0, 2) 49.1 3.06× 102

(0, 3) 75.0 1.29× 102

Table 2. Sample spectrum for the large k case with Ry set to satisfy the hierarchy eq. (2.7). The

ratio Cnp is as defined in eq. (6.8).

where fabc are the structure constants. The six-dimensional Ward identities ensure that

the coupling gYM equals the six-dimensional gauge-fermion coupling even after quantum

corrections are included. Rewriting in terms of the four dimensional fields, we have

L 3 fabc
∑
{ni,pi}

[
g

(3v)
{ni,pi}η

µαηνρ
(
∂µA

a(n1,p1)
ν

)
Ab(n2,p2)
ρ Ac(n3,p3)

α

+ g
(vv4)
{ni,pi}η

µνAa(n1,p1)
µ Ab(n2,p2)

ν Ã
c(n3,p3)
4

+ g
(44v)
{ni,pi}η

µν
(
∂µÃ

a(n1,p1)
4

)
Ã
b(n2,p2)
4 Ac(n3,p3)

ν

+ g
(vv5)
{ni,pi}η

µνAa(n1,p1)
µ Ab(n2,p2)

ν Ã
c(n3,p3)
5

+ g
(55v)
{ni,pi}η

µν
(
∂µÃ

a(n1,p1)
5

)
Ã
b(n2,p2)
5 Ac(n3,p3)

ν

]
,

(6.9)

where the coupling constants are defined through

g
(3v)
{ni,pi} =

gYM√
Ryrz

∫ π

0
dx4 ηn1,p1 ηn2,p2 ηn3,p3

∫ π

−π
dx5 bχp1 χp2 χp3 , (6.10)

g
(vv4)
{ni,pi} =

gYM

R2
y

√
Ry
rz

∫ π

0
dx4 a

2ηn1,p1 ηn2,p2 η
(4)
n3,p3

∫ π

−π
dx5 b(∂4χp1)χp2 χ

(4)
p3 ,

g
(44v)
{ni,pi} =

gYM√
Ryrz

∫ π

0
dx4 a

2η(4)
n1,p1 η

(4)
n2,p2 ηn3,p3

∫ π

−π
dx5 bχ

(4)
p1 χ

(4)
p2 χp3 ,

g
(vv5)
{ni,pi} =

gYM

r2
z

√
rz
Ry

∫ π

0
dx4 a

2ηn1,p1 ηn2,p2 η
(5)
n3,p3

∫ π

−π
dx5 b

3(∂5χp1)χp2 χ
(5)
p3 ,

g
(55v)
{ni,pi} =

gYM√
Ryrz

∫ π

0
dx4 a

2η(5)
n1,p1 η

(5)
n2,p2 ηn3,p3

∫ π

−π
dx5 b

3χ(5)
p1 χ

(5)
p2 χp3 . .

For the three vector vertex, clearly if one of them is a zero-mode, the other two must

be identical. Similarly, the vector zero-mode couples only to a pair of identical scalars.

Finally, for either case, the coupling is the same as that in eq. (6.3). All of the above are,

of course, consequences of gauge invariance. Finally, although there exists Ã4–Ã5 mixing

term, it, as discussed earlier, is rather subdominant, and we omit it here.
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6.3 Quartic gauge interaction

The corresponding term in the Lagrangian is

L 3 g2
YM
fabcf cedRyrz η

µρAaµA
e
ρ

(
b ηναAbν A

d
α +

a2b

R2
y

Ab4A
d
4 +

a2b3

r2
z

Ab5A
d
5

)
.

Once again, reexpressing in terms of four dimensional fields, we have

L 3 fabcf ced ηµρ
∑
{ni,pi}

Aa(n1,p1)
µ Ae(n3,p3)

ρ

[
G(4v)
{ni,pi} η

ναAb(n2,p2)
ν Ad(n4,p4)

α

+G4(2v,2s)
{ni,pi} Ã

b(n2,p2)
4 Ã

d(n4,p4)
4 + G5(2v,2s)

{ni,pi} Ã
b(n2,p2)
5 Ã

d(n4,p4)
5

] (6.11)

with the coupling constants being defined through

G(4v)
{ni,pi} =

g2
YM

Ryrz

∫ π

0
dx4ηn1,p1 ηn2,p2 ηn3,p3 ηn4,p4

∫ π

−π
dx5 b χp1 χp2 χp3 χp4 , (6.12)

G4(2v,2s)
{ni,pi} =

g2
YM

Ryrz

∫ π

0
dx4 a

2 ηn1,p1 ηn3,p3 η
(4)
n2,p2 η

(4)
n4,p4

∫ π

−π
dx5 b χp1 χp3 χ

(4)
p2 χ

(4)
p4 ,

G5(2v,2s)
{ni,pi} =

g2
YM

Ryrz

∫ π

0
dx4 a

2 ηn1,p1 ηn3,p3 η
(5)
n2,p2 η

(5)
n4,p4

∫ π

−π
dx5 b

3 χp1 χp3 χ
(5)
p2 χ

(5)
p4 .

Again, for the zero mode vectors, the Ward identity is satisfied.

6.4 Ghost vertices

The relevant piece in the ghost Lagrangian is

Lgh 3 gYMf
abcRyrz θ̄

a

(
a2b3ηµν∂µA

b
ν +

1

R2
y

a3b3(∂4a)Ab4 +
1

R2
y

a4b3∂4A
b
4

+
1

r2
z

a4b5∂5A
b
5 +

3

r2
z

a4b4(∂5b)A
b
5

)
θc .

yielding in terms of the four dimensional fields

Lgh 3 fabc
∑
{ni,pi}

θ̄a(n1,p1) θc(n2,p2)
[
g

(1)
{ni,pi} η

µν∂µA
b(n3,p3)
ν + g

(2)
{ni,pi} Ã

b(n3,p3)
4

+g
(3)
{ni,pi} Ã

b(n3,p3)
4 + g

(4)
{ni,pi} Ã

b(n3,p3)
5 + g

(5)
{ni,pi} Ã

b(n3,p3)
5

]
,

(6.13)

where the coupling constants are defined as

g
(1)
{ni,pi} =

gYM√
Ryrz

∫ π

0
dx4 a

2 ηn1,p1 ηn2,p2 ηn3,p3

∫ π

−π
dx5 b

3 χp1 χp2 χp3 ,

g
(2)
{ni,pi} =

gYM

Ry
√
Ryrz

∫ π

0
dx4 a

3a′ ηn1,p1 ηn2,p2 η
(4)
n3,p3

∫ π

−π
dx5 b

3 χp1 χp2 χ
(4)
p3 ,

g
(3)
{ni,pi} =

gYM

Ry
√
Ryrz

∫ π

0
dx4 a

4 ηn1,p1 ηn2,p2 ∂4η
(4)
n3,p3

∫ π

−π
dx5 b

3 χp1 χp2 χ
(4)
p3 , (6.14)

g
(4)
{ni,pi} =

gYM

rz
√
Ryrz

∫ π

0
dx4 a

4 ηn1,p1 ηn2,p2 η
(5)
n3,p3

∫ π

−π
dx5 b

5 χp1 χp2 ∂5χ
(5)
p3 ,

g
(5)
{ni,pi} =

gYM

rz
√
Ryrz

∫ π

0
dx4 a

4 ηn1,p1 ηn2,p2 η
(5)
n3,p3

∫ π

−π
dx5 b

4 ḃ χp1 χp2 χ
(5)
p3 .

Once, again, g
(1)
~0,~0

= g
(3v)
~0,~0

, as is mandated by gauge invariance.
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7 Summary

While the negative results for graviton resonance searches by the ATLAS [9] and CMS [10]

collaborations have caused a bit of tension for the Randall-Sundrum scenario, a six-

dimensional analogue with a nested double warping [31] has been seen to be very consistent

with the experimental results [32]. Such scenarios are of interest in their own right as they

could, for example, constitute an intermediate step in the compactification down from a

theory in higher dimensions. Moreover, the fundamental scale in such theories are natu-

rally lower than the Planck-scale, and this could play a significant role in the context of

gauge unification. But, most interestingly, it provides a tunable parameter that smoothly

takes one from a nearly-conformal theory to another that is a large departure from one,

with the added feature that both the ends provide a resolution of the hierarchy problem

(although this is not apparent in the interim regime).

Just as the RS model would, generically, admit operators that lead to unsuppressed

flavour changing neutral currents and/or proton decay, so would the model considered in

refs. [31, 32]. On a different vein, the exact cutoff scale of this theory (normally described

as the scale at which the loop contributions are to be cutoff) needs to be identified too. It

has been argued that, within the five-dimensional context, the addition of the Planck-brane

and/or the TeV-brane allows a holographic interpretation [58–60], with the former acting

as a regulator leading to an ultraviolet10 cutoff (<∼ r−1
c ) on the corresponding CFT [61–63].

It has been demonstrated that, for RS-like theories with gauge fields extended in to the

warped bulk, this is indeed so [64–66]. Even though no such duality has been constructed

for the case under consideration, it is quite conceivable that one such would exist. In

the large k case, the bulk is indeed AdS6-like. However, for the phenomenologically more

interesting case of large c (small k), it is evident that the the metric is not conformally flat

and, hence, a holographic interpretation would be considerably more tricky.

An alternative and obvious way to ameliorate flavour changing currents is to allow the

fermions (and, hence, the gauge fields too) to propagate into the six dimensional bulk, for

now the higher dimensional operators get suppressed by a factor Λ4
UV, with ΛUV being

the bulk cutoff of the theory, which is higher than the GUT scale. Furthermore, a six-

dimensional theory allows one to make predictions about the number of chiral generations

in the theory.

An immediate consequence of taking these fields into the full six-dimensional bulk is

that each of the KK-towers that are so familiar in the five-dimensional context now expand

into a “tower of towers”, thereby enriching the phenomenology, whether it be in the context

of quantum correcions to SM amplitudes or direct production at, say the next run of the

LHC. In this paper, we have derived the wave profiles for these fields and computed the

master formula to calculate their spectra. It is seen that, of the two branches allowed

to the theory by the resolution of the hierarchy problem, the one close to a conformally

flat space leads to the collapse of the ‘tower of towers’ (for both the gauge fields and the

fermions) to a single tower each (the other excitations are too heavy and decouple from

10An analogous argument for our case would imply a cutoff ΛUV ' min(R−1
y , r−1

z ) as argued in ref. [32]

from an entirely different perspective.
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the low-energy theory). However, the spacing between the successive members of a tower

is distinctly different from that in the five-dimensional analogue, thereby distinguishing

between the two scenarios. More tellingly though, the higher KK-excitations of the gauge

bosons couple very strongly, thereby invalidating a perturbative treatment, and calls for a

more sophisticated approach.

The other branch of the theory, which cannot be thought of as a mere perturbation of

the AdS6 paradigm, retains the full tower of towers, with some of the excitations possibly

being rather closely spaced. This naturally leads to very interesting phenomenology, not

the least of which pertains to the just-begun run of the LHC. It also is of paramount

interest in the context of electroweak precision tests, rare decays and renormalization group

evolutions [67]. A particularly interesting feature is that the first KK mode for the fermions

as well as the adjoint scalar is much heavier than that for the gauge boson. This is

very different from the case of the five-dimensional theory and constitutes a remarkable

discriminant between the theories, say at the LHC.

As for the Higgs field, just as in the five-dimensional theory, putting the Higgs field

along with symmetry breaking potential into the bulk either brings back the hierarchy

problem, or renders the masses of the gauge boson KK-tower unacceptably low. Thus, it is

wise to localize the Higgs on to a 3-brane. This, though, has the unfortunate consequence

of making the combination of the equations of motion and the boundary condition too

complicated to permit an easy understanding of the dynamics. On the other hand, if we

localize the Higgs onto a 4-brane (located at x4 = π and x5 = 0), and work in the large

c regime, we see that the Higgs vacuum expectation value does get warped down to the

electroweak scale. With the consequent brane localized contribution being small, it can

be treated as a perturbation, and the consequent shifts in the spectrum as well as the

wavefunction profiles can be calculated. It is interesting to note that, although small, the

brane localized Higgs mixes the KK states with possible phenomenological ramifications.

These issues are under investigation.
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