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ABSTRACT: This paper is devoted to the study of two-point correlation function of the
energy-momentum tensor (T127T12) for SU(2)-gluodynamics within lattice simulation of
QCD. Using multilevel algorithm we carried out the measurement of the correlation func-
tion at the temperature T'/T, ~ 1.2. It is shown that lattice data can be described by spec-
tral functions which interpolate between hydrodynamics at low frequencies and asymptotic
freedom at high frequencies. The results of the study of spectral functions allowed us to
estimate the ratio of shear viscosity to the entropy density n/s = 0.134 4 0.057.
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1 Introduction

One of the most important result obtained at RHIC experiment is the measurement of
the elliptic flow of final particles [1, 2]. The value of the elliptic flow measured at RHIC
can be explained within the approach based on hydrodynamics [3—5], if one assumes that
quark-gluon plasma (QGP) obtained after the collision is almost superfluid. In particular,
numerical simulations of the relativistic liquid showed [6] that the upper limit on the
ratio of shear viscosity to entropy density is /s < 0.4. Preferred range for the ratio
is n/s = (1 < 3) x 1/4x, which is very close to the result of N = 4 Super Yang Mills
(SYM) theory at strong coupling n/s = 1/4x [7]. From these facts one can conclude that
theoretical prediction of the ratio 7/s is a very interesting and important problem.

It is known that QGP is strongly interacting system and today there are no analytical
approaches which allow to study such systems without additional assumptions. For this
reason one of the main approaches which can be used to study the properties of QGP and
which is based on the first principles is lattice simulation of QCD.

Lattice simulation of QCD aimed at the calculation of shear viscosity of the SU(3)-
gluodynamics was carried out in papers [8-11]. Despite rather large uncertainties one can
state that the ratios n/s obtained in papers [10, 11] are close to the N = 4 SYM prediction
n/s ~ 1/4w. The calculation of shear viscosity in QCD with dynamical quarks is still a
challenging problem.

The closeness of the SU(3)-gluodynamics ratio n/s to the N = 4 SYM prediction allows
us to ask the question whether this property is the property of the SU(3)-gluodynamics
or it is common to all non-abelian gauge theories. To address this question in this paper
we are going to perform the calculation of shear viscosity of SU(2)-gluodynamics within
lattice simulation.

We have already performed the first measurement of shear viscosity of the SU(2)-
gluodynamics in [12]. In this paper we extend our investigation to larger lattice size and
apply different method to determine numerical value of the ratio 7/s.



2 Details of the calculation

Shear viscosity is related to the Euclidean correlation function of the energy-momentum

tensor T}, = %%VFgﬁFgﬂ — o Fy,, (here we omitted for simplicity trace anomaly):

C(xzg) =T7° / d3x(T12(0)T12(xo, X)), (2.1)

where T' is the temperature of the system. The correlation function (2.1) can be written
in terms of the spectral function p(w) as follows

coshw(5 — 2)

C(xg) =T /000 p(w) dw. (2.2)

sinh o
The spectral function contains a lot of important information about the properties of
medium. In particular, to find shear viscosity from spectral function one uses the Kubo

formula [13]

n = lim M, (2.3)

w—0 w

Lattice calculation of shear viscosity can be divided into two parts. The first part is the
measurement of the correlation function C(xg) with sufficient accuracy. This part of the
calculation requires large computational resources but for the gluodynamics the accuracy
of the correlator can be dramatically improved with the help of the two-level algorithm [14].
The second part is the determination of the spectral function p(w) from the correlation
function C(z¢). The last part of the calculation is probably the most complicated, since
one should determine continuous spectral function p(w) from integral equation (2.2) for
the set of O(10) values of the function C(z() measured in lattice simulation.

To approach the solution of the integral equation (2.2) one should take into account
the properties of the spectral function. Important properties of the spectral function are
positivity: p(w)/w > 0 and oddness: p(—w) = —p(w). It is also important to write the
expression for the spectral function at the leading-order approximation in strong coupling
constant [15]

LO(y) = 1ody Wt + 2r 2d T4 wi(w) (2.4)
P 10 (47)? tanh(55) 15) 4 ’ '

where d4 = N2 —1 = 3 for the SU(2)-gluodynamics. It can be shown in the hard-thermal-
loop framework that the term proportional d-function is modified to some function of
final width due to interactions [16]. For instance, one can approximate this function by
§(w) ~ 1/(1 4 b*w?). However, below it will be shown that our lattice data don’t support
this form of the spectral function.

One also knows next-to-leading order expression for the spectral function at large w [17]

1 dgy Sas N,
lim pNYO(w) = — - ==, 2.
Jn pw) = 6 @ 9r (2:3)

It should be noted here that at large w the spectral function scales as p(w) ~ w*, what leads
to a large perturbative contribution to the correlation function for all values of Euclidean



time xo. Calculation shows that even at the xg = 1/(27T) the tree level contribution is
~ 85% of the total value of the correlation function. Note also that large w behaviour
of the spectral function leads to a fast decrease of the correlation function C(zg) ~ 1/x
for small zy. For this reason the signal/noise ratio for the C(zg) is small at zyp > a and
lattice measurement of the correlation function at zg ~ 1/(27") becomes computationally
very expensive.

In numerical simulation we use Wilson gauge action for the SU(2)-gluodynamics

5,=8 % (1-510.0). (26)

T, u<v
where Uy, , (x) is the product of the link variables along elementary rectangular (i, v), which
starts at x.
For the tensor [, we use the clover discretization scheme:

FIo (@) = ooy (Vo &)+ Vo) + Vo oal@) + V@) .
Vi (&) = 5 (U @) ~ Upu(a)).

2
It causes no difficulties to build energy-momentum tensor having expression for the
tensor Fy,,.

To calculate shear viscosity one should measure the correlation function (2.1). To
carry out this measurement we use two-level algorithm described in [14]. This algo-
rithm significantly improves the speed of the calculations. Note also that instead of
the correlation function (Ti2(x)T12(y)) in this paper we measure the correlation function
((T11(2)T11(y)) — (Th1(2)T2(y))). Both correlation functions are equal in the continuum
limit [8].

It has become conventional to present the value of shear viscosity as a the ratio
viscosity-to-entropy density n/s. For homogeneous systems the entropy density s can
be expressed as s = EJFTP, where € is the energy density and p is the pressure. These
thermodynamic quantities were measured with the method described in [18].

Energy-momentum tensor in continuum theory is a set of Noether currents which are
related to the translation invariance of the action. In lattice formulation of field theory
continuum translation invariance does not exist and renormalization for energy-momentum
tensor is required. For the correlation function considered in this paper the renormaliza-
tion is multiplicative [19]. Renormalization factors depend on the discretization scheme.
For instance, for the diagonal component of T}, (when p = v) and the plaquette-based

discretization of T),,: T, = # <— Yo TrUpp(z)+ >, Tr UU7V<$)) the renormal-
v#p V,0F 0>V

ization factors are related to the anisotropy coefficients [20, 21]: T‘(Lf,en) =7 (pla@Tﬁﬁla‘”,
ZWPlka) =1 — L1g2(c, —c.), where ¢, and ¢, are defined in [18] and for SU(2) are computed
on the lattice in [22].

Using the renormalization factors for the plaquette-based discretization of Tyg, we can
find the renormalization factors for the clover discretization simply by fitting the vacuum
expectation values of the renormalized Tpg: Z(P2a) <TéglaQ)> = z(clov) <Téglov)).
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Figure 1. Renormalized correlation functions C'(zg) as a function of Euclidean time xy measured
at lattices 16 x 323 and 18 x 443.

3 Numerical results

We carried out the measurements of the correlation function C(xg) at lattices 16 x 322 with
f = 2.81 and 18 x 443 with 8 = 2.85. Both lattices correspond to deconfinement phase
with the temperature T/T, ~ 1.2 but different physical volumes and lattice spacings. In
figure 1 we plot renormalized correlation functions (2.1) as a function of Euclidean time xg
for the lattices 16 x 323 and 18 x 443. Two-level algorithm allowed us to reach accuracy
~ 3% for the lattice 16 x 323 and ~ 10% for the lattice 18 x 443 at point Txo = 0.5. For
the other points the accuracy is much better.

Visually the set of values of the correlation functions measured at different lattices
lies on one curve. The values for the correlation functions measured at close points in the
region T'zy ~ 0.5 are very close to each other. Note also that the fit parameters (see below)
of both correlation functions are very close to each other. These facts allow us to expect
that finite lattice size and finite volume effects are not very important in our calculation.

Usually one uses Maximal Entropy Method to study transport properties of QGP (see,
for instance, [23, 24]). Unfortunately the accuracy of our results and number of points where
the correlation function (2.1) was measured do not allow us to use Maximal Entropy Method
to determine the spectral function p(w). For this reason we use physically motivated ansatz
for the spectral function with unknown parameters which will be determined through the
fitting procedure. Probably the simplest formula for the spectral function inspired by QCD
sum rules [25] can be built if we join hydrodynamical behaviour at small frequencies with

asymptotic freedom at large frequencies!

p1(w) = BT? w 0(wo — w) + Aprar(w) O(w — wo). (3.1)

Note that the frequency w is measured in physical units.
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Figure 2. The ratio pjat(w)/peont(w) as a function of wa.

In last formula pp,¢(w) is a tree level lattice expression for the spectral function calculated
for the correlation function ~ 3 ((T11(2)T11(y)) — (T11(z)Th2(y))) with clover discretization
of the tensor F),, at lattice with fixed L; and L; — oo. Although the calculation of the
pPlat(w) can be easily performed using formulas from paper [26], the resulting expression is
very cumbersome. For this reason instead of the explicit expression for the pj,, in figure 2
we plot the ratio pjat(w)/peont(w) for the lattice L, = 16.

The fit of the lattice data (z¢/a > 2) with the formula (2.2) with the spectral func-
tion (3.1) gives A = 0.72340.002, B = 0.079+0.016,wo/T = 7.540.5, x2/dof ~ 1.4 for the
lattice 16 x 323 and A = 0.703+0.003, B = 0.096+0.026, w/T = 8.3+0.7, x?/dof ~ 0.7 for
the lattice 18 x 443. It is seen that ansatz (3.1) for the spectral function fits the lattice data
very well and the parameters of the fit for different lattices are in a reasonable agreement
with each other. The resulting shear viscosity is /s = 0.17940.036 for the lattice 16 x 323
and /s = 0.217 £ 0.059 for the lattice 18 x 443. In figure 3 we plot the spectral function
p1(w) as a function w for the lattice L; = 16.

Note that in hard-thermal-loop framework hydrodynamical behaviour at small fre-
quencies is replaced by transport peak of final width ~ w — w/(1+4b%w?) [16]. The x2/dof
at lattice 16 x 323 for this form of the spectral function is minimized at b ~ 0 with the
result /s = 0.20 + 3. Thus within the unsertainty of the calculation the transport peak is
reduced to hydrodynamical form (3.1) with the same shear viscosity.

Now few comments are in order

e In formula (3.1) we used piat(w) instead of the continuum tree-level expression for
the p(w) (see formula (2.4)). We believe that this allows us to take into account
discretization uncertainty and asymptotic freedom contribution more carefully. If



one puts the continuum tree-level expression to formula (3.1), the x2/dof of the fits
will be considerably enhanced: y?/dof ~ 5.2 for the lattice 16 x 323 and x2/dof ~ 4.5
for the lattice 18 x 443,

e As was noted above the asymptotic behaviour of the spectral function at large w is

4. However, the coefficient in front of the w?-behaviour is modified by

fixed p ~ w
higher order radiative corrections (see formula (2.5)). In order to take this effect into
account in formula (3.1) we introduced factor A. At this point our ansatz deviates
from that used in papers [10, 11]. If we take A = 1, the ansatz (3.1) will not be able

to describe our data (x?/dof > 100 for both lattices).

e The values of the fit parameters are physically well motivated. For instance, the value
of the parameter A is smaller than unity, what agrees with the next-to-leading order
result (2.5). The value of the strong coupling constant at the threshold parameter
wo (wo ~ 2.7GeV in physical units) is as(wg) ~ 0.2 — 0.3. This allows us to expect
that perturbative expression for the spectral function is applicable for w > wy.

Low frequency part of the spectral function (3.1) is given by the first-order hydrody-
namic expression ~ w. Comparison of the spectral functions of the energy-momentum ten-
sor correlation functions obtained in N = 4 SYM [27] and the first-order hydrodynamic ex-
pressions allows us to expect that this approximation works well up to w < 77" ~ 1 GeV [28].
From the other side high frequency perturbative expression for the spectral function is fixed
very accurately and it works well for w > wg = 2.7 GeV. The form of the spectral function
in the region 1 GeV < w < 2.7 GeV is not clear. Formula (3.1) continues the first-order
hydrodynamic expression to the region 1 GeV < w < 2.7 GeV (see figure 3). As the result
there is rather large discontinuity in the spectral function (3.1) at point wp which for the
lattice 16 x 323 is (p1(wo + 0) — p1(wo — 0))/p1(wo — 0) =~ 6.7. The last fact allows us to
state that the spectral function in form (3.1) underestimates real spectral function in the
region 1 GeV < w < 2.7 GeV and as a result the value of shear viscosity obtained in this
fit is larger than its real value.

As was noted a serious drawback of the spectral function p(w) is its discontinuity at
point w = wg. In order to solve this problem we propose another form of the spectral
function which preserves basic ideas of the spectral function (3.1) and takes into account

the property p(—w) = —p(w)

pa(w) = BT3w 4 Apia (w) tanh? <50> . (3.2)

The fit of the lattice data (xzo/a > 2) by the formula (2.2) with the spectral func-
tion (3.2) gives A = 0.723 + 0.003, B = 0.039 4 0.012,w/T = 5.6 £ 0.6, x?/dof ~ 1.2 for
the lattice 16 x 323 and A = 0.705+0.004, B = 0.0554-0.022, wo/T = 6.540.9, x?/dof ~ 0.6
for the lattice 18 x 443. It is seen that ansatz (3.2) for the spectral function fits the lattice
data very well and parameters from different lattices are in a reasonable agreement with
each other. The resulting shear viscosity is 17/s = 0.088 £ 0.027 for the lattice 16 x 323 and
n/s = 0.1254 0.050 for the lattice 18 x 443. In figure 3 we plot the spectral function ps(w)
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Figure 3. Spectral functions p;(w) and ps(w) as the function of w/T for the lattice L, = 16.

as a function w for the lattice L; = 16. Notice that the function (3.2) is larger than (3.1) in
the region 1 GeV < w < 2.7 GeV, as the result the value of the of shear viscosity becomes
smaller. Note also that the value of shear viscosity obtained at the lattice 16 x 323 is very
close to the N = 4 SYM prediction /s = 1/4m ~ 0.080.

In order to investigate the systematic errors, caused by the usage of the ansatz (8),(9)
we studied other fit functions. Instead of the tanh?(w/wp) in formula (3.2) one can
use, for example, any power of this function ~ tanh?*(w/wp) or linear combination ~
S Ap tanh?* (w/wg).2 We found, that in these cases the fits are also good and the result-
ing viscosities are greater than that for the spectral function (3.2) and smaller than that
for the spectral function (3.1).

As the result of this paper we take the value

D — 0.134 + 0.034 + 0.046. (3.3)
S

The central value is the average between the values of shear viscosity obtained with the
spectral functions in the form (3.1) and (3.2) from the fit of lattice data measured at the
lattice 16 x 323. The first uncertainty is due to the fitting procedure which is typically
25%. The second uncertainty is due to the unknown model of the spectral function. We
estimated this uncertainty assuming that the central value of shear viscosity can vary
between central values of the fits (3.2) and (3.1). Actually there are a lot of different
sources of uncertainties of our result but they are much smaller than statistical and spectral
function model uncertainties.

2Tt should be noted here that in the region 1 GeV < w < 2.7 GeV any function can be approximated by
this linear approximation with good accuracy.



4 Conclusion

In this paper we studied the energy-momentum tensor correlation function (7T72(0)T12(x))
for SU(2)-gluodynamics using lattice simulation of QCD. We carried out the measurements
of this correlation function at lattices 16 x 323 with 5 = 2.81 and 18 x 443 with 3 = 2.85.
Both lattices correspond to deconfinement phase with the temperature 7/7T. ~ 1.2 but
different physical volumes and lattice spacings. In order to enhance the accuracy of the
calculation we used two-level algorithm which allowed us to reach accuracy ~ 3% for the
lattice 16 x 323 and ~ 10% for the lattice 18 x 443 at point 2o = 1/27. For the other points
the accuracy is much better.

Using lattice data for the correlation function we tried to study the spectral function.
It was shown that physically motivated anzatz which joins the first-order hydrodynamical
behaviour at small frequencies with asymptotic freedom at large frequencies fits our data
very well for both lattices. We also studied other forms of the spectral functions which
interpolate between hydrodynamics and asymptotic freedom.

The results of the study of spectral functions allowed us to estimate the ratio of shear
viscosity to the entropy density n/s = 0.134 + 0.057. This value is in agreement with our
previous finding 7/s = 0.111 £+ 0.032 [12] obtained at small lattice with the estimation
of statistical uncertainty only. Note also that within the uncertainty of the calculation
the value obtained in this paper agrees with the value measured in SU(3)-gluodynamics:
n/s = 0.102 £ 0.056 measured at temperature 7'/T, = 1.24 [10].

The values of the ratio n/s for the SU(2) and SU(3)-gluodynamics are very close to
the prediction of the N = 4 SYM theory at strong coupling: 7/s = 1/4w. So one can state
that both theories belong to strongly correlated systems and probably the closeness of the
ratio 77/s to the ratio in N = 4 SYM theory is the property on non-abelian gauge theories.
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