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1 Introduction

The last two decades have lifted neutrino physics to new heights, as experiments have

considerably driven the field. Nowadays it can be seen as an established fact that the

neutrino mass and flavour bases are different [1]. In a nutshell, a certain flavour (say,

an electron neutrino νe) does not have a well-defined mass but is instead a superposition

of three active neutrino mass eigenstates ν1,2,3. Mathematically, this change of the basis
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is described by a mixing matrix called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix,

UPMNS = R23U13R12P0

=

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

P0, (1.1)

where δ is the Dirac CP-phase and P0=diag(e−iφ1/2, e−iφ2/2, 1) is a diagonal matrix con-

taining the two Majorana phases φ1,2. While experimentally we have a relatively clear

picture about mixing in the lepton sector, in the sense that we have by now measured all

three mixing angles θ12,13,23 to some precision, we have no idea why their values are so

large compared to those of the quark sector [2]. The most popular idea to explain these

obvious patterns is to relate them to the properties of discrete symmetry groups [3–7],

although alternative ideas such as, e.g., a random mass pattern [8] or a transmission from

other sectors [9] do exist.

One basic problem of neutrino flavour models based on discrete symmetries is their

indistinguishability at low energies: would the models predict mixing angles far from their

experimental values, we would consider the models to be excluded. If, however, they predict

values within the current 3σ ranges, we have a hard time distinguishing them unless the

experimental precision is considerably improved, which is not to be expected very soon. If

on the other hand the models predict correlations between certain low-energy observables,

these could be used as additional handles. Well-known examples for testable correlations

are neutrino mixing sum rules [10–15], such as s23 − 1√
2

= − s13
2 cos δ, which, e.g., allow

to predict the Dirac CP phase from some of the mixing angles. The type of correlation

we would like to study here, instead, are so-called neutrino mass sum rules, which relate

the three (complex) neutrino mass eigenvalues to each other. Mass sum rules have been

studied for quite some time [16–21], but it was only in recent years that systematic analyses

have been presented [22–24]. These analyses clearly show that, among all observables, the

effective neutrino mass |mee| as measured in neutrinoless double beta decay (0νββ) [25]

can be modified most significantly1 — in a way that several groups of models could be

excluded in the near future, despite the uncertainties involved, in particular if in addition

to a new limit or even a measurement of 0νββ information on the neutrino mass ordering

(i.e., whether normal, m1 < m2 < m3, or inverted, m3 < m1 < m2) was available [24].

Turning the logic round, future experiments could even “gauge” their definitions of stages

with increasing exposure using the predictions from sum rules [26].

1The reason for other observables like the effective electron-neutrino mass square m2
β or the sum Σ of all

light neutrino masses not to be affected very strongly is that they contain no Majorana phases and thus are

only constrained by “half” of the information contained in a neutrino mass sum rule, which is intrinsically

a complex equation. Furthermore, both these observables are comparatively insensitive to changes in the

smallest neutrino mass, if that is small by itself; they may however be affected in cases where a sum rule

forbids a certain mass ordering.
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What all previous studies have in common is that they treated neutrino mass sum

rules as if they were exact to each order, i.e., as if they would be perfectly known.2 This

leads to relatively strong predictions such as some sum rules excluding a particular mass

ordering even in the case where neutrinos are very close in mass, such that the two orderings

should be hardly distinguishable [24]. However, in general neutrino mass sum rules are very

unlikely to hold exactly, since several types of corrections could appear. In particular two

types of corrections are evident:

• First of all, mass matrices in concrete models are typically only computed at leading

order. Thus, when taking into account next-to-leading order (NLO) corrections, a

mass sum rule may be destroyed (although counterexamples are known [27]). Further

corrections may arise, too, e.g. from normalising non-canonical kinetic terms correctly.

However, all these types of corrections are difficult to analyse in a unified manner,

since they are very model-dependent. Furthermore, it is not a priori clear how to

treat the case of an “approximate” sum rule in an accurate way.

• Second, as any quantity in a quantum field theory, the values of neutrino masses

vary depending on the energy scale, a fact known as renormalisation group evolution

(RGE) or, in a less formal manner, simply dubbed running. The running may also

affect the validity of a sum rule, and in particular it may modify the allowed regions

and/or open up or close down the consistency of the sum rule for a particular mass

ordering. The good point with these types of corrections is that, while also they

are in principle model dependent, one can at least study their effect on classes of

models which can be effectively described by the Weinberg operator [28], i.e., where

all right-handed neutrinos are so heavy as to be integrated out at a relatively high

energy scale, such that their exact mass spectrum does not affect the low-energy mass

matrices significantly. Note that we assume neutrinos here to be Majorana particles.

In this work we will focus on the effect of the second type of corrections, the radiative

corrections, since for them practical consequences can be derived for many cases without

having to resort to a model-by-model investigation. While this approach of course implies

that we intrinsically disregard the first type of corrections, we would like to stress once

more that in some cases the NLO corrections do not modify the sum rules [27]. While up

to now no general criteria for this behaviour to appear are known, it is at least clear that it

can potentially happen in which case the RGE corrections are the only general corrections

that exist. Thus we will in what follows investigate the effect that RGE corrections have

on the ranges predicted for |mee| from neutrino mass sum rules.

This paper is organised as follows: in section 2 we shortly review how to derive predic-

tions from neutrino mass sum rules, before explaining in more detail both the general effect

of radiative corrections and our numerical approach in section 3. The results for all known

sum rules, along with an accompanying discussion, can be found in section 4. We then

2Ref. [22] did study the effect of possible deviations of a few per cent, however, in that case the deviation

was assumed to be proportional to one of the light neutrino masses, which is not only unmotivated but also

introduces an undesired measure-dependence.
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conclude in section 5. Some subtleties related to computing roots of complex numbers,

which are decisive in order to derive the correct predictions from those sum rules involving

square roots, are discussed in appendix A.

2 Reviewing neutrino mass sum rules

In this section we want to briefly review how neutrino mass sum rules can be parametrised

and how they can be interpreted as a prediction for the Majorana phases as a function of

the (physical) neutrino masses. A very detailed description can be found in ref. [24], while

a more pedagogical introduction to the broader topic of neutrino flavour models, featuring

several example models that partially also lead to sum rules, can be gained by studying

the known reviews [3–7].

The essential feature of a flavour model incorporating a (light) neutrino mass sum rule

is that the eigenvalues of the light neutrino mass matrix depend on two complex parameters

only. Typically this can arise from any neutrino mass generation mechanism in which the

structure of one mass matrix is generated by two flavon3 couplings while all other matrices

only have a single scale which can be factored out.4 For illustrational purposes we will

discuss now exactly such a two flavon case, where we suppose that in a certain model, the

light neutrino mass matrix mν is generated by a type I seesaw mechanism [29–35], such

that mν = −mDM
−1
R mT

D with mD (MR) being the Dirac (right-handed neutrino) mass

matrix. While in the most general case, the Dirac mass matrix mD is practically arbitrary

(apart from being at most of electroweak size) and the Majorana mass matrix MR is only

symmetric, in a concrete flavour model their structure may be further constrained. For

example, the different generations of right-handed neutrinos and charged leptons could be

chosen to transform under particular representations of a family symmetry, such that the

mass matrices are given by

mD =

 1 0 0

0 0 1

0 1 0

 yv and MR =

 2αs + α0 −αs −αs
−αs 2αs −αs + α0

−αs −αs + α0 2αs

Λ , (2.1)

where y is a Yukawa coupling, v is the electroweak VEV, and Λ is a the mass scale of

the right-handed neutrinos (see ref. [24] for details). Note that MR does have a particular

structure depending on the two dimensionless couplings αs,0. These couplings arise as

ratios of two different flavon VEVs and the breaking scale of the family symmetry, and the

representation of the flavons determines in which entries of MR the two parameters show

up. The Dirac mass matrix mD, in turn, does not involve any flavon coupling and its size

is entirely determined by the product of the Yukawa coupling and the electroweak VEV.

3A flavon is a scalar field that is a total singlet under the standard model gauge symmetry, but it

transforms non-trivially under the family symmetry and thus breaks it spontaneously when obtaining a

vacuum expectation value (VEV).
4We want to remark that there are also other cases imagineable and indeed known. For instance, the

model [29, 30] has only one flavon relevant for the light neutrino masses which receives a VEV which

depends on two complex mass parameters.
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While it does have some non-trivial structure owing to the family symmetry, the mass scale

yv can be factored out of this matrix. This is the decisive point: looking at the resulting

light neutrino mass matrix,

mν = − y2v2

α0(α0 + 3αs)Λ

α0 + αs αs αs
αs αs(1− 3b) αs + bα0

αs αs + bα0 αs(1− 3b)

 , (2.2)

with b ≡ α0/(α0 − 3αs), depends only on two paramaters (namely αs and α0) in what its

structure is concerned, while any mass scales can be factored out.5 Computing the complex

eigenvalues (m̃1, m̃2, m̃3) =
(

1
3αs+α0

, 1
α0
, 1

3αs−α0

)
y2v2

Λ of this neutrino mass matrix, one

can see immediately that a sum rule of the form

1

m̃1
− 1

m̃3
=

2

m̃2
(2.3)

is implied (see section 4.7 for a discussion of exactly this sum rule). Note that, in fact, the

only true requirement on the light neutrino mass matrix to fulfill a neutrino mass sum rule

is the dependence on exactly two parameters, up to an overall scale. While of course this

structure is somewhat related to the mixing pattern predicted by a certain model, there is

no direct constraint that the mixing would have on the sum rule. In particular, part of the

mixing could be induced by the charged lepton sector which is not involved in eq. (2.2).

Note futher that, at least in the case at hand, there is in fact also a mass sum rule for the

eigenvalues (M1,M2,M3) = (α0 +3αs, α0,−α0 +3αs)Λ of the right-handed Majorana mass

matrix MR: M1−M3 = 2M2, again because it depends on exactly two parameters up to an

absolute scale. While such a relation might have interesting implications at high energies,

it is experimentally hardly accessible at low-energies, as long as the right-handed neutrinos

are very heavy. As a final note, we should mention that typically the parameters playing

the role of αs and α0 are complex numbers, which is exactly what yields to a neutrino

mass sum rule imposing a relation between the two light neutrino Majorana CP phases,

while however their exact values are not constrained since the prefactor in eq. (2.2) will be

complex in general.

The most general mass sum rule can be written as:6

A1m̃
d
1eiχ1 +A2m̃

d
2eiχ2 +A3m̃

d
3eiχ3 = 0 , (2.4)

where m̃i labels the complex mass eigenvalues (i.e., including the Majorana phases), d 6= 0,

and Ai > 0. The phase χi ∈ [0, 2π) originates from the sum rule itself, i.e., it contains both

the phase of Ai and a possible minus sign. Following similar steps as in [24] we can rewrite

eq. (2.4) in a more convenient form. First we express the complex masses in terms of the

Majorana phases αi ∈ [0, 2π) and the physical mass eigenvalues mi ≥ 0 as m̃i = mie
iαi .

5Such a structure can only be achieved if exactly one type of matrix in the seesaw formula is generated

by precisely two flavon couplings, while all other mass matrices need at most one flavour (so that the VEV

can be factored out).
6Note that we are using conventions different from the ones used in [24]. We do this in order to match

the conventions used in REAP/MPT [36], which is our tool of choice to compute the RGE corrections.
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Dividing eq. (2.4) by A3 and using the abbreviations ci ≡ Ai/A3 ≥ 0 and α̃i ≡ χi + dαi,

we end up with:

c1m
d
1eiα̃1 + c2m

d
2eiα̃2 +md

3eiα̃3 = 0 . (2.5)

Now we can multiply eq. (2.5) by e−iα̃3 = e−i(χ3+dα3) and define

∆χi3 ≡ χi − χ3 . (2.6)

With the use of the Majorana phases −φi = α̃i − α̃3, which appear in eq. (1.1), we end up

with our final sum rule:

s(m1,m2,m3, φ1, φ2; c1, c2, d,∆χ13,∆χ23) ≡

c1

(
m1e−iφ1

)d
ei∆χ13 + c2

(
m2e−iφ2

)d
ei∆χ23 +md

3
!

= 0 . (2.7)

Similarly as in [22–24], we interpret the mass sum rules geometrically, since this equation

describes the sum of three vectors which form a triangle in the complex plane, see figure 1.

Via the law of cosines we can express the angles α ≡ −dφ2 + ∆χ23 and β ≡ −dφ1 + ∆χ13

in terms of the masses:

cosα =
c2

1m
2d
1 − c2

2m
2d
2 −m2d

3

2c2md
2m

d
3

, (2.8)

cosβ =
c2

2m
2d
2 − c2

1m
2d
1 −m2d

3

2c1md
1m

d
3

. (2.9)

These equations decide about the validity of a mass sum rule since the right-hand side has

to be in the interval [−1, 1] to obtain real values for α and β or, respectively, φ1 and φ2.

Since the cosine is an even function we obtain two solutions for φi by taking its inverse.

This is connected to the fact that the orientation of the triangle in the complex plane is

irrelevant. Nevertheless one encounters a subtlety when the sum rule involves square roots

of the masses. Since the square root of a complex number is not uniquely defined, the

orientation of the triangle in the complex plane in fact turns out to be important (see

appendix A).

The basic reasons for the rise of sum rules is that, in most neutrino mass models, the

structure of the physical light neutrino mass matrix arises from products of several mass

matrices. The most generic example is again a type I seesaw mechanism [29–35], where

the light neutrino mass matrix mν = −mDM
−1
R mT

D is generated from a multiplication of

the Dirac mass matrix mD and the heavy neutrino mass matrix MR. If, in this product,

the structure of mD is generated by two flavon couplings, whereas the scale of MR can be

factored out, this would lead to a sum rules featuring a square root, such as
√
m̃1±

√
m̃3 =

2
√
m̃2. On the contrary, if the structure of MR is generated by two flavon couplings,

whereas mD only features a single scale, the resulting sum rule would feature an inverse

power of one, like 2/m̃2 = 1/m̃1 + 1/m̃3 or 1/m̃1 + 1/m̃2 = 1/m̃3. This scheme extends

to basically all kinds of neutrino mass models, see ref. [24] and in the last refs. [3–7] for

more detailed explanations. In table 1 we have collected all the sum rules we found in the

– 6 –
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β=-�·ϕ�+Δχ��

α=-�·ϕ�+Δχ��

β-π
π+α-β

π-α
���

��(���-� ϕ�)��� Δχ����(���-� ϕ�)��� Δχ��

Figure 1. Geometrical interpretation of the mass sum rule.

Sum rule References c1 c2 d ∆χ13 ∆χ23

1 [18, 21, 38–46] 1 1 1 π π

2 [47] 1 2 1 π π

3 [19, 21, 39–43, 48–66] 1 2 1 π 0

4 [67, 68] 1/2 1/2 1 π π

5 [69] 2√
3+1

√
3−1√
3+1

1 0 π

6 [18, 21, 27, 38, 70–72] 1 1 −1 π π

7 [16, 19–21, 65, 66, 73–85] 1 2 −1 π 0

8 [86–89] 1 2 −1 0 π

9 [90] 1 2 −1 π π/2, 3π/2

10 [17, 91] 1 2 1/2 π, 0, π/2 0, π, π/2

11 [23] 1/3 1 1/2 π 0

12 [92] 1/2 1/2 −1/2 π π

Table 1. Summary table of the sum rule we will analyse in the following. The parameters

c1, c2, d,∆χ13, and ∆χ23 that characterise them are defined in eq. (2.7). In sum rule 9 and 10

two possible signs appear which lead to two possible values of ∆χi3. Note that sum rule 10 with

∆χ13 = ∆χ23 = π/2 is the sum rule in [17] which was wrongly interpreted before.

literature and which we will discuss in the following with their parameters c1, c2, d,∆χ13,

and ∆χ23 that characterise them according to eq. (2.7).

We do not want to explicitly discuss any models which lead to the sum rules here.

Note that, however, there is no model which predicts sum rule 11, but it was shown in [23]

that such a sum rule can be predicted in models with a type I seesaw mechanism.
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3 The implications of renormalisation group running and how to com-

pute them

In this section, we will estimate how renormalisation group running may affect a neutrino

mass sum rule. In particular, we will answer the question whether it is possible for a

radiatively corrected sum rule to allow for mass orderings which are forbidden at tree-level

(i.e., if the exact sum rule holds exactly). We then discuss why for some sum rules we can

expect sizeable RGE effects even for a small mass scale which one would not expect from

the RGE running of the parameters itself. But before we come to these two points, we

start with some general remarks.

3.1 The general effect of radiative corrections

The running of neutrino masses and mixing parameters is already known for quite some

time, see, e.g., [37]. Naively one might expect that the running of the mixing parameters

is small and that visible effects only happen if we have a large Yukawa coupling. In the

SM there is no large Yukawa coupling in the lepton sector but in the MSSM, for large

tanβ, the Yukawa couplings can even be of O(1). This expectation will be confirmed later

where we find only small corrections in the SM, while for the MSSM with tan β & 20 the

corrections start to become interesting.

On top of this effect there can be an additional enhancement of the RGE effects induced

by a parametric enhancement. Some corrections, e.g., for the mixing angles and phases,

are proportional to m2/∆m2, where m labels the lightest neutrino mass and ∆m2 is one

of the neutrino mass squared differences. In the quasi-degenerate mass regime this easily

yields an enhancement of O(100).

As discussed in [37], the masses themselves run mostly due to the Higgs wave func-

tion renormalisation which includes the top Yukawa coupling but which is flavourblind and

therefore will not matter for us. But the tan β enhancement and the parametric enhance-

ment for a large neutrino mass scale will directly induce large RGE effects for the Majorana

phases, such that their low-energy values can be very different from the constrained high-

energy values.7

This can be easily seen in our numerical results later on but before we get there we

want to discuss two other questions which can be understood better by estimates instead

of extensive numerical parameter scans.

3.2 Trying to reconstitute forbidden mass orderings

Some sum rules are only viable for one mass ordering at tree-level as it was already noted

before [22–24]. For instance, in what we labelled sum rule 2, where (c1, c2, d,∆χ13,∆χ23) =

7There is some subtle issue involving the mass ordering. Just by the running of the masses itself the

ordering will hardly flip. Nevertheless, by running θ12, for instance, could turn negative at high energies

which one might compensate by exchanging the first and second mass state and hence ∆m2
21 becomes

negative at the high scale which would also lead to kinks and jumps in the running of the angles and

phases. To avoid confusion with this effect we have chosen conventions where the mass hierarchy is always

preserved.

– 8 –
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(1, 2, 1, π, π), only normal mass ordering is allowed. A natural question is whether RGE

corrections can reconstitute the inverted ordering. To answer this question, we can have

a closer look at eq. (2.8). For the RGE-corrected value of cosα, we expand the masses

and find:

cosαtree + δ(cosα) =
(m1 + δm1)2 − 4(m2 + δm2)2 − (m3 + δm3)2

4(m2 + δm2)(m3 + δm3)

≈ m2
1 − 4m2

2 −m2
3

4m2m3
+

m1

2m2m3
δm1 −

(
m2

1 + 4m2
2 −m2

3

)
4m2

2m3
δm2

−
(
m1

2 − 4m2
2 +m3

2
)

4m2m2
3

δm3 , (3.1)

where the mi are the low energy neutrino masses and the δmi their respective RGE cor-

rections. We want to obtain inverted ordering, where m3 < m1 < m2. This implies that

m2
1 − 4m2

2 −m2
3 < −(3m2

2 +m2
3) ∧ 1

m2m3
<

1

m2
3

(3.2)

⇒ cosαtree =

(
m2

1 − 4m2
2 −m2

3

)
4m2m3

< −1

4

(
3
m2

2

m2
3

+ 1

)
< −1 . (3.3)

Thus, inverted ordering is ruled out on tree-level or low energies. Now, if δ(cosα) is suffi-

ciently positive at high energies, we might nevertheless realise this regime. The correction

δmi to the i-th neutrino mass eigenvalue can be estimated as [37]:

δm1 =
1

16π2

(
αRGE + 2Cy2

τs
2
12s

2
23

)
m1 log

µ

MZ
+O(θ13) , (3.4)

δm2 =
1

16π2

(
αRGE + 2Cy2

τ c
2
12s

2
23

)
m2 log

µ

MZ
+O(θ13) , (3.5)

δm3 =
1

16π2

(
αRGE + 2Cy2

τ c
2
23

)
m3 log

µ

MZ
+O(θ13) , (3.6)

where we have assumed the parameters to be constant at leading order, so that we integrate

the β function between the Z-scale MZ and µ > MZ . Note that αRGE ≈ 3 is a function of

gauge and Yukawa couplings, while C = −3/2 in the Standard Model (SM) and C = 1 in

the minimal supersymmetric Standard Model (MSSM).

We can plug this back into eq. (3.1) and use θ23 ≈ π/4 and sin θ12 ≈ 1/
√

3 to find:

δ(cosα) ≈ − Cy2
τ

192π2

3m2
1 − 4m2

2 +m2
3

m2m3
log

µ

MZ
. (3.7)

The first thing to note is that the dependence on αRGE drops out (which is true for all

sum rules). Because of 3m2
1 − 4m2

2 + m2
3 < 0, the corrections are negative for the MSSM

and hence they make cosα even smaller. For the SM, on the other hand, they would have

the right sign — but then we would need Cy2τ
192π2 log µ

MZ
to be of O(1), which implies µ to

be way beyond the Planck scale. Hence, we conclude that the inverted ordering cannot be

reconstituted by RGE corrections for the second sum rule.
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Similar estimates can be done for the other sum rules with missing mass orderings

(i.e., sum rules 2, 3, 4, 5, 10, 12). In fact, for sum rule 12 (c1 = 1/2, c2 = 1/2, d = −1/2,

∆χ13 = π, ∆χ23 = π), the MSSM corrections would have the right sign so that we could

hope to reconstitute the missing ordering in that case, but according to our estimate we

would need for a neutrino mass scale below 1 eV a tan β value of more than 500, which

practically excludes this possibility as well.

3.3 Impact of the RGE corrections for a small mass scale

By looking at the formulas for the RGE effects on the masses and hence on cos α, one

might think that they have barely an impact for a small mass scale since the RGEs are

proportional to the mass scale itself. But we will show that indeed also a small mass

scale can lead to significant corrections for cosα, which happens due to a parametric

enhancement of the form
√

∆m2/m2 that is large for small masses.

As an example we have a look at sum rule 1 with an inverted ordering (m = m3). The

expression for cosα for sum rule 1 reads

cosαtree + δ(cosα) ≈ m2
1 −m2

2 −m2
3

2m2m3
+
Cy2

τ

96π2
log

µ

MZ

(
−3m2

1 +m2
2 −m2

3

m2m3

)
, (3.8)

where we have already used the previous estimates and θ23 ≈ π/4 and sin θ12 ≈ 1/
√

3.

Expressing the masses in terms of m3 via the mass squared differences and neglecting

small terms of order
√
m2

3/∆m
2, we end up with a negative tree-level value:

cosαtree ≈ − ∆m2
21

2m3

√
|∆m2

32|
. (3.9)

For the correction term we find:

δ(cosα) ≈ − Cy
2
τ

96π2
log

µ

MZ

(
2|∆m2

32|
m3

√
|∆m2

32|

)
. (3.10)

From the tree-level term we get a lower bound on m3, given by m3 = 7.6 · 10−4 eV. The

correction has a negative sign in the MSSM — just as the leading order term — which

means that the corrections increase the lower bound on the masses for this sum rule. For

the mass where cosαtree = −1, the correction further decreases the value of cosα and

hence it will be forbidden. In addition, we see that the corrections are enhanced for a small

mass scale due to the small values in the denominator. Therefore the total cos α gets very

sensitive to small changes in m3 (due to RG corrections) and hence the allowed range for

the Majorana phases at the high scale becomes larger.

This correction differs from the leading order term by a factor of A = 4 Cy2τ
96π2

· log µ
MZ

|∆m2
32|

∆m2
21

. To get a better feeling for the size of the effect of the corrections we

plug in tan β = 50, m = 8 · 10−4 eV, and µ = MS = 1013 GeV to get:

A ≈ 0.83 . (3.11)
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This implies an increase of the lower bound of m3 by 83%. For sum rule 4 we find in a

similar way a 83% correction to m3, as well. Other sum rules in both orderings do not

cover such small mass scales, and hence we do not find such an enhancement of the RGE

corrections for them.

Later on, in our numerical scans, we will obtain a lower bound for m3 for sum rule 1

of about m ≈ 9.1 · 10−4 eV, which is a much smaller effect than our estimate suggests. But

indeed for the parameter point we mentioned our one-step approximation for the β functions

is not very good because also the angles, especially θ12, run significantly. Nevertheless, with

our estimates we can easily understand the apparent broadening of the allowed region for

sum rules 1 and 4 which we will see later on.

3.4 The numerical approach

Since the constraints on the mixing parameters are satisfied at different energy scales, their

experimental ranges, cf. table 2, restrict the mixing angles and the mass squared differences

at a low energy scale MZ .8

In contrast, the mass sum rules in fact constrain the Majorana phases as functions of

the lightest neutrino mass which we will label in the following simply as m at a high energy

scale, where we assume the sum rule to be predicted by the respective flavour model. As a

generic choice we set this scale equal to the seesaw scale [29–35], MS ≈ 1013 GeV, and we

then employ a running procedure between MS and MZ . Choosing a different scale instead

would not change our results dramatically, as long as it is not different from MS by several

orders of magnitude, so that the running would extend over a considerably larger or smaller

energy range.

In our scans we will present results for the SM extended minimally by the Weinberg

operator to accommodate neutrino masses, as well as for the MSSM plus the Weinberg

operator. The most relevant supersymmetry (SUSY) parameter for the running is tan β,

which we have chosen to be 30 or 50 in our scans, while the exact mass spectrum of the

SUSY particles plays hardly any role. We have fixed the SUSY scale, where we switch

from SM to MSSM RGEs, to 1 TeV but — again — the dependence on this scale is only

logarithmic and hence very weak. Furthermore we have neglected the SUSY threshold

corrections for the masses and mixing parameters [93–96]. Both for small tan β and in the

SM the running is small, and hence the results in these two cases would be very similar.

In fact the SM results will look very similar to the results without RGE effects at all, cf.

ref. [24], as to be expected from the small size of the relevant corrections.

In order to perform our numerical computations, we have made use of the REAP/MPT

package [36]. To do this we run the parameters up to the high scale MS and calculate there

the modulus of the sum rule [i.e., of the left-hand side of eq. (2.7)], which is minimised with

respect to the low energy Majorana phases such that, if the sum rule holds, the minimum of

the modulus should yield a numerical zero. The mixing angles and mass squared differences

8To be precise, the actual experiments performed detect neutrinos of even lower energies, between MeV

and GeV depending on the source. However, it is a well-known fact that the change of these parameters

between the scale MZ and low energies is negligible, provided that the particle content is that of the SM.
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Parameter best-fit (±1σ) 3σ range

θ12 in ◦ 33.48+0.78
−0.75 31.29→ 35.91

θ13 in ◦ 8.50+0.20
−0.21 ⊕ 8.51+0.20

−0.21 7.85→ 9.10⊕ 7.87→ 9.11

θ23 in ◦ 42.3+3.0
−1.6 ⊕ 49.5+1.5

−2.2 38.2→ 53.3⊕ 38.6→ 53.3

δ in ◦ 251+67
−59 0→ 360

∆m2
21 in 10−5 eV2 7.50+0.19

−0.17 7.02→ 8.09

∆m2
31 in 10−3 eV2 (NO) 2.457+0.047

−0.047 2.317→ 2.607

∆m2
32 in 10−3 eV2 (IO) −2.449+0.048

−0.047 −2.590→ −2.307

Table 2. The best-fit values and the 3σ ranges for the parameters taken from [1]. The two minima

for both θ13 and θ23 correspond to normal and inverted mass ordering, respectively.

are varied within their experimental 3σ-ranges,9 while δ and m are free parameters at the

low scale. We vary the Dirac CP phase δ between 0 and 2π, since it has not been measured

yet,10 and we have also scanned over values for the lightest mass between 1 · 10−4 and

0.15 eV. The upper bound on m is chosen in accordance with the cosmological bound on

the sum of the neutrino masses [97]:∑
mν < 0.17 eV, (3.12)

although we should note that what is displayed is the average limit taken between the two

mass orderings.

One might wonder if the running of the Majorana phases is sufficiently large to alter

the results obtained in previous studies [24]. We will show that the running of the Majorana

phases is negligibly small in the SM, whereas we do see a substantial effect in the MSSM.

Furthermore we will show that the running is not identical for φ1 and φ2.

The running of the Majorana phases is given by [36]:

φ̇1 =
Cyτ
4π2

(
m3 cos(2θ23)

m1s
2
12 sinφ1+m2c

2
12 sinφ2

∆m2
32

+
m1m2c

2
12s

2
23 sin(φ1−φ2)

∆m2
21

)
+O(θ13) ,

(3.13)

φ̇2 =
Cyτ
4π2

(
m3 cos(2θ23)

m1s
2
12 sinφ1+m2c

2
12 sinφ2

∆m2
32

+
m1m2s

2
12s

2
23 sin(φ1−φ2)

∆m2
21

)
+O(θ13) ,

(3.14)

where we have used the abbreviations sij ≡ sin θij and cij ≡ cos θij , and we have neglected

factors proportional to the small quantity
∆m2

21

∆m2
32

. The two formulas are identical except

9In principle we could have employed a similar procedure using their best-fit values at low energies.

However, since the continuous comparison between low- and high-energy scales is numerically expensive,

this would blow up the computational time without significant gain.
10Note that the global fits indicate some finite range at 1σ level, however, this is not a significant tendency

at the moment.
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Figure 2. Predicted values of the Majorana phases in the SM (upper plots) and in the MSSM with

tanβ = 50 (lower plots) as a function of m (which is m3 in the case of sum rule 5). The black lines

represent the predicted low scale values of the Majorana phases without taking RGE corrections

into account, while the red points are the results of our numerical approach.

for the factor c2
12 for φ̇1 instead of s2

12 for φ̇2 in the last term. This small difference is

nevertheless crucial for the difference in the running of the phases. Since c2
12 is about

two times larger than s2
12 for the best-fit value of θ12, and since this term is additionally

enhanced compared to the first term in (3.14) due to the small mass difference in the

denominator, the running of φ1 is considerably stronger than the running of φ2. With

increasing mass scale, the RGE effects drive θ12 to smaller values. This further enlarges

the difference in the running of the Majorana phases, since s2
12 is decreasing whereas c2

12 is

increasing with smaller values of θ12.

Due to the enhancement in the β-functions of the MSSM governed by tan β, we see this

difference best in the running of the phases in the MSSM. As a typical example we compare

the predicted low scale values of the Majorana phases as a function of m coming from sum

rule 5 within the SM and the MSSM for tan β = 50 in figure 2. The black lines represent
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the predicted values for the phases without taking the RGE corrections into account, while

the red points are the results from our numerical approach as described above. For φ1 the

red points strongly deviate from the black lines whereas the points for φ2 gather around

the black lines which supports our argument.

Since the Majorana phases themselves are not directly measurable in the near future,

we will present in the following section our results in terms of predictions for the allowed

range of the effective neutrino mass |mee| as potentially measured in 0νββ. This observable

is explicitly given by:

|mee| =
∣∣m1U

2
e1 +m2U

2
e2 +m3U

2
e3

∣∣ =
∣∣∣m1c

2
12c

2
13e−iφ1 +m2s

2
12c

2
13e−iφ2 +m3s

2
13e−2iδ

∣∣∣ .
(3.15)

In all cases, as explained above, we will compute the predictions for the SM and for the

MSSM (with tan β = 30 and 50), the latter of which can lead to considerably different

predictions.

4 Numerical results for concrete sum rules

In this section we employ the procedure as described in the previous section to obtain

allowed ranges for the smallest neutrino mass eigenvalue m and |mee| for all sum rules we

found in the literature. Note that the numerical values obtained in this section may be

limited by the finite statistics of our numerics. Furthermore, the oscillation parameters

have been updated since the time when ref. [24] has been written, which accounts for the

small differences we obtain compared to that reference. In our plots regions with inverted

mass ordering are drawn in yellow while regions with normal mass ordering are drawn

in blue.

4.1 Sum rule 1: m̃1 + m̃2 = m̃3

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (1, 1, 1, π, π), and the corre-

sponding plots look like:

This sum rule yields (mmin, |mee|min) = (0.026, 0.026) eV ((0.00065, 0.015) eV) for normal

(inverted) mass ordering, if running with the SM particle content is applied, which is

consistent with the values obtained in ref. [24] (see discussion in section 7.7 therein). For

tanβ = 30 (50), the values change to (0.028, 0.026) eV ((0.028, 0.026) eV) for NO and to

(0.00065, 0.014) eV ((0.00075, 0.015) eV) for IO, respectively.
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4.2 Sum rule 2: m̃1 = m̃3 − 2m̃2

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (1, 1, 2, π, π), and the corre-

sponding plots look like:

This sum rule predicts normal ordering only, and with the SM particle content it yields

(mmin, |mee|min) = (0.016, 0.015) eV, if the running is applied. These numbers are con-

sistent with the values obtained in ref. [24] (see discussion in section 7.10 therein). For

tanβ = 30 (50), the values basically remain at (0.016, 0.015) eV ((0.016, 0.015) eV), while

still only NO is allowed.

4.3 Sum rule 3: m̃1 = 2m̃2 + m̃3

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (1, 1, 2, π, 0), and the corre-

sponding plots look like:

This sum rule predicts normal ordering only, and with the SM particle content it yields

(mmin, |mee|min) = (0.016, 0.0042) eV, if the running is applied. These numbers are con-

sistent with the values obtained in ref. [24] (see discussion in section 7.9 therein).11 For

tanβ = 30 (50), the values change to (0.016, 0.0036) eV ((0.016, 0.0036) eV), while still only

NO is allowed.

11However, note that our computation just misses the cancellation region, in contrast to the one presented

in ref. [24]. Nevertheless there is no real discrepancy, since the question whether or not all parameters can

conspire to yield |mee| practically zero depends strongly on the actual oscillation parameters used [98, 99],

and our values are updated compared to the ones uses in publications two years ago.
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4.4 Sum rule 4: m̃1 + m̃2 = 2m̃3

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (1, 1/2, 1/2, π, π), and the

corresponding plots look like:

This sum rule predicts inverted ordering only, and with the SM particle content it yields

(mmin, |mee|min) = (0.00028, 0.015) eV, if the running is applied. These numbers are con-

sistent with the values obtained in ref. [24] (see discussion in section 7.12 therein). For

tanβ = 30 (50), the values change to (0.00030, 0.014) eV ((0.00040, 0.014) eV), while still

only IO is allowed.

4.5 Sum rule 5: m̃1 −
√

3−1
2

m̃2 +
√

3+1
2

m̃3 = 0

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (1, 2√
3+1

,
√

3−1√
3+1

, 0, π), and the

corresponding plots look like:

This sum rule predicts inverted ordering only, and with the SM particle content it yields

(mmin, |mee|min) = (0.024, 0.053) eV, if the running is applied. These numbers are consis-

tent with the values obtained in ref. [24] (see discussion in section 7.14 therein).12 For

tanβ = 30 (50), the values practically remain at (0.024, 0.053) eV ((0.024, 0.053) eV), while

still only IO is allowed.

12Note the typo in the value for mmin in table 4 of that reference.
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4.6 Sum rule 6: the sum rule 1/m̃1 + 1/m̃2 = 1/m̃3

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (−1, 1, 1, π, π), and the

corresponding plots look like:

This sum rule yields (mmin, |mee|min) = (0.010, 0.0016) eV ((0.028, 0.048) eV) for normal

(inverted) mass ordering, if running with the SM particle content is applied, which is

consistent with the values obtained in ref. [24] (see discussion in section 7.1 therein). For

tanβ = 30 (50), the values change to (0.011, 0.0017) eV ((0.011, 0.0017) eV) for NO and to

(0.028, 0.052) eV ((0.028, 0.054) eV) for IO, respectively.

4.7 Sum rule 7: 1/m̃1 − 2/m̃2 − 1/m̃3 = 0

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (−1, 1, 2, π, 0), and the cor-

responding plots look like:

This sum rule yields (mmin, |mee|min) = (0.0044, 0.0046) eV ((0.017, 0.019) eV) for normal

(inverted) mass ordering, if running with the SM particle content is applied, which is

consistent with the values obtained in ref. [24] (see discussion in section 7.8 therein). For

tanβ = 30 (50), the values change to (0.0044, 0.0045) eV ((0.0044, 0.0047) eV) for NO and

to (0.017, 0.018) eV ((0.017, 0.017) eV) for IO, respectively.
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4.8 Sum rule 8: 2/m̃2 = 1/m̃1 + 1/m̃3

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (−1, 1, 2, 0, π), and the cor-

responding plots look like:

This sum rule yields (mmin, |mee|min) = (0.0044, 0.0045) eV ((0.017, 0.015) eV) for normal

[inverted] mass ordering, if running with the SM particle content is applied, which is

consistent with the values obtained in ref. [24] (see discussion in section 7.6 therein). For

tanβ = 30 (50), the values change to (0.0044, 0.0044) eV ((0.0044, 0.0047) eV) for NO and

to (0.017, 0.019) eV ((0.017, 0.018) eV) for IO, respectively.

4.9 Sum rule 9: 1/m̃3 + 2i(−1)η/m̃2 = 1/m̃1

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (−1, 1, 2, π, π/2 or 3π/2),

depending on whether η = 0 or 1, and the corresponding plots look like:

For both η = 0, 1, this sum rule yields (mmin, |mee|min) = (0.0044, 0.0028) eV ((0.017, 0.016) eV)

for normal (inverted) mass ordering, if running with the SM particle content is applied,
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which is consistent with the values obtained in ref. [24] (see discussion in section 7.2 therein).

For tanβ = 30 (50), the values change to (0.0044, 0.0028) eV ((0.0044, 0.0030) eV) for NO

and to (0.017, 0.017) eV ((0.017, 0.016) eV) for IO, respectively.

This may at first look surprising, however, even though the RGEs for the Majorana

phases (and hence the corresponding predictions) are different in both cases, this informa-

tion gets lost when varying over the Dirac CP phase δ, as we have checked numerically.

Turning the argument round, if δ was known at least to some extend, we would potentially

be able to distinguish the two versions of this sum rule.

4.10 Sum rule 10:
√
m̃1 + iη

√
m̃3 = 2

√
m̃2

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (1/2, 1, 2, π or 0 or π/2,

0 or π or π/2), depending on η = 0, 1, 2, and the corresponding plots look like:

For each value of η, this sum rule predicts normal ordering, and with the SM parti-

cle content it yields (mmin, |mee|min) = (0.00093, 0.000014) eV, if the running is applied.

These numbers are consistent with the values obtained in ref. [24] (see discussion in sec-

tions 7.4 and 7.13 therein). For tan β = 30 (50), the values change to (0.00093, 0.000025) eV

((0.00093, 1.5 · 10−6) eV), while still only NO is allowed.

4.11 Sum rule 11: 3
√
m̃2 + 3

√
m̃3 =

√
m̃1

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (1/2, 1/3, 1, π, 0), and the

corresponding plots look like:

This sum rule yields (mmin, |mee|min) = (0.032, 0.022) eV ((0.024, 0.041) eV) for normal

(inverted) mass ordering, if running with the SM particle content is applied. Since this
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sum rule is hypothetical, in the sense that no explicit underlying model is known yet, no

numerical predictions have been listed in ref. [24] (see discussion in section 7.5 therein).

However, the left plot seems quasi identical to the one presented in that reference. For

tanβ = 30 (50), the values change to (0.032, 0.021) eV ((0.032, 0.021) eV) for NO and to

(0.024, 0.044) eV ((0.024, 0.042) eV) for IO, respectively.

4.12 Sum rule 12: 1/
√
m̃1 = 2/

√
m̃3 − 1/

√
m̃2

The parameters for this sum rule are (d, c1, c2,∆χ13,∆χ23) = (−1/2, 1/2, 1/2, π, π), and

the corresponding plots look like:

This sum rule predicts normal ordering, and with the SM particle content it yields

(mmin, |mee|min) = (0.0027, 0.0031) eV, if the running is applied. These numbers are con-

sistent with the values obtained in ref. [24] (see discussion in section 7.3 therein). For

tanβ = 30 (50), the values change to (0.0027, 0.0032) eV ((0.0027, 0.0032) eV), while still

only NO is allowed.

4.13 Discussion

As can be seen, RGEs can have a non-trivial effect on the regions allowed by certain sum

rules. Although we “only” presented scatter plots (for a good reason though, see the

discussion in section 3.4), the tendency is clearly visible. In most cases (i.e., sum rules 1, 2,

4, 5, 6, 7, 8, 11, 12) the effect of the RGEs is to broaden the allowed regions, although in one

case the broadening occured only within the parameter region that is already disfavoured

by current neutrino mass bounds (sum rule 5) and in two cases it only appeared for inverted

mass ordering, since only a small mass range for the normal ordering is allowed in these

sum rules where we do not have an enhancement effect of the RGEs (sum rules 7 and

8). In a few cases (sum rules 3, 9, 10), there is no visible effect in the plots, even though

— numerically — the parameters do run. These three sum rules at least naively seem to

have nothing in common, so that a simple “accidental” cancellation of the running effects

is unlikely. Rather, there is a more fundamental reason: in these sum rules, large RGE

effects are suppressed by the values of the angles and the phases at the high scale.

Furthermore, as anticipated in section 3.4, indeed we have in no case found points

corresponding to a mass ordering that would be forbidden if the sum rule held exactly.

More generally we have seen that the running has in many cases a visible but not a
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dramatic effect. The simple and intuitive reason for this is that the parameters in the

neutrino sector are generally known to run relatively weakly (although exceptions do exist,

see ref. [100] for an example). Thus, even though the sum rules are in reality not anymore

valid at the low scale, the running effects are sufficiently weak that the sum rules are

nevertheless approximately fulfilled for all the points displayed, and thus their predictions

are not spoiled. The small differences seen are negligible compared to the uncertainties

coming from nuclear physics, which are however still not big enough as to destroy the

testability of many groups of neutrino flavour models [24, 26].

Hence, we have shown that the RGE effects do not change the qualitative predictions

of the sum rules, but it should nevertheless not be neglected because they can even have

an impact for a small mass scale. Especially in the regime with a large mass scale, we

have shown that the running effects do broaden the allowed region whereas the absence of

a visible broadening should be regarded as an exception where “accidental” cancellations

take place.

Thus, while there may be further model-dependent corrections present in case a neu-

trino flavour model yields a sum rule, at least RGE corrections do not change the qualitative

predictions of the sum rules. In most case, even the quantitative predictions are hardly

changed, in particular when taking into account that the nuclear physics uncertainties will

always dominate in a realistic measurement. In turn, the predictions by a certain sum

rule are safe up to possible model-dependent effects, whose size can however typically be

estimated or even computed exactly for a given realistic flavour model.

5 Summary and conclusions

We have presented the first explicit and systematic study of the effect that radiative cor-

rections have on the validity of neutrino mass sum rules. Since sum rules are able to yield

very concrete predictions that are realistically testable with near-future experiments, it is

important to take into account possible modifications if we are to truly put the models

developed over more than a decade to the test. We have started this endeavour by numer-

ically computing how the regions in the parameter space allowed by certain sum rules are

affected if renormalisation group running is taken into account.

After briefly reviewing the most general form of a neutrino mass sum rule and a dis-

cussion of the general effect of renormalisation group running, we have explicitly computed

the resulting allowed regions for all neutrino mass sum rules known if we assume the rules

to hold exactly only at the seesaw scale, while correction terms appear when going to lower

energies. The concrete settings we have used were a Standard Model-like scenario (where

running effects are expected to be very small) and two scenarios corresponding to the min-

imal supersymmetric Standard Model (with tan β = 30 and 50, where we expect running

effects to become stronger with larger tan β). While we have explicitly verified these gen-

eral tendencies, our results nevertheless show that the predictions derived from neutrino

mass sum rules, although visibly changed by the corrections, are nevertheless quite stable

due to the smallness of the effect (this holds unless the running was unusually strong).

Three sum rules do not run because of cancellations in the β functions, or at most by such
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a small amount that the resulting changes in the prediction regions in the m–|mee| plane

are basically invisible in the plots. In fact, not only experiments looking for neutrinoless

double beta decay have an impact on neutrino mass sum rules. If accelerator experiments

determine the neutrino mass ordering some cases are directly excluded. Furthermore the

LHC can shed light on the question whether one has to apply the MSSM or the SM β

functions for the neutrino parameters. This is quite a difference because not only the size

of the corrections differs but also the sign of the corrections changes.

Our findings considerably strengthen the position of neutrino flavour models featuring

mass sum rules, since the predictions derived prove to be relatively insensitive to radiative

corrections. This leads to a big advantage of such models compared to others not predicting

any correlation between observables. The only caveat, apart from having a setting where

the running is very strong, is that some concrete models may induce other big corrections

that are completely unrelated to the running effects discussed here. While such effects

may still be able to change the regions predicted by that specific sum rule (or maybe to

even entirely destroy their validity) in that particular setting, typically both their origin

and size would be clear in a concrete model, to the point that their strength may even be

computed or estimated at least.

Thus, our results show that the most generic corrections one could think of are, in fact,

not a problem for neutrino mass sum rules. These types of correlations hence exhibit a

strong handle that can be used to realistically probe many neutrino flavour models already

with upcoming experiments on neutrinoless double beta decay, without the need to wait

for the precision era in neutrino flavour physics.
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A Taking the square root of a complex number

There are some subtleties in treating sum rules which include the square root of the masses.

For a positive real number x one has to take both possibilities of the sign of the square

root into account, i.e.
√
x = ±|

√
x|. For a complex number z = ρ eiχ, χ ∈ [0, 2π], in turn,

one encounters further subtleties. For example, one could either define
√
z ≡ |√ρ| eiχ/2,

where χ ∈ [0, 2π], or one could alternatively define
√
z ≡ |√ρ| eiχ/2, where χ ∈ [−π, π]. In

the first case the result lies within the upper half of the complex plane, where Im(
√
z) > 0

whereas in the second example the result is in the right half of the complex plane, with

Re(
√
z) > 0. Depending on the definition, the final results will differ. And special care has

to be taken that in a numerical setup the two definitions are not messed up. For instance,

REAP suggests the convention Im(
√
z) > 0 while Mathematica uses Re(

√
z) > 0.
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To cover the whole complex plane one should furthermore consider solutions with a

negative sign of the square root. In our first example, this means that we also have to

consider
√
z = −|√ρ| eiχ/2. In the following we will employ the definition of the square

root according to our first example:
√
z ≡ ±|√ρ| eiχ/2, where χ ∈ [0, 2π]. Especially in

the case of mass sum rules which include the square root of the complex neutrino masses

a proper definition of the square roots is essential since the phases of the neutrino masses

have a physical meaning: they are the physical Majorana phases.

An example for a mass sum rule including square roots of the masses is proposed

in [17]. For η = 1 the mass sum rule 10 (see section 4.10) reads√
m̃1 − i

√
m̃3 = 2

√
m̃2, (A.1)

where the masses are all complex. They depend on the complex parameters a, b defined in

the model

m̃1 = (a+ b)2 , (A.2)

m̃2 = a2 , (A.3)

m̃3 = −(a− b)2 . (A.4)

To get a graphical representation of the sum rule we can, e.g., choose the mass m̃3 to be real

and positive, m̃3 = m3, since we can absorb one phase as a global phase factor. The phases

of m̃1 and m̃2 are then the physical Majorana phases. The graphical representation is

given in figure 3. The red dashed circles represent the left hand side of eq. (A.1), while the

blue circle represents its right hand side. We have taken into account both possible signs

for
√
m̃3, which correspond to the centres of the small red circles with radius |

√
m̃1|. The

big blue circle with radius |2
√
m̃2| is centred around the origin. The sum rule is fulfilled

if and only if the circles have an intersection. If we consider only the positive solution

of
√
m̃3, the intersections of the circles in the half-plane where Re(

√
m̃3) < 0 are absent.

Since the angles in the triangles formed by the intersections of the circles are related to the

Majorana phases whose interval is the whole complex plane, we would miss two physical

solutions. As the circles have four intersection points, we therefore conclude that there are

four solutions for the Majorana phases which are in accordance with the sum rule, from

which only two are physical (the other two solutions give the same results).

From this construction we can as well convince ourselves that the three values of η

from sum rule 10 all give the same result. First of all, that the two cases η = 0 and η = 2

are equivalent is obvious since by construction we have chosen as the center of the red

circles ±
√
m̃3 anyway. The third case with η = 1 can be rewritten to√

−m̃1 +
√
m̃3 = 2

√
−m̃2 , (A.5)

which just mirrors the blue and red circles along the horizontal axis (it adds π to the

Majorana phases). So this simply interchanges the two physical and the two unphysical

(redundant) solutions with each other.

Similar considerations can be done for the other sum rules involving square roots, such

that there could be equivalent sum rules with additional signs and factors of i. But in this
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Figure 3. Graphical representation of the sum rule
√
m̃1 − i

√
m̃3 = 2

√
m̃2. The small red dashed

circles represent the left hand side of this equation, the big blue circle represents the right hand side.

study we have quoted only the sum rules we have found in the literature and the underlying

model fixes the concrete form of the sum rule and hence we do not claim that we list all

possible mass sum rules.

Regarding the sum rules which do not include square roots of masses we only obtain two

solutions for Majorana phases, since we chose m̃3 = m3 to be positive via the redefintion

of the phases. Hence we only find one circle around m̃3 in the right complex half-plane

with Re(m̃3) > 0.

In principle more sum rules can arise when taking different signs of the square roots of

the masses into account. For all the reviewed sum rules which include square roots of the

masses we have checked that there is only the quoted combination of signs of the square

roots which leads to a valid sum rule. This means that there is only one possiblity to form

a triangle when we interpret the sum rule geometrically.
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