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1 Introduction

Forward particle production observables in proton-proton (p+p) and proton-nucleus (p+A)

collisions at the Large Hadron Collider (LHC) offer unique opportunities to study the dy-

namics of QCD at small x, and in particular the non-linear regime of parton saturation [1].

Indeed, in high-energy hadronic collisions, forward particle production is sensitive only to

high-momentum partons inside one of the colliding hadrons, which therefore appears di-

lute. By contrast, for the other hadron or nucleus, it is mainly small-momentum partons,

whose density is large, that contribute to the scattering. Such processes, in which a large-x
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projectile is used as a probe to investigate a small-x target, are sometimes called dilute-

dense collisions. Since the high-x part of the projectile wave function is well understood in

perturbative QCD, forward particle production is indeed ideal to investigate the small-x

part of target wave function. This is true both in p+p and p+A collisions, although using

a target nucleus does enhance the dilute-dense asymmetry of such collisions.

The separation between the linear and non-linear regimes of the target wave function

is characterized by a momentum scale Qs(x), called the saturation scale, which increases

as x decreases. Dilute-dense collisions can be described from first principles, provided

Qs � ΛQCD. This condition is better realized with higher energies (as they open up the

phase space towards lower values of x), and with nuclear targets (since, roughly, Qs∼A1/3).

Over the years, the Color Glass Condensate (CGC) effective theory [2] has emerged as the

best candidate to approximate QCD in the saturation regime, both in terms of practical

applicability and of phenomenological success [3]. In this paper, we focus on forward

dijet production in p+A and p+p collisions. We note that the CGC approach has been

very successful in describing forward di-hadron production at RHIC [4–6], in particular it

predicted the suppression of azimuthal correlations in d+Au collisions compared to p+p

collisions [7], which was observed later experimentally [8, 9].

With forward dijets at the LHC however, the full complexity of the CGC machinery

is not needed. Indeed, for the di-hadron process at RHIC energies, no particular ordering

of the momentum scales involved is assumed in CGC calculations, while, at the LHC, the

presence of particles with transverse momenta much larger than the saturation scale clearly

must imply some simplifications. On the flip side, there will be other complications since

further QCD dynamics, which is not part of the CGC framework but which is relevant at

large transverse momenta, must also be considered. There are three important momentum

scales in the forward dijet process: a typical transverse momentum of a hard jet, Pt, whose

precise definition will be stated in the next section; the transverse momentum of the small-

x gluons involved in the hard scattering, kt; and the saturation scale of the small-x target,

Qs. Clearly, Pt is always one of the hardest scales, and it is much bigger than Qs, which

is always one of the softest scales. Then, depending on where kt sits with respect to these

two, three different regimes can be defined.

A first regime, with Qs � kt ∼ Pt, corresponds to the domain of applicability of the

so-called high energy factorization (HEF) framework [10, 11], in which the description of

forward dijets involves an unintegrated gluon distribution for the small-x target, along

with off-shell hard matrix elements. That is explicitly shown in this work, starting form

CGC calculations. While such a factorization does not occur when non-linear saturation

effects are accounted for, we shall see that taking the Qs � kt ∼ Pt limit is tantamount to

restricting the interaction with the small-x target to a two-gluon exchange, therefore allows

to indeed write all the CGC correlators in terms of a single gluon distribution. Doing so,

the matrix elements of the HEF framework are exactly recovered.

A second regime, with kt ∼ Qs � Pt, is where the so-called transverse momentum

dependent (TMD) factorization [12] is valid. It involves on-shell matrix elements but

several unintegrated gluons distributions. In this regime, non-linear effects are present, and

in the large-Nc limit, equivalence with CGC expressions was shown in [13]. In particular,
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in that case the description of forward dijets involves only two independent unintegrated

gluons distributions, each of which can be determined in various other processes [14]. In

the present work we shall keep Nc finite, implying, as we show below, that a total of six

independent unintegrated gluons distributions are needed.

Finally, the intermediate regime Qs � kt � Pt, which is naturally obtained from

the two others by taking the appropriate limits, corresponds to the collinear regime, with

on-shell matrix elements and the standard integrated gluon distribution.

Separately, the HEF and TMD approaches to dijet production have been extensively

studied in the literature [11, 15–18] and [12, 19–25], but little connection has been made

between them so far. The first result of this paper is to reveal that connection, in the context

of dilute-dense collisions, and to show that, in fact, they are both contained in the CGC

description. However, as already mentioned, using the CGC approach is unnecessarily

complicated and one should take advantage of the fact that Pt � Qs to simplify the

theoretical formulation. The second result of the paper is precisely to develop a new formula

for forward dijets in dilute-dense collisions that encompasses all three situations described

above, meaning that it is applicable regardless of the magnitude of kt. As explained

below, this is obtained by extending the TMD factorization framework, more precisely by

supplementing it with off-shell matrix elements.

Note that the derivation of our new unified formula is performed in two independent

ways: first using the standard Feynman diagram technique, and second by exploiting the

so-called helicity method that employs color-ordered amplitudes [26]. With this second

method, the gauge invariance of the results is explicit, and the method will also prove very

useful in the future, when processes with more particles in the final state are considered.

As is the case in the CGC framework, our new formulation contains all the relevant limits,

but it has the advantage that it is more amenable to phenomenological implementations

than CGC calculations. In addition, it is also better suited to be supplemented with further

QCD dynamics relevant at high Pt, such as Sudakov logarithms [27, 28] or coherence in

the QCD evolution of the gluon density [29–31]. These tasks are left for future work.

The plan of the paper is as follows. In section 2, we introduce kinematics and nota-

tions, and briefly present the HEF and TMD frameworks. In section 3, we show that the

HEF framework can be derived from CGC calculations, when the Qs � kt ∼ Pt limit is

considered; namely we explain how the various CGC correlators reduce to a single gluon

distribution in that limit, and show that the off-shell matrix elements of the HEF frame-

work are indeed emerging. Section 4 is devoted to the kt ∼ Qs � Pt limit, the derivation of

the TMD factorization formula for forward dijets given in [14] is recalled, and extended to

the case of finite Nc, implying six independent unintegrated gluons distributions instead of

two. The hard factors of the TMD framework are computed again in section 5, but keeping

the small-x gluon off-shell, which leads us to our new unified formula for forward dijets in

p+A collisions. In section 6, both the TMD factorization formula and the off-shell hard

factors are derived again, but using color-ordered amplitudes, instead of Feynman diagram

techniques. Finally, section 7 is devoted to conclusions and outlook.
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Figure 1. Inclusive dijet production in p+A collision. The blob H represents hard scattering. The

solid lines coming out of H represent partons, which can be either quarks or gluons.

2 Forward dijets in p+A collisions

We shall discuss the process of inclusive dijet production in the forward region, in collisions

of dilute and dense systems

p(pp) +A(pA)→ j1(p1) + j2(p2) +X . (2.1)

The process is shown schematically in figure 1. The four-momenta of the projectile and

the target are massless and purely longitudinal. In terms of the light cone variables,

v± = (v0 ± v3)/
√

2, they take the simple form

pp =

√
s

2
(1, 0t, 0) , pA =

√
s

2
(0, 0t, 1) , (2.2)

where s is the squared center of mass energy of the p+A system.

The energy (or longitudinal momenta) fractions of the incoming parton (either a quark

or gluon) from the projectile, x1, and the gluon from the target, x2, can be expressed in

terms of the rapidities and transverse momenta of the produced jets as

x1 =
p+

1 + p+
2

p+
p

=
1√
s

(|p1t|ey1 + |p2t|ey2) , (2.3a)

x2 =
p−1 + p−2
p−A

=
1√
s

(
|p1t|e−y1 + |p2t|e−y2

)
, (2.3b)

where p1t, p2t are transverse Euclidean two-vectors. By looking at jets produced in the

forward direction, we effectively select those fractions to be x1 ∼ 1 and x2 � 1. Since the

target A is probed at low x2, the dominant contributions come from the subprocesses in

which the incoming parton on the target side is a gluon

qg → qg , gg → qq̄ , gg → gg . (2.4)

In dilute-dense collisions, the large-x partons of the dilute projectile are described in terms

of the usual parton distribution functions of collinear factorization fa/p, with a scale depen-

dence given by DGLAP evolution equations. By contrast, the small-x gluons of the dense
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target nucleus are described by a transverse-momentum-dependent distribution, which

evolve towards small x according to non-linear equations. Moreover, the momentum k

of the incoming gluon from the target, besides the longitudinal component k− = x2

√
s/2,

has in general a non-zero transverse component, kT , which leads to imbalance of transverse

momentum of the produced jets

|kt|2 = |p1t + p2t|2 = |p1t|2 + |p2t|2 + 2|p1t||p2t| cos ∆φ , (2.5)

with k2
T = −|kt|2. Here, by kT we mean a four-vector, as opposed to kt = p1t + p2t,

which is a two-dimensional vector in the transverse plane. They are simply related by:

kT = (0, kt, 0). Using the notation defined above, the gluon’s four-momentum can be also

parametrized as

k = x2pA + kT . (2.6)

The Mandelstam variables at the partonic level are defined as

ŝ = (p+ k)2 = (p1 + p2)2 =
|Pt|2

z(1− z)
, (2.7a)

t̂ = (p2 − p)2 = (p1 − k)2 = −|p2t|2

1− z
, (2.7b)

û = (p1 − p)2 = (p2 − k)2 = −|p1t|2

z
, (2.7c)

with

z =
p+

1

p+
1 + p+

2

and Pt = (1− z)p1t − zp2t . (2.8)

They sum up to ŝ+ t̂+ û = k2
T .

Note that we always neglect the transverse momentum of the high-x partons compared

with that of the low-x parton |kt|. This is justified in view of the asymmetry of the problem,

x1 ∼ 1 and x2 � 1, which implies that gluons form the target have a much bigger average

transverse momentum (of the order of Qs) compared to that of the large x partons from

the projectile (which of the order of ΛQCD). And even when the transverse momentum

imbalance of the dijet system is of the same order as the jet transverse momenta themselves,

implying that both parton distributions are probed in their radiative tail, the small x2

(BFKL) evolution implies a 1/kt behavior on the target side, while DGLAP evolution

implies a 1/k2
t behavior on the projectile side.

To take into account small-x effects in dijet production, an approach that has been

broadly used in phenomenological studies involves the so-called high energy factorization

(HEF) formula [15]

dσpA→dijets+X

dy1dy2d2p1td2p2t
=

1

16π3(x1x2s)2

∑
a,c,d

x1fa/p(x1, µ
2) |Mag∗→cd|2Fg/A(x2, kt)

1

1 + δcd
.

(2.9)

This formula makes use of the unintegrated gluon distribution Fg/A that is involved in

the calculation of the deep inelastic structure functions. It is determined from fits to DIS
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data, and then used in eq. (2.9), along with matrix elements that depend on the transverse

momentum imbalance (2.5). Even though the high energy factorization is not strictly valid

for dijet production, there exists a kinematic window, the dilute limit Qs � |p1t|, |p2t|, |kt|,
in which it can be motivated from the CGC approach. We shall demonstrate this explicitly

for all channels in the next section.

A second approach, valid in the regime where the transverse momentum imbalance

between the outgoing particles, eq. (2.5), is much smaller than their individual transverse

momenta, is the so-called transverse momentum dependent (TMD) factorization. This

limit, |p1t + p2t| � |p1t|, |p2t|, or |kt| � |Pt|, corresponds to the situation of nearly back-

to-back dijets. Even though, in general, there exists no TMD factorization theorem for jet

production in hadron-hadron collisions, such a factorization can be established in the asym-

metric “dilute-dense” situation considered here, where only one of the colliding hadrons is

described by a transverse momentum dependent gluon distribution. Again, selecting dijet

systems produced in the forward direction implies x1 ∼ 1 and x2 � 1, which in turn allows

us to make that assumption. The TMD factorization formula reads (so far, this has been

obtained in the large-Nc approximation, but this restriction will be lifted in the present

work) [13]

dσpA→dijets+X

dy1dy2d2p1td2p2t
=

α2
s

(x1x2s)2

∑
a,c,d

x1fa/p(x1, µ
2)
∑
i

H
(i)
ag→cdF

(i)
ag (x2, kt)

1

1 + δcd
, (2.10)

where several unintegrated gluon distributions F (i)
ag with different operator definition are

involved and accompanied by different hard factors H
(i)
ag→cd. Those hard factors were

calculated in [13] as if the small-x2 gluon was on-shell (i.e. |kt| = 0). The kt dependence

survived only in the gluon distributions.

By restoring the kt dependence of the hard factors inside formula (2.10), we can make

the bridge between the HEF and TMD frameworks and obtain a unified formulation which

encompasses both the dilute and the nearly back-to-back limit. Note that we follow the

conventions used in earlier papers that dealt with these formalisms, such as ref. [15] and [13]

respectively. Therefore, contrary to the HEF matrix elements |Mag∗→cd|2, the hard factors

H
(i)
ag→cd of the TMD factorization are defined without the g4 factor. In addition, the defi-

nition of the gluon distribution also differ by a factor π. The integrated gluon distribution

x2fg/A is obtained from
∫
dk2

t Fg/A in the HEF formalism, and from
∫
d2kt F (i)

ag in the

TMD formalism.

Finally, let us point out that, in the frameworks described above, one emits radiation

in the transverse direction that one has no control over, as it is part of the small-x gluon

distributions and therefore is treated fully inclusively. To be more specific, at this level,

transverse momentum conservation is obtained either by several particles of average trans-

verse momentum Qs, or by a third hard jet, depending on the magnitude of |kt|. Due to

the small-x evolution, that radiation is ordered in rapidity, therefore it does not contribute

to the measured forward dijets systems.
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3 High energy factorization derived from CGC: the |p1t|, |p2t|, |kt| � Qs

limit

We shall demonstrate that the high-energy factorization formula for double-inclusive par-

ticle production, eq. (2.9), is identical to a result obtained from the CGC formalism in

the dilute target approximation. This is a limit where all the momenta involved in the

process are much larger than the saturation scale: |p1t|, |p2t|, |kt| � Qs. Here, we show

explicitly the equivalence of the HEF and CGC formulas for the qg∗ → qg channel and only

provide the final results for the two other channels, as the derivations proceed identically

for all of them. We derive the CGC cross sections for the qg∗ → qg and gg∗ → qq̄ channels

in the dilute limit following a procedure developed in ref. [32] where only the gg∗ → gg

sub-process was considered.

The amplitude for quark-gluon production is schematically presented in figure 2 as

in ref. [7]. In the left diagram, the emission of the gluon from the quark happens before

the interaction with the target, and in the right diagram the emission occurs after the

quark has interacted with the target. There is a relative minus sign between the two cases

as explained in details in ref. [7]. Multigluon interactions of quarks and gluons with a

target, in the CGC formalism, enter as Wilson lines in the expression for the amplitude.

A quark propagator is represented as a fundamental Wilson line, while a gluon propagator

as an adjoint Wilson line. As a result, the cross section involves multipoint correlators of

Wilson lines. In particular, the amplitude from figure 2, after squaring, has four terms:

a correlator of four Wilson lines, S(4), corresponding to interactions happening after the

emission of the gluon, both in the amplitude and the complex conjugate, then a correlator

of two Wilson lines, S(2), representing the case when interactions with the target take

place before the radiation of the gluon in both amplitude and complex conjugate, and

two correlators of three Wilson lines, S(3), for the interference terms. In all the cases the

splitting function is the same, and is given by the product of the quark wave functions:

φλ
∗
αβ(p, p+

1 ,x
′ − b′)φλαβ(p, p+

1 ,x− b). The total expression for the inclusive cross section in

CGC is then given by the following formula [7]:

dσ(pA→ qgX)

dy1dy2d2p1td2p2t
= αsCF (1− z)p+

1 x1fq/p(x1, µ
2) |M(p, p1, p2)|2 , (3.1)

where the amplitude squared, |M(p, p1, p2)|2, has the form:

|M(p, p1, p2)|2 =

∫
d2x

(2π)2

d2x′

(2π)2

d2b

(2π)2

d2b′

(2π)2
e−ip1t·(x−x

′)e−ip2t·(b−b
′)

×
∑
λαβ

φλ
∗
αβ(p, p+

1 ,x
′ − b′)φλαβ(p, p+

1 ,x− b)

×
{
S

(4)
qgq̄g[b,x,b

′,x′;x2]− S(3)
qgq̄[b,x,b

′ + z(x′ − b′);x2]

−S(3)
qgq̄[b + z(x− b),x′,b′;x2]

+S
(2)
qq̄ [b + z(x− b),b′ + z(x′ − b′);x2]

}
, (3.2)
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p p2

p1

p p2
p1

Figure 2. Amplitude for quark-gluon production in the CGC formalism. Left: the gluon is radiated

before the interaction with the target. Right: the gluon is radiated after the interaction with the

target. The two terms have a relative minus sign.

where φλαβ are mixed-space quark wave functions and S(i) are correlators of Wilson lines

explained in details below. Following the notation from figure 1 and eq. (2.8), we use the

fraction of the plus components of four-momenta, z, with p1 being the four-momentum of

the outgoing gluon and p2, the four-momentum of the outgoing quark.

The fundamental, U(x), and adjoint, V (x), Wilson lines are defined as path-ordered

exponentials of the gauge field (written here in the A+ = 0 gauge):

U(x) = P exp

[
ig

∫
dx+A−a (x+,x)ta

]
and V (x) = P exp

[
ig

∫
dx+A−a (x+,x)T a

]
,

(3.3)

where ta and T a are the generators of the fundamental and adjoint representations of

SU(N) respectively. The traces of products of Wilson lines appearing in the cross section

are defined in the following way:

S
(4)
qgq̄g(b,x,b

′,x) =
1

CFNc

〈
Tr
(
U(b)U †(b′)tdtc

) [
V (x)V †(x′)

]cd〉
x2

; (3.4)

S
(3)
qgq̄(b,x, z

′) =
1

CFNc

〈
Tr
(
U †(z′)tcU(b)td

)
V cd(x)

〉
x2

; (3.5)

S
(2)
qq̄ (z, z′) =

1

Nc

〈
Tr
(
U(z)U †(z′)

)〉
x2

. (3.6)

The CGC average is taken over the background filed evaluated at Y = ln(1/x2). The

product of wave functions in the massless limit is:∑
λαβ

φλ
∗
αβ(p, p+

1 ,u
′)φλαβ(p, p+

1 ,u) =
8π2

p+
1

u · u′

|u|2|u′|2
(1 + (1− z)2) . (3.7)

Introducing a change of variables, u = x − b and v = zx + (1 − z)b (and similar for the

primed coordinates), we get [7]:

|M(p, p1, p2)|2 =

∫
d2u

(2π)2

d2u′

(2π)2
eiPt·(u

′−u)
∑
λαβ

φλ
∗
αβ(p, p+

1 ,u
′)φλαβ(p, p+

1 ,u)

×
∫
d2v

(2π)2

d2v′

(2π)2
eikt·(v

′−v)
[
S

(4)
qgq̄g(b,x,b

′,x′)− S(3)
qgq̄(b,x,v

′)

−S(3)
qgq̄(v,x

′,b′) + S
(2)
qq̄ (v,v′)

]
. (3.8)
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The conjugate momentum to u′−u is Pt = (1− z)p1t− zp2t, and the one corresponding to

v′− v is the total transverse momentum of the produced particles kt = p1t + p2t. In terms

of fundamental Wilson lines only:

S
(4)
qgq̄g(b,x,b

′,x′) =
1

2CFNc

〈
Tr
(
U(b)U †(b′)U(x′)U †(x)

)
Tr
(
U(x)U †(x′)

)
(3.9)

− 1

Nc
Tr
(
U(b)U †(b′)

)〉
x2

,

and

S
(3)
qgq̄(b,x,v

′) =
1

2CFNc

〈
Tr
(
U(b)U †(x)

)
Tr
(
U(x)U †(v′)

)
− 1

Nc
Tr
(
U(b)U †(v′)

)〉
x2

.

(3.10)

In the dilute target limit we allow for only up to two gluon exchanges between the

Wilson line propagators and the nucleus. Accordingly, we expand the Wilson lines to

second order in the background field:

U(x) ≈ 1+ ig

∫
dx+A−(x+,x)− g

2

2

∫
dx+dy+P

{
A−(x+,x)A−(y+,x)

}
+O(A3) . (3.11)

To this order, the expectation values of the four- and three-point correlators are simply

expressed in terms of the dipole operator S
(2)
qq̄ (v,v′). The dilute target approximation

gives only a leading result in |v − v′|2Q2
s for the expectation value of S

(2)
qq̄ (v,v′), which is

equivalent to taking the limit |kt| � Qs. Similarly, when all the momenta involved in the

process are much larger than the saturation scale, the correlators entering the cross section

get the following expressions:

S
(4)
qgq̄g(b,x,b

′,x′) = 1− g2NcΓx2(x− x′)− g2N
2
c − 1

2Nc
Γx2(b− b′)

−g
2Nc

2

[
Γx2(x−b) + Γx2(x′−b′)− Γx2(x′−b)− Γx2(x−b′)

]
; (3.12)

S
(3)
qgq̄(b,x,v

′) = 1− g2Nc

2
Γx2(b− x)− g2Nc

2
Γx2(x− v′) +

g2

2Nc
Γx2(b− v′) ; (3.13)

S
(2)
qq̄ (v,v′) = 1− g2N

2
c − 1

2Nc
Γx2(v − v′) . (3.14)

In the above equations:

Γx2(x− y) =

∫
dx+

[
γx2(x+,0)− γx2(x+, r)

]
, (3.15)

where r = x−y and γx2(x+, r) is related to the expectation value of the two-field correlator:

〈
A−a (x+,x)A−b (y+,y)

〉
x2

= δabδ(x+ − y+)γx2(x+,x− y) . (3.16)
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Using the expressions for the multi-point functions S(i), we get the following result for the

amplitude squared:

|M(p, p1, p2)|2 = 4π2g2Nc(1 + (1− z)2)
1

p+
1

∫
d2u

(2π)2

d2u′

(2π)2
eiPt·(u

′−u) u · u′

|u|2|u′|2

×
∫

d2v

(2π)2

d2v′

(2π)2
eikt·(v

′−v)

[
Γx2(x− b′) + Γx2(x′ − b) + Γx2(x− v′)

+Γx2(v − x′)− 2Γx2(x− x′)− N2
c − 1

N2
c

Γx2(b− b′)

−N
2
c − 1

N2
c

Γx2(v − v′)− 1

N2
c

Γx2(b− v′)− 1

N2
c

Γx2(v − b′)

]
.(3.17)

We perform the integrals in the above expression by changing the variables from v and v′

to r and B. The integrals over the transverse distances of the type r = v−v′ are equivalent

to the Fourier transform of eq. (3.15) and give the unintegrated gluon distribution:

fx2(kt) ≡ −k2
t

∫
d2r Γx2(r)e−ikt·r = k2

t

∫
dx+γx2(x+, kt) . (3.18)

In our approximation, the correlators do not depend on the impact parameter B = (v +

v′)/2. The integrals over B factorize and give the transverse area of the target:
∫
d2B = S⊥.

Finally, the rest two integrations reduce to:∫
d2u e−iPt·u

u

|u|2
= −2πi

Pt

|Pt|2
. (3.19)

In terms of the unintegrated gluon distribution, the amplitude squared then gets the form:

|M(p, p1, p2)|2 =
2

(2π)4
g2S⊥Nc

fx2(kt)

k2
t

(1 + (1− z)2)
1

p+
1

×
[

(N2
c − 1)

2N2
c

1

P 2
t

+
(N2

c − 1)

2N2
c

1

p2
1t

+
1

p2
2t

+
1

N2
c

Pt · p1t

P 2
t p

2
1t

+
Pt · p2t

P 2
t p

2
2t

+
p1t · p2t

p2
1tp

2
2t

]
, (3.20)

We want to show that eq. (3.20) reproduces the HEF formula (2.9) with the appropriate

unintegrated parton distribution function and off-shell matrix elements. For this purpose,

we need to find a relation between the unintegrated gluon distribution used in the above

equation, fx2(kt), and Fg/A(x2, kt), which appears in the HEF formula (2.9). This is easily

done by considering the deep inelastic scattering process, since Fg/A(x2, kt) is precisely the

unintegrated gluon distribution involved in the formulation of the γ∗ +A→ X total cross

section, and is therefore related to the qq̄ dipole scattering amplitude in a straightforward

manner (see for instance [16, 33]):

Fg/A(x2, kt) =
Nc

αs(2π)3

∫
d2vd2v′ e−ikt·(v−v

′)∇2
v−v′

[
1− S(2)

qq̄ (v,v′)
]
. (3.21)
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In the weak-field limit, using formula (3.14), this gives the relation

fx2(kt) =
4π2

S⊥(N2
c − 1)

Fg/A(x2, kt) . (3.22)

Then, the cross section for the qg production channel from eq. (3.1) can be written in a

more compact form

dσ(pA→ qgX)

dy1dy2d2p1td2p2t
=
α2
s

2π
x1fq/p(x1, µ

2)z(1−z)P̂gq(z)

×
[
1 +

(1−z)2p 2
1t

P 2
t

− 1

N2
c

z2p 2
2t

P 2
t

] Fg/A(x2, kt)

p 2
1t p

2
2t

, (3.23)

where P̂gq(z) is related to the quark-to-gluon splitting function and is given by:

P̂gq(z) =
1 + (1−z)2

z
. (3.24)

It turns out that the above expression for the quark-gluon production cross section is

identical to the result in the HEF formalism, eq. (2.9), containing the off-shell amplitudes

|Mag∗→cd|
2
. The latter have been calculated in refs. [11, 34] and [35].

The equivalence of the CGC and HEF formulas in the dilute limit can be shown in a

similar way for the cross sections of the other two subprocesses, gg∗ → qq̄ and gg∗ → gg.

The CGC results for the cross sections in this limit are:

dσ(pA→ qq̄X)

dy1dy2d2p1td2p2t
=

α2
s

4CFπ
x1fg/p(x1, µ

2)z(1−z)P̂qg(z)

×
[
− 1

N2
c

+
(1−z)2p 2

1t + z2p 2
2t

P 2
t

] Fg/A(x2, kt)

p 2
1t p

2
2t

(3.25)

and [32]

dσ(pA→ ggX)

dy1dy2d2p1td2p2t
=
α2
sNc

πCF
x1fg/p(x1, µ

2)z(1−z)P̂gg(z)

×
[
1 +

(1−z)2p 2
1t + z2p 2

2t

P 2
t

] Fg/A(x2, kt)

p 2
1t p

2
2t

. (3.26)

The expressions for P̂qg(z) and P̂gg(z) have the form:

P̂qg(z) = z2 + (1−z)2 , P̂gg(z) =
z

1− z
+

1− z
z

+ z(1− z) . (3.27)

Again, eqs. (3.25) and (3.26) are equivalent to the HEF formulas for the corresponding

cross sections [16].

Therefore, in principle, the HEF formalism should not be employed to include non-

linear effects, and one should stick to Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolu-

tion [36–38], or Ciafaloni-Catani-Fiorani-Marchesini evolution [29–31], when evaluating the

gluon distribution. In this spirit, most studies are performed using a gluon density evolved
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with an improved BFKL equation that includes some higher-order corrections [39], but

no non-linear effects. However, we note that the HEF framework could be used with the

Balitsky-Kovchegov (BK) equation [40, 41] in order to investigate the so-called geometric

scaling regime, where saturation effects are felt, even though Qs � kt. The full saturation

region, Qs ∼ kt, is however, in principle, out of reach of formula (2.9). Along these lines,

an estimate of saturation effects was obtained in [42, 43], using the BK equation extended

to include the same higher-order corrections as included in the linear case [39].

4 TMD factorization for nearly back-to-back jets: the |p1t|, |p2t| � |kt|,
Qs limit

In this section we discuss the special case of nearly back-to-back jets, |p1t+p2t| � |p1t|, |p2t|,
where the differential cross section is given by formula (2.10). Several gluon distributions

F (i)
ag , with different operator definition, are involved here. Indeed, as explained in [12], a

generic unintegrated gluon distribution of the form

F(x2, kt)
naive
= 2

∫
dξ+d2ξ

(2π)3p−A
eix2p

−
Aξ

+−ikt·ξ 〈A|Tr
[
F i−

(
ξ+, ξ

)
F i− (0)

]
|A
〉
, (4.1)

where F i− are components of the gluon field strength tensor, must be also supple-

mented with gauge links, in order to render such a bi-local product of field operators

gauge invariant.

The gauge links are path-ordered exponentials, with the integration path being fixed

by the hard part of the process under consideration. Therefore, unintegrated gluon distri-

butions are process-dependent.

In the following, we shall encounter two gauge links U [+] and U [−], as well as the loop

U [�] = U [+]U [−]† = U [−]U [+]†. These links are composed of Wilson lines, their simplest

expression is obtained in the A+ = 0 gauge:

U [±] = U(0,±∞; 0)U(±∞, ξ+; ξ) with U(a, b; x) = P exp

[
ig

∫ b

a
dx+A−a (x+,x)ta

]
,

(4.2)

but the expressions of the various gluon distributions given below are gauge-invariant.

From now on, F i− (ξ+, ξ) is simply denoted as F (ξ), and the hadronic matrix elements

〈A| . . . |A〉 → 〈. . .〉. Note however that they are different from the CGC averages 〈· · · 〉x2
of the previous section. Indeed, the normalization of the hadronic state |A〉 is defined as

〈A′|A〉 = (2π)3 2p+
A δ(p

+
A − p′+A ) δ(2) (pAt − p′At), while the CGC averages are normalized

as 〈1〉x2 = 1. As explained in [13], the two can be related by making the replacement

〈· · · 〉x2 →
〈A|...|A〉
〈A|A〉 .

This approach to dijet production in proton-nucleus collisions was analyzed in ref. [13].

The TMD factorization formula (2.10) was derived there in the large-Nc limit, and shown to

be equivalent to CGC calculations (e.g. formulas (3.1) and (3.2) in the case of the qA→ qg

channel), after taking the limit |p1t|, |p2t| � |kt|, Qs. In this section, we derive the TMD

factorization formula keeping Nc finite. We obtain corrections to the hard factors H
(i)
ag→cd

– 12 –
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Figure 3. Diagrams for qg → qg subprocess. The mirror diagrams of (3), (5) and (6) give identical

contributions.

previously derived, and we calculate new hard factors corresponding to gluon distributions

that were omitted before (as they were vanishing in the large-Nc limit). The finite Nc

extension prevents one to make a further simplification, called correlator factorization,

essential to relate the TMD factorization and the CGC formalism, but gives completeness

to the main result of this paper, i.e. the new factorization formula we propose below is

valid for finite Nc. We also check explicitly the gauge invariance of these hard factors by

computing them in a gauge different from the one used in [13].

An important fact to note is that, as a consequence of the |kt| � |p1t|, |p2t| limit,

the kt dependence in (2.10) survives only in the gluon distributions, and the hard factors

are calculated as if the small-x2 gluon was on-shell. That is, looking at the hard partonic

interaction represented by the blob H in figure 1, k2 = −|kt|2 is set to zero, and ŝ+t̂+û = 0.

4.1 The qg → qg channel

The complete set of independent cut diagrams contributing to this channel is shown in

figure 3 (mirror images of diagrams (3), (5) and (6) give identical expressions).

The cross section for a quark-gluon scattering involves only two different TMD gluon

distributions as given in ref. [12]:

dσpA→qgX

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2
x1fq/p(x1, µ

2)
2∑
i=1

F (i)
qg H

(i)
qg→qg , (4.3)

with:

F (1)
qg = 2

∫
dξ+d2ξ

(2π)3p−A
eix2p

−
Aξ

+−ikt·ξ
〈

Tr
[
F (ξ)U [−]†F (0)U [+]

]〉
= x2G

(2)(x2, kt) , (4.4)

F (2)
qg = 2

∫
dξ+d2ξ

(2π)3p−A
eix2p

−
Aξ

+−ikt·ξ

〈
Tr

[
F (ξ)

Tr
[
U [�]

]
Nc

U [+]†F (0)U [+]

]〉
. (4.5)

These are the same gluon distributions as in the large-Nc limit [13], no additional ones are

present in this channel. The only difference in the expression (4.3) when we go to finite
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Nc will appear in the hard factor H
(1)
qg→qg associated with F (1)

qg . That gluon distribution is

sometimes also denoted x2G
(2), and is called the dipole distribution, since it is the one that

enters the formulation of the inclusive and semi-inclusive DIS.

In the CGC approach, x2G
(2) can be related to the qq̄ dipole scattering amplitude,

and therefore linked to the gluon distribution used in the HEF formalism: Fg/A(x2, kt) =

πx2G
(2)(x2, kt). That distribution is not sufficient however to compute the forward dijet

cross section when |kt| ∼ Qs (i.e. the case considered in this section). For completeness,

we note that a detailed derivation of this relation between formula (3.21), involving a CGC

correlation function, and formula (4.4), involving matrix elements defining TMDs, can be

found in appendix A of [13].

The exact results for the two hard factors read

H(1)
qg→qg =

1

2
D1 −

1

N2
c − 1

D2 +D4 + 2D5 + 2D6 , (4.6)

H(2)
qg→qg =

1

2
D1 +

Nc

2CF
D2 + 2D3 , (4.7)

where Dis are the squared and interference diagrams corresponding to the qg → qg channel,

following the numbering of figure 3. Each term Di = Cuihi represents the product of the

color factor, Cui , and the hard coefficient, hi. What kind of diagrams enter the hard factors

H
(i)
qg→qg depends on the type of the gauge links appearing in each of them. As summarized

in table IV of ref. [12], the distribution F (1)
qg is present in diagrams (1), (2), (4), (5) and

(6), while the distribution F (2)
qg appears in diagrams (1), (2) and (3). The Di components

were computed in ref. [13] (table II) in an axial gauge with the axial vector, n, set to

n = p, for both the incoming and the outgoing gluon, where p is the four-momentum of the

incoming quark, as defined in figure 1. Formulated differently, the polarization vector of

each external gluon was chosen such that, besides with the momentum of the gluon, their

inner product with p vanishes. We recovered the same results for Dis in that gauge and

performed the same calculation in a different gauge with the axial vector set to n = p for

the incoming gluon and n = p2 for the outgoing gluon.1 The results for the hard factors

H
(1)
qg→qg and H

(2)
qg→qg at finite Nc are identical in both gauges and they read

H(1)
qg→qg = − û(ŝ2 + û2)

2ŝt̂2
+

1

2N2
c

(ŝ2 + û2)

ŝû
, (4.8)

H(2)
qg→qg = − ŝ(ŝ

2 + û2)

2ût̂2
. (4.9)

The hard factors and the TMDs entering the factorization formula (4.3) are all gauge

invariant. In principle, that leaves us some freedom and the factorization formula can be

rewritten with new hard factors and the corresponding new gluon distributions formed as

linear combinations of the the old ones.

1The choice of axial gauge vectors for external gluons corresponds to the choice of the reference mo-

mentum for their polarization vectors, see for example [26], and is arbitrary for gauge invariant quantities.

Thus, the independence on those gauge vectors can be used to confirm that the result is gauge invariant.
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K
(1)
ag→cd K

(2)
ag→cd

qg → qg − ŝ
2 + û2

2t̂2ŝû

[
û2 +

ŝ2 − t̂2

N2
c

]
−CF
Nc

ŝ(ŝ2 + û2)

t̂2û

gg → qq̄
1

2Nc

(t̂2 + û2)2

ŝ2t̂û
− 1

2CFN2
c

t̂2 + û2

ŝ2

gg → gg
2Nc

CF

(ŝ2 − t̂û)2(t̂2 + û2)

t̂2û2ŝ2

2Nc

CF

(ŝ2 − t̂û)2

t̂ûŝ2

Table 1. The “new” hard factors following from simplified effective TMD factorization of

eqs. (4.13), (4.25) and (4.52) in the case with all partons being on shell.

For reasons that shall be discussed in detail in section 6, let us define the new hard

factors for the qg → qg subprocess

K(1)
qg→qg = H(1)

qg→qg +
1

N2
c

H(2)
qg→qg and K(2)

qg→qg =
N2
c − 1

N2
c

H(2)
qg→qg , (4.10)

and the corresponding new gluon TMDs

Φ(1)
qg→qg = F (1)

qg , (4.11)

Φ(2)
qg→qg =

1

N2
c − 1

(
−F (1)

qg +N2
cF (2)

qg

)
, (4.12)

such that the factorization formula (4.3) now takes the form

dσpA→qgX

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2
x1fq/p(x1, µ

2)
[
Φ(1)
qg→qgK

(1)
qg→qg + Φ(2)

qg→qgK
(2)
qg→qg

]
. (4.13)

The explicit expressions for K
(1)
qg→qg and K

(2)
qg→qg are given in table 1.

4.2 The gg → qq̄ channel

The independent cut diagrams contributing to this channel are shown in figure 4.

In addition to the two gluon distributions, F (1)
gg and F (2)

gg , used in ref. [13], the result

to all orders in Nc involves a third distribution [12, 44], F (3)
gg (also sometimes denoted

x2G
(1) and called the Weizsacker-Williams gluon distribution), and the differential cross

section reads

dσpA→qq̄X

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2
x1fg/p(x1, µ

2)

3∑
i=1

F (i)
ggH

(i)
gg→qq̄ , (4.14)

with the three gluon TMDs defined as

F (1)
gg = 2

∫
dξ+d2ξ

(2π)3p−A
eix2p

−
Aξ

+−ikt·ξ

〈
Tr

[
F (ξ)

Tr
[
U [�]

]
Nc

U [−]†F (0)U [+]

]〉
, (4.15)

F (2)
gg = 2

∫
dξ+d2ξ

(2π)3p−A
eix2p

−
Aξ

+−ikt·ξ 1

Nc

〈
Tr
[
F (ξ)U [�]†

]
Tr
[
F (0)U [�]

]〉
, (4.16)

F (3)
gg = 2

∫
dξ+d2ξ

(2π)3p−A
eix2p

−
Aξ

+−ikt·ξ
〈

Tr
[
F (ξ)U [+]†F (0)U [+]

]〉
= x2G

(1)(x2, kt) . (4.17)
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Figure 4. Diagrams for gg → qq̄ subprocess. The mirror diagrams of (3), (5) and (6) give identical

contributions.

The appropriate hard factors are constructed from the expressions corresponding to the

diagrams (1)-(6) depicted in figure 4, using the following formulas

H
(1)
gg→qq̄ =

Nc

2CF
D1 +

Nc

2CF
D2 +D4 + 2D5 + 2D6 , (4.18)

H
(2)
gg→qq̄ = −2N2

cD3 −D4 − 2D5 − 2D6 , (4.19)

H
(3)
gg→qq̄ = − 1

N2
c − 1

D1 −
1

N2
c − 1

D2 + 2D3 . (4.20)

Again, the components Di = Cuihi were computed in [13] (table III) and they were used

there to determine the hard factors H
(1,2)
gg→qq̄ in the large Nc limit. Here, we generalize

the results of [13] to the full, finite-Nc case. The calculation can be most readily done

by exploiting crossing symmetry that relates the qg → qg and gg → qq̄ channels. This

allows for identification of the diagrams between figures 3 and 4 and enables one to recycle

the Di expressions calculated in the previous subsection. For example, the expression

corresponding to the diagram (1) from figure 4, with the incoming and the outgoing legs

connected, is identical to the already computed expression for the diagram (4) from figure 3

(modulo a color averaging factor and swapping of the momenta p1 ↔ p). Similarly for all

the other diagrams. That gives the following set of hard factors for the gg → qq̄ subprocess:

H
(1)
gg→qq̄ =

1

4CF

(t̂2 + û2)2

ŝ2ût̂
, (4.21)

H
(2)
gg→qq̄ =

1

2CF

t̂2 + û2

ŝ2
, (4.22)

H
(3)
gg→qq̄ = − 1

4N2
cCF

t̂2 + û2

t̂û
. (4.23)

Of the three hard factors, H
(i)
gg→qq̄, only two are independent. The third hard factor,
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Figure 5. Set of diagrams for the gg → gg subprocess involving only 3-gluon vertices. The mirror

diagrams of (3), (5) and (6) give identical contributions.

H
(3)
gg→qq̄, can be expressed as2

H
(3)
gg→qq̄ = − 1

N2
c

(
H

(1)
gg→qq̄ +H

(2)
gg→qq̄

)
. (4.24)

Therefore, the cross section for quark-antiquark production can be rewritten with only

two hard factors and two gluon distributions that are linear combinations of F (1)
gg , F (2)

gg

and F (3)
gg :

dσpA→qq̄X

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2
x1fg/p(x1, µ

2)
[
Φ

(1)
gg→qq̄K

(1)
gg→qq̄ + Φ

(2)
gg→qq̄K

(2)
gg→qq̄

]
. (4.25)

In the above, we defined the new gluon TMDs as

Φ
(1)
gg→qq =

1

N2
c − 1

(
N2
cF (1)

gg −F (3)
gg

)
, (4.26)

Φ
(2)
gg→qq = −N2

cF (2)
gg + F (3)

gg , (4.27)

and the hard factors K
(i)
gg→qq̄ as:

K
(1)
gg→qq̄ =

N2
c − 1

N2
c

H
(1)
gg→qq̄ and K

(2)
gg→qq̄ = − 1

N2
c

H
(2)
gg→qq̄ . (4.28)

The explicit expressions for the latter are given in table 1.

4.3 The gg → gg channel

Finally, the independent cut diagrams for the gg → gg channel are given in figures 5 and 6,

and the corresponding differential cross section for two-gluon production reads:

dσpA→ggX

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2
x1fg/p(x1, µ

2)
6∑
i=1

F (i)
ggH

(i)
gg→gg . (4.29)

2The same relation holds of course already at the level of eqs. (4.18)–(4.20).
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Figure 6. Set of diagrams for the gg → gg subprocess involving 4-gluon vertex contributions. The

mirror diagrams of (8), (9) and (10) give identical contributions.

The F (1,2,3)
gg distributions are the same as the ones introduced in the previous section in

eqs. (4.15)–(4.17). The remaining three are [12]:

F (4)
gg = 2

∫
dξ+d2ξ

(2π)3p−A
eix2p

−
Aξ

+−ikt·ξ
〈

Tr
[
F (ξ)U [−]†F (0)U [−]

]〉
, (4.30)

F (5)
gg = 2

∫
dξ+d2ξ

(2π)3p−A
eix2p

−
Aξ

+−ikt·ξ
〈

Tr
[
F (ξ)U [�]†U [+]†F (0)U [�]U [+]

]〉
, (4.31)

F (6)
gg = 2

∫
dξ+d2ξ

(2π)3p−A
eix2p

−
Aξ

+−ikt·ξ

〈
Tr
[
F (ξ)U [+]†F (0)U [+]

] Tr
[
U [�]

]
Nc

Tr
[
U [�]

]
Nc

〉
. (4.32)

The associated hard factors are constructed as:3

H(1)
gg→gg =

1

2
D1 +

1

2
D2 +D4 + 2D5 + 2D6 , (4.33)

H(2)
gg→gg = 2D3 −D4 − 2D5 − 2D6 , (4.34)

H(6)
gg→gg = −N

2
c

2
H(3)
gg→gg = N2

cH
(4)
gg→gg = N2

cH
(5)
gg→gg =

1

2
D1 +

1

2
D2 + 2D3 . (4.35)

The calculation of the gg → gg subprocess requires inclusion of diagrams with four-

gluon vertex. Therefore, in general, the expressions Di in the above equations contain

contributions from both, the 3-gluon and 4-gluon vertex diagrams, the latter shown in

figure 6. The corresponding expressions were computed in [13], where they were used to

determine the hard factors in the large-Nc limit. Below, we generalize the result of ref. [13]

to the case of finite-Nc , with the help of the exact definitions given in eqs. (4.33)–(4.35).

3Note that what is called H
(3)
gg→gg in ref. [13] is now H

(6)
gg→gg. Out of six hard factors, only H

(1)
gg→gg,

H
(2)
gg→gg and H

(6)
gg→gg survive in the large-Nc limit.
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h
(3)
i Ci

(1)
4ŝ6 + 4t̂ŝ5 + 17t̂2ŝ4 + 36t̂3ŝ3 + 24t̂4ŝ2 + 8t̂5ŝ+ 4t̂6

ŝ4t̂2
Nc

2CF

(2)
ŝ6 + 2t̂ŝ5 + 33t̂2ŝ4 + 60t̂3ŝ3 + 44t̂4ŝ2 + 16t̂5ŝ+ 4t̂6

ŝ4(ŝ+ t̂)2

Nc

2CF

(3) −2ŝ6 − 9t̂ŝ5 + 19t̂2ŝ4 + 48t̂3ŝ3 + 4t̂4ŝ2 − 24t̂5ŝ− 8t̂6

2ŝ4t̂(ŝ+ t̂)

Nc

4CF

(4)
(ŝ+ 2t̂)2

ŝ2

Nc

2CF

(5)
(ŝ+ 2t̂)

(
2ŝ3 − 3t̂ŝ2 − 2t̂2ŝ+ 2t̂3

)
2ŝ3t̂

Nc

4CF

(6) −
(ŝ+ 2t̂)

(
ŝ3 − 7t̂ŝ2 − 8t̂2ŝ− 2t̂3

)
2ŝ3(ŝ+ t̂)

− Nc

4CF

Table 2. Expressions for the gg → gg subprocess corresponding to diagrams (1)-(6) of fig-

ure 5, hence containing only 3-gluon vertices, in gauge (4.39) with non-vanishing 4-gluon vertex

contributions.

The six hard factors read

H(1)
gg→gg =

Nc

CF

(t̂2 + û2)(ŝ2 − t̂û)2

û2t̂2ŝ2
, (4.36)

H(2)
gg→gg = =

2Nc

CF

(ŝ2 − t̂û)2

ût̂ŝ2
, (4.37)

H(6)
gg→gg = −N

2
c

2
H(3)
gg→gg = N2

cH
(4)
gg→gg = N2

cH
(5)
gg→gg =

Nc

CF

(ŝ2 − t̂û)2

û2t̂2
. (4.38)

To get further insight into the above results, we have performed an independent cal-

culation in a gauge with non-vanishing 4-gluon vertex contribution, with the axial vectors

defined as:

n = p for the gluon k , n = k for the gluon p ,

n = p2 for the gluon p1 , n = p1 for the gluon p2 .
(4.39)

The contributions to Dis in this gauge, coming from diagrams with 3-gluon vertices only

and depicted in figure 5, are given in table 2.

In order to add the 4-gluon vertex contribution and obtain a full result for the Di

coefficients, let us consider a general 4-gluon amplitude, shown on the left hand side of

figure 7. A 3-gluon vertex brings a single SU(N) structure constant factor. Each ampli-

tude in figure 5 consists of two 3-gluon vertices and that results in three possible color

factor products

cs ≡ fa1ca4f ca2a3 , ct ≡ fa1a2cf ca3a4 , cu ≡ fa1a3cf ca4a2 , (4.40)
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a1 a2

a3a4

b2 b1

b3 b4

Figure 7. Color indices for the cut four-gluon squared matrix element.

for the amplitudes with a gluon exchange in the t-, s- and u-channels, respectively. Each

of the above amplitudes can now be written as

M3g
i = ciA3g

i , (4.41)

where i is either t, s or u, ci is a color factor from eq. (4.40), and A3g
i is a corresponding

kinematic expression. The 3g superscript means that only 3-gluon vertices are involved

in the given amplitude. Similarly, for the conjugate amplitudes, following the notation of

figure 7, we have

c̄s ≡ f b1cb4f cb2b3 , c̄t ≡ f b1b2cf cb3b4 , c̄u ≡ f b1b3cf cb4b2 . (4.42)

That allows us to identify the color coefficients of the 3-gluon diagrams of figure 5 and

write them in a compact form

(1) ↔ ctc̄t , (2) ↔ cuc̄u , (3) ↔ ctc̄u ,

(4) ↔ csc̄s , (5) ↔ csc̄t , (6) ↔ csc̄u .
(4.43)

The O
(
α2
s

)
contributions from diagrams with 4-gluon vertex are depicted in figure 6,

where the first row shows the 4-gluon vertex amplitude squared, and the second row gives

the interference terms with the three types of M3g amplitudes from eq. (4.41). A 4-gluon

vertex amplitude contains all three color factor products of eq. (4.40) at once

M4g = ctA4g
t + csA4g

s + cuA4g
u . (4.44)

Therefore, all the contributions from figure 6 can be represented in the basis of the color

factors defined in eq. (4.43). This allows us to distribute all the pieces of diagrams from

figure 6 over the six Di expressions, needed to calculate the hard factors (4.33)–(4.35),

according to their color factors. Hence, the full expressions are

D1 = C1

(
h

(3)
1 + 2A4g

t A
3g
t +A4g

t A
4g
t

)
, (4.45)

D2 = C2

(
h

(3)
2 + 2A4g

u A3g
u +A4g

u A4g
u

)
, (4.46)

D3 = C3

(
h

(3)
3 +A4g

t A4g
u +A4g

t A3g
u +A4g

u A
3g
t

)
, (4.47)

D4 = C4

(
h

(3)
4 + 2A4g

s A3g
s +A4g

s A4g
s

)
, (4.48)

D5 = C5

(
h

(3)
5 +A4g

t A4g
s +A4g

t A3g
s +A4g

s A
3g
t

)
, (4.49)

D6 = C6

(
h

(3)
6 +A4g

s A4g
u +A4g

u A3g
s +A4g

s A3g
u

)
. (4.50)

– 20 –



J
H
E
P
0
9
(
2
0
1
5
)
1
0
6

Di

(1)
Nc

(
2ŝ4 + 2ŝ3t̂+ 3ŝ2t̂2 + 8ŝt̂3 + 6t̂4

)
CF ŝ2t̂2

(2)
Nc

(
ŝ4 + 4ŝ3t̂+ 15ŝ2t̂2 + 16ŝt̂3 + 6t̂4

)
CF ŝ2(ŝ+ t̂)2

(3) −
Nc

(
ŝ4 + ŝ3t̂+ 7ŝ2t̂2 + 12ŝt̂3 + 6t̂4

)
2CF ŝ2t̂(ŝ+ t̂)

(4)
Nc(ŝ+ 2t̂)2

CF ŝ2

(5)
Nc(ŝ− 2t̂)(ŝ+ t̂)(ŝ+ 2t̂)

2CF ŝ2t̂

(6) −Nc t̂(ŝ+ 2t̂)(3ŝ+ 2t̂)

2CF ŝ2(ŝ+ t̂)

Table 3. Full expressions for the diagrams including three-gluon and four-gluon vertex contribu-

tions in the gauge (4.39).

The results for Dis in the gauge (4.39) are summarized in in table 3. Plugging those

expressions into the hard factor definitions (4.33)–(4.35) leads to the results identical to

eqs. (4.36)–(4.38).

We have already seen that not all of the six hard factors that arise in the gg → gg

subprocess are independent. As shown in eq. (4.35), the expressions for H
(3)
gg→gg, H

(4)
gg→gg,

H
(5)
gg→gg and H

(6)
gg→gg differ only by numerical factors. On top of that, when examining

further eqs. (4.33), (4.34) and (4.35), we see that the hard factors H
(1)
gg→gg, H

(2)
gg→gg and

H
(6)
gg→gg are linearly dependent, that is

H(6)
gg→gg = H(1)

gg→gg +H(2)
gg→gg . (4.51)

Hence, the cross section for two-gluon production from eq. (4.29) can be written in a much

simpler, factorized form, with only two hard factors and two gluon distributions

dσpA→ggX

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2
x1fg/p(x1, µ

2)
[
Φ(1)
gg→ggK

(1)
gg→gg + Φ(2)

gg→ggK
(2)
gg→gg

]
. (4.52)

In this channel, the new gluon TMDs, Φgg→gg, are defined as the following linear combi-

nations of F (1)
gg ,F (2)

gg , . . . ,F (6)
gg :

Φ(1)
gg→gg =

1

2

(
F (1)
gg −

2

N2
c

F (3)
gg +

1

N2
c

F (4)
gg +

1

N2
c

F (5)
gg + F (6)

gg

)
, (4.53)

Φ(2)
gg→gg = F (2)

gg −
2

N2
c

F (3)
gg +

1

N2
c

F (4)
gg +

1

N2
c

F (5)
gg + F (6)

gg , (4.54)

and the new hard factors are:

K(1)
gg→gg = 2H(1)

gg→gg , and K(2)
gg→gg = H(2)

gg→gg . (4.55)
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The explicit expressions are given in table 1. We note, that the above simplification occurs

naturally when utilizing gauge invariance from the start, as we will show in section 6.

Finally, we point out that, in the large-Nc limit, all the distributions that were intro-

duced in this section, F (1)
qg F (2)

qg , F (1)
gg , F (2)

gg , and F (6)
gg , can be written in terms of xG(1)

and xG(2), and equivalence of formulas (4.13), (4.25) and (4.52) with CGC results is ob-

tained [13].

Let use conclude that this part of our work brings two improvements to the current

state of the art for the TMD factorization in forward dijet production. First of all, we have

obtained finite-Nc corrections to the hard factors of ref. [13]. More importantly, however,

we have eliminated the redundancy in the number of gluon distributions needed to write a

factorization formula for this process, which now takes the compact form

dσpA→dijets+X

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2

∑
a,c,d

x1fa/p(x1, µ
2)

2∑
i=1

K
(i)
ag→cdΦ

(i)
ag→cd

1

1 + δcd
, (4.56)

with only two gluon distributions and two hard factors required in each channel. Note

that, as we shall discuss now, the incoming, small-x gluon is kept on-shell. Eqs. (4.56) will

be further generalized to the case of the off-shell gluon in section 5.

4.4 The |kt| � Qs limit

Finally, let us consider the limit |kt| � Qs. This is the dilute limit considered in section 3,

with the extra requirement that |kt| � |Pt|, needed for the validity of those formula. In that

limit, the transverse separation between the field operators in the definition of the gluon

distribution is restricted to values much smaller than the distance over which the Fourier

integrand varies, and the ξ dependence of the gauge links can be neglected. As a result,

they simplify, and all the F (i)
ag distributions coincide, except F (2)

gg which vanishes. In terms

of the Φ
(1,2)
ag→cd functions, all six distributions also reduce to that one gluon distribution,

which can therefore be identified with Fg/A/π.

Then, for all channels, one can easily sum the surviving hard factors. In terms of

diagrams, we always obtain D1 +D2 +2D3 +D4 +2D5 +2D6, meaning that we recover the

collinear matrix elements. Indeed we have (noting that H
(3)
gg→gg +H

(4)
gg→gg +H

(5)
gg→gg = 0):

H(1)
qg→qg +H(2)

qg→qg = K(1)
qg→qg +K(2)

qg→qg =
ŝ2 + û2

t̂2
− CF
Nc

ŝ2 + û2

ŝû
=

1

g4
|Mqg→qg|2 , (4.57)

H
(1)
gg→qq̄ +H

(3)
gg→qq̄ = K

(1)
gg→qq̄ +K

(2)
gg→qq̄ =

1

2Nc

t̂2+û2

t̂û
− 1

2CF

t̂2 + û2

ŝ2
=

1

g4
|Mgg→qq̄|2, (4.58)

H(1)
gg→gg +H(6)

gg→gg = K(1)
gg→gg +K(2)

gg→gg =
2Nc

CF

(ŝ2 − t̂û)3

ŝ2t̂2û2
=

1

g4
|Mgg→gg|2 . (4.59)

Therefore, we recover the HEF formula (2.9), except that, due to the |kt| � |Pt| limit, the

matrix elements are on-shell: the transverse momentum of the incoming gluon, kt, survives

only in Fg/A. In other words, we recover the standard high-|Pt| limit:

dσpA→dijets+X

dy1dy2dP 2
t dk

2
t

=
∑
a,c,d

1

1 + δcd
x1fa/p(x1, µ

2)
dσ̂ag→cd

dt̂
Fg/A(x2, kt) , (4.60)
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Figure 8. Four-parton amplitude with the incoming, small-x, off-shell gluon.

with dσ̂ag→cd/dt̂ = |Mag→cd|2/[16π(x1x2s)
2], and where Fg/A(x2, kt) can be identified with

∂/∂k2
t x2fg/A(x2, k

2
t ), the derivative of the integrated gluon distribution.

In the following section, we shall restore the kt dependence of the hard factors. This

will extend our formulas such that they recover the full HEF formula when the dilute limit

is considered. As a result, we will obtain a unified description, valid for generic forward

dijet system with |p1t|, |p2t| � Qs, without any additional requirement on the magnitude

of the transverse momentum imbalance kt.

5 Unified description of forward dijets in p+A collisions: TMD factor-

ization with off-shell hard factors

We shall now generalize the hard factors that enter the TMD factorization formula (2.10) to

the case with one of the incoming gluons being off the mass shell, as illustrated in figure 8.

As it has been already stated, the motivation to include the offshellness is to be able to

allow for configurations where the dijets are produced at any azimuthal angle (of course

before application of a jet algorithm that will suppress very small angles and hence render

the results finite).

As can be seen in figure 9 (as an example we chose only purely gluonic matrix element

but the same structure occurs for the other channels), the on-shell matrix element misses

substantial contributions when the jets are produced at small angles near ∆φ = 0 and at

small rapidity differences ∆Y = |y1 − y2| ' 0. In such configurations, the matrix element

develops a structure that is divergent and it is suppressed only by a jet algorithm, which has

to be applied in order to ensure two-jet configurations [16]. The matrix elements squared

we are after, i.e. gg∗ → gg, gg∗ → qq̄ and qg∗ → qg, can be extracted from the high energy

limit (or eikonal limit) of q g → q g g and q g → q q̄ q and q q′ → q q′ g [35]. In this approach

the quark q is an auxiliary line to which the initial state off-shell gluon g∗ couples eikonally.

The high energy factorization is a direct procedure where one uses the standard Feyn-

man rules for all vertices and color factors, and fixes the light-cone gauge for the on-shell glu-

ons, using a gauge vector given by the longitudinal component of the off-shell, initial-state

gluon’s momentum. In particular, if we apply the high energy factorization to the process

we are after, we set the gauge vector to n = pA, where pA is the target four-momentum,

as defined in figure 1 and eq. (2.2). Furthermore, the prescription is to associate with

the off-shell gluon a longitudinal polarization vector, called nonsense polarization [1], of
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Figure 9. Matrix elements squared for gg → gg scattering with pt1 = pt2 = 4 GeV and αs = 0.2.

Left: the on-shell case. Right: the off-shell case. ∆Y and ∆φ are, respectively, the differences in

rapidity and azimuthal angle of the two outgoing gluons.

the form4

ε0µ =
i
√

2x2

|kt|
pAµ . (5.1)

As elaborated in ref. [10], longitudinally polarized gluons provide the dominant contribution

to the cross section in the high energy limit. In the square amplitude, this leads to the

polarization tensor of the form [10]

ε0µε
0 ∗
ν =

−2x2
2

k2
pAµ pAν , (5.2)

In the above, x2 = kµp
µ/pAνp

ν , which follows directly from the definition in eq. (2.6).

The sum over polarizations of the on-shell gluons takes the standard form, with the gauge

vector given by pA ∑
λ=±

ελµε
λ∗
ν = gµν −

pAµqν + qµpAν
qρpAρ

, (5.3)

where, depending on the channel, q = p, p1 or p2, cf. eq. (4.39).

Let us note that the procedure outlined above defines the hard process in a gauge

invariant manner only when a special choice for polarization vectors of the on-shell gluons

is taken. In an arbitrary gauge, for internal and external gluon lines, more sophisticated

methods have to be used, see e.g. [35, 45–48].

To present our results in a compact form, with direct relation to the on-shell formulas

from section 4, in addition to the standard Mandelstam variables given by eqs. (2.7), which

now, however, sum up to ŝ+ t̂+ û = k2
T , we introduce their barred versions, defined only

4The
√

2 factor in eq. (5.1) follows from a convention. It allows for use of the on-shell-like factor 1
2

in averaging over polarization, while calculating matrix elements squared, even in the case of the off-shell

gluon, where the actual number of polarizations in the high energy limit is 1.
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with the longitudinal component of the off-shell gluon

s̄ = (x2pA + p)2 =
|Pt|2

z(1− z)
+ |kt|2 = x1x2s , (5.4a)

t̄ = (x2pA − p1)2 = −zs̄ , (5.4b)

ū = (x2pA − p2)2 = −(1− z)s̄ , (5.4c)

which are related via the equation

s̄+ t̄+ ū = 0 . (5.5)

In the on-shell limit, k2
T → 0, the variables defined above recover the standard Mandelstam

variables from eq. (2.7)

lim
|kt|→0

(s̄− ŝ) = 0 , lim
|kt|→0

(t̄− t̂) = 0 , lim
|kt|→0

(ū− û) = 0 . (5.6)

As a consistency check, we have verified that, for all three subprocesses, the off-shell

amplitudes that shall be used to build the hard factors in the remaining part of this section

are identical to those first calculated in ref. [11].

From this point onwards, we shall discuss our results only in terms of the new K(i) hard

factors and the new factorization formulas from eqs. (4.13), (4.25) and (4.52). The results

for the old hard factors, H(i), in the off-shell case are given in appendix A for completeness.

5.1 The qg∗ → qg channel

The off-shell hard factors for this channel are obtained using definitions given in eq. (4.10)

and then eqs. (4.6) and (4.7). The corresponding Di expressions are collected in appendix A

in table 8. The two hard factors read

K
(1)
qg∗→qg = − s̄

2 + ū2

2t̄t̂ŝû

[
ūû+

s̄ŝ− t̄t̂
N2
c

]
, (5.7)

K
(2)
qg∗→qg = −CF

Nc

s̄
(
s̄2 + ū2

)
t̄t̂û

. (5.8)

In the limit |kt| → 0, simplification given by eq. (5.6) occurs and the above formulas

manifestly recover the on-shell results from table 1.

5.2 The gg∗ → qq̄ channel

The off-shell hard factors are obtained using definitions given in eq. (4.28) and then

eqs. (4.18), (4.19) and (4.20). The corresponding Di expressions are collected in appendix A

in table 9. The two hard factors take the following compact form

K
(1)
gg∗→qq̄ =

1

2Nc

t̄2 + ū2

s̄ŝt̂û

[
ūû+ t̄t̂

]
, (5.9)

K
(2)
gg∗→qq̄ =

1

4N2
cCF

t̄2 + ū2

s̄ŝt̂û

[
ūû+ t̄t̂− s̄ŝ

]
. (5.10)

Again, following eq. (5.6), it is manifest that the above hard factors reduce to those given

in table 1, in the limit |kt| → 0.
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5.3 The gg∗ → gg channel

In the gauge chosen for our calculation, all the squared diagrams and interference terms that

involve a 4-gluon vertex are identically zero. The corresponding Dis are given in table 10 of

appendix A. Using the combinations from eqs. (4.33)–(4.35) and then the definition from

eq. (4.55) leads to the following set of the off-shell hard factors

K
(1)
gg∗→gg =

2Nc

CF

(s̄2 − t̄ū)2

t̄t̂ūûs̄ŝ

[
ūû+ t̄t̂

]
, (5.11)

K
(2)
gg∗→gg = −Nc

CF

(s̄2 − t̄ū)2

t̄t̂ūûs̄ŝ

[
ūû+ t̄t̂− s̄ŝ

]
. (5.12)

The on-shell limit is again manifest, with the above equations reducing to those from table 1

as |kt| → 0.

6 Helicity method for TMD amplitudes

In the preceding sections, the hard factors accompanying the gluon densities F (i)
ag were

calculated from the squared diagrams presented in figures 3–6. This procedure has certain

drawbacks, especially when one would like to consider more complicated processes. For

multiparticle processes, the color decompositions and helicity method [26, 49] are now

considered as the most effective ways to deal with them. Moreover, it is not obvious how the

gauge invariance comes into play for the separate diagrams from figures 3–6 contributing to

the hard factors. In the color decomposition method, the so-called color ordered amplitudes

are gauge invariant from the start and one can use them directly to construct hard factors.

In view of the above, and to cross-check the results from section 5, we will give an

alternative procedure to obtain the factorization formulas with off-shell gluon. To this end,

we shall need TMD gluon densities corresponding to color decomposition of amplitudes

and the color-ordered amplitudes themselves.

6.1 Color decompositions

Let us recall some basic facts about the color decompositions. We refer to [26, 49] for more

details.

We first consider a gluon amplitude Ma1...aN
(
ελ11 , . . . , ελNN

)
, where a1, . . . , aN are the

external, adjoint color quantum numbers, the ελii is a polarization vector for a gluon i

having momentum ki and helicity λi = ±. The fundamental color decomposition reads

Ma1...aN
(
ελ11 , . . . , ελNN

)
=

∑
σ∈SN−1

Tr (ta1taσ2 . . . taσN ) M
(

1λ1 , σλσ22 . . . , σλσNN

)
, (6.1)

where the sum is over a set SN−1 of all non-cyclic permutations of {1, . . . , N}. The coeffi-

cients of the expansion define color ordered — or dual — amplitudes. They possess several

useful properties. First of all, they are gauge invariant. Second, there are certain relations

between dual amplitudes. Indeed, the following adjoint color decomposition involves only
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(N − 2)! different amplitudes [50]

Ma1...aN
(
ελ11 , . . . , ελNN

)
=

∑
σ∈SN−2

(F aσ2 . . . F aσN−1 )a1aN M
(

1λ1 , σ
λσ2
2 , . . . , σ

λσN−1

N−1 , NλN
)
,

(6.2)

where (F a)bc = fabc.

Consider now an amplitude involving a quark anti-quark pair MD1a2...aN−1DN where

Di, Dj are the color and the anti-color of the quark and the anti-quark, respectively. The

color decomposition reads

MD1a2...aN−1DN
(
λ1, ε

λ2
2 , . . . , ε

λN−1

N−1 , λN

)
=∑

σ∈SN−2

(taσ2 . . . taσN−1 )D1DN
M
(

1λ1 , σ
λσ2
2 . . . , σ

λσN−1

N−1 , NλN
)
. (6.3)

Now λ1 and λN are helicities of the quark and the anti-quark. For amplitudes involving

more quark anti-quark pairs the decomposition is more complicated and we refer to [26]

for details.

It is important to note that the above color decompositions work also for the case when

one of the gluons is off-shell.

6.2 Gluon TMDs for color ordered amplitudes

Let us now find the gluon TMDs corresponding to the color ordered amplitudes squared,

as defined in the previous subsection. We constraint ourselves to the 2 → 2 processes case

considered in this paper.

Let us first consider the g (k4) g∗ (k1) → g (k3) g (k2) process. For the purpose of

this and next subsections we have assigned a new set of momenta to the partons. This

assignment differs from the one used before but it is more convenient when dealing with

color ordered amplitudes. The correspondence is achieved by the following relations: k1 ↔
k, k2 ↔ p1, k3 ↔ p2, k4 ↔ p. Moreover, for the off-shell momentum we adopt a notation

k1 = n1 + kT . (6.4)

The color decomposition of the four gluon amplitude reads

Ma1a2a3a4
gg∗→gg

(
n1, ε

λ2
2 , ελ33 , ελ44

)
= fa1a2cfca3a4Mgg∗→gg

(
1∗, 2λ2 , 3λ3 , 4λ4

)
+ fa1a3cfca2a4Mgg∗→gg

(
1∗, 3λ3 , 2λ2 , 4λ4

)
, (6.5)

where n1 is placed for the off-shell gluon instead of a polarization vector (in fact it plays a

similar role). As far as dual amplitudes are concerned, we indicate the off-shell gluon by

a star. In table 4. we calculate the gluon TMDs that correspond to the color structures

exposed in (6.5) (after squaring). They agree with the gluon TMDs calculated in [12] and

listed in rows 1 and 3 of table 8 of [12]. That table defines one more gluon TMD (the

row 2) which however is redundant. Clearly, the color decomposition (6.5) gives all the

necessary color structures and already incorporates the gauge invariance. In summary, the
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color-ordered amplitude squared gluon TMD

∣∣Mgg∗→gg
(
1∗, 2λ2 , 3λ3 , 4λ4

)∣∣2
Φ

(1)
gg→gg = 1

2N2
c

(
N2
cF

(1)
gg − 2F (3)

gg

+F (4)
gg + F (5)

gg +N2
cF

(6)
gg

)∣∣Mgg∗→gg
(
1∗, 3λ3 , 2λ2 , 4λ4

)∣∣2
Mgg∗→gg

(
1∗, 2λ2 , 3λ3 , 4λ4

)
M∗gg∗→gg

(
1∗, 3λ3 , 2λ2 , 4λ4

)
Φ

(2)
gg→gg = 1

N2
c

(
N2
cF

(2)
gg − 2F (3)

gg

+F (4)
gg + F (5)

gg +N2
cF

(6)
gg

)
M∗gg∗→gg

(
1∗, 2λ2 , 3λ3 , 4λ4

)
Mgg∗→gg

(
1∗, 3λ3 , 2λ2 , 4λ4

)
Table 4. Gluon TMDs accompanying the color-ordered amplitudes for gg∗ → gg process. It has

been assumed that TMDs are real. The F (i)
gg distributions are defined in eqs. (4.15), (4.16), (4.17)

and in eqs. (4.30), (4.31), (4.32).

color-ordered amplitude squared gluon TMD

∣∣Mgg∗→qq
(
2λ2 , 1∗, 4λ4 , 3λ3

)∣∣2
Φ

(1)
gg→qq = 1

N2
c−1

(
N2
cF

(1)
gg −F (3)

gg

)
∣∣Mgg∗→qq

(
2λ2 , 4λ4 , 1∗, 3λ3

)∣∣2
Mgg∗→qq

(
2λ2 , 1∗, 4λ4 , 3λ3

)
M∗gg∗→qq

(
2λ2 , 4λ4 , 1∗, 3λ3

)
Φ

(2)
gg→qq = −N2

cF
(2)
gg + F (3)

gg

M∗gg∗→qq
(
2λ2 , 1∗, 4λ4 , 3λ3

)
Mgg∗→qq

(
2λ2 , 4λ4 , 1∗, 3λ3

)
Table 5. Gluon TMDs accompanying the color-ordered amplitudes for gg∗ → qq process. It has

been assumed that correlators are real. The F (i)
gg distributions are defined in eqs. (4.15), (4.16)

and (4.17).

two gluon TMD listed in table 4 are the only relevant TMDs and correspond to the two

independent gauge invariant amplitudes squared and their interference.

Now, let us turn to the g (k4) g∗ (k1) → q (k3) q (k2) process. The color decomposi-

tion reads

MD2a1a4D3
gg∗→qq

(
λ2, n1, ε

λ4
4 , λ3

)
= (ta1ta4)D2D3

Mgg∗→qq

(
2λ2 , 1∗, 4λ4 , 3λ3

)
+ (ta4ta1)D2D3

Mgg∗→qq

(
2λ2 , 4λ4 , 1∗, 3λ3

)
. (6.6)

The gluon TMDs corresponding to the color structures appearing after squaring this equa-

tion are gathered in table 5. They correspond to rows 1 and 5 of table 7 in [12]. Again, we

have only two independent TMDs that are needed.
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color-ordered amplitude squared gluon TMD

Mqg∗→qg
(
3λ3 , 1∗, 2λ2 , 4λ4

)
M∗qg∗→qg

(
3λ3 , 2λ2 , 1∗, 4λ4

)
Φ

(1)
qg→qg = F (1)

qgM∗qg∗→qg
(
3λ3 , 1∗, 2λ2 , λ4

)
Mqg∗→qg

(
3λ3 , 2λ2 , 1∗, 4λ4

)
∣∣Mqg∗→qg

(
3λ3 , 2λ2 , 1∗, 4λ4

)∣∣2
∣∣Mqg∗→qg

(
3λ3 , 1∗, 2λ2 , 4λ4

)∣∣2 Φ
(2)
qg→qg = 1

N2
c−1

(
−F (1)

qg +N2
cF

(2)
qg

)
Table 6. Gluon TMDs accompanying the color-ordered amplitudes for qg∗ → qg process. It has

been assumed that correlators are real. The F (i)
qg distributions are defined in eqs. (4.4) and eqs. (4.5).

For the process q (k4) g∗ (k1)→ q (k3) g (k2), the color decomposition reads

MD3a1a2D4
qg∗→qg

(
λ3, n1, ε

λ2
2 , λ4

)
= (ta1ta2)D3D4

Mqg∗→qg

(
3λ3 , 1∗, 2λ2 , 4λ4

)
+ (ta2ta1)D3D4

Mqg∗→qg

(
3λ3 , 2λ2 , 1∗, 4λ4

)
. (6.7)

For anti-quarks we need to exchange the indices 3↔ 4. The TMDs corresponding to those

processes are given in table 6. In general, the TMDs for a sub-process with anti-quarks are

different than for quarks, but they turn out to be the same assuming that the correlators

are real. Again, we end up with only two independent TMDs.

6.3 Off-shell color-ordered helicity amplitudes

In section 5, we have calculated the off-shell hard factors in a specific axial gauge, with

pA chosen as the gauge vector, and using the high energy projector (5.1). As shown in

ref. [10], such a procedure yields results which are gauge invariant within a subclass of

axial gauges with the gauge vector nµ = apµp + bpµA, where a and b are arbitrary complex

numbers. There are also methods to calculate gauge invariant off-shell amplitudes in any

gauge and choice of polarization vectors [34, 35, 47, 48]. In what follows, we shall use those

methods and specifically the results of [35, 48].

Consider first the gluon amplitudes. For the purpose of this section only we assume

all momenta to be outgoing. For the non-vanishing helicity configurations, in the helicity

basis, we have

Mg∗g→gg
(
1∗, 2−, 3+, 4+

)
= 2g2 ρ1

〈1∗2〉4

〈1∗2〉〈23〉〈34〉〈41∗〉
, (6.8)

Mg∗g→gg
(
1∗, 2+, 3−, 4+

)
= 2g2 ρ1

〈1∗3〉4

〈1∗2〉〈23〉〈34〉〈41∗〉
, (6.9)

Mg∗g→gg
(
1∗, 2+, 3+, 4−

)
= 2g2 ρ1

〈1∗4〉4

〈1∗2〉〈23〉〈34〉〈41∗〉
, (6.10)
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where we adopted a shorthand notation for the spinor products 〈ij〉 = 〈ki − |kj+〉 with

|ki±〉 = 1
2 (1± γ5)u (ki), and where ρ1 is a, for our purposes irrelevant, phase factor (see

details e.g. in [48]). We also defined 〈1∗i〉 = 〈n1i〉 with n1 being the longitudinal component

of k1, cf. eq. (6.4). The other remaining helicity configurations can be obtained from

eqs. (6.8)–(6.10) using CP invariance

Mgg∗→gg
(
1∗, 2+, 3−, 4−

)
=M∗gg∗→gg

(
1∗, 2−, 3+, 4+

)
, (6.11)

and so on. For the other color ordered amplitude,Mgg∗→gg (1∗, 3, 2, 4), we need to exchange

2↔ 3 in the denominators.

The above helicity amplitudes can be efficiently evaluated and squared numerically,

however for the purpose of this paper we shall need analytic expressions. To this end let

us introduce [ij] = 〈ki+ |kj−〉, which, up to an unimportant phase, is a complex conjugate

of 〈ij〉. Moreover, we have the following relation

〈ij〉[ji] = (ki + kj)
2 ≡ s̃ij . (6.12)

For the products involving n1 we use the notation

〈1∗i〉[i1∗] = (n1 + ki)
2 ≡ s̃1∗i. (6.13)

With this, we get for the required amplitudes squared summed and averaged over helicities

∣∣Mgg∗→gg (1∗, 2, 3, 4)
∣∣2 = 8g4 s̃

4
1∗2 + s̃4

1∗3 + s̃4
1∗4

s̃1∗2s̃23s̃34s̃41∗
, (6.14)∣∣Mgg∗→gg (1∗, 3, 2, 4)

∣∣2 = 8g4 s̃
4
1∗2 + s̃4

1∗3 + s̃4
1∗4

s̃1∗3s̃32s̃24s̃41∗
, (6.15)

Mgg∗→gg (1∗, 2, 3, 4)M∗gg∗→gg (1∗, 3, 2, 4) = − 8g4 s̃4
1∗2 + s̃4

1∗3 + s̃4
1∗4

〈1∗2〉〈34〉[1∗3][24]s̃23s̃41∗
, (6.16)

M∗gg∗→gg (1∗, 2, 3, 4)Mgg∗→gg (1∗, 3, 2, 4) = − 8g4 s̃4
1∗2 + s̃4

1∗3 + s̃4
1∗4

[1∗2][34]〈1∗3〉〈24〉s̃23s̃41∗
, (6.17)

where we have used overlines to indicate helicity summations. The last two interference

terms enter the cross section as a sum. Therefore, we may simplify it as

Mgg∗→gg (1∗, 2, 3, 4)M∗gg∗→gg (1∗, 3, 2, 4) +M∗gg∗→gg (1∗, 2, 3, 4)Mgg∗→gg (1∗, 3, 2, 4)

= −8g4 (s̃4
1∗2 + s̃4

1∗3 + s̃4
1∗4)(s̃24s̃1∗3 − s̃23s̃1∗4 + s̃34s̃1∗2)

s̃1∗2s̃34s̃1∗3s̃24s̃23s̃41∗
, (6.18)

where we have used

[1∗2][34]〈1∗3〉〈24〉 + 〈1∗2〉〈34〉[1∗3][24] = 〈n1−|p/3p/4p/2|n1−〉 + 〈n1−|p/2p/4p/3|n1−〉 , (6.19)

and applied p/ip/j = s̃ij −p/jp/i a few times. The amplitudes for the on-shell limit are simply

obtained by dropping the star in 1∗ so that the spinor and the scalar products will be with

k1 instead of n1.
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Now let us turn to processes with quarks. We will give only amplitudes for

g (k4) g∗ (k1)→ q (k3) q (k2) process, as all the other can be obtained by the crossing sym-

metry (taking care of the proper color flow when crossing). We have

Mgg∗→qq
(
3−, 1∗, 4+, 2+

)
= 2g2 ρ1

〈21∗〉3〈31∗〉
〈21∗〉〈1∗4〉〈43〉〈32〉

, (6.20)

Mgg∗→qq
(
3+, 1∗, 4+, 2−

)
= 2g2 ρ1

〈31∗〉3〈21∗〉
〈21∗〉〈1∗4〉〈43〉〈32〉

. (6.21)

We note that the above formulas have never been published in the literature and are given

here for the first time.

Similar as before, the two remaining helicity configurations can be obtained thanks to

CP symmetry. For the color ordered amplitudes with 1 and 4 interchanged, we need to

make a replacement 1 ↔ 4 in the denominators. The amplitudes squared and summed

over helicities read (the helicity averaging factor is included)∣∣Mgg∗→qq (3, 1∗, 4, 2)
∣∣2 = 2g4 s̃1∗3

(
s̃2

1∗2 + s̃2
1∗3

)
s̃1∗4s̃34s̃23

, (6.22)

∣∣Mgg∗→qq (3, 4, 1∗, 2)
∣∣2 = 2g4 s̃1∗2

(
s̃2

1∗2 + s̃2
1∗3

)
s̃1∗4s̃24s̃23

, (6.23)

Mgg∗→qq (3, 1∗, 4, 2)M∗gg∗→qq (3, 4, 1∗, 2) = − 2g4 s̃1∗2s̃1∗3

(
s̃2

1∗2 + s̃2
1∗3

)
〈21∗〉〈43〉[31∗][42]s̃23s̃41∗

, (6.24)

M∗gg∗→qq (3, 1∗, 4, 2)Mgg∗→qq (3, 4, 1∗, 2) = − 2g4 s̃1∗2s̃1∗3

(
s̃2

1∗2 + s̃2
1∗3

)
[21∗][43]〈31∗〉〈42〉s̃23s̃41∗

. (6.25)

The sum of the last two interference terms simplifies to

Mgg∗→qq (3, 1∗, 4, 2)M∗gg∗→qq (3, 4, 1∗, 2) +M∗gg∗→qq (3, 1∗, 4, 2)Mgg∗→qq (3, 4, 1∗, 2)

= −2g4 s̃1∗2s̃1∗3(s̃2
1∗2 + s̃2

1∗3)(s̃24s̃1∗3 − s̃23s̃1∗4 + s̃34s̃1∗2)

s̃1∗2s̃34s̃1∗3s̃24s̃23s̃41∗
. (6.26)

In order to obtain amplitudes for q (k4) g∗ (k1)→ q (k3) g (k2) we can use the crossing

symmetry. Specifically, we can obtain
∣∣Mqg∗→qg (3, 1∗, 2, 4)

∣∣2,
∣∣Mqg∗→qg (3, 2, 1∗, 4)

∣∣2 and

interference terms by making replacement 2↔ 4 in eqs. (6.23), (6.22), (6.26) respectively.

6.4 Hard factors from color-ordered amplitudes

Having computed the color ordered amplitudes it is now straightforward to calculate the

hard factors K(i). Let us note, that it is the K(i) hard factors that appear naturally within

the color-ordered formalism, not the H(i) factors. It also comes naturally that there are

two hard factors and two TMDs per each channel, so the the factorization formulas can be

written in a unified form:

dσpA→dijets+X

d2Ptd2ktdy1dy2
=

α2
s

(x1x2s)2

∑
a,c,d

x1fa/p(x1, µ
2)

2∑
i=1

K
(i)
ag∗→cdΦ

(i)
ag→cd

1

1 + δcd
, (6.27)

where a, c, d are the contributing partons. The explicit expressions for the generalized

gluon TMDs Φ
(i)
ag→cd are listed in tables 4–6. The hard factors Ki were already given in

– 31 –



J
H
E
P
0
9
(
2
0
1
5
)
1
0
6

i 1 2

K
(i)
gg∗→gg

Nc

CF

(s4 + t
4

+ u4)
(
uû+ tt̂

)
t̄t̂ūûs̄ŝ

− Nc

2CF

(s4 + t
4

+ u4)
(
uû+ tt̂− sŝ

)
t̄t̂ūûs̄ŝ

K
(i)
gg∗→qq

1

2Nc

(t
2

+ u2)
(
uû+ tt̂

)
sŝt̂û

1

4N2
cCF

(t
2

+ u2)
(
uû+ tt̂− sŝ

)
sŝt̂û

K
(i)
qg∗→qg −

u
(
s2 + u2

)
2tt̂ŝ

(
1 +

sŝ− tt̂
N2
c uû

)
−CF
Nc

s
(
s2 + u2

)
tt̂û

Table 7. The hard factors accompanying the gluon TMDs Φ
(i)
ag→cd.

section 5 (we collect them in table 7 for convenience). In the context of this section, they

are obtained by multiplying the left column of tables 4–6 by the corresponding color factors

and combining the cells that belong to the same generalized TMD. More precisely, we have

g4K
(1)
gg∗→gg =

1

(2NcCF )2

N3
cCF
2

(∣∣Mgg∗→gg (1∗, 2, 3, 4)
∣∣2 +

∣∣Mgg∗→gg (1∗, 3, 2, 4)
∣∣2) ,

(6.28)

g4K
(2)
gg∗→gg =

1

(2NcCF )2

N3
cCF
4

(
Mgg∗→gg (1∗, 2, 3, 4)M∗gg∗→gg (1∗, 3, 2, 4) + c.c.

)
,

(6.29)

for pure gluon channel, and

g4K
(1)
gg∗→qq =

1

(2NcCF )2
NcC

2
F

(∣∣Mgg∗→qq (3, 1∗, 4, 2)
∣∣2 +

∣∣Mgg∗→qq (3, 4, 1∗, 2)
∣∣2) ,

(6.30)

g4K
(2)
gg∗→qq =

1

(2NcCF )2

−CF
2

(
Mgg∗→qq (3, 1∗, 4, 2)M∗gg∗→qq (3, 4, 1∗, 2) + c.c.

)
, (6.31)

for gg∗ → qq channel. For the qg∗ → qg sub-process we need to use the crossing symmetry

as described in the preceding section. We have

g4K
(1)
qg∗→qg =

1

2CFN2
c

{
NcC

2
F

(
−
∣∣Mgg∗→qq (3, 1∗, 4, 2)

∣∣2)
2↔4

−CF
2

(
−Mgg∗→qq (3, 1∗, 4, 2)M∗gg∗→qq (3, 4, 1∗, 2)− c.c.

)
2↔4

}
,

(6.32)

g4K
(2)
qg∗→qg =

1

2CFN2
c

NcC
2
F

(
−
∣∣Mgg∗→qq (3, 4, 1∗, 2)

∣∣2)
2↔4

. (6.33)

In all the formulas above, the first color factor comes from color averaging. The minus

signs in front of the amplitudes in (6.32), (6.33) come from the crossing of a fermion line.
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Table 7 is easily recovered using the following relations of s̃ij to the kinematic variables

from section 5

s̃23 = s̃14 = ŝ, s̃34 = s̃12 = t̂, s̃24 = s̃13 = û , (6.34)

s̃1∗4 = s̄, s̃1∗2 = t̄, s̃1∗3 = ū . (6.35)

7 Conclusions and outlook

Dijet production is one of the key processes studied at the LHC. Requiring the two jets to

be produced in the forward direction creates an asymmetric situation, in which one of the

incoming hadrons is probed at large x, while the other is probed at a very small momentum

fraction. This kinematic regime poses various challenges, one of the biggest questions being

the existence of a theoretically-consistent and, at the same time, practically-manageable

factorization formula. The standard collinear factorization is not applicable in this case as

the dependence on the transverse momentum of the low-x gluon in the target, kt, cannot

be neglected.

In the limit where the jets’ transverse momenta |p1t|, |p2t| � |kt| ∼ Qs, with the

latter being the saturation scale of the target, an effective transverse-momentum-dependent

factorization formula for forward dijet production has been derived in refs. [13, 14] and

it has been shown to be consistent with the CGC framework. On the other side, the

high energy factorization approach [10, 11] has been also successfully applied for studying

forward dijet production at the LHC. In this paper, we have examined the theoretical

status of the HEF approach in the context of forward dijet production at hadron colliders

and reconciled it with the TMD factorization by creating a unified framework valid in the

limit |p1t|, |p2t| � Qs with an arbitrary value of |kt|, as long as it is allowed by phase space

constraints. In particular, we have shown in section 3 that the HEF formula is indeed

justified in the kinematic window of |p1t|, |p2t| ∼ |kt| � Qs, where it was explicitly derived

from CGC for all 2→ 2 channels. This limit corresponds to the dilute target approximation

hence no non-linear effects are expected.

The second major result of our work is an improvement of the effective TMD factor-

ization for forward dijet production, first derived in ref. [13], by taking into account in

section 4 all finite-Nc corrections, as well as generalizing the factorization formula to the

case with an off-shell incoming gluon in sections 5 and 6. In addition, we were able to

simplify the TMD factorization formula by reducing the number of gluon distributions to

two independent TMDs for each channel. The main results of this part of our study are

summarized in eq. (6.27), which gives the new TMD factorization formula, as well as in

table 7, where we collect all the off-shell hard factors. The corresponding gluon distribu-

tions are given in tables 4, 5 and 6. The above results were obtained with two independent

techniques: a traditional Feynman diagram approach and helicity methods with color or-

dered amplitudes. The improved TMD factorization formula (6.27) encapsulates both the

result of ref. [13] and the HEF framework as its limiting cases.

The results obtained in this paper open several avenues for future research that we

plan to follow. First, a natural next steps will be to use eq. (6.27) for phenomenological

– 33 –



J
H
E
P
0
9
(
2
0
1
5
)
1
0
6

studies. That shall require some input for the six gluon TMDs Φ
(1,2)
ag→cd(x, kt), which may

be difficult in a general case. But in the large-Nc limit, they can all be written in terms

of just two functions: xG(1)(x, kt) and xG(2)(x, kt), which in turn can be evaluated within

certain models, as in [5].

Another line of possible extension of our framework is to supplement it with high-

|Pt| effects such as Sudakov logarithms or coherence in the evolution of the gluon density.

Essentially, this can be done by adding a µ2 dependence to the unintegrated gluon distri-

butions [29–31, 51–54]. The equations that combine such effects with the small-x evolu-

tion [55, 56] show a nontrivial interplay between the non-linearities and the µ2 dependence

and this may, in particular, weaken the saturation effects. At the linear level, the so-called

single step inclusion of the hard-scale effects (as demonstrated in [17]) helps in the descrip-

tion of forward-central dijet data, therefore this direction seems to be relevant in order to

provide complete predictions. Furthermore, first estimates of azimuthal decorrelations of

the forward-forward dijets in the HEF framework, with inclusion of hard scale effects and

non-linearities, show that they are of similar relevance for this process [33].

Last but not least, it remains to be proved that the large logarithms generated by

higher-order corrections can indeed be absorbed into evolution equations for the various

parton distributions (and jet fragmentation functions) involved, and potentially for addi-

tional soft factors [57]. This limitation however is not specific to our work, the same is true

at the level of the TMD and HEF regimes independently. In the former case, it is known

that TMD factorization generically does not apply for dijet production in hadron-hadron

collisions [22, 24]. It is nevertheless expected that, in dilute-dense collisions, initial state

interactions originating from a dilute hadron do not interfere with the intrinsic transverse

momentum and thus factorization may hold, although there is no formal proof of this

statement yet.

In addition, even though it was possible to write formula (4.56) in terms of just two

TMDs per channel, this simplification may not survive after small-x evolution is included,

as, in general, the non-linear equations mix the original F (i)
ag functions. For instance, xG(1)

does not obey a closed equation and, contrary to what happens with xG(2), the large-Nc

limit does not help [58]. We note that any equivalent linear combination of the gluon

distributions, such as (2.10) and (4.56), is equally valid, and it may turn out that some

alternative choice allows one to write the evolution equations directly in terms of TMDs.

By contrast, it is also possible that the inclusion of small-x evolution can only be achieved

within the full complexity of the CGC, meaning that the Qs ∼ |kt| � |Pt| limit, which

allows one to avoid the quadrupole operator in (3.10) and express the cross section in terms

of gluon distributions, may not help when small-x evolution is considered.

In the HEF regime, the issues are different. The Qs � |kt| ∼ |Pt| limit makes things

simpler from the point of view of small-x evolution, since non-linear effects can be neglected.

However, the off-shellness of the hard process is not neglected and thus the standard power

counting of the twist expansion becomes useless. One must then resort to different methods,

such as those of ref. [59]. Any progress towards an all-order proof of either HEF or TMD

factorization for forward dijet production in dilute-dense collisions will naturally carry
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over to our improved TMD factorization formula (6.27) that combines both regimes. In

the meantime, our results represent a viable alternative to CGC calculations, equivalent to

them in the kinematic regime appropriate for dijets Qs � |Pt| but more practical.
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A Off-shell expressions

In this appendix, we gather all expressions corresponding to the Di diagrams from figures 3–

6 in the case where one of the incoming gluons is off-shell. All calculations were preformed

in the axial gauge discussed at the beginning of section 5, with the axial vectors for the

on-shell gluons set according to eq. (4.39).

For completeness, we also give here the results for the “old” hard factors defined in

eqs. (4.6), (4.7) (4.18), (4.19), (4.20), (4.33), (4.34) and (4.35), in the case with off-shell

incoming gluon.

Table 8 gives the Di expressions for the subprocesses qg∗ → qg. The two hard factors

in this channel read

H
(1)
qg∗→qg = − s̄

2 + ū2

2ŝt̂ū

[
ū− t̂t̄

N2
c û

]
, (A.1)

H
(2)
qg∗→qg = −

s̄
(
s̄2 + ū2

)
2ût̂t̄

. (A.2)

In the limit, |kt| → 0, simplification given by eq. (5.6) occurs and the above formulas

manifestly recover the on-shell results from eqs. (4.8) and (4.9).

The corresponding Di results for the gg∗ → qq̄ subprocess are given in table 9. The

three “old”, off-shell hard factors for this channel take the form

H
(1)
gg∗→qq̄ =

1

4CF

t̄2 + ū2

ût̂ŝs̄

[
ûū+ t̂t̄

]
, (A.3)

H
(2)
gg∗→qq̄ =

1

4CF

t̄2 + ū2

ût̂ŝs̄

[
ŝs̄− t̂t̄− ûū

]
, (A.4)

H
(3)
gg∗→qq̄ = − 1

4N2
cCF

t̄2 + ū2

ût̂
. (A.5)

Again, following eq. (5.6), it is manifest that the above hard factors reduce to eqs. (4.21)–

(4.23) in the limit |kt| → 0.
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qg∗ → qg Di

(1)
2t̄ū+ t̄2 + 2ū2

t̂
(
ŝ+ t̂+ û

)
(2)

CF
Nc

ū
(
2t̄ū+ t̄2 + 2ū2

)
ût̄
(
ŝ+ t̂+ û

)
(3)

(
2t̄ū+ t̄2 + 2ū2

) (
t̄
(
ŝ+ t̂

)
+ ū (ŝ+ û)

)
4t̂ût̄

(
ŝ+ t̂+ û

)
(4) −CF

Nc

(t̄+ ū)
(
2t̄ū+ t̄2 + 2ū2

)
ŝt̄
(
ŝ+ t̂+ û

)
(5) −

(
2t̄ū+ t̄2 + 2ū2

) (
t̄
(
ŝ− t̂

)
+ ū (ŝ+ û)

)
4ŝt̂t̄

(
ŝ+ t̂+ û

)
(6)

1

N2
c

(
2t̄ū+ t̄2 + 2ū2

) (
t̄
(
ŝ+ t̂

)
+ ū (ŝ− û)

)
4ŝût̄

(
ŝ+ t̂+ û

)
Table 8. Expressions for the qg∗ → qg subprocess with off-shell incoming gluon corresponding to

diagrams (1)-(6) of figure 3 in gauge described in section 5.

gg∗ → qq̄ Di

(1)
1

Nc

(s̄+ ū)
(
2s̄ū+ s̄2 + 2ū2

)
2t̂s̄
(
ŝ+ t̂+ û

)
(2) − 1

Nc

ū
(
2s̄ū+ s̄2 + 2ū2

)
2ûs̄

(
ŝ+ t̂+ û

)
(3) − 1

N2
cCF

(
2s̄ū+ s̄2 + 2ū2

) (
s̄
(
ŝ+ t̂

)
+ ū

(
t̂− û

))
8t̂ûs̄

(
ŝ+ t̂+ û

)
(4) − 1

CF

2s̄ū+ s̄2 + 2ū2

2ŝ
(
ŝ+ t̂+ û

)
(5) − 1

CF

(
2s̄ū+ s̄2 + 2ū2

) (
s̄
(
ŝ− t̂

)
− ū

(
t̂+ û

))
8ŝt̂s̄

(
ŝ+ t̂+ û

)
(6) − 1

CF

(
2s̄ū+ s̄2 + 2ū2

) (
s̄
(
ŝ+ t̂

)
+ ū

(
t̂+ û

))
8ŝûs̄

(
ŝ+ t̂+ û

)
Table 9. Expressions for the gg∗ → qq̄ subprocess with off-shell incoming gluon corresponding to

diagrams (1)–(6) of figure 4 in gauge described in section 5.
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gg∗ → gg Di

(1)
2Nc

CF

(
t̄ū+ t̄2 + ū2

)2
t̂ū (t̄+ ū)

(
ŝ+ t̂+ û

)
(2)

2Nc

CF

(
t̄ū+ t̄2 + ū2

)2
ût̄ (t̄+ ū)

(
ŝ+ t̂+ û

)
(3)

Nc

2CF

(
t̄ū+ t̄2 + ū2

)2 (
t̄
(
ŝ+ t̂

)
+ ū (ŝ+ û)

)
t̂ût̄ū (t̄+ ū)

(
ŝ+ t̂+ û

)
(4) −2Nc

CF

(
t̄ū+ t̄2 + ū2

)2
ŝt̄ū
(
ŝ+ t̂+ û

)
(5) − Nc

2CF

(
t̄ū+ t̄2 + ū2

)2 (
t̄
(
ŝ− t̂

)
+ ū (ŝ+ û)

)
ŝt̂t̄ū (t̄+ ū)

(
ŝ+ t̂+ û

)
(6) − Nc

2CF

(
t̄ū+ t̄2 + ū2

)2 (
t̄
(
ŝ+ t̂

)
+ ū (ŝ− û)

)
ŝût̄ū (t̄+ ū)

(
ŝ+ t̂+ û

)
Table 10. Expressions for the gg∗ → gg subprocess with off-shell incoming gluon in gauge described

in section 5. The numbering (1)–(6) corresponds to the color structures as defined in eq. (4.43) and

each expression contains contributions from diagrams with both 3- and 4-gluon vertices.

Finally, the Di expressions for the subprocess gg∗ → gg are given in table 10 and the

six hard factors read

H
(1)
gg∗→gg =

Nc

CF

(s̄2 − t̄ū)2

t̂t̄ûūŝs̄

[
t̂t̄+ ûū

]
, (A.6)

H
(2)
gg∗→gg =

Nc

CF

(s̄2 − t̄ū)2

t̂t̄ûūŝs̄

[
ŝs̄− t̂t̄− ûū

]
, (A.7)

H
(6)
gg∗→gg = −N

2
c

2
H

(3)
gg∗→gg = N2

cH
(4)
gg∗→gg = N2

cH
(5)
gg∗→gg =

Nc

CF

(s̄2 − t̄ū)2

t̂t̄ûū
. (A.8)

The on-shell limit is again manifest, with the above equations reducing to eqs. (4.36), (4.37)

and (4.38) as |kt| → 0.
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