
J
H
E
P
0
9
(
2
0
1
5
)
1
3
1

Published for SISSA by Springer

Received: May 3, 2015

Revised: July 22, 2015

Accepted: August 30, 2015

Published: September 21, 2015

Time-reversal symmetry violation in several

Lepton-Flavor-Violating processes

Juan Carlos Vasquez

ICTP,

Strada Costiera, 11, 34151 Trieste, Italy

SISSA/INFN,

via Bonomea, 265, 34136 Trieste, Italy

Gran Sasso Science Institute,

Viale Crispi 7, 67100 L’Aquila, Italy

E-mail: jcvasque@sissa.it

Abstract: We compute a T-odd triple vector correlation for the µ → eγ decay and the

µ→ e conversion process, finding simple results in terms of the CP violating phases of the

effective Hamiltonians. Then we focus on the minimal Left-Right symmetric extension of

the Standard Model, which can lead to an appreciable correlation. We show that under

rather general assumptions, this correlation can be used to discriminate between Parity or

Charge-conjugation as the discrete Left-Right symmetry.

Keywords: Rare Decays, Beyond Standard Model, Neutrino Physics, CP violation

ArXiv ePrint: 1504.05220

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2015)131

mailto:jcvasque@sissa.it
http://arxiv.org/abs/1504.05220
http://dx.doi.org/10.1007/JHEP09(2015)131


J
H
E
P
0
9
(
2
0
1
5
)
1
3
1

Contents

1 Introduction 1

2 General theory 2

2.1 µ→ eγ process 2

2.2 µ→ e conversion. Theory and effective Hamiltonian 3

3 The minimal Left-Right symmetric theory 5

4 Computation of a triple vector correlation in the µ → eγ decay 7

5 Computation of a triple vector correlation in the µ → e conversion pro-

cess 8

6 Triplet vector correlation in the minimal Left-Right theory 9

6.1 µ→ eγ decay 9

6.2 µ→ e conversion process 13

7 Conclusions 15

A Kinematics of the µ → eγ process and the triple vector correlation 15

B µ → e total conversion rate and the triple vector correlation 16

B.1 Total conversion rate 16

B.2 Triple vector correlation in the conversion process 17

1 Introduction

Lepton Number Violating (LNV) and Lepton Flavor violating (LFV) processes are forbid-

den in the Standard Model (SM) and are thus a good probe of new physics. In principle new

physics brings also new sources of CP violation and therefore time reversal (T) symmetry

violation in any local, Lorentz invariant quantum field theory.

Motivated by this we explicitly compute T-odd triple vector correlations for the LFV

µ→ eγ decay and µ→ e conversion process, since much of the present and future experi-

mental efforts are devoted to these two processes. The MEG collaboration reports the best

experimental limit for the µ→ eγ decay [1]

Br(µ→ eγ) ≡ Γ(µ→ eγ)

Γ(µ→ eνµνe)
< 5.7× 10−13 (1.1)
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and the SINDRUM II collaboration gives the strongest limits for the µ → e conversion

process [2, 3], namely

Br(µ+ Ti(Au))→ e+ Ti(Au)) ≡ Γ(µ→ e)

Γcapt
< 6.1(7)× 10−13, (1.2)

where Γcapt is the muon capture rate in the vicinity of a nucleus. Upgrades of ongoing

experiments have been considered with the final goal of achieving a sensitivity around

10−18− 10−19 [4–7]. Given the current limits and the future improvements, there exist the

possibility of having enough statistics to start probing CP violation beyond the SM in the

next round of experiments. This is suggested and studied in [8, 9].

In this work we focus on quantities that test T violation in the absence of final-

state interactions and among these quantities are triple vector correlations made up of

the momenta or spins of the participating particles [10]. In [11], it is suggested that triplet

vector correlations can be used to probe CP violation in the µ → e conversion process.

Here we present the first analytical computation for the correlation suggested in [11] for

the µ→ e conversion process and we extend their work in two ways: first, we compute the

correlation for the µ → eγ decay and second we include the full set of effective operators

that enter the µ→ e conversion process.

In section 2 we introduce some theoretical tools for the µ → eγ and the µ → e

conversion process. In section 3 as an example of a theory that gives order one contribution

to the triple vector correlation, we briefly introduce the minimal Left-Right (LR) symmetric

extension of the SM. In section 4 and 5 we present the analytical computation of the triple

correlation in the µ→ eγ and µ→ e conversion process respectively. Then in section 6 and

for both processes, we study these correlations in the context of the minimal LR model, for

both parity and charge-conjugation as the LR symmetries. Finally in section 7 we present

our conclusions.

2 General theory

2.1 µ → eγ process

The µ → eγ decay is predicted to be negligible small in the SM with massive neutrinos,

therefore if this process is seen it implies that new physics is behind it. The effective

Hamiltonian for this process is of the form

Heff =
4eGFmµ√

2
ē(pe)σµνF

µν(ALPL +ARPR)µ(pµ) + h.c., (2.1)

where e is the electromagnetic coupling constant, Fµν is the electromagnetic field strength

for the photon field, GF is the Fermi constant, P(R,L) ≡ 1
2(1± γ5) , mµ is the muon mass

and e(pe) and µ(pµ) are the spinors for the electron and muon respectively. For this process

we use the gamma matrices in the Weyl basis and the coefficients AL and AR are calculated

within a given physical model.
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2.2 µ → e conversion. Theory and effective Hamiltonian

Theoretical studies of this process were performed in the past [12–15]. In [15] the outgoing

electron coming from the conversion process, belongs to one of the states in the continuum

energy spectrum for the Coulomb potential and as a matter of fact the outgoing electron

must be treated as a plane wave. One way to argue this is by noticing that an electron in

the continuum energy spectrum, is described by a Dirac spinor in the angular momentum

basis. Experimentally, the detected electron has a define 4-momentum implying that the

outgoing electron must be a plane wave.

In this work we present a method for computing a triple vector correlation that tests T-

violation in the µ→ e conversion process for various nuclei. We make use of the formalism

developed in [16].

We use the following representation for the γ matrices

γ0 = β =

(
1 0

0 −1

)
, γi =

(
0 σi
−σi 0

)
, (2.2)

and

σµν =
i

2
[γµ, γν ], γ5 = −iγ1γ2γ3γ0, (2.3)

where the σi are the Pauli matrices where i = 1, 2, 3 and the index µ takes the values

µ = 0, 1, 2, 3.

The Dirac’s equation for the central field problem in polar coordinates is given by (the

energy is given in units of the electron mass)

Eψ = Hψ =

[
−iγ5Σr

(
∂

∂r
+

1

r
− β

r
K

)
+ V + β

]
ψ, (2.4)

where

Σr =
1

r

∑
i

Σi, Σi =
i

2
[γj , γk] ({i,j,k} cyclic). (2.5)

K = β(Σ · L+ 1). (2.6)

V is the Coulomb potential and L is the orbital angular momentum.

We write the wave function as [17]

ψµκ =

(
gκ(r)χµκ
ifκ(r)χµ−κ

)
, (2.7)

such that Kψµκ = −κψµκ and J3ψ
µ
κ = µψµκ , where J3 is the third component of the total

angular momentum ~J . The radial functions gκ and fκ obey the differential equations

dgκ(r)

dr
= −κ+ 1

r
gκ(r) + (E − V + 1)fκ(r), (2.8)

dfκ(r)

dr
=
κ− 1

r
fκ(r)− (E − V − 1)gκ(r). (2.9)
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In the high energy limit -all the masses are set to zero- and from eqs.(2.8) and (2.9),

fκ(r) and gκ(r) satisfy

f−κ = −gκ, g−κ = fκ. (2.10)

From here on we make use of this result for the spinor ψ
µ(e)
κ,E describing the electrons

coming from the conversion process. The initial muon instead is described by ψµκ with the

quantum numbers, µ = ±1
2 and κ = −1 and we choose the normalization∫

d3xψ
(µ)†
1s (~x)ψ

(µ)
1s (~x) = 1. (2.11)

For the electrons in the continuum-energy states we use the same normalization con-

sidered in [15], namely∫
d3xψ

µ(e)†
κ,E (~x)ψ

µ
′
(e)

κ′ ,E′
(~x) = 2πδµµ′ δκ′κδ(E − E

′
). (2.12)

In the conversion process the effective Hamiltonian is given by [15]

Heff =
4GF√

2
(mµA

∗
Rµ̄σ

µνPLeFµν +mµA
∗
Lµ̄σ

µνPReFµν + h.c.)

+
GF√

2

∑
q=u,d,s

[
(gLS(q)ēPRµ+ gRS(q)ēPLµ)q̄q + (gLP (q)ēPRµ+ gRP (q)ēPLµ)q̄γ5q

(gLV (q)ēγ
µPLµ+ gRV (q)ēγ

µPRµ)q̄γµq + (gLA(q)ēγ
µPLµ+ gRA(q)ēγ

µPRµ)q̄γµγ5q

+
1

2
(gLT (q)ēσ

µνPRµ+ gRT (q)ēσ
µνPLµ)q̄σµνq + h.c.

]
. (2.13)

The nuclear form factors were calculated in [18]. The wave function for the muon and the

electrons in the presence of a central field were obtained in [14, 15]. In particular in [15]

updated data for the proton and neutron densities were used.

In the limit of r →∞ it can be shown that the general solution for a Dirac particle in

a Coulomb field at first order in Heff is of the form [16]

ψas = −i
√

π

|~p|
eipr

r

∑
κµ

eiδκ〈ψ(e)µ
κ |Heff |ψ

(µ)
1s 〉

( √
E + 1χµκ(p̂)

−
√
E − 1χµ−κ(p̂)

)
+O(H2

eff), (2.14)

where p̂ is in the direction of the outgoing electron. The phases eiδκ are the usual ones

appearing in scattering problems in the presence of a Coulomb field and are given by

δκ = y ln 2pr − arg Γ(γ + iy) + ηκ −
1

2
πγ, (2.15)

y = αZE/p, γ =
√
κ2 − α2Z2, e2iηκ = −κ− iy/E

γ + iy
(2.16)

where Z is the atomic number, α = e2/4π and p is the modulus of the 3-momentum ~p.

We consider states with κ = ±1, hence the only term relevant for our discussion is ηκ –the

remaining ones are just an overall phase in the solution ψas.
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Finally the total conversion rate per unit flux is1

ωconv = R2

∫
dΩψ†asψas =

1

2

∑
κ,µ

|〈ψµκ |Heff |ψi〉|2. (2.17)

3 The minimal Left-Right symmetric theory

As an example of a complete and predictive theory of lepton number violating phenomena

we consider the minimal LR symmetric extension of the SM [19–22]. In this model the

gauge group is SU(2)L × SU(2)R × U(1)B−L with an additional discrete symmetry that

may be generalized parity (P ) or charge conjugation (C) –for reviews see [23–25]. It

relates the smallness of neutrino masses to the near maximality of parity violation al low

energies through the seesaw mechanism [27–32]. The scalar sector contains the following

fields [26–29]

Φ =

(
φ0

1 φ+
2

φ−1 φ0
2

)
, ∆L,R =

(
δ+
L,R/
√

2 δ++
L,R

δ0
L,R −δ+

L,R/
√

2

)
,

(3.1)

where Φ is in the (2,2,0) representation of SU(2)L× SU(2)R×U(1)B−L and the two scalar

triplets ∆L and ∆R, belong to the (3,1,2) and the (1,3,2) representations respectively. The

Yukawa interactions of leptons with the scalar triplets have the form

LY = L̄L(YΦΦ + ỸΦΦ̃)LR +
1

2
(LTLCiσ2Y∆L

∆LLL + LTRCiσ2Y∆R
∆RLR) + h.c., (3.2)

Φ̃ = σ2Φ∗σ2, LL is the lepton doublet of the standard model (LTL = (ν l)L) and LR is its

right-handed analogue that we denote as LTR = (N l)R where N is the heavy Majorana

neutrino. The Ya is the Yukawa coupling of the field a, where a = {Φ, Φ̃,∆L,∆R}.
Under the discrete left-right symmetry the fields of the theory transform as:

P :


PfLP−1 = γ0fR
PΦP−1 = Φ†

P∆L,RP−1 = −∆R,L

, C :


CfLC−1 = C(f̄R)T

CΦC−1 = ΦT

C∆L,RC−1 = −∆∗R,L

(3.3)

where the usual charge conjugation operator is given by C = iγ2γ0.

Invariance of the Lagrangian under the LR symmetry leads to the following relations

between the Yukawa couplings of the theory, namely

P :


Y∆R,L

= Y∆L,R

YΦ = Y †Φ
ỸΦ = Ỹ †Φ

, C :


Y∆R,L

= Y ∗∆L,R

YΦ = Y T
Φ

ỸΦ = Ỹ T
Φ

. (3.4)

In the mass eigenstate basis the flavor changing charged current Lagrangian is given by

Lcc =
g√
2

(ν̄LV
†
L
/WLlL + N̄RV

†
R
/WRlR) + h.c., (3.5)

1See appendix B for a more detailed discussion on this issue.
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VR is the right-handed analogue of the PMNS mixing matrix VL. In general it has three

different mixing angles and six arbitrary complex phases and we parametrize it as

VR = KeV̂RKN ,

with Ke ≡ diag(eiφe , eiφµ , eiφτ ), KN ≡ diag(1, eiφ2 , eiφ3). The matrix V̂R has three mixing

angles and the dirac phase δ. We choose for V̂R the standard form for the CKM matrix

shown in the PDG [33].

The interaction terms of charged leptons with the doubly-charged scalars are

L∆ =
1

2
lTRCY

′
∆R
δ++
R lR +

1

2
lTLCY

′
∆L
δ++
L lL + h.c., (3.6)

Y ′∆R
=

g

MWR

V ∗RMNV
†
R. (3.7)

If charge conjugation is the discrete LR symmetry, the charged lepton masses are

symmetric and in this case the Yukawa couplings in (3.6) satisfy (for reviews on this topic

see references [23–25])

Y ′∆L
= (Y ′∆R

)∗. (3.8)

For parity and in the more interesting phenomenological situations, the charged lepton

masses matrices are almost hermitian [34]. In [35] it was realized that it implies the near

equality between the Yukawa couplings shown in eq. (3.6) i.e.

Y
′

∆L
= Y

′
∆R

+O(tan 2β sinα). (3.9)

The vacuum expectation values of the neutral fields belonging to Φ are such that 〈φ0
1〉 = v1

and 〈φ0
2〉 = v2e

iα, where β is the ratio v2/v1 and α is the spontaneous phase. In [36, 37]

it is shown that tan 2β sinα . 2mb/mt (mb and mt are the bottom and top quark masses

respectively), so that the Yukawa coupling of the doubly charged scalar are nearly equal [35].

It is a remarkable feature of the minimal LR theory, that the TeV energy scale accessible

at the LHC through the Keung-Senjanović (KS) process [38] –and its associated LNV

and LFV, predicts the rate for the neutrino-less double beta decay and low energy LFV.

This deep connection and the related phenomenology are illustrated in [39, 40]. All these

processes depend in a crucial way on the elements of the leptonic right-handed mixing

matrix VR, for which all its mixing angles, the Dirac phase and two Majorana phases can

be determined at the LHC [35]. Useful information can also be obtained from EDM of

the neutron and such [41–45]. This is deeply connected to the study of the strong CP

parameter, which in the mLRSM turns out to be calculable [46–48].

Recently the CMS collaboration [49] has reported an excess in the ee-channel for

this process at 2.8σ, but they claimed that this excess cannot be accommodated in the

minimal version of the theory –assuming diagonal mixing in the right-handed leptonic sector

and degenerate masses for the heavy neutrinos. Several works have been proposed [50–

53] in order to explain this excess and the conclusion was that it would need a higher

Left-Right symmetry breaking scale, or a more general mixing scenario with pseudo-Dirac

heavy neutrinos.

– 6 –
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4 Computation of a triple vector correlation in the µ → eγ decay

T -odd asymmetries in the µ→ eγ were considered in the past. In [8, 9], it was shown that

by studying the polarization of electron and the photon coming from the muon decay it is

possible to extract the CP-violating phases from the experiment. The conclusion was that

in order to extract the CP-violating phases both electron and photon polarizations must

be measured. In this paper instead, we present an alternative way of extracting the CP-

violating phases of the effective Hamiltonian in the µ→ eγ decay. This is complementary

to the work presented in [8, 9]. The novelty is that no measurements of the final photon

polarizations are needed. We consider the T-violating triple vector product

ŝµ+ · (p̂e+ × ŝe+) = cos Φ sin θs, (4.1)

where θs is the angle between the polarization’s direction (ŝe+) of the positron and its

momentum’s direction p̂e+ , Φ is the angle formed between ŝµ+ and the direction defined

by ~pe+ × ~se+ and Ψ is the azimuthal angle. In figure 1 the reference frame and setup

are shown. Notice that this quantity changes sign under parity and naive time-reversal

transformation T̂ defined by t → −t. For processes whose interactions are characterized

by a small coupling, it can be shown at first order that the connected part of the S-matrix

is hermitian [10] and therefore the violation of the T̂ symmetry amounts the violation of

the time-reversal symmetry.

We define the triple vector correlation as

〈ŝµ+ · (p̂e+ × ŝe+)〉Φ ≡
N(cos Φ > 0)−N(cos Φ < 0)

Ntotal
(4.2)

=

∫ π
0 dΦdΓ/dΦ · sgn(ŝµ+ · (p̂e × ŝe+))

Γtotal
,

where Γtotal and Ntotal are the total decay rate and the total number of events for the

initially polarized muon respectively, N(cos Φ > 0) and N(cos Φ < 0) are the number of

events satisfying cos Φ > 0 and cos Φ < 0 respectively.

The 4-momenta of the participating particles in the rest frame of the muon are given by

pµ
µ+ = (mµ, 0, 0, 0), (4.3)

pµ
e+

= (Ee, |~pe+ | sin θs, |~pe+ | cos θs, 0), (4.4)

pµγ = (Eγ ,−|~pe+ | sin θs,−|~pe+ | cos θs, 0) (4.5)

where the mass of the positron has been neglected. The energy Ee+ of the positron and

the energy Eγ of the photon are given by

Ee+ ∼= Eγ = |~pe+ | =
mµ

2
. (4.6)

From the effective Hamiltonian in eq. (2.1) and eqs. (A.1), (A.4) and (A.5) in ap-

pendix A, a straightforward computation gives the following value for the correlation

〈ŝµ+ · (p̂e+ × ŝe+)〉Φ = sin θs
=m(ALA

∗
R)

|AL|2 + |AR|2
. (4.7)

– 7 –



J
H
E
P
0
9
(
2
0
1
5
)
1
3
1

Figure 1. Reference frame and the setup for the µ→ eγ decay.

The main advantage of this quantity is that no measurements of the photon polarizations

are needed.

In summary we find that given a source of polarized anti-muons, by measuring the 3-

momentum ~pe+ of the outgoing positron and its polarization ~se+ , the asymmetry shown in

eq. (4.7) is sensitive to the CP-violating phases of the effective Hamiltonian shown in (2.1).

In [54–58] it is shown that measurements of the polarization of electrons coming from the

muon decay are feasible. We assume a 100 % polarized muon flux so that our results must

be trivially rescaled by the actual polarization of the initial muons.

5 Computation of a triple vector correlation in the µ → e conversion

process

Following the same lines of the last section, we define an asymmetry given by comparing

the number of events with ~sµ · (~pe × ~se) > 0 with the ones satisfying ~sµ · (~pe × ~se) < 0 in

the µ→ e conversion process and we define it as

〈ŝµ · (p̂e × ŝe)〉Φ ≡
N(cos Φ > 0)−N(cos Φ < 0)

Ntotal

=
ωconv(cos Φ > 0)− ωconv(cos Φ < 0)

ωconv
(5.1)

where ωconv is the total conversion rate and as previously, Φ is the angle between the

plane formed by the vectors p̂e and ŝe and the polarization of the muon ŝµ. We used the

same coordinate system shown in figure 1 but clearly there is no photon coming from the

muon decay.

– 8 –
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A direct computation of the asymmetry shown in eq. (5.1) gives2

〈ŝµ · (p̂e × ŝe)〉Φ =
1

2
sin θs

=m(CLC
∗
R)

|CL|2 + |CR|2
+O(αZ) +O

(
me

Ee

)
. (5.2)

me is the electron mass and

CR ≡ DAR + S(p)(g̃
(p)
LS + g̃

(p)
LV ) + S(n)(g̃

(n)
LS + g̃

(n)
LV ), (5.3)

CL ≡ DAL + S(p)(g̃
(p)
RS + g̃

(p)
RV ) + S(n)(g̃

(n)
RS + g̃

(n)
RV ) (5.4)

where

g̃
(p)
LS,RS ≡

∑
q

G(q,p)gLS,RS(q), g̃
(n)
LS,RS ≡

∑
q

G(q,n)gLS,RS(q), (5.5)

g̃
(p)
LV,RV ≡ 2gLV,RV (u) + gLV,RV (d), g̃

(n)
LV,RV ≡ gLV,RV (u) + 2gLV,RV (d). (5.6)

D, S(n,p) are nuclear constants already calculated and tabulated in [15] for various

elements. G(q,p) and G(q,n) are obtained from the scalar matrix element [15, 18]

〈N |q̄q|N〉 = ZG(q,p)ρ(p) + (A− Z)G(q,n)ρ(n) (5.7)

Z and A are the atomic and mass number respectively, ρ(n) and ρ(p) are the neutron and

proton densities inside the nucleus. The expression obtained is valid for non-relativistic

muons and we droped terms of the order αZ and me/Ee. In practice equation (5.2) must

be multiplied by the polarization of the initial muons, which is of the order of 15% in the

conversion process [59].

6 Triplet vector correlation in the minimal Left-Right theory

As a concrete example of a theory beyond the SM that gives order one values for the T-odd

triple vector correlation [11] we consider the minimal LR symmetric model. In what follows

we analyze separately the contributions to the asymmetries (4.7) and (5.2) in the case of

P and C as the LR symmetries. In [11] it is found that this contribution can be of order

one, since there are new contributions coming from interactions of charged leptons with

the singly-charged and doubly-charged scalar fields.

6.1 µ → eγ decay

In this section and for the µ → eγ decay, we study the contributions to the triple vector

correlation for both Parity and Charge Conjugation as the LR symmetry.

Parity as the LR symmetry: in [60] the authors presented a complete study of the

contributions to several LFV processes in the context of the minimal LR extension of the

SM and it is found that the branching ratio for this process is of the form

Br(µ→ eγ) = 384π2e2(|AL|2 + |AR|2) (6.1)

2For more details see section B.2.
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Figure 2. Plot of the loop function S3(x).

where

AR =
1

16π2

∑
n

(V †R)en(VR)nµ

 M2
W

M2
WR

S3(Xn)−Xn

3

M2
W

M2
δ++
R

 , (6.2)

AL =
1

16π2

∑
n

(V †R)en(VR)nµXn

−1

3

M2
W

M2
δ++
L

− 1

24

M2
W

M2
H+

1

+O(tan 2β sinα), (6.3)

Xn =

(
MN

MWR

)2

, S3(x) = −x
8

1+2x

(1−x)2
+

3x2

4(1−x)2

[
x

(1−x)2
(1−x+log x)+1

]
. (6.4)

MNn are the heavy neutrino masses where n = 1, 2, 3. MW is the W boson mass, MWR
is

the WR boson mass, MH+
1

is the mass of the heavy scalar H+
1 and Mδ++

(L,R)
are the masses

for the left and right doubly charged scalars respectively and finally we use Mν to denote

the light neutrino masses.

Notice that the loop function S3 is always small as far as MN is not much bigger than

MWR
, so that the term with the loop function can neglected for a wide range of the heavy

neutrino masses (see figure 2) and therefore the correlation defined in (4.7) is suppressed.

Finally we neglect the contribution of the charged Higgs H+
1 since its mass cannot be lower

than (15-20) TeV [36, 61]. This poses no problem for the theory, since its mass emerges at

the large scale of symmetry breaking [26, 62]. The gauge boson and doubly-charged scalar

masses can be obtained at the LHC through the so called KS process and the decays of the

doubly charged scalars [38] in addition with all the mixing angles and the Dirac phase in

VR [35]. This is an example of the complementary role played by the high and low energy

experiments in the establishment of the LR theory [39, 63–68].

For the sake of illustration, imagine that type II see-saw is the dominant source of

neutrino masses i.e. MN
〈∆R〉 = Mν

〈∆L〉 and VL = VR. In this case it is possible to show that the

– 10 –
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Figure 3. Plot obtained by considering the MEG bound shown in eq. (1.1). (Right) Normal

hierarchy case (NH). (Left) Inverse hierarchy case (IH). The colored region is the allowed one.

(Top) Mass of the heaviest right-handed neutrino MNH
= 0.1 TeV. (Bottom) Mass of the heaviest

right-handed neutrino MNH
= 1 TeV.

heavy neutrino masses satisfy the relation [39]

M2
N2
−M2

N1

M2
N3
−M2

N1

=
M2
ν2
−M2

ν1

M2
ν3
−M2

ν1

' ±0.03, (6.5)

where the ± corresponds to normal (NH) and inverted (IH) neutrino mass hierarchy re-

spectively. In what follows we denote MN0 the lightest right-handed neutrino mass, MNH

the heaviest right-handed neutrino mass and δ is the Dirac phase present in V̂R. In figure 3

and for the two representative values of MNH = 0.1 TeV and MNH = 1 TeV we show the

allowed region obtained from the MEG bound in the {MN0 , δDirac} plane, for both normal

and inverted neutrino mass spectrum. The region between these values gives rise to the

exciting LNV signals at the LHC trough the KS process. We assume MWR
= 3.5 TeV and

common masses for the doubly charged scalars Mδ++
L

= Mδ++
R

= Mδ = 1 TeV. The reader

may ask about the very different behavior obtained for the two values of the heaviest neu-

trino mass chosen, and the point is that this can be readily understood by noticing that

the amplitude is approximately proportional to |∆M2
13| = |M2

NH
−M2

N0
|, so that a bound

is obtained for |∆M2
13| rather on the lightest neutrino mass itself.

In figure 4 (top) we plot the absolute value for the triple vector correlation given

in (4.7) in the (MN0 , δ)-plane, where one may see that the values of the correlation (4.7)

goes from 10−6 to 10−5 in the allowed region.
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as a function of the lightest neutrino mass MN0
and the Dirac phase δ for P as the LR symmetry.

(Bottom) Contour plots illustrating the value of the asymmetry defined in (4.7) as a function of

the lightest neutrino mass MN0 and the Dirac phase δ (assuming φµ − φe = 0) for C as the LR

symmetry. (Left) Normal hierarchy for neutrino masses. (Right) Inverse hierarchy for neutrino

masses. We take the gauge boson mass MWR
= 3.5TeV, the heaviest right-handed neutrino mass

MNH
= 1TeV and common masses for the doubly charged scalars of Mδ = 1 TeV. The mixing

angles are θ12 ' 33.6o, θ23 ' 41.9o, θ13 ' 8.7o.

One would be tempted to conclude that the triple vector correlation may be bigger for

general values of neutrino masses and mixings. However from eqs. (3.9), the contribution to

the triple vector correlation shown in (4.7) is bounded to be less 10−2 since tan 2β sinα <

10−2 from the quark masses [36, 37, 48]. The point is that for charged leptons masses (Ml)

bigger or equal than the Dirac mass of neutrinos (MD), the mass matrix of the charged

leptons is nearly hermitian leading therefore to nearly equal leptonic left and right mixing

matrices. This is in complete analogy to the situation in the quark sector studied in [36, 41].

Of course it is possible to assume that MD > Ml, but we will not pursue this possibility

since in this case the original see-saw mechanism would lose its meaning and one would

have to invoke accidental cancellations in order to explain the smallness neutrino masses.
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Charge conjugation as the LR symmetry: from eq. (3.8) we have that

AR =
1

16π2

∑
n

(V †R)en(VR)nµ

 M2
W

M2
WR

S3(Xn)− Xn

3

M2
W

M2
δ++
R

 , (6.6)

AL =
1

16π2

∑
n

(V T
R )en(V ∗R)nµXn

−1

3

M2
W

M2
δ++
L

− 1

24

M2
W

M2
H+

1

 . (6.7)

Notice that some of the external phases appearing in VR do not cancel in (4.7) and the

triple vector correlation is proportional to e2(φµ−φe), so that the triple vector correlation is

not suppressed by the small θ13 mixing-angle. In figure 4 (bottom) we show the absolute

value of the triple vector correlation in the (MN0 , δ)-plane. We take (φµ − φe) = 0 in

both normal and inverted neutrino mass hierarchies. For (φµ − φe) = π/4 it will reach in

maximum value of around 0.5 in almost all the parameter space

Finally from figure 4 (bottom) we conclude that C as the LR symmetry gives larger

contributions to the triple vector correlation and this because in the parity case, the triple

vector correlation is suppressed due to the near equality between the Yukawa couplings.

The bottom line is that in the most interesting region of the parameter space, a value

for the triple vector correlation bigger than 10−2 can only be the consequence of C as the

LR symmetry.

One may ask whether this value for the asymmetry of could be measured in forthcoming

experiments. Suppose that µ→ eγ is found to be of the order of 10−14. In the best scenario

due to the future experimental improvements on the sensitivity, it would become possible

to observed at most 104 events and out of these events one has to select the ones that have

θs 6= 0 or θs 6= π. Moreover suppose that only the events satisfying π/6 < θs < π/3 may be

identify in the experiment due to its intrinsic sensitivity. This would imply that we end up

having 104
∫ π/3
π/6 sin θsdθs ∼ 103 events in the most optimistic situation. Hence this naive

argument allow us to conclude that in most optimistic scenario, an asymmetry of the order

10−3 or bigger would probably be seen in the next round of µ→ eγ decay experiments.

6.2 µ → e conversion process

In this section we consider the triple vector correlation for the µ→ e conversion process in

the context of the minimal LR symmetric extension of the SM where the relevant branching

ratio is given by [60]

Br(µ→ e) =
2G2

FV
(p)2

Γcapt

(
α2

16π2

)(
|F (γ)
L |

2 + |F (γ)
R |

2
)
. (6.8)

The values of the capture rate Γcapt are tabulated in [69] for several elements. In [60]

it was shown that the contribution of the doubly-charged scalar may dominate due to a

logarithmic enhancement and in this case the functions F
(γ)
L and F

(γ)
R may be written as

F
(γ)
(L,R) ' 128π2A(L,R) log

(
m2
µ/M

2
δ++
(L,R)

)
. (6.9)
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Figure 5. Plot obtained by considering the SINDRUM II bound for Titanium shown in eq. (1.2).

(Right) Normal hierarchy case (NH). (Left) Inverse hierarchy case (IH). The colored region is the

allowed one. (Top) Mass of the heaviest right-handed neutrino MNH
= 0.1 TeV. (Bottom) Mass of

the heaviest right-handed neutrino MNH
= 1 TeV.

For completeness we show in figure 5 the allowed region obtained by considering the SIN-

DRUM bound for Titanium shown in eq. (1.2) assuming the same values for the heavy

neutrino masses of the last section. From eq. (6.9) and assuming that the dominant terms

are the logarithmic enhance ones, the amplitude for the conversion process and the µ→ eγ

decay are proportional. Therefore a similar qualitative behavior is obtained. We can see

that the bound obtained is similar to the one of the µ → eγ experiment and this is due

to the fact that the logarithmic enhancement in eq. (6.9) compensate the α suppression in

the conversion rate [60]. For Gold the bound one would obtained is similar since the ratio

between the conversion rates for the two elements is around 0.83. On the other hand, for

the gold atom relativistic effects of the muon becomes relevant, so that the result shown

in eq. (5.2) cannot be trusted in this case.

Finally the asymmetry defined in eq. (5.2) takes the form

〈~sµ · (~pe × ~se)〉Φ =
sin θs

2

=m(F
(γ)
L F

∗(γ)
R )

|F (γ)
L |2 + |F (γ)

R |2
=

sin θs
2

=m(ALA
∗
R)

|AL|2 + |AR|2
, (6.10)

where it can be seen that this asymmetry has the same flavor structure of the coefficients

AL and AR defined previously for the µ→ eγ decay, therefore the same conclusion obtained

in the µ→ eγ case holds for the µ→ e conversion process as well.
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Regarding the expected sensitivity for the conversion process the arguments we used

in the µ→ eγ decay apply, but with the difference that the final sensitivity is rescaled by

a factor of the order of 10−1 due to the depolarization –around 15%– of the muons in the

conversion process [59].

7 Conclusions

We derived analytical expressions for a T-odd triple vector correlation in the µ→ eγ decay

and the µ → e conversion process and found simple results in terms of the CP-violating

phases of the effective Hamiltonians. The expression obtained in the µ → e conversion

omits relativistic corrections for the muons, but is otherwise complete. For the µ → eγ

decay we conclude that in order to extract the CP violating phases of the theory from the

experiment, no measurements of the photon polarizations are needed.

Then as an example of a theory that leads order one values for the triple vector

correlation we consider the TeV scale, minimal Left-Right symmetric extension of the SM.

Remarkably, due to the relation between left and right Yukawa couplings in (3.6) –see also

eqs. (3.8) and (3.9)– this triple vector correlation can be used to discriminate between

charge-conjugation or parity as the Left-Right symmetry. More precisely, for Dirac masses

of neutrinos smaller or of the order of the charge lepton masses, a value for the triple

vector correlation bigger than 10−2 can only be the consequence of charge-conjugation as

the Left-Right symmetry.

A Kinematics of the µ → eγ process and the triple vector correlation

In this appendix we give some tools that could be useful when computing the triple vector

correlation shown in eq. (4.7) for the µ→ eγ decay.

For the anti-muon we use the spinor v(pµ+) given by

v(pµ+) =

( √
p · σ ξ

−
√
p · σ̄ ξ

)
, (A.1)

where ξ†ξ = 1 and pµ+ is given in eq. (4.3). As shown in figure 1 the polarization vector

of the muon is given by:

~s = |~s|(sin Φ cos Ψ, sin Φ sin Ψ, cos Φ) (A.2)

and it is straightforward to show that in this case

ξn =

(
e−i

Ψ
2 cos Φ

2

ei
Ψ
2 sin Φ

2

)
. (A.3)

One may find the same result by requiring ξ to be an eigenvector of ~σ · n̂, where n̂ is a

unitary vector in the direction of ~s.
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For the electron and for the reference frame shown in figure 1 we use

ve+(pe+) =

√
|~pe+ |

2


−2ei

θs
2 sin θs

2

2ie−i
θs
2 sin θs

2

2iei
θs
2 cos θs2

−2e−i
θs
2 cos θs2

 . (A.4)

The photon has two possible polarizations along the direction of motion and in the

particular frame we are considering in figure 1 its polarization vector is given by,

εµ±(pγ) =
1√
2


0

±i cos θs
∓i sin θs

1

 (A.5)

where we can explicitly see that when θs = 0, the photon can only have a polarization

±1 along the y-axis and pγ and pe+ are the 4-momentum of the outgoing photon and

electron respectively — see eq. (4.4) and (4.5). Once the expressions for the spinors of

the participating fermions and the polarization vector of the photon are known, it is easy

straightforward to compute the triple vector asymmetry given in (4.7).

We found that the total decay rate is given by

Γtotal =
2

π
G2
Fm

5
µe

2(|AL|2 + |AR|2). (A.6)

It would be interesting to compare the above equation with the result one gets when

summing the decay rates for cos Φ > 0 to that of cos Φ < 0, namely

Γ(cos Φ > 0) + Γ(cos Φ < 0) =
2

π
G2
Fm

5
µe

2

(
cos2 θs

2
|AL|2 + sin2 θs

2
|AR|2

)
. (A.7)

On the other hand, by subtracting the total decay rates for cos Φ > 0 to that of cos Φ < 0

one gets:

Γ(cos Φ > 0)− Γ(cos Φ < 0) =
2

π
G2
Fm

5
µe

2 sin θs=m(ALA
∗
R) (A.8)

from which the asymmetry shown in (4.7) can be readily computed.

B µ → e total conversion rate and the triple vector correlation

B.1 Total conversion rate

In this appendix we briefly comment about the amplitude of the µ→ e conversion process

and the Born’s approximation we used.

In computing the µ→ e conversion process, one usually assumes the so called Born’s

approximation for the outgoing electrons. This approximation has two meanings: one is

computing the conversion rate to a given order in some small coupling; and the other is

the assumption that electrons coming from the conversion process are plane waves. The

point is that we can do better and have a complete control of both approximations at the
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same time. More precisely for the relativistic one-electron atom and in the limit of big r

(r � r0, where V (r ≥ r0) = 0), the solution of the Dirac’s equation at first order in the

perturbation Heff is of the form [16]

ψas = −i
√

π

|~p|
eipr

r

∑
κµ

eiδκ〈ψµκ |Heff |ψi〉

( √
E + 1χµκ(p̂)

−
√
E − 1χµ−κ(p̂)

)
+O(H2

eff), (B.1)

where ψi is any stationary state of the Coulomb potential, ψµκ is one of the continuum

energy solutions and Heff is the effective Hamiltonian for the µ → e conversion process.

Furthermore it can be shown that ψas is an eigenfunction of ~α · ~p + β with eigenvalue E

so that ψas describes, indeed a plane wave [16]. In the high energy limit –neglecting the

electron mass– the solution ψas simplifies to

ψas = −i
√
π
eipr

r

∑
κµ

eiδκ〈ψµκ |Heff |ψi〉

(
χµκ(p̂)

−χµ−κ(p̂)

)
. (B.2)

Finally if we are interested in computing the total conversion amplitude per unit flux (for

a detector placed at fixed radius r = R) the total conversion rate is given by

ωconv = R2

∫
dΩψ†asψas = 2π

(
1

2

∑
κ,µ

|〈ψµκ |Heff |ψi〉|2
)

= 2G2
F (|CL|2 + |CR|2) (B.3)

where the coefficients CL and CR are defined in section 5 and we may absorb the
√

2π

factor into the normalization of the wave function ψµκ in order to agree with the conventions

adopted in [15].

B.2 Triple vector correlation in the conversion process

In this appendix we give details of the calculation for the triplet correlation asymmetry

in the µ → e conversion process within the formalism developed in [16]. Since we are

interested in describing particles with a given polarization, we are going to make use of the

spin projection operators for Dirac spinors. Instead of using the covariant spin projection

operator we make use of the following projection operator

P
(±)
n̂0

=
1

2
(1±O · n̂0), (B.4)

where

O ≡ β~σ + (1− β)(~σ · p̂)p̂ (B.5)

and n̂0 is the direction of the spin polarization vector in the rest frame of the particle, p̂

is the direction of its momentum and the ± represent positive and negative polarization

respectively. Furthermore it can be shown that the description of the spin with this operator

is equivalent to the usual one given by the manifestly covariant spin operator.3 Notice that

the non-relativistic limit of can be taken in a transparent way by replacing β → 1.

3See [17] chapter III.
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For our present problem we assumed the muon to be non-relativistic and in the frame

shown in figure 1 its polarization vector is of the form

nµ = (0, n̂0), (B.6)

where

n̂0 = (sin Φ cos Ψ, sin Φ sin Ψ, cos Φ) (B.7)

by multiplying the wave function of the muon in the conversion process by P
(+)
n̂0

one obtains

the wave function of a non-relativistic muon with the given polarization. For the electron

instead a full relativistic treatment is required since its energy is Ee = mµ−εb, where mµ is

the muon mass and εb is the binding energy of the muon in the 1s state of the muonic atom.

In this case the spin projection operator coming from the conversion process is given by

P (+)
e =

1

2
(1 +Oe · n̂e0) (B.8)

and

Oe · n̂e0 = β~σ · n̂e0 + (1− β)(~σ · p̂e)(p̂e · n̂e0), (B.9)

n̂e0 = (0, 1, 0), p̂e = (sin θs, cos θs, 0). (B.10)

Finally the wave function describing the polarized outgoing electron –coming from the

conversion of a polarized muon– is obtained by applying P
(+)
e to the solution (2.14) and a

direct computation shows (for a detector placed at a fixed radius R):

ωconv(cos Φ > 0)− ωconv(cos Φ < 0) = R2

∫
dΩ · sgn(ŝµ · (p̂e × ŝe)) · ψ†asP (+)

e ψas

=
1

2
G2
F sin θs<e[ei(δ−1−δ+1)(CR − CL)((C∗R + C∗L))] = G2

F sin θs=m(CLC
∗
R) +O(αZ)

+O
(
me

Ee

)
, (B.11)

since in the high energy limit the Coulomb phases satisfy

δ−1 − δ+1 =
π

2
+O

(
αZ

Ee

)
. (B.12)

The Coulomb phases δ±1 are defined in eq. (2.15) and dΩ is given by dΩ = dΨdΦ sin Φ.
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janović and S. Bertolini for enlightening and useful discussions and to G. Senjanović, S.
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[40] M. Nemevšek, F. Nesti, G. Senjanović and V. Tello, Neutrinoless Double Beta Decay: Low

Left-Right Symmetry Scale?, arXiv:1112.3061 [INSPIRE].

[41] Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in Minimal Left-Right

Symmetric Model and Constraints on the Right-Handed Scale, Nucl. Phys. B 802 (2008) 247

[arXiv:0712.4218] [INSPIRE].

[42] H. An, X. Ji and F. Xu, P-odd and CP-odd Four-Quark Contributions to Neutron EDM,

JHEP 02 (2010) 043 [arXiv:0908.2420] [INSPIRE].

[43] F. Xu, H. An and X. Ji, Neutron Electric Dipole Moment Constraint on Scale of Minimal

Left-Right Symmetric Model, JHEP 03 (2010) 088 [arXiv:0910.2265] [INSPIRE].

[44] C.-Y. Seng, J. de Vries, E. Mereghetti, H.H. Patel and M. Ramsey-Musolf, Nucleon electric

dipole moments and the isovector parity- and time-reversal-odd pion-nucleon coupling, Phys.

Lett. B 736 (2014) 147 [arXiv:1401.5366] [INSPIRE].

[45] J. Bsaisou, J. de Vries, C. Hanhart, S. Liebig, U.-G. Meissner, D. Minossi et al., Nuclear

Electric Dipole Moments in Chiral Effective Field Theory, JHEP 03 (2015) 104 [Erratum

ibid. 1505 (2015) 083] [arXiv:1411.5804] [INSPIRE].
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