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1 Introduction

Brane actions are important for understanding many aspects of string physics. However,

their precise interpretation is somewhat ambiguous. A brane is a source for the bulk fields,

which are singular at the brane itself. If these fields are then inserted into the brane action,

the result is divergent. Many applications use a probe approximation, in which the self-

fields of a brane are not included in the brane’s action. This is like a formal limit in which

the number of branes goes to zero.

A more general approach is to interpret the brane action in the context of effective field

theory. Here, all effects are included, and divergences are treated via the usual framework

of EFT [1]. For brane actions, this has been developed in ref. [2], which shows that

renormalization is the appropriate tool even for classical divergences such as those described

above.1 This can even lead to renormalization group flows of the type usually associated

with quantum loops. In this paper we develop this point of view further, and show that it

is useful in resolving some vexing issues in the literature.

In section 2 we present a simple model that illustrates how the framework of ref. [1]

applies to branes. We discuss the matching onto the UV theory in various cases. In

section 3 we apply the EFT point of view to anti-D-branes in a flux background, focusing

primarily on the case of a single antibrane.2 We recover the phenomenon [9, 10] that

in a flux background both branes and antibranes are screened by a background charge

of the opposite sign. Divergences of the screening cloud near the brane are resolved by

matching onto string theory at short distance and are not sources of instability. We show

that possible nonperturbative annihilation of the antibrane and polarization cloud, while

consistent with conservation of brane charge, is inconsistent with the H3 Bianchi identity.

1Related earlier work includes refs. [3–7].
2For a review of the extensive literature on the supergravity descriptions of antibranes in flux backgrounds

and a complete list of references see [8].
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Further, the apparent impossibility of black branes with antibrane charge [11–13] is avoided

by proper account of a Bohm-Aharonov phase. The only allowed antibrane instability is

the NS5-brane instanton of ref. [14].

2 Effective brane actions

We illustrate the principle of effective brane actions with a simple model that captures the

classical divergence problem noted above, and which gives a nice illustration of the general

framework of ref. [1]. In this model, the only bulk field is a free massless scalar φ in d space-

time dimensions. For now the brane is fixed on a p+ 1 dimensional subspace xp+1 = . . . =

xd−1 = 0, and it interacts with the bulk field via a general function of φ and its derivatives,

S = −1

2

∫
ddx ∂Mφ∂

Mφ+

∫
dp+1x‖ Lbrane(φ, ∂) . (2.1)

We will use M,N for all d dimensions, µ, ν for directions tangent to the brane, and m,n

for directions orthogonal to the brane. For given d and p there will be only a finite number

of renormalizable interactions, but in the spirit of effective field theory we keep all interac-

tions, with nonrenormalizable interactions suppressed by the appropriate power of a large

mass scale Λ. We are imagining that the brane is described in a UV complete theory such

as string theory, in which these general interactions will be generated. If we are interested

in amplitudes to some specified accuracy in 1/Λ, then only a finite number of interactions

contribute [1].

This point of view also requires that we keep general interactions in the bulk, but

for simplicity we have omitted these. The form (2.1) is stable under renormalization. To

make things even simpler, we restrict the brane action to terms quadratic in φ, but with

arbitrary derivatives. Again, this form is stable under renormalization.

To begin, we consider the simple interaction 1
2gφ

2. To first order, figure 1a, the am-

plitude for k1 → k2 scattering in the presence of the brane is

T (1) = g(2π)p+1δp+1(k1‖ − k2‖) ≡ gδ‖ . (2.2)

Only momenta parallel to the brane are conserved, and we abbreviate the ubiquitous δ-

function as indicated.

At second order, figure 1b, the amplitude is

T (2) = g2δ‖

∫
drk⊥
(2π)r

1

k2
‖ + k2

⊥
. (2.3)

Here r = d−p−1 is the number of transverse dimensions. We see that this integral diverges

for r ≥ 2. To analyze this, we cut the integral off at k⊥ = Λ, giving∫ Λ drk⊥
(2π)r

1

k2
‖ + k2

⊥
= (−1)nπCrk

r−2
‖ + 2Cr

∞∑
q=0

(−1)q
k2q
‖ Λr−2−2q

r − 2− q
, r = 2n+ 1 ,

= (−1)nCrk
r−2
‖ ln

k2
‖

Λ2
+ 2Cr

∞∑
q=0

q 6=n−1

(−1)q
k2q
‖ Λr−2−2q

r − 2− 2q
, r = 2n . (2.4)
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Figure 1. First, second, and third order terms in the amplitude for φ to scatter from the brane.

Here Cr = Vr−1/2(2π)r and Vr−1 is the volume of the unit Sr−1. To analyze the divergences,

let us note that the dimension of the interaction
∫
dp+1xφ2 is

∆ = d− p− 3 = r − 2 . (2.5)

We include the volume element in the dimension, so negative ∆ is relevant, vanishing ∆ is

marginal, and positive ∆ is irrelevant (nonrenormalizable).

For codimension r = 1, the integral converges. Dropping for now terms suppressed by

powers of Λ (we will return to them later), we have

T (2) =
g2

2k‖
δ‖ . (2.6)

This dominates the leading term (2.2) in the IR, as it should because the interaction is

relevant. Further graphs form a geometric series, beginning with figure 1c, giving in all

T =
2gk‖

2k‖ − g
δ‖ . (2.7)

The interaction is attractive for positive g, consistent with the formation of a bound state.

For codimension r = 2, there is a log divergence,

T (2) = − g
2

4π
δ‖ ln

k2
‖

Λ2
. (2.8)

Again we can sum the geometric series,

T =
1

1
g + 1

4π ln
k2‖
Λ2

δ‖ . (2.9)

The appearance of a logarithm is not surprising because for r = 2 the interaction is

marginal. These logarithms and their RG interpretation were discussed in ref. [2]. In

conventional renormalization theory, we would take Λ → ∞ holding fixed g(µ)−1 =

– 3 –
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g−1 + 1
4π lnµ2/Λ2. In effective field theory, Λ is a fixed UV scale. The divergence means

that the effective field theory calculation is sensitive to UV physics, but only through local

terms. We need to adjust g at this order, to account for the difference between our simple

UV cutoff and the cutoff given by the true UV physics. We will discuss the matching onto

the UV theory below. The logarithm means that the effective coupling g(µ) runs at scales

below Λ. For positive g (attractive) there is again a pole in the IR, indicating a bound

state. For negative g there is a Landau pole in the UV, but this is not a concern because

this is only an effective theory.

For r = 3 the story is similar but the divergence is linear. The interaction is nonrenor-

malizable, so generically one would need more counterterms at higher loops, but in this

simple model the higher loop graphs are just powers of the one loop graph and additional

divergences do not appear.

For r = 4 we have

T (2) = g2C4

(
Λ2 + k2

‖ ln
k2
‖

Λ2

)
δ‖ . (2.10)

Now there are quadratic and logarithmic divergences, so the result depends on two parame-

ters from the UV theory. The quadratic divergence requires adjustment of the original g to

match onto the short distance theory. The log divergence requires a new interaction, (∂‖φ)2.

To make the power counting clearer we define a dimensionless coupling κ00 = gΛr−2, so

that for r = 4,

T (1) =
κ00

Λ2
δ‖ ,

T (2) = κ2
00C4

(
1

Λ2
+
k2
‖

Λ4
ln
k2
‖

Λ2

)
δ‖ . (2.11)

Because the interaction is irrelevant, ∆ = 2, even its leading effect is proportional to a

negative power of Λ. The second order k‖-independent term is of the same order in Λ.

The k2
‖ interaction comes with Λ−4, as appropriate for a ∆ = 4 interaction. Its effect is

suppressed relative to the ∆ = 2 term, but in the spirit of effective field theory we may be

interested in 1/Λ corrections. Note that the first nonanalyticity in k2
‖ comes in at order Λ−4.

Note that all we are doing is solving the classical field equation

∂2
‖φ+ ∂2

⊥φ = −gδr(x⊥)φ , (2.12)

but that this brings in the full machinery of EFT. Note also that with i∂t replaced by ∂2
‖

this is the same as the Schrodinger equation with a δ-function potential [15] (this has also

been noted by the authors of ref. [2]). The bound states that we have found for r = 1, 2

are well-known as bound states in the Schrodinger problem. The case r = 2 is often used

as a simple model of renormalization. Our discussion makes this connection more precise,

and shows further that in general codimension this system also provides a simple model of

EFT. (The cases r = 2, 3 are discussed in ref. [16].)

– 4 –
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In our toy example, where we have artificially restricted to interactions linear in φ2,

the most general brane action would be

Sbrane =
1

2

∫
dp+1x‖

∞∑
l,j=0

∑
m

κlj
Λ2l+2j+r−2

T jm(∂⊥)∂µ1 . . . ∂µlφT
jm(∂⊥)∂µ1 . . . ∂µlφ . (2.13)

Here T jm is a traceless polynomial of degree j, and m runs over these polynomials. In

writing this we have used field redefinition to remove terms containing ∂2
⊥, and have inte-

grated by parts with respect to ∂‖ but not ∂⊥. To study amplitudes to accuracy Λ−s, one

would retain all terms with ∆ ≤ s.
We have omitted the brane’s motion for simplicity, but this is readily included. A

simple model, in which we do not try to keep the full d-dimensional Lorentz invariance,

adds in a transverse collective coordinate Xm(x‖), beginning with the action

S = −1

2

∫
ddx ∂Mφ∂

Mφ+

∫
dp+1x‖

(
−τ

2
∂µX

m∂µXm +
g

2
φ2(x‖, X⊥(x‖))

)
(2.14)

= −1

2

∫
ddx ∂Mφ∂

Mφ+

∫
dp+1x‖

(
−τ

2
∂µX

m∂µXm +
g

2

[
φ(x‖, 0) +Xm∂mφ(x‖, 0) + . . .

]2)
.

This now describes brane motion, and processes where scattering of scalars from the brane is

accompanied by excitation of oscillations of the brane. Locality and translation invariance

imply that undifferentiated Xm’s appear only as arguments of φ. The same principles

of renormalization apply. These principles apply further for brane and bulk actions with

general fields, including all interactions allowed by symmetry.

Note that in T (2) the brane is interacting with its own induced field, so this goes

beyond the probe approximation. We have seen that this contribution is important for the

leading IR physics for r = 1, 2. For larger r, it gives the leading nonanalytic behavior.

However, in many situations only the leading behavior in 1/Λ is of interest. In particular,

for branes of high codimension, the probe approximation T (1) will be sufficient for most

purposes. The point of this exercise is just to illustrate that brane actions can be sensibly

interpreted in the framework of effective field theory.

Given a UV theory (we will consider some examples below), the couplings such as κlj
are determined by calculating some process in both the UV theory and the effective theory

with a given cutoff, and requiring that they agree.3 After this is done, the effective theory

can then be used for any other process. Note that different cutoffs will give different values

for the Λ-dependent terms in integrals such as (2.4). This is compensated by different

values for the couplings in the effective theory. It does not matter what cutoff we use as

long as we are consistent, so in practice one often makes the simplest choice, dimensional

regularization with minimal subtraction, for which∫
drk⊥
(2π)r

1

k2
‖ + k2

⊥
= (−1)nπCrk

r−2
‖ , r = 2n+ 1 ,

= (−1)nCrk
r−2
‖ ln

k2
‖

µ2
, r = 2n . (2.15)

3The idea of matching is discussed in many reviews of effective field theory, e.g. [17, 18].
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The absence of power law divergences does not mean that the corresponding couplings

are not generated: we still need to compensate for the difference between the dimensional

regulator and the true UV physics.

Once the effective action is determined, it can be applied to other situations such as

a brane in a background field φ (we use a bar to denote the background). For example,

the perturbation of the background by the brane is obtained from the same graphs as the

S-matrix, in which one external state is replaced by φ and the other by a propagator, so

the induced field is

φind(k) =
1

k2

∫
ddk′

(2π)d
T (k, k′)φ(k′) . (2.16)

(Using T here is a slight abuse of notation, because k′ has been taken off-shell). For

illustration, using the probe approximation T (1) with the general action (2.13) gives in

position space

φind(x) =

∫
dp+1x′‖

∑
l,j,m

κlj
Λ2l+2j+r−2

T jm(∂′⊥)∂′µ1 . . . ∂
′
µl
φ(x′)×

×T jm(∂⊥)∂µ1 . . . ∂µl
1

(d− 2)Vd−1[(x‖ − x′‖)2 + x2
⊥](d−2)/2

. (2.17)

This diverges at the brane, and the divergence grows with j and l. However, the result

applies only at momenta small compared to Λ and so at distances large compared to Λ−1.

Similarly, to study the motion of the brane in a background field, one can use the probe

action or, if greater accuracy is needed, add in the higher corrections — essentially T again,

but with both external states replaced by φ (we will see an example of this in figure 2b).

For a D-brane, the UV theory is string theory. The amplitude T (1) is the effective

description of the disk with two closed string vertex operators. By calculating this disk

amplitude, and requiring that the effective field theory give the same answer, one deter-

mines the brane couplings with any number of derivatives (the equivalent to the κjl) to

leading order in gs.
4 The amplitude T (2) is the effective description of the annulus with two

closed string vertex operators, and so one would need to match this amplitude to determine

the effective action to order g2
s .

Another situation would be a solitonic brane, such as a magnetic monopole, vortex,

or domain wall in a spontaneously broken QFT. The UV theory would be the unbroken

QFT and the effective theory would describe the brane collective coordinates plus any light

fields. Again one matches a UV calculation to one in the effective description. In the UV

calculation, the key input is the requirement that the fields of the soliton be nonsingular.

One might try to apply the second method to the D-brane, using its supergravity

description together with a condition such as [29] on allowable singularities. However, the

scale of the supergravity solution for a single D-brane is smaller than the string length by a

power of gs, so this is not a good description. (It is a valid description if enough D-branes

coincide, a point we will return to below.) If the supergravity approach did give an answer,

it would likely not agree with the correct string theory result, because string theory knows

4A partial list of papers on the disk effective action is given in ref. [19–28].

– 6 –
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about the scale α′ and supergravity does not. Similarly, if the supergravity approach fails

to give an answer due to singularities deemed bad, this has no physical significance. It

is the matching onto string perturbation theory that is the correct criterion for a good

singularity in the fields external to a D-brane.5

For sufficiently supersymmetric amplitudes, the supergravity calculation will agree

with the string calculation, because of the absence of α′ corrections. This does not mean

that supergravity is an accurate description of a single D-brane. The magic of supersym-

metry sometimes leads to complacency about the validity of effective descriptions. For

example, it has sometimes led to weak/strong dualities being misunderstood as weak/weak

dualities.

3 Antibranes in fluxes

3.1 Application of EFT

De Sitter vacua of string theory may be numerous but they are not simple. (Meta)stability

requires the balance of several forms of energy density [31]. The KKLT construction [32]

begins with a supersymmetric anti-de Sitter vacuum and excites it by adding one or more

antibranes (branes having opposite supersymmetry to the background). The nature of

this supersymmetry breaking has recently been understood in ref. [33]. A body of work

beginning with refs. [34, 35] has argued that the dynamics of anti-D-branes is complicated

and potentially unstable.

In the KKLT model [32], a single antibrane can be sufficient to uplift an AdS vacuum

to a dS vacuum, and this is the case that we focus on here. The scale of the geometry is

large compared to the string length, so EFT should be valid. In the effective description

the only low energy brane degrees of freedom are the gauge fields in the Poincaré direc-

tions and the collective coordinate for the brane motion. The only thing the antibrane can

do to lower its energy is to move to the position of lowest potential, the bottom of the

Klebanov-Strassler (KS) throat.6

To illustrate the use of EFT, consider a potentially problematic issue, the backreaction

on H3. A low-order contribution is shown in figure 2a. A bulk potential has scaling

dimension 4. Its engineering dimension is 0 since we include an α′−4 in its kinetic term,

but this is not what matters for degree of divergence; henceforth ‘dimension’ refers to scaling

unless otherwise specified. The interaction α′−2
∫
d4xC4 has dimension ∆ = 4−4 = 0. The

Chern-Simons interaction α′−4
∫
d10xC4 ∧ F3 ∧H3 has dimension ∆ = 4 + 5 + 5− 10 = 4.

The total dimension of all interactions in figure 2a is then 4, and it follows that

H3 ∝
g2

sα
′2F 3

x4
⊥

, (3.1)

5For M-branes there is no perturbative description of the UV theory, but Matrix theory [30] provides a

construction of the S-matrix to which the effective theory should be matched.
6Of course, if there are massless or light moduli in the vacuum without an anti-branes, adding the

antibrane could destabilize them. See for example ref. [36]. This would be seen in the effective field theory.

– 7 –
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Figure 2. a) Lowest order backreaction on H3. The heavy line is the anti-D3 brane, and the ×
denotes a background field. b) Corresponding contribution to the brane potential.

where a bar again denotes the background field. The x−4
⊥ is from the scaling dimension,

and the α′2 has been inserted by engineering dimensional analysis. We work in the string

metric, so the g2
s is from the H3 propagator.7 There is also a contribution

H3 ∝
gsα
′2H3

x4
⊥

, (3.2)

from a similar graph with gµν in place of F5 and H3 in place of F 3. Even at the limit of

EFT, x⊥ ∼ α′1/2, this is a small perturbation on the background at weak coupling.

The integral of the energy density g−2
s H2

3 diverges quadratically at the brane. The

corresponding graph is figure 2b. The total ∆ of the interactions is 8, and the leading

brane counterterm
∫
d4xF 2

3 has dimension 6, so the divergence again comes out quadratic.

The counterterm is of order

g2
sα
′−1

∫
d4x
√
−g4F

2
3 . (3.3)

The factors of α′ from the vertices and propagators cancel, leaving an α′−1 from the cutoff;

the net result is fixed anyway by the (engineering) dimensions. Again, the numerical

coefficient would come from matching to the string annulus graph. In a similar way we get

a counterterm

α′−1

∫
d4x
√
−g4H

2
3 . (3.4)

The counterterms (3.3), (3.4) are each one order in gs higher than terms that are expected

in the tree level brane action,

gsα
′−1

∫
d4x
√
−g4F

2
3 , g−1

s α′−1

∫
d4x
√
−g4H

2
3 , (3.5)

as expected for the annulus in comparison to the disk.

7The metric and B2 have a g2s in the propagator; while the RR forms do not depend on gs. The bulk

gravitational interaction contains a g−2
s , while the Chern-Simons terms do not depend on gs. The coupling

of the metric to the brane is proportional to g−1
s , while the coupling of the RR form to the brane does not

depend on gs.

– 8 –
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Expanding around a minimum of the potential, one gets a mass correction of order

α′−1
(
g2

s (∂F 3)2 + (∂H3)2
)
X2 (3.6)

from the annulus corrections (3.3), (3.4). Note that this is a dimensional estimate; the

signs and tensor structures are not specified. In particular, the potential will vanish along

Goldstone directions such at the S3 of the Klebanov-Strassler throat. For comparison, the

leading order potential is α′−2g−1
s

∫
d4x
√
−g4. We can estimate the second derivative of

this from Einstein’s equation, giving a mass term of order

α′−2
(
gsF

2
3 + g−1

s H2
3

)
X2 . (3.7)

The mass correction (3.6) is suppressed by gs and also by α′/L2, where L is the charac-

teristic scale of the geometry. The effect of the higher derivative tree-level terms (3.5) is

suppressed by α′/L2 but not by gs.

In summary, self-consistent use of effective field theory shows no large corrections that

would signal a breakdown. Again, the antibrane’s only degree of freedom is its position.

Energetically this is limited to a bounded space, the neighborhood of the bottom of the

Klebanov-Strassler throat, and so there must be a minimum, where all perturbations have

nonnegative mass-squared.

3.2 More on antibrane dynamics

When an antibrane and brane are close together, there is an open string tachyon between

them that leads to their annihilation. However, when the brane dissolves into flux, its

world-volume gauge field is in a confining phase, and strings cannot terminate in flux, at

least perturbatively. There are no degrees of freedom within the EFT that would describe

such an annihilation. But the EFT does describe the dynamics of the fluxes, and a closer

look at these is warranted.

The antibrane can decay via an NS5-brane instanton [14], which mediates the process

D3 +M units of H3 ∧ F3 → M − 1 D3′s . (3.8)

This is a nonperturbative effect. The backreaction in effective field theory does not sig-

nificantly affect the instanton action: the amplitude of figure 1c, for example, is further

reduced by the dissolving of the D3 in the NS5. In particular, the flux-clumping Ansatz of

refs. [10, 12, 37] does not seem to apply.

In the NS5 process [14], the initial configuration is a stack of anti-D3-branes polarized

into an NS5-brane that subtends an angle ψ = ψi. The decay process involves ψ tunneling

through a potential barrier to a lower-energy final state. For a single antibrane, the initial

ψi would be so small that the description breaks down: the initial polarization is negligible.

However, the decay process for a single antibrane still requires an NS5-brane instanton in

order to source the H3 Bianchi identity, so ψ must pass through large values where the

polarization picture applies, and the dominant contribution to the tunneling action comes

from this region. So the KPV result still applies for the single antibrane.

– 9 –
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In ref. [11, 12], it is shown that there is no black antibrane solution with D6 charge

immersed in a background of the opposite sign.8 This suggests that finite temperature

eliminates the barrier to brane-flux annihilation so that it is rapid, rather than proceeding

via tunneling. However, even if this is true, it does not provide any evidence for rapid

decay at zero temperature. It is quite possible for a process to be nonperturbatively slow

at low temperature and rapid at high temperature. Electroweak baryon number violation

is an important example.

In an earlier version of this work we suggested a more rapid, but still nonperturbative,

decay. In fact, this does not exist.9 The remainder of this subsection deals with this. We

will focus on the anti-D6 case, which has been worked out in greatest detail [12, 38–40].

The key field equations are

d(∗10e
−2φH3) = −F0∗10F2 , (3.9)

dF2 = F0H3 + δD6 , (3.10)

dF0 = 0 (3.11)

dH3 = δNS5 . (3.12)

We have translated to string frame for consistency with our earlier discussion. For com-

pleteness every equation should include potential brane sources, but the F1 sources in (3.9)

and the D8 sources in (3.11) will play no role; thus the zero form F0 is constant. The δD6

is summed with sign over brane and antibrane sources, and if the space transverse to the

D6-branes is compact, it should also include negative contributions from O6 planes.

Expanding around this background we have in particular

dδF2 = F0δH3 + δδD6 . (3.13)

The brane induces a δF2 via eq. (3.10), and eq. (3.9) then leads to a δH3. On the r.h.s. of

eq. (3.13) this provides a perturbation to the background D6 density due to polarization

of the flux background. Eqs. (3.9), (3.10) together imply a mass-squared term of order

e2φF 2
0 ≡ µ2 for the perturbations; essentially F2 Higges H3. The perturbations thus

fall exponentially away from the brane. Integrating eq. (3.13) over the transverse space,

the l.h.s. must then vanish, and therefore the r.h.s. does as well: the polarization of the

background screens that of the D6 or anti-D6 completely [9, 10], figure 3.

The total background charge contained within the volume of the screening cloud is of

order

H3F 0/µ
3 ∼ eφF 2

0/µ
3 ∼ 1/e2φF 0 . (3.14)

This is large if the flux is dilute and/or the coupling is weak, so we can treat the screening

due to a single D6 as a perturbation. The screening cloud diverges as we approach the

8At zero temperature, if the antibrane δ-function in figure 3b is smoothed, the density has a volcano

shape with a maximum at the rim. Such a maximum at positive polarization density is forbidden [38–40]

by eqs. (3.9)–(3.11), but this is at the string length and so outside the validity of effective field theory; there

is no problem with the distribution in figure 3b in string perturbation theory. A similar argument is used

in the black case, but only outside the horizon where it is valid if the Schwarzschild radius is greater than

the string length.
9We thank Eva Silverstein and Juan Maldacena for pointing out our error.
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Figure 3. D6 densities in a flux background. In all cases the excess or deficit in the screening

cloud offsets that due to the brane source. a) D6-brane in a flux background. b) Anti-D6-brane in

a flux background. c) Fluctuation of the anti-D6-brane’s screening cloud down to a size of order

the string length.

brane, and due to the nonlinearities of the field equation the expansion of the field near

the origin will contain all negative powers of the distance. However, as in the toy model

example, this is not a problem: the brane effective action gives a precise prescription for

matching the fields external to the brane onto the UV physics at the string length. Further,

we have seen from eqs. (3.1), (3.2) that even very close to the brane the screening charge

density is small, so cannot drive any open string model tachyon.

This discussion suggests that the antibrane can annihilate with its polarization cloud,

D3 + 1 units of H3 ∧ F3 → energy. This was suggested in refs. [10, 37] as a means of

enhancing the NS5 decay; we have argued above that any such effect is slight. The pro-

cess considered in the earlier version of the present work was a local annihilation, D3 +

1 unit of H3∧F3 → energy. We will see that this is forbidden by the H3 Bianchi identity.10

One might have thought that something interesting could happen nonperturbatively.

Consider a fluctuation of the supergravity fields like that shown in figure 3c, where the

screening charge concentrates into a very small volume. Is it possible for the brane and the

flux to mutually annihilate? This would conserve D6 charge, but we must also consider

10In the earlier version, the brane-flux annihilation was linked to the breaking of the heterotic string [41].

That process is consistent with the heterotic string Bianchi and quantization conditions, as shown explicitly

there by a K theory construction.
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the H3 Bianchi identity, which we can think of as a conservation law for the current (∗H)7.

The unit D6 charge of the polarization cloud implies
∫

cloudH3 = 1/F0, or

H3 ∼ δD6/F0 (3.15)

before the annihilation. After the annihilation the cloud is gone, so there is a source

dH3 ∼ δ(t)δD6/F0 . (3.16)

This is geometrically consistent with an NS5-brane instanton, but that would give dH3 ∼
δ(t)δD6. The parametric dependence on F0, which is an arbitrary integer in the natural

units that we are using here, allows us to distinguish the known NS5-brane instanton

process from the new brane-flux annihilation process suggested in version one. We see that

the latter is forbidden.

It is interesting to compare the zero-temperature and high-temperature behaviors. In

the absence of NS5-brane sources H3 = dB2. Integrating the F2 Bianchi identity (3.10) on

an S2 just outside the black brane horizon, we get

∂

∂t

∫
S2

(F2 − F0B2) = 0 . (3.17)

We omit the source term because we will consider a process during which no branes cross

the S2. The conserved quantity (3.17) was termed a Page charge in ref. [42]. As noted there,

it is localized, quantized, conserved, but not invariant under large gauge transformations.

In particular it jumps by F0 under
∫
B2 → 1 +

∫
B2. Thus it is a ZF0 charge, whose

conservation excludes the brane-flux annihilation for a single antibrane.

Imagine starting with an antibrane at zero temperature. In the integral (3.17), the

flux from the antibrane contributes −1. As the black hole forms, the argument of [11, 12]

implies that it must absorb the polarization cloud in order that
∫
S2 F2 becomes positive.

However,
∫
S2(F2−F0B2) remains negative and keeps track of the antibrane number. If we

cool the system back to zero temperature, the antibrane must reappear. The integral of

B2 over the horizon is a sort of hair that can be measured in a stringy Bohm-Aharonov

experiment [43]. Again, their might be a process in which an NS5-brane instanton changes

the Page charge by F0 units, but it cannot change by a single unit. Finite temperature

would be expected to reduce the barrier for the NS5-brane instanton, and might eliminate

it entirely at high enough temperature.11

More globally, imagine an S3 whose equator S2 surrounds the black 6-brane, and which

is elongated in time to incorporate the black brane formation and disappearance. Let the

S3 surround NNS5 NS5 instantons. Then∫
S3

H3 = NNS5 ,

0 =

∫
S3

dF2 = F0NNS5 + ∆ND6 . (3.18)

11We thank Don Marolf for discussions of this point.
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Thus the net D6 charge can only change in multiples of F0. The integer quantization of∫
S3 H3 follows from the Dirac quantization condition [44, 45], independent of the dynamics

internal to the S3.

These considerations extend to other antibranes.12 For the KKLT anti-D3, consider

an S3
a × S3

b , where S3
a is parallel to the bottom of the KS throat and S3

b surrounds the

antibrane in the directions transverse to S3
a, and in time. Then

0 =

∫
S3
a×S3

b

dF5 =

∫
S3
a×S3

b

(F3 ∧H3 + δD3) = MNNS5 + ∆ND3 . (3.19)

Here ND3 includes any D3 charge arising from flux on wrapped 7-branes. The M is the

number of units of F3 flux on S3
a. It plays the same role as F0 above, distinguishing

the known NS5 process [14] in which ∆ND3 = −M from a potentially new brane-flux

annihilation process with ∆ND3 = −1. The latter is forbidden. Thus the metastability

estimates in the original work [32] appear to be correct.13

3.3 Multiple antibranes

For p coincident D-branes, the effective field theory on the brane becomes non-Abelian (the

notation p is standard here, not to be confused with the dimension p of the branes). When

gsp� 1, the brane theory is strongly coupled but the supergravity description is good. For

(anti-)D3-branes, the geometry near the branes is described by an AdS5×S5 throat at the

bottom of the KS throat [48]. When the background is slowly varying on the scale of the

brane radius (gsp)
1/4α′1/2 (meaning that p is parametrically smaller than M in the KKLT

context), one can again use an effective brane description of the system as seen from the

outside. In the UV, this is matched onto the supergravity description of the throat. Modes

in the throat behave as zλ± . Most modes correspond to irrelevant interactions, where λ− =

−∆ is negative and λ+ = ∆+4 is positive (for consistency we continue to use the somewhat

nonstandard convention that ∆ includes −4 from the integration). The λ− mode goes to

zero at the bottom of the throat while the λ+ mode diverges, and we get a good boundary

condition by requiring that the latter vanish. Integrating through the transition between

the throat and the exterior to determine the exterior fields, and matching to an effective field

theory calculation analogous to (2.17), determines the parameters in the effective action.

However, for modes corresponding to relevant interactions, both λ+ and λ− are pos-

itive and both modes grow down the AdS5 throat. In this case one must understand the

nonlinearities there. The ∆ = −1 modes corresponding to fermion bilinears involve the 3-

form fluxes. For these the singularity is resolved by brane polarization [49], giving a good

UV description. The ∆ = −2 modes corresponding to scalar bilinears involve the five-form

flux and scalar deformation of the S5. Resolution of the resulting singularities requires the

branes to move out onto the Coulomb branch [50], and because there is no L = 0, ∆ = −2,

12Gavin Hartnett has given a complementary argument for localized D3’s, that there is no positivity

condition on the black brane flux in this case [46].
13The very recent work [47] has argued that the NS5 decay might be hastened by by passing through a

new set of low energy configurations. The proposed configurations violate the Bianchi identity for the NS5

world-volume gauge field, and so are forbidden.
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scalar bilinear the potential is always negative in some directions and the (anti-)D3 branes

are expelled by the AdS throat. In either case, once the actual physics in the throat is

understood, one can determine the effective field theory.

When both the ∆ = −1 and ∆ = −2 perturbations are present, there is a competition

between these two effects. When the anti-D3-branes and their AdS throat are at the bottom

of a KS throat, this is the case. This has recently been studied in ref. [48]. They concluded

that if a parameter Im(µ) is nonzero, then it is energetically favored for the branes to be

expelled from the AdS throat. They are expelled in an oblique direction (the so-called ‘giant

tachyon’ of [48]), so they are not precisely at the bottom of the KS throat, but energetically

they cannot wander too far from the bottom. The screening effect implies that antibranes

attract at longer distances [9], so their precise arrangement may be intricate, but in any case

our earlier discussion of the single antibrane now applies. If the parameter Im(µ) vanishes

(as may be required by symmetry), then the branes do polarize as in ref. [14] if p is not

too large. Again, this will be subject to nonperturbative decay via the NS5 instanton [14].

4 Conclusions

We have argued that effective field theory allows the use of brane actions beyond the probe

approximation, including the treatment of both classical and quantum divergences. In all

applications of brane systems, this provides a more general and physical interpretation of

the results. In applying this to the antibrane in flux, this validates the assumptions of

ref. [32]: the supersymmetry-breaking antibranes can be described by effective field theory,

and are metastable if their number p is not too large. It also follows that large classes of

non-extremal fuzzball solutions (geometries or stringy solutions) using antibranes should

exist [51, 52].
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