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1 Introduction

The discovery of a 125 GeV scalar [1, 2] completes the Standard Model (SM) of particle

physics and appears to confirm some rather intriguing features of nature. Firstly, the Higgs

potential of the SM develops an instability at high field values, [3–10]. Secondly, the theory

on its own does not account for nearly 95% of the matter in the universe, known as dark

matter (DM) [11] and dark energy.

In this paper we explore a simple extension of the SM by an extra U(1)X gauge

symmetry factor, supplemented with an additional complex scalar charged solely under

this U(1)X . It was studied by [12–15] and by [16–18] in its non-Abelian version (for other

realizations of vector fields in the context of dark matter see [19, 20]). The model can (if
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the real component of the complex scalar obtains a vev) generate a viable massive vector

dark matter candidate. It also provides an additional Higgs mass eigenstate and introduces

additional freedom in the theory to completely alleviate the issue of vacuum stability.

In this paper we use a collection of HEP-tools and software to give an accurate ac-

count of the currently viable parameter space of such a model. In particular we com-

bine SARAH [21–24], Pyrate [25] and SPheno [26, 27] to explore stability at 2-loops and

micrOMEGAs [28–31] for a detailed study of vector dark matter for this model. We also

compare our results to various experiments including LUX [32] and XENON100 [33].

The paper is organized as follows. In section 2 the model is defined and a detailed

exposition of the parameters of the model is presented. In section 3 the renormalisation

group equations of the theory are used to constrain the parameter space from physical

consideration such as positivity, stability and the absence of Landau poles in the theory.

In section 4 collider constraints are applied and the dark matter abundance constraint is

imposed on the parameter space that remained. A detailed study of the DM-nucleon cross

section is also performed. Finally in section 5 the findings are summarized.

In appendix A we give a detailed account of the tree-level calculation of the relic

abundance. Appendix B supplies the SARAH model files which fixes the conventions and

allows for the generation of code for RGES and for the code used in micrOMEGAs [28–31].

2 A model of vector boson dark matter

The vector dark matter (VDM) model [12–16] is an extension of the SM by an additional

U(1)X gauge symmetry together with a complex scalar field S, whose vev generates a mass

for this U(1)’s vector field. The quantum numbers of the scalar field are

S = (0,1,1, 1) under U(1)Y × SU(2)L × SU(3)c ×U(1)X . (2.1)

None of the SM fields are charged under the extra gauge group. In order to ensure stability

of the new vector boson a Z2 symmetry is assumed to forbid U(1)-kinetic mixing between

U(1)X and U(1)Y . The extra gauge boson Aµ and the scalar S field transform under Z2

as follows

AµX → −A
µ
X , S → S∗, where S = φeiσ, so φ→ φ, σ → −σ. (2.2)

All other fields are neutral under the Z2.

The charge neutral vector bosons of U(1)Y & SU(2)L (B,W3), mix and the model

leads to (γ, Z). The mixing matrix is taken to be(
B

W3

)
=

(
cos θW − sin θW

sin θW cos θW

)(
γ

Z

)
(2.3)

where1

cos θW =
g√

g′2 + g2
, sin θW =

g′√
g′2 + g2

. (2.4)

1g′ =
√

3/5g1 and g = g2.

– 2 –
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At leading order the vector bosons masses are given by:

MW =
1

2
gv, MZ =

1

2

√
g2 + g′2v and MZ′ = gxvx, (2.5)

where v and vx are H and S vacuum expectation values (vev’s): (〈H〉, 〈S〉) = 1√
2
(v, vx).

The scalar potential for this theory is given by

V = −µ2
H |H|2 + λH |H|4 − µ2

S |S|2 + λS |S|4 + κ|S|2|H|2. (2.6)

It will also be useful to define, for future reference, the parameter λSM ≡M2
h/(2v

2) = 0.13,

where Mh = 125.7 GeV.

The requirement of positivity for the potential implies the following constraints that

we impose in all further discussions:

λH > 0, λS > 0, κ > −2
√
λHλS . (2.7)

Hereafter the above conditions will be referred to as the positivity or stability conditions.

It is easy to find the minimization conditions for scalar fields (without losing generality

one can assume v, vx > 0):

(2λHv
2 + κv2

x − 2µ2
H)v = 0 and (κv2 + 2λSv

2
x − 2µ2

S)vx = 0 (2.8)

If µ2
H,S < 0 the global minimum at (0, 0) is the only extremum. For µ2

H,S > 0 the point (0, 0)

is a local maximum of the potential, in this case (0, µS√
λS

) and ( µH√
λH
, 0) are global minima

if κ2 > 4λHλS , otherwise they are saddle points and the global minima are determined by

v2 =
4λSµ

2
H − 2κµ2

S

4λHλS − κ2
, v2

x =
4λHµ

2
S − 2κµ2

H

4λHλS − κ2
. (2.9)

For the VDM model only the latter case is relevant, since both vevs need to be non-zero

to give rise to the masses of the Standard Model fields and dark vector boson. Both scalar

fields can be expanded around corresponding vev’s as follows

S =
1√
2

(vx + φS + iσS) , H0 =
1√
2

(v + φH + iσH) where H =

(
H+

H0

)
. (2.10)

The mass squared matrix M2 for the fluctuations (φH , φS) and their eigenvalues read

M2 =

(
2λHv

2 κvvx

κvvx 2λSv
2
x

)
, M2

± = λHv
2 + λSv

2
x ±

√
λ2
Sv

4
x − 2λHλSv2v2

x + λ2
Hv

4 + κ2v2v4
x.

(2.11)

The matrix M2 could be diagonalized by the orthogonal rotation R, such that M2
diag =

R−1M2R. The convention adopted for the ordering of the eigenvalues and for mixing angle

α is the following

M2
diag =

(
M2
h1

0

0 M2
h2

)
, R =

(
cosα − sinα

sinα cosα

)
,

(
h1

h2

)
= R−1

(
φH

φS

)
, (2.12)

– 3 –



J
H
E
P
0
9
(
2
0
1
5
)
1
6
2

where Mh1 = 125.7 GeV is the mass of the observed Higgs particle. Then we obtain

sin 2α =
sign(λSM − λH) 2M2

12√
(M2

11 −M2
22)2 + 4(M2

12)2
, cos 2α =

sign(λSM − λH)(M2
11 −M2

22)√
(M2

11 −M2
22)2 + 4(M2

12)2
. (2.13)

Note that since vev of H, if fixed at 246.22 GeV, with κ = 0 (no mass mixing) and

λH 6= λSM it is only h2 which can have the observed Higgs mass of 125.7 GeV. Even

though the mass matrix is diagonal in this case, however in order to satisfy our convention

that Mh1 = 125.7 GeV a rotation by α = ±π/2 is required in such a case.

There are 5 real parameters in the potential: µH , µS , λH , λS and κ. Adopting the

minimization conditions (2.8) µH , µS could be replaced by v and vx. The SM vev will be

fixed at v = 246.22 GeV. Using the condition Mh1 = 125.7 GeV, v2
x could be eliminated

via (2.11) in terms of v2, λH , κ, λS , λSM = M2
h1
/(2v2):

v2
x = v2 4λSM (λH − λSM )

4λS(λH − λSM )− κ2
(2.14)

Therefore eventually there are 4 independent unknown parameters in the model

(λH , κ, λS , gx), where gx is the U(1)X coupling constant.

It is important to notice that positivity of v2
x implies for λH > λSM that

λH >
κ2

4λS
+ λSM (2.15)

Applying the fact that M2
h1

+ M2
h2

= 2(λHv
2 + λSv

2
x) together with (2.14) one finds the

following universal formula for the mass of the non-standard Higgs:

M2
h2 = v2 2(λH − λSM )(4λHλS − κ2)

4λS(λH − λSM )− κ2
(2.16)

It is easy to see that positivity of M2
h2

is guaranteed if the following conditions are satisfied:

• for λH < λSM , λH > κ2

4λS
,

• for λH > λSM , λH > κ2

4λS
+ λSM (same as (2.15)).

From (2.11) one can easily derive the following useful inequalities

M2
+ ≥ λHv

2 + λSv
2
x + |λHv2 − λSv2

x| = Max(2λHv
2, 2λSv

2
x), (2.17)

M2
− ≤ λHv

2 + λSv
2
x − |λHv2 − λSv2

x| = Min(2λHv
2, 2λSv

2
x). (2.18)

Therefore for λH > λSM we have M+ > Mh1 , so the lighter scalar is the SM-like Higgs par-

ticle, while when λH < λSM the observed Higgs particle is the heavier one. Consequently

λH is the sole parameter that distinguishes between these two scenarios. To illustrate

that behavior we show in figure 1 contours of non-standard Higgs masses in the plane

(κ, λH). Note the presence of M2
h2

= 0 contour (the most external blue contour in the

lower part of the figure) that corresponds to vanishing determinant of the matrix (2.11):

(κ2−4λHλS)v2
x = 0. In fact it is interesting to consider the special case of κ2−4λHλS = 0,

– 4 –
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Figure 1. Contour plots for masses of the non-standard (h2) Higgs particle in the plane (λH , κ) for

fixed value λs = 0.1. The observed Higgs mass is set to be Mh1
= 125.7 GeV, the vev of the Higgs

doublet is fixed at v = 246.22 GeV. In the bottom part of the plot (λH < λSM = M2
h1
/(2v2) = 0.13)

the heavier Higgs is the currently observed one, while in the upper part (λH > λSM ) the lighter state

is the observed one. The horizontal black line λH = λSM separates the two scenarios. White regions

in the upper and lower parts are disallowed by the positivity conditions for v2x and M2
h2

, respectively.

then if one requires that the potential has a minima for v, vx 6= 0 it is necessary to assume

that µ2
H/λ

1/2
H = µ2

S/λ
1/2
S , which implies that the potential could be written as

− µ̃2
(
λ

1/2
H |H|

2 + λ
1/2
S |S|

2
)

+
(
λ

1/2
H |H|

2 + λ
1/2
S |S|

2
)2

(2.19)

with µ̃2 ≡ µ2
H/λ

1/2
H . This potential has equipotential contours (in the unitary gauge)

on ellipses such that λ
1/2
H |H|2 + λ

1/2
S |S|2 = constant. Fluctuation along the ellipses that

corresponds to the minimum is the massless mode. Note that this is a mode that exists

even if vx 6= 0, so this parameter choice is different from the case discussed below at the

end of this section where vx is approaching 0 (so det(M2)→ 0 as well).

The behavior of vx is presented in figure 2. For λH < λSM and λH > κ2

4λS
(as required

by the scalar mass positivity) one finds

0 < v2
x < v2λSM

λS
(2.20)

Similarly for λH > λSM and λH > κ2/(4λS) + λSM vx is limited by

v2λSM
λS

< v2
x <∞ (2.21)

– 5 –
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Figure 2. Contour plots for the vacuum expectation value of the extra scalar vx ≡
√

2〈S〉 (left

panel) and of the mixing angle α (right panel) in the plane (λH , κ) for fixed value λs = 0.1. In the

bottom part of the plots the positivity of M2
h2

limits the allowed area by λH > κ2/(4λS), so the

white region is disallowed. The observed Higgs mass is set to be Mh1 = 125.7 GeV, the vev of the

Higgs doublet is fixed at v = 246.22 GeV. In the bottom part of the plots (λH < λSM ) the heavier

Higgs is the currently observed one, while in the upper part (λH > λSM ) the lighter state is the

observed one. The horizontal black line λH = λSM = 0.13 separates the two scenarios.

and it is diverging at the parabola λH = κ2/(4λS)+λSM . For λH < λSM only the physical

region corresponding to M2
h2
> 0 (4λHλSM − κ2 > 0) is shown in figure 2.

In order to understand the behaviour of the mixing angle α one can directly adopt the

formulae (2.13). Since α varies in the range [−π/2, π/2], the absolute value of |α| and its

sign can be read from the inverse of cos(2α) and sin(2α), respectively. The coupling of h1

eigenstate (the one that has 125.7 GeV mass) to V V is proportional to cosα therefore the

LHC data favours regions of α ∼ 0. As can be found from (2.13) small α corresponds to

either to vx → ∞ (for λH > λSM ) or to vx → 0 (for λH < λSM ). One can see the same

behaviour from figure 2.

It is worth investigating the SM limit of the VDM model. Figure 2 is a good starting

point as it is easy to recognize regions in the parameter space that imply vanishing correc-

tions (relative to the SM) to h1 couplings (this is what we define by the SM limit). So, for

λH > λSM this is the parabola λH = κ2

4λS
+ λSM where vx →∞ and α vanishes, while for

λH < λSM it is the vicinity of λH = λSM . The case λH > λSM is less interesting as it is just

the decoupling limit with Mh2 ∼ 2λSv
2
x + · · · → ∞, see figure 1, when the effective low en-

ergy theory is just the SM with h2 being integrated out. The mixing angle α behaves in that

region as α ∼ κ/λS(v/vx)2 + · · · . More interesting is the region with λH approaching λSM
from below, as there the mass of h2 goes to zero (also vx → 0), as seen in figure 2. In this

region the model contains a SM-like scalar with the mass of 125.7 and almost massless state

(h2) that decouples from V V , h1h1 and fermions, however its cubic (κh1h
2
2) and quartic

(κh2
1h

2
2) scalar couplings remain. This limit of the VDM model turns out to be phenomeno-

logically unattractive since the Higgs boson h1 would decay invisibly into pairs h2h2.

– 6 –
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3 The renormalisation group equations

As will be illustrated shortly, in order to investigate vacuum stability in the VDM model

it is necessary to use 2-loop RGEs. We have adopted SARAH [21–24] to obtain the full set

of 2-loop beta functions. However, in order to facilitate further discussion we show below

the beta functions of the gauge couplings at 1-loop level, even though whenever we impose

any constraints on the parameter space that rely on the RGE running we always use 2-loop

beta functions.

βga = 16π2 d

dt
ga (3.1)

we have

β(1)
g1 =

41

10
g3

1 , β(1)
gx =

1

3
g3
x , β(1)

g2 = −19

6
g3

2 and β(1)
g3 = −7g3

3 (3.2)

The various Higgs quartic couplings at 1-loop run as

β
(1)
λH

=
27

200
g4

1 +
9

20
g2

1g
2
2 +

9

8
g4

2 −
9

5
g2

1λH − 9g2
2λH + 24λ2

H + κ2

− 6Tr
(
YuY

†
uYuY

†
u

)
− 2Tr

(
YeY

†
e YeY

†
e

)
− 6Tr

(
YdY

†
d YdY

†
d

)
+ 12λHTr

(
YdY

†
d

)
+ 4λHTr

(
YeY

†
e

)
+ 12λHTr

(
YuY

†
u

)
(3.3)

β
(1)
λS

=
1

2

(
− 36g2

xλS + 27g4
x + 40λ2

S + 4κ2
)

(3.4)

β(1)
κ =

κ

10

[
− 9g2

1 − 90g2
x − 45g2

2 + 120λH + 80λS + 40κ

+ 60Tr
(
YdY

†
d

)
+ 20Tr

(
YeY

†
e

)
+ 60Tr

(
YuY

†
u

)]
(3.5)

Above Yu,d,e denote the corresponding Yukawa matrices. Since here we are mainly con-

cerned with the case of the masses for the extra scalar h2 and Z ′ of the order of the

electroweak scale and since initial conditions for RGE running will be specified at Q = mt

(relatively large scale) therefore we will adopt the above beta functions neglecting decou-

pling of extra degrees of freedom below the scale Q = Mh2 ,MZ′ .

We have verified that, in the SM limit, our 2-loop running of λH(Q) agrees with known

results [34].

In order to explore the stability and positivity of the theory we used the two-loop

RGEs and the tree-level potential. To improve the precision of this work further one would

likely need the one-loop improved effective potential before extending to 3-loop RGEs.

An example of a representative point in the parameter space at Q = mt is pictured in

figure 3, where we show both 1- and 2-loop running of the gauge and scalar quartic cou-

plings. A few comments are here in order. The running of gauge couplings (left panel of 3) is

rather stable and similar for 1- and 2-loop beta functions. However the Yukawa coupling Yt
already shows (left panel) some sensitivity to the approximation adopted for the beta func-

tions. It is important to note the relevance of 2-loop running of λH(Q); as seen in the right

panel of figure 3 the scale of instability (i.e. a scale Q? from which on λH(Q) is negative)

is very sensitive to the RGE running precision. For 1-loop beta functions Q? ∼ 1011 GeV

while for 2-loop approximation λH(Q) remain positive up to scale 1019 GeV. Other quar-

tic couplings (κ(Q) and λS(Q)) do not require 2-loop beta functions as their evolution is

– 7 –
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Figure 3. Running of various parameters at 1- and 2-loop, in solid and dashed lines respectively.

For this choice of parameters λH(Q) > 0 at 2-loop (right panel blue) but not at 1-loop. λS(Q)

is always positive (right panel red), running of κ(Q) is very limited, however the third positivity

condition κ(Q)+2
√
λH(Q)λS(Q) > 0 is violated at higher scales even at 2-loops (right panel green).

nearly the same for 1- and 2-loop beta functions. It is worth noticing that βλS is always

positive, so the stability condition λS > 0 can never be violated radiatively. The evolution

of κ is rather mild as βκ ∝ κ therefore at least for small κ the evolution is quite suppressed.

In the right panel of figure 3 we also show the running of the positivity condition κ(Q) +

2
√
λH(Q)λS(Q) > 0. Here the 2-loop effects are again important. The 1-loop curve termi-

nates already around Q ∼ 1011 GeV, the scale at which 1-loop λH(Q) becomes negative, so

that the positivity condition κ(Q)+2
√
λH(Q)λS(Q) > 0 can not be verified. On the other

hand the 2-loop running of this condition shows that it is satisfied up to Q ∼ 1012 GeV. The

choice of initial conditions for this plot illustrates the fact that there exist initial conditions

(i.e. points in the parameter space (λH(mt), κ(mt), λS(mt), gx(mt))) such that even though

the condition κ(Q) + 2
√
λH(Q)λS(Q) > 0 is satisfied at low scale it fails at high energies.

3.1 Stability

The constraints (2.7) can be used to determine areas of parameter space

(λH(mt), κ(mt), λS(mt), gx(mt)) in which the conditions for stability/positivity of the po-

tential are satisfied at all renormalization scales. In the SM, the absolute stability is ensured

just by the positivity of the quartic coupling at all energy scales Q: λH(Q) > 0. Since

the mass of the Higgs boson is known experimentally the initial condition for running of

λH(Q) is fixed as λH(mt) = M2
h1
/(2v2) = λSM = 0.13 and for this initial value λH(Q)

becomes negative at some scale causing the instability. However here, in the presence of

the extra scalar S this is not necessarily the case; the LHC Higgs mass measurement fixes

the following combination of couplings and vev’s:

M2
h1 = λHv

2 + λSv
2
x ±

√
λ2
Sv

4
x − 2λHλSv2v2

x + λ2
Hv

4 + κ2v2v4
x. (3.6)

It is easy to see that the VDM model has the freedom to increase the value of λH at

low scales; a freedom which the SM does not possess. Larger initial values of λH such

that λH(mt) > λSM are allowed delaying the instability (by shifting up the scale at which

λH(Q) < 0). There is also another remedy for the instability within the VDM model; even

– 8 –
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Figure 4. The stability frontier for the H direction: these plots identify the renormalisation

scale t∗ = Log10(Q∗) at which λH(Q∗) = 0 and the vacuum becomes unstable, as a function

of (λ(mt), κ(mt)). The horizontal solid black line corresponds to λH(mt) = λSM ' 0.13. For

t = Log10(Q∗) > Log10(MPl) = 19.09, the vacuum is absolutely stable up to that scale. At lower

values the vacuum is meta-stable however a lower scale does not imply increased instability, one

must further determine the tunneling rate.

if the initial λH is smaller than its SM value, λH(mt) < λSM , still there is a chance to

lift the instability scale if appropriate initial value of the portal coupling κ(mt) is chosen.

This effect is caused by the positive κ2 contribution to the beta function βλH that partially

compensates the negative top-quark effect, see (3.3). Figure 4 illustrates the way the SM

stability problem encoded by λH(Q) < 0 for Q > Q? could be relaxed within the VDM

model. The white region above the horizontal line λH(mt) = λSM shows the region of

λH(mt) > λSM so the positivity of λH up to the Planck scale could be easily guaranteed.

On the other hand the white region below the line λH(mt) = λSM shows those pairs

of (λH , κ) for which even though the starting point for λH evolution is lower than for

the SM, nevertheless the extra positive contribution to βλH makes λH positive up to the

Planck scale. Clearly for large κ the stability region increases (for negative κ the other

stability condition gives tighter constraint). The colorful regions show the scale at which

λH becomes negative. The three panels shown in figure 4 correspond to three different

pairs of initial values for (gx(mt), λS(mt)). As seen, the sensitivity to those choices is very

weak even though gx(mt) and λS(mt) vary in a wide range, in fact this is understandable

since the evolution of λH(Q) is influenced by gx(mt) and λS(mt) only indirectly through

the presence of κ2 in the beta function βλH , see (3.3).

In the VDM model the SM stability problem (positivity of λH) is easily solved as was

illustrated above. However in this case positivity requires two extra constraints: λS > 0 and

κ+ 2
√
λHλS > 0. Since βλS > 0 therefore whenever λS(mt) > 0 the positivity is preserved

during the evolution. However the second extra condition is non-trivial, as illustrated in

figure 3 it is possible that κ(Q) + 2
√
λH(Q)λS(Q) changes sign while running from low

energies up. Figure 5 shows the scale at which κ(Q) + 2
√
λH(Q)λS(Q) becomes negative

as a function of (λ(mt), κ(mt)) for three fixed sets of (gx(mt), λS(mt)).

Stability of the U(1)X dark matter model was also discussed in [35]. The vacuum

stability induced by the dark matter has also been considered in the context of complex [36]

and real [37, 38] extra scalars serving as dark matter candidates.
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Figure 5. The “in between” stability frontier: these plots identify the scale t∗ = Log10(Q∗) at

which the positivity condition κ(Q) + 2
√
λH(Q)λS(Q) fails and the vacuum becomes unstable, as

a function of (λ(mt), κ(mt)) for fixed choices of (gx(mt), λS(mt)) specified above each panel. The

horizontal solid black line corresponds to λH(mt) = λSM ' 0.13. The gray area is excluded by the

requirement that there is no Landau poles up to the Planck mass.

Figure 6. Contour plots of λH(MPl) in the plane of (λ(mt), κ(mt)) for fixed gx(mt) and λS(mt)

specified above each panel. The horizontal solid black line corresponds to λH(mt) = λSM ' 0.13.

The plots allow one to identify regions (white) in which the λH(Q) Landau pole is below the

Planck scale.

3.2 The Landau poles

As we have discussed above, the additional freedom in the Higgs sector, that is due to

the presence of the Higgs portal κ|S|2|H|2 allows one to increase the low scale value of

λH sufficiently to avoid its negative value (instability in the H direction) at high scales.

However, this possibility is bounded from above by the requirement that there are no

Landau poles in the evolution of λH (or any other parameter - a pole in the evolution of

any coupling implies divergence of all of them at the same energy) up to a chosen high scale,

e.g. the Planck mass. In figure 6 we show contour plots of λH(MPl) in (λH(mt), κ(mt))

space for fixed gx(mt) and λS(mt). It is clear that too large κ(mt) or λH(mt) implies early

divergence of λH(Q). Also when gx(mt) and/or λS(mt) grow (from left to the right panel)

the safe region shrinks in agreement with expectations.

A few comments are in order here. Quartic scalar couplings λH , λS , κ and gx are free

parameters in the model. However for perturbative expansion to be valid their values can
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Figure 7. The regions of allowed parameter space (inside the “boomerang” contours) where cou-

plings remain perturbative, positivity is satisfied up to MPl in the plane (| sinα|,Mh2
), at 2 loops.

Left and right panels corresponds to positive and negative κ, respectively. The allowed area de-

creases as the magnitude of κ increases. The blue area denotes region where h1 coupling to vector

bosons is away from its SM value by more than 15%. The region over dashed red line is excluded

at 95% CL by the analysis of the Peskin-Takeuchi S,T parameters.

not be too large since otherwise the expansion has no chance to converge. The maximum

adopted by various authors is to some extent subjective and usually varies between 1 and

4π. Here we have the advantage of knowing both 1- and 2-loop beta functions for the RGE

evolution of the couplings, therefore the relevance of the 2-loop could be quantitatively

estimated for different (large) values of couplings. We found that requiring the 2-loop

correction to be smaller than 100% of the 1-loop result for any quartic scalar coupling, i.e.

|(λ(2)
i − λ

(1)
i )/λ

(1)
i | < 1, implies that the coupling should not exceed a value close to 2π.

Therefore, in the numerical results, whenever it is stated that a Landau pole appears, it is

meant that the corresponding coupling reaches a value of 2π. For larger couplings the 2-

loop contributions start to dominate, so that one can not trust the perturbative expansion,

truncated to this order.

The VDM model without the additional U(1)X reduces to a Higgs portal extension of

the Standard Model, which has been explored recently in [39–41]. These papers note that it

can be useful to consider a change of parameterisation from (λH , κ, λS)→ (Mh2 , κ, sinα),

in which one can re-express the quartic couplings as follows:

λH = λSM + sin2 α
M2
h2
−M2

h1

2v2
(3.7)

λS =
2κ2

sin2 2α

v2

M2
h2
−M2

h1

(
M2
h2

M2
h2
−M2

h1

− sin2 α

)
. (3.8)

One can then identify the regions in this parameter space, (| sinα|,Mh2), that are

absolutely stable (i.e. the stability conditions are satisfied up to the Planck scale) and do
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not have Landau poles at any renormalisation scale before the Planck scale, as pictured

in figure 7. We show here those plots in order to compare our results with those of [41],

which differ in so far as our study include 2-loop (not 1-loop) running, and where our

model includes the additional parameter gx.

4 Constrained parameter space

In this section we show results of scans over the parameter space (λH , κ, λS , gx). Usually

λS will be fixed and specified, gx is either fixed (in figures 9–11) or varied 0.1 < gx < 1

while λH and κ will be scanned such that 0 < λH < 0.25 and −0.5 < κ < 0.5 (with some

exceptions when −1 < κ < 1). If RGE running is employed then the scan range should be

regarded as for initial values of running quantities at Q = mt.

4.1 Collider constraints

In addition to the theoretical requirements discussed above we are going to impose some

experimental constraints. First of all there exist limits on branching ratio for invisible

Higgs boson decays. Searches for Higgs decaying invisibly has been carried out by both the

ATLAS and CMS collaborations at the LHC for various production and decay channels.

ATLAS [42] considered an associated Higgs production with a vector boson (V = W±

or Z), assuming SM production they found an upper limit of 29% at 95% confidence

level on the branching ratio of Higgs bosons decaying to invisible particles. A search for

invisible decays of Higgs bosons was also performed by CMS [43, 44]. Assuming Standard

Model Higgs boson cross sections and acceptances, the observed upper limit on the invisible

branching fraction was found to be 57% at 95% confidence level. It turns out that within

the VDM model unless the U(1)X coupling constant gx is tiny or 2MZ′ > 125.7 GeV decays

of the observed Higgs boson h1 into Z ′Z ′ would dominate with branching ratio exceeding

the experimental limits. Similar comments apply for decays of h1 into pairs of h2 (for

the scenario with λH < λSM ). Therefore in our analysis we simply exclude points in the

parameter space such that h1 decays to Z ′Z ′ or h2h2 are kinematically allowed.

If λH < λSM Higgs boson h2 is light so that it could have been prodeced at LEP. Then

the LEP limits for e+e− → Zh2 apply and should be imposed. Here we adopt the data

from [45] where limits on ZZh1 coupling normalized to the SM ZZh coupling (κZ = cosα)

are tabularised as a function of Mh2 . For fixed λS the limit on α could be easily translated

into allowed region in the (κ, λH) plane.

Higgs boson couplings are being measured at the LHC. The ATLAS [46] and CMS [47]

collaborations limit e.g. ratios κV of Higgs boson V V couplings normalized to their SM

values. The conclusion is that the observed Higgs has SM-like couplings to the vector

bosons. Here we will assume, somehow arbitrarily, that the ratio is limited by 0.85 <

κV < 1. Note that because of the orthogonal mixing κV = cosα can not exceed 1 within

the VDM model. As we have already mentioned above the SM-like nature of h1 favours

regions of large and small vx for λH > λSM and λH < λSM , respectively. The constraint

that originates from 0.85 < κV < 1 could be expressed as an allowed region in the (κ, λH)

plane both for λH < λSM and λH > λSM case.
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In order to estimate relevance of electroweak precision data we adopt the Peskin-

Takeuchi S, T and U parameters [48].2 At the 1-loop level, beyond the SM radiative

corrections to the SM vector boson progators δΠV V are not affected by the presence of the

Z ′ boson, therefore δΠV V are the same as those found in the analysis of the plain Higgs

portal [41]. At this order shifts in δΠZγ and δΠγγ vanish, therefore the S and T parameters

can be expressed as

S =
16π cos2 θW

g2
δΠ′ZZ(0), T =

4π

e2

(
δΠWW (0)

M2
W

− δΠZZ(0)

M2
Z

)
, (4.1)

whereas the parameter U is too small to be relevant. Using the fit obtained in [49] we

found that at 95% confidence level the S and T parameters do not constrain further the

parameter space. These bounds are entirely embedded in region, where the scalar mixing

angle is too large or couplings are non-perturbative (see figure 7). It is worth to emphasize

that they constrain | sinα| only moderately weaker than the full set of the electroweak

precision observables [41]. In particular, in the important mass range Mh2 > 200 GeV,

the allowed value of | sinα| in S and T approximation is larger by 25%. For low Mh2

mass differences grow however that region of parameter space is anyway disfavoured by the

requirement of absolute stability and excluded by limits on κV .

4.2 Dark Matter abundance

Before we proceed to constrain the parameter space by measurements of DM abundance, in

figure 8 we show results for ΩDMh
2 as a function of the DM mass (MZ′) obtained varying

coupling constant gx and choosing a few representative values of other parameters.

We have calculated ΩDMh
2 adopting standard textbook methods for cold relics, see

e.g. [50]. Relevant vertices, Feynman diagrams and corresponding contributions to Z ′Z ′

annihilation cross section for various final states are collected in appendix A. We have

checked our results for ΩDMh
2 against calculations done adopting the micrOMEGAs3 [31].

It turned out that except resonance regions (such that 2MZ′ ∼ a mass of s-channel res-

onance) and vicinities of thresholds for new final states, ΩDMh
2 determined via the cold

relics technique agrees pretty well with the result provided by the micrOMEGAs. How-

ever, in order to have also those special regions under control we have decided to adopt the

micrOMEGAs hereafter. For illustration, in 8 we compare ΩDMh
2 obtained by adopting

results contained in appendix A with those from micrOMEGAs.

There is a comment here in order. In figure 8 and similar that will follow, one sees

that for large MZ′ it is typical that ΩDMh
2 decreases as MZ′ grows. In fact it is easy

to understand such behaviour. In those plots potential parameters are fixed, so is vx,

therefore increasing MZ′ implies growing gx, so that 〈σv〉 increases and therefore ΩDMh
2

decreases. This fact can be seen in the easiest way by looking at the contribution from

direct DM-scalar interaction coming from the vertex V Z′
ij ∝ g2

x (appendix A); then 〈σv〉 ∝
|V Z′
ij |2/M2

Z′ ∝ g2
x/v

2
x and therefore ΩDMh

2 ∝ 1/g2
x.

2Since the scale of new physics in our case is not always much above the electroweak scale therefore the

S, T and U parameters should be used with some extra care. In particular, for Mh2 < Mh1 they do not

provide a viable estimation of radiative corrections. Luckily that region of parameter space is not allowed

by other constraints.
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Figure 8. The left and right panels show ΩDMh
2 as a function of MZ′ for a case ofMh2 < 125.7 GeV

(λH < λSM ) and Mh2 > 125.7 GeV (λH > λSM ), respectively. Masses of Z ′ that correspond to

a resonance or an opening of a new final states are shown above each panel. The dotted and

solid lines correspond to results obtained from the micrOMEGAs and results of cold dark matter

approximation from the appendix A, respectively. The thick horizontal green lines correspond to

the observed 5σ result for ΩDMh
2 as in (4.2).

4.3 Allowed parameter space

All constraints that we have considered are collected in figures 9, 10 and 11. Choosing

randomly points in the parameter space in the region (white) allowed by perturbativity,

stability, LEP and LHC data we require that the DM abundance remains within the 5σ

limit of [51]

ΩDMh
2 = 0.1199± 0.0022 (4.2)

Points that fit into the allowed region of (4.2) are shown in figures 9–11 as dots within the

white region, for them all the constraints are satisfied.

4.4 Direct detection of Dark Matter

Interactions of VDM with nucleons are mediated by the Higgs particles. For the elastic

scattering cross section we obtain

σZ′N =
µ2

4π
g2
xg

2
hNN sin2 2α

(
1

M2
h1

− 1

M2
h2

)2

, (4.3)

where µ = MZ′MN/(MN+MZ′) is nucleon-DM reduced mass, ghNN = 1/v〈N |
∑

qmq q̄q|N〉
is the effective Higgs to nucleon coupling [52].
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Figure 9. Combined plots of allowed and disallowed parameter space in the plane (λH(mt), κ(mt))

for gx(mt) = g1(mt) and λS(mt) = λSM (mt) = 0.13. The thin red line denotes the frontier above

which a Landau pole of λH appears below the Planck scale. The thin blue line denotes the absolute

stability frontier. Below the thin green line the positivity condition fails at some renormalisation

scale (its wavy shape is a numerical artifact). The yellow region is disallowed by invisible Higgs

decays. The green area denotes LEP exclusions on Higgs-like scalars. In the outer red area positivity

fails at the low scale, while in the orange area no physical solution of the vev vx exists. The blue

area denotes an excess of the h1 Higgs couplings to vector bosons (κV ). The remaining allowed

region is in white. The points (in the white region) coloured with respect to the mass of the extra

Higgs boson Mh2
are those for which also ΩDMh

2 constraint (4.2) is fulfilled.

In this subsection we are going to show results for σZ′N as a function of MZ′ for those

points (green points in figures 9–11) in the parameter space which satisfy all the constraints

including the DM abundance. In the following subsection we are showing results obtained

with micrOMEGAs for λS fixed at λS = 0.2.

4.4.1 Light dark matter

We start with the case of λH < λSM . Then, since vx is limited from above as in (2.20) and

the scanning interval for gx is 0.1 < gx < 1, therefore the DM mass is bounded from above

by MZ′ < v(λSM/λS)1/2 ∼ 200 GeV. It turns out that in practice there is no consistent

points in the parameter space with MZ′ ≥ 120 GeV. Note also that in order to prevent
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Figure 10. Same as in figure 9 however colouring of allowed points is here with respect to sin α.

Figure 11. Same as in figures 10, however for gx(mt) = 0.25 and λS(mt) = 0.05 (left panel) and

for gx(mt) = 0.6 and λS(mt) = 0.2 (right panel).
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Figure 12. The figure shows the DM-nucleon cross section, σZ′N , as a function of the DM mass

MZ′ for points which satisfy all other constraints for λH < λSM . The singlet quartic coupling is

fixed at λS = 0.2. Colouring corresponds to the strength of the gauge coupling gx. The nearly

horizontal lines are the experimental limits for σZ′N from XENON100, LUX (2103) and anticipated

results for XENON 1T.

invisible h1 decays h1 → Z ′Z ′ it is required that MZ′ > 62.9 GeV, so the allowed range

for DM mass is 62.9 GeV < MZ′ < 120 GeV. In figures 12 and 13 we are showing σZ′N
coloured with respect gx, Mh2 and sin2(2α) in order to learn properties of the points that

are plotted. We also show experimental limits for σZ′N from XENON100, LUX (2013) and

anticipated results for XENON 1T. As it is seen from the figures, points that are consistent

with the present data correspond to medium gauge coupling gx ∼ 0.5, h2 slightly lighter

than the observed Higgs Mh2 ∼ 110÷ 125 GeV and small mixing angle 0 . α . π/8. The

DM mass varies between 60 and 120 GeV with heavier states favoured.

Figure 14 is helpful in order to understand why there is no points in the parameter

space with MZ′ & 120 GeV. As it is seen in the right panel of the figure for large MZ′ the

DM abundance ΩDMh
2 is very small since almost all annihilation channels (except h1h1

and tt̄) are open for Z ′ of that mass (so that the annihilation cross section is large). It

is also instructive to look at correlations between Mh2 and MZ′ shown in the left panel

of figure 14. It turns out that there are two regions consistent with the constraints: i)

MZ′ ∼ 65 GeV and ii) MZ′ ∼ Mh2 − 5 GeV. The first one corresponds to the vicinity

of h1 resonance in the right plot in the figure. The dip at 62.9 GeV is quite steep such

that deviation by about 5 GeV is sufficient to reach ΩDMh
2 ∼ 0.1. The other side of the

resonance is excluded by the requirement of no invisible h1 decays. In fact it also easy to

understand the second region that corresponds to the other side of the summit seen to the

right of the h1 resonance in the right panel. There the sudden drop of ΩDMh
2 is caused by

the opening of h2h2 final state. In a real case, since annihilating Z ′ pairs are not exactly

at rest, therefore the h2h2 channel opens by 5 GeV earlier.
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Figure 13. Same as in figure 12, but colouring is with respect to Mh2 and sin2(2α) for the left

and the right panel, respectively.
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λH = 0.11, κ = 0.12, λS = 0.2 (Mh2 = 75 GeV, vx = 138 GeV)

Figure 14. The left panel illustrates correlation between between Mh2
and MZ′ , while the right

one shows predictions for ΩDMh
2 as a function of MZ′ . The colouring corresponds to the cross

section σZ′N . Above the right box resonances and channels which open as MZ′ increases are shown.

Coordinates in the parameter space (λH , κ, λS) and corresponding Mh2 and vx are shown above

the right panel.

4.4.2 Heavy dark matter

In this section we are considering the case λH > λSM . Then, since vx is limited from below

as in (2.21) and the scanning interval for gx starts at 0.1 therefore the DM mass is bounded

from below by MZ′ > 0.1v(λSM/λS)1/2 ∼ 20 GeV. However since invisible Higgs decays

should be prevented therefore Z ′ must be even heavier, so that here MZ′ > 62.9 GeV.

Results for σZ′N are presented in a similar manner as in the case of the light DM, so

in figures 15 and 16 we are showing the cross section plotted against the DM mass MZ′

with colouring corresponding to gx, Mh2 and sin2(2α). As it is seen from the figures there

exist points that lay below the LUX 2013 upper limit, they correspond to medium gauge

coupling gx ∼ 0.2÷0.6, wide range of Mh2 varying from 130 GeV up to 1000 GeV and small

mixing angle 0 . α . π/8. The allowed DM mass varies between 62.9 GeV to 1000 GeV.
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Figure 15. The figure shows the DM-nucleon cross section, σZ′N , as a function of the DM mass MZ′

for points which satisfy all other constraints for λH > λSM . The singlet quartic coupling is fixed at

λS = 0.2. Colouring corresponds to the strength of the gauge coupling gx. The solid lines are the

experimental limits for σZ′N from XENON100, LUX (2103) and anticipated results for XENON 1T.

Figure 16. Same as in figure 15, but colouring is with respect to Mh2 and sin2(2α) for the left

and the right panel, respectively.

It is worth understanding the origin of points that compose the blue and green hills in

the vicinity of 100 GeV in figure 15. As seen from the figure they correspond to different

strengths of the gauge coupling constant: the left one is made of points with gx ∼ 0.2 while

for the right one the coupling is typically larger gx ∼ 0.5. The purpose of right panels

in figures 17 and 18 is to illustrate ΩDMh
2 dependance on MZ′ for representative points

(λH , κ, λS) in the parameter space. Note in the left panels of the figures that points in the

space (MZ′ ,Mh2) are grouped into two rough sets, one for MZ′ & Mh2/2 and the other

for MZ′ . Mh2/2. Inspecting the right panel of figure 17 it is easy to see that the later

group is composed of points sitting on the left slope of a heavy Higgs (h2) resonance (at

Mh2 = 400 GeV for this particular example). Since the resonance dip is relatively wide

in this case, therefore the shift above the the nominal resonance is substantial, typically

of the order of 100 GeV. Then when MZ′ increases eventually h2h2 channel opens up,
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Figure 17. The left panel illustrates correlation between between Mh2
and MZ′ , while the right

one shows predictions for ΩDMh
2 as a function of MZ′ . The colouring corresponds the the coupling

σZ′N . Above the right box resonances and channels which open as MZ′ increases are shown.

Coordinates in the parameter space (λH , κ, λS) and corresponding Mh2 and vx are shown above

the right panel.

the cross section increases and ΩDMh
2 drops leading to higher MZ′ consistent with the

observed DM abundance, that explains the other group of points in e.g. figure 17 located

above MZ′ ∼ Mh2/2. The two groups are separated by the presence of the summit in

ΩDMh
2 between them. The figure 18 shows that the two groups have different gx and

therefore they could be identified as the points that compose the two hills in figure 15: the

blue hill is made of points that lay below MZ′ ∼Mh2/2 while the green one of those with

MZ′ & Mh2/2. The right panel in figure 18 illustrates the mechanism of the very strong

correlation between MZ′ and Mh2 that is observed for large MZ′ along the line MZ′ ∼Mh2 .

As it is seen from the figure the correlation is caused by the steep drop in ΩDMh
2 that

corresponds to opening of h2h2 final state.

Constraints coming from the direct detection can be compared with results of [17].

However, a detailed comparison is quite complicated, therefore we limit ourself to a con-

clusion that qualitatively results obtained in [17] for the Abelian case agree with those found

here. The results presented in the figure 2 therein present similar behaviour to those of

figure 17 in this work. It can be seen that for a given Mh2 , when MZ′ approaches Mh2/2 the

nucleon scattering cross section diminishes and LUX bounds can be easily satisfied, whereas

for MZ′ between (Mh1 +Mh2)/2 and Mh2 the cross section is substantially larger (the points

for Mh2 < 600 GeV). Similarly the LUX bounds constrain the vicinity of MZ′ = 80 GeV.

5 Summary

In this paper we explored an extension of the Standard Model gauge symmetry by an extra

U(1)X factor. The scalar sector of the model consists of a standard SU(2)L doublet (H)

and a complex scalar (S) charged under this U(1)X in order to provide a mass for the extra

gauge boson. The possible spectrum of scalar states and mixings between them have been
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Figure 18. The left panel illustrates correlation between between Mh2
and MZ′ , while the right

one shows predictions for ΩDMh
2 as a function of MZ′ . The colouring corresponds to the cross

section gx. Above the right box resonances and channels which open as MZ′ increases are shown.

Coordinates in the parameter space (λH , κ, λS) and corresponding Mh2 and vx are shown above

the right panel.

discussed in detail. Adopting 2-loop RGE running we have required the vacuum stability

(positivity) conditions to be valid up to the imposed cutoff scale (Q = MPl) of the model.

We have compared the sensitivity of the running of the scalar quartic couplings and

the stability of the vacuum on the loop order of the RGEs and found that the 2-loop

RGEs make a significant effect on the 1-loop result, which could be improved further

with higher order corrections. We found that an increase in λH(mt) by even a modest

amount easily eliminates the electroweak vacuum stability problem up to the Planck scale,

which is possible due to the additional degrees of freedom in this theory. When the Higgs

portal κ|S|2|H|2 is present (so κ 6= 0) then the initial value λH(mt) could be chosen

larger than its Standard Model value (where it is fixed by the Higgs mass measurement)

in this way escaping the dangerous possibility of λH(Q) becoming negative. In addition

the model discussed here can have a stable vacuum even if λH(mt) is chosen below its

Standard Model value, since the RGE beta function for λH contains an extra positive

contribution proportional to κ2 which can lift λH efficiently enough while running up. For

this mechanism to work κ(mt) must be large enough.

The presence of an extra neutral scalar makes the phenomenology of the scalar sector

more attractive and richer but still testable at the LHC and future colliders. We have

focused here on dark matter aspects of the model. The parameter space of the models has

been investigated in detail and regions consistent with theoretical, collider and cosmological

constraints have been determined. In particular we have shown that the DM-nucleon cross

section could be consistent with the LUX and XENON100 limits, and also looked at why

this is so. It has also been shown that the anticipated XENON 1T limits on σZ′N may be

satisfied within this model.
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A Relic abundance

In this appendix we present a detailed account of the tree-level calculation of the relic

abundance in this model. This has been used to compare with the result generated with

micrOMEGAs.

A.1 Thermally averaged cross-section

Thermally averaged cross-section is defined as the annihilation cross seciton σ times Møller

velocity v averaged over the Boltzmann distribution

〈σv〉 =

∫
σv exp(−

√
p2

1 +M2
Z′/T ) exp(−

√
p2

2 +M2
Z′/T )d3p1d

3p2∫
exp(−

√
p2

1 +M2
Z′/T ) exp(−

√
p2

2 +M2
Z′/T )d3p1d3p2

. (A.1)

In the nonrelativistic limit m� T it can be approximated using the formula

〈σ|v|〉 =

[
σ̂(s)

4M2
Z′

+

(
3

2
σ̂′(s)− σ̂(s)

4M4
Z′

)
1

x
+O

(
1

x2

)]
s=4M2

Z′

, (A.2)

where x ≡ MZ′
T and σ̂(s) = 2

√
s(s− 4M2

Z′)σ(s) can be written as the sum of contributions

coming from all possible final states

σ̂ =
∑
f

σ̂f̄f + σ̂W+W− + σ̂ZZ + σ̂h1h1 + σ̂h1h2 + σ̂h2h2 . (A.3)

Cross sections σ̂ for fermions and vector bosons (presented in A.4) can be easily expressed

as a functions of s only, but for annihilations into scalars the amplitudes squared depend

also on the Mandelstam variable t. Therefore respective σ̂(s) needs to be written as

σ̂hihj (s) =
1

9(1 + δij)
β(Mhi ,Mhj )

∫ π

0
dθ

sin θ

2
f(s, t)dθ, (A.4)

where f(s, t) is the respective sum of all amplitudes squared for given i, j and t can be

expressed by s and θ using

t = M2
hi

+M2
Z′ −

√√√√−2s
(
M2
hi

+M2
hj

)
+
(
M2
hi
−M2

hj

)2
+ s2

4
+ sM2

hi

+
1

2

√
s2 − 4M2

Z′s

s

√√√√−2s
(
M2
hi

+M2
hj

)
+
(
M2
hi
−M2

hj

)2
+ s2

s
cos θ.

(A.5)
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In the nonrelativistic limit, using the formula (A.2), this tedious integration of f(s, t) can

be avoided by changing the order of the limit and the integral [53], then

σ̂hihj (s = 4M2
Z′) =

1

9(1 + δij)
β(Mhi ,Mhj )f(4M2

Z′ , t(s = 4M2
Z′)), (A.6)

where t(s = 4M2
Z′) = (M2

hi
+M2

hj
)/2−M2

Z′ ; note that this expression does not depend on

cos θ, therefore the integration is trivial and gives factor 1. Similarly for the derivative we

have

σ̂′hihj (s = 4M2
Z′) =

1

9(1 + δij)
β(Mhi ,Mhj ) ×[

1

β

dβ

ds
f(s, t) +

∂f(s, t)

∂s
− 1

2

∂f(s, t)

∂t
+

+

(
(M2

hi
−M2

hj
)2+

1

12
(2M2

Z′−M2
hi
−M2

hj
)

)
∂2f(s, t)

∂t2

]
s=4M2

Z′ , t=t(s=4M2
Z′ )

.

(A.7)

The presence of the last term comes from the fact, that t′(s) = a(s) + b(s) cos θ, where

a(4M2
Z′) = −1/2 and b(4M2

Z′) =∞. On the other hand integral of cos θ vanishes, therefore

one needs to calculate the second derivative to determine the limit.

A.2 Relevant vertices

V Z′
i = i

2M2
Z′

vx
R2i i

2M2
Z
v R1i i

2M2
W
v R1i iMF

v R1i V Z′
ij = i

2M2
Z′

v2x
R2iR2j

Z ′

Z ′

hi
Z

Z

hi
W+

W−

hi

f

f̄
hi

Z ′

Z ′
hi
hj

V h
ijk = i[κv(R1iR2jR2k +R2iR1jR2k +R2iR2jR1k)

+ κvx(R2iR1jR1k +R1iR2jR1k +R1iR1jR2k)

+ 6λv(R1iR1jR1k) + 6λsvx(R2iR2jR2k)] hi

hj
hk

Scalar mixing matrix

R =

(
cosα − sinα

sinα cosα

)
(A.8)

A.3 Useful formulas

• Lorentz invariant phase space

β(m1,m2) =
1

8π

√
1− 2(m2

1 +m2
2)

s
+

(m2
1 −m2

2)2

s2

β(m) =
1

8π

√
1− 4m2

s

(A.9)
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• Sum over polarizations of a vector boson

Ξ(m) = 3− s

m2
+

s2

4m4
(A.10)

• Sum over spins of a fermion

Θ(m) = 2s

(
1− 4m2

s

)
(A.11)

• Propagators

G1(p) =
i

p2 −M2
h1

+ iΓh1Mh1

,

G2(p) =
i

p2 −M2
h2

+ iΓh2Mh2

,

Σ2 =
∣∣G1(
√
s)−G2(

√
s)
∣∣2 =

(Γ1Mh1 − Γ2Mh2)2 + (M2
h1
−M2

h2
)2

(Γ2
1M

2
h1

+ (s−Mh1)2)((s−M2
h2

)2 + Γ2
2M

2
h2

)
,

Σ2
h = i

(
V Z′

1 V h
1ijG1(

√
s) + V Z′

2 V h
2ijG2(

√
s)
)

(A.12)

A.4 Z′ annihilation cross section formulae

Z ′

Z ′

h1, h2 Z

Z
σ̂ZZ(s) =

β(MZ)

18
Ξ(MZ′)Ξ(MZ)

(
4MZMZ′

vvx

)2

cos2 α sin2 αΣ2

(A.13)

Z ′

Z ′

h1, h2 W+
W−

σ̂W+W−(s) =
β(MW )

9
Ξ(MZ′)Ξ(MW )

(
4MWMZ′

vvx

)2

cos2 α sin2 αΣ2

(A.14)

Z ′

Z ′

f̄

h1, h2

f
σ̂f̄f (s) =

β(MF )

9
Θ(MF )Ξ(MZ′)

(
2MFMZ′

vvx

)2

cos2 α sin2 αΣ2

(A.15)

Z ′

Z ′

hi

hj

Z ′

Z ′

hihk

hj

Z ′

Z ′

hi

Z ′

hj

Z ′

Z ′

hj
Z ′ hi

Squares of amplitudes and interference terms that contribute to the 4 diagrams contributing

to the hihj (i, j = 1, 2) final state shown above are listed below where fk stands for the

square of the kth amplitude while fkl for 2<(fkf
?
l ) (k, l = 1, 2, 3, 4).

f1(s) = |V Z′
ij |2Ξ(MZ′) (A.16)
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f2(s) = |Σh|2Ξ(MZ′) (A.17)

f3(s, t)= |V Z′
i V Z′

j |2
1

(t−M2
Z′)

2

[
2− 2t

M2
Z′

+
(−M2

Z′+s/2)2+ 1
2
(M2

hj
−M2

Z′−t)2+t2+ 1
2
(−M2

hi
+M2

Z′+t)2

16M4
Z′

+

−( 1
4
)(M2

hj
−M2

Z′ − t)2t− 1
2
(−M2

Z′ + s/2)(M2
hj
−M2

Z′ − t)(−M2
hi

+ M2
Z′ + t)− 1

4
t(−M2

hi
+ M2

Z′ + t)2

M6
Z′

+
(M2

hj
−M2

Z′ − t)2(−M2
hi

+ M2
Z′ + t)2

16M8
Z′

]
(A.18)

f4(s, t) = |V Z′
i V Z′

j |2
1

(M2
hi

+ M2
hj

+ M2
Z′ − s− t)2

[
2−

2(M2
hi

+ M2
hj

+ 2M2
Z′ − s− t)

M2
Z′

+
(−M2

Z′+s/2)2+(M2
hi

+M2
hj

+2M2
Z′−s−t)2+ 1

2
(M2

hi
+3M2

Z′−s−t)2+ 1
2
(−M2

hj
−3M2

Z′+s+t)2

M4
Z′

−

1
2
(M2

hi
+M2

hj
+2M2

Z′−s−t)(M2
hi

+3M2
Z′−s−t)2+(s/2−M2

Z′)(M
2
hi

+3M2
Z′−s−t)(−M2

hj
−3M2

Z′+s+t)

2M6
Z′

+

1
2
(M2

hi
+M2

hj
+2M2

Z′−s−t)(−M2
hj
−3M2

Z′+s+t)2

2M6
Z′

+
(M2

hi
+3M2

Z′−s−t)2(−M2
hj
−3M2

Z′+s+t)2

16M8
Z′

]
(A.19)

f12(s) = 2|V Z′
ij |Ξ(MZ′)<(Σh) (A.20)

f13(s, t)=2|V Z′
ij V Z′

i V Z′
j |

1

t−M2
Z′

[
2− 2t

M2
Z′

+
(−M2

Z′+s/2)2+ 1
4
(M2

hj
−M2

Z′−t)2+ 1
4
(−M2

hi
+M2

Z′+t)2

M4
Z′

+
(−M2

Z′ + s/2)(M2
hj
−M2

Z′ − t)(−M2
hi

+ M2
Z′ + t)

4M6
Z′

]
(A.21)

f14(s, t) = 2|V Z′
ij V Z′

i V Z′
j |

1

M2
hi

+ M2
hj

+ M2
Z′ − s− t

[
2−

M2
hi

+ M2
hj

+ 2M2
Z′ − s− t

M2
Z′

−
(−M2

Z′ + s/2)(M2
hi

+ 3M2
Z′ − s− t)(−M2

hj
− 3M2

Z′ + s + t)

M4
Z′

+
(−M2

Z′ + s/2)2 + 1
4
(M2

hi
+ 3M2

Z′ − s− t)2 + 1
4
(−M2

hj
− 3M2

Z′ + s + t)2

4M6
Z′

]
(A.22)

f23(s, t)=2<(Σh)|V Z′
i V Z′

j |
1

t−M2
Z′

[
2− t

M2
Z′

+
(−M2

Z′+s/2)2+ 1
4
(M2

hj
−M2

Z′−t)2+ 1
4
(−M2

hi
+M2

Z′+t)2

M4
Z′

+
(−M2

Z′ + s/2)(M2
hj
−M2

Z′ − t)(−M2
hi

+ M2
Z′ + t)

4M6
Z′

]
(A.23)

f24(s, t) = 2<(Σh)|V Z′
i V Z′

j |
1

M2
hi

+ M2
hj

+ M2
Z′ − s− t

[
2−

M2
hi

+ M2
hj

+ 2M2
Z′ − s− t

M2
Z′

−
(−M2

Z′ + s/2)(M2
hi

+ 3M2
Z′ − s− t)(−M2

hj
− 3M2

Z′ + s + t)

M4
Z′

+
(−M2

Z′ + s/2)2 + 1
4
(M2

hi
+ 3M2

Z′ − s− t)2 + 1
4
(−M2

hj
− 3M2

Z′ + s + t)2

4M6
Z′

]
(A.24)

f34(s, t) = 2|V Z′
i V Z′

j |2
1

(M2
hi

+ M2
hj

+ M2
Z′ − s− t)(t−M2

Z′)

[
2 +
−M2

hi
−M2

hj
− 2M2

Z′ + s

M2
Z′
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−
4(−M2

Z′+s/2)2+(M2
hj
−M2

Z′−t)2+(M2
hi

+3M2
Z′−s−t)2+(−M2

hi
+M2

Z′+t)2+(−M2
hj
−3M2

Z′+s+t)2

4M4
Z′

−
(−M2

Z′+s/2)(M2
hj
−M2

Z′−t)(−M2
hi

+M2
Z′+t)+(−M2

Z′+s/2)(M2
hi

+3M2
Z′−s−t)(−M2

hj
−3M2

Z′+s+t)

16M6
Z′

4(−M2
Z′+s/2)2+(M2

hj
−M2

Z′−t)2+(M2
hi

+3M2
Z′−s−t)2+ 1

4
(−M2

hi
+M2

Z′+t)2+(−M2
hj
−3M2

Z′+s+t)2

4M8
Z′

]
(A.25)

B Model files for SARAH

In this appendix are included the model files used for SARAH [21–24], to study the model

discussed in this paper. Currently SARAH does not implement a Z2 symmetry for the

imaginary scalar component to give S → S∗, nor for the Z2 for the U(1)X gauge field.

Instead the kinetic mixing couplings have been set to vanish, g1,x = gx,1 ≡ 0, to preserve

this symmetry.

B.1 SMVDM.m

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ P a r t i c l e Content ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

(∗ Gauge S u p e r f i e l d s ∗)

Gauge [ [ 1 ] ] = {B, U[ 1 ] , hypercharge , g1 , Fa l se } ;

Gauge [ [ 2 ] ] = {WB, SU [ 2 ] , l e f t , g2 , True } ;

Gauge [ [ 3 ] ] = {G, SU [ 3 ] , co lo r , g3 , Fa l se } ;

Gauge [ [ 4 ] ] = {X, U[ 1 ] , darkcharge , gx , Fa l se } ;

(∗ Chira l S u p e r f i e l d s ∗)

FermionFie lds [ [ 1 ] ] = {q , 3 , {uL , dL} , 1/6 , 2 , 3 , 0} ;

FermionFie lds [ [ 2 ] ] = { l , 3 , {vL , eL } , −1/2, 2 , 1 , 0} ;

FermionFie lds [ [ 3 ] ] = {d , 3 , conj [dR ] , 1/3 , 1 , −3, 0} ;

FermionFie lds [ [ 4 ] ] = {u , 3 , conj [uR ] , −2/3, 1 , −3, 0} ;

FermionFie lds [ [ 5 ] ] = {e , 3 , conj [ eR ] , 1 , 1 , 1 , 0} ;

(∗ FermionFie lds [ [ 6 ] ] = {v , 3 , conj [ vR ] , 0 , 1 , 1 , 0} ; ∗)

S c a l a r F i e l d s [ [ 1 ] ] = {H, 1 , {Hp, H0} , 1/2 , 2 , 1 , 0} ;

S c a l a r F i e l d s [ [ 2 ] ] = {S , 1 , hs , 0 , 1 , 1 , 1} ;

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ DEFINITION ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

NameOfStates={GaugeES , EWSB} ;

(∗ −−−−− Before EWSB −−−−− ∗)

DEFINITION [ GaugeES ] [ Di racSp inors ]={
Fd1 −> {dL , 0} ,

Fd2 −> {0 , dR} ,

Fu1 −> {uL , 0} ,
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Fu2 −> {0 , uR} ,

Fe1 −> {eL , 0} ,

Fe2 −> {0 , eR} ,

Fv −> {vL , 0}} ;

DEFINITION [ GaugeES ] [ Addi t iona l ]= {
{ LagHC, {Overwrite−>True , AddHC−>True }} ,

{LagNoHC, {Overwrite−>True , AddHC−>False }}} ;

LagNoHC = (mu2 conj [H ] . H − lambdaH conj [H ] . H. conj [H ] . H + nu2 conj [ S ] . S

− lambdaS conj [ S ] . S . conj [ S ] . S − L3 conj [ S ] . S . conj [H ] . H) ;

LagHC = −( Yd conj [H ] . d . q + Ye conj [H ] . e . l + Yu H. u . q ) ;

(∗ Gauge Sector ∗)

DEFINITION [EWSB] [ GaugeSector ] =

{
{{VB,VWB[ 3 ] } , {VP,VZ} ,ZZ} ,

{{VX} , {VZp} ,ZZp} ,

{{VWB[ 1 ] ,VWB[ 2 ] } , {VWp, conj [VWp] } ,ZW}} ;

(∗ −−−−− VEVs −−−− ∗)

DEFINITION [EWSB] [ VEVs]=

{ {H0 , {vSM, 1/ Sqrt [ 2 ] } , {sigmaH , \ [ ImaginaryI ] / Sqrt [ 2 ] } , { phiH , 1/ Sqrt [ 2 ] } } ,

{hs , {vX, 1/ Sqrt [ 2 ] } , {sigmaS , \ [ ImaginaryI ] / Sqrt [ 2 ] } , { phiS , 1/ Sqrt [ 2 ] } } } ;

DEFINITION [EWSB] [ MatterSector ]=

{(∗ {{vL , conj [ vR] } , {VL,ZM}} ∗)

{{phiH , phiS } ,{hh ,ZH}} ,

{{sigmaH , sigmaS } ,{Ah,ZA}} ,

{{{dL} , { conj [dR]}} , {{DL,Vd} , {DR,Ud}}} ,

{{{uL} , { conj [uR]}} , {{UL,Vu} , {UR,Uu}}} ,

{{{eL } , { conj [ eR ]}} , {{EL, Ve} , {ER, Ue}}}} ;

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ Dirac−Spinors ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)

DEFINITION [EWSB] [ Di racSp inors ]={
Fd −>{ DL, conj [DR] } ,

Fe −>{ EL, conj [ER] } ,

Fu −>{ UL, conj [UR] } ,

Fv −>{ vL , 0}} ;

DEFINITION [EWSB] [ GaugeES]={
Fd1 −>{ FdL , 0} ,

Fd2 −>{ 0 , FdR} ,

Fu1 −>{ Fu1 , 0} ,

Fu2 −>{ 0 , Fu2} ,

Fe1 −>{ Fe1 , 0} ,

Fe2 −>{ 0 , Fe2 }} ;

B.2 SPheno.m

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
(∗ MINPAR ∗)

(∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
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OnlyLowEnergySPheno = True ;

MINPAR={{1 ,lambdaHINPUT} ,

{2 ,L3INPUT} ,

{3 , lambdaSINPUT} ,

{10 , gxINPUT} ,

{20 , vXInput} } ;

ParametersToSolveTadpoles = {nu2 ,mu2} ;

RealParameters = {vSM,vX} ;

BoundaryLowScaleInput={
{gx , gxINPUT} ,

{g1x , 0} ,

{gx1 , 0} ,

{lambdaH , lambdaHINPUT} ,

{ lambdaS , lambdaSINPUT} ,

{L3 , L3INPUT} ,

{vX, vXInput }} ;

BoundaryLowScaleInput={
{vSM, Sqrt [ 4 mz2/( g1ˆ2+g2 ˆ 2 ) ] } } ;

L i s t De ca yP ar t i c l e s = {Fu , Fe , Fd , hh ,VZp,Hp} ;

L i s tDecayPart i c l e s3B = {{Fu , ”Fu . f90 ” } ,{Fe , ”Fe . f90 ” } ,{Fd , ”Fd . f90 ” }} ;

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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