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1 Introduction

Black hole thermodynamics has been an intriguing subject of discussions for decades. In-

spired by the AdS/CFT correspondence, the black hole thermodynamics in the presence

of a negative cosmological constant has become even more appealing. The thermodynamic

property of AdS black holes was first investigated in [1] where it was found that there ex-

ists a Hawking-Page phase transition between the Schwarzschild AdS black hole and pure

AdS space. Later it was further disclosed that in the charged AdS black holes there is a

first order phase transition between small and large black holes in the canonical ensem-

ble [2, 3]. This phase transition was argued superficially analogous to a liquid-gas phase

transition in the Van der Waals fluid. The superficial reminiscence was also observed in

other AdS black hole backgrounds [4–17]. Recently the study of thermodynamics in AdS

black holes has been generalized to the extended phase space, where the cosmological con-

stant is identified with thermodynamic pressure, P = − Λ
8π = 3

8πl2
, in the geometric units

GN = ~ = c = k = 1. l denotes the AdS radius, which is considered varying [18–22] and is

included in the first law of black hole thermodynamics to ensure the consistency between

the first law of black hole thermodynamics and the Smarr formula [23]. With the varying

cosmological constant, the AdS black hole mass is identified with enthalpy and there exists

a natural conjugate thermodynamic volume to the cosmological constant. In the extended

phase space with cosmological constant and volume as thermodynamic variables, it was

interestingly observed that the small-large black hole system admits a more direct and pre-

cise coincidence with the Van der Waals system [24]. More discussions on comparing phase

transitions in AdS black holes with the Van der Waals analogy can be found in [25–39].

It has been an expectation for a long time that black hole thermodynamical phase

transitions can have some observational signatures to be detected. Considering that quasi-

normal modes of dynamical perturbations are characteristic sounds of black holes [40–43],
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it is expected that black hole phase transitions can be reflected in the dynamical perturba-

tions in the surrounding geometries of black holes through frequencies and damping times

of the oscillations.

In asymptotically flat Reissner-Nordstrom (RN) black hole, it was argued that a sec-

ond order phase transition happens where the heat capacity appears singular [44, 45]. This

thermodynamical second order phase transition point was disclosed in the dynamical quasi-

normal modes [46]. The observed relation between thermodynamical phase transitions and

dynamical perturbations is not trivial [47] and was also confirmed in [48]. In AdS black

holes, thermodynamic phase transition in the dual field theory corresponds to the onset of

instability of a black hole, so that quasinormal modes of black holes are naturally connected

with thermodynamic phase transitions of strongly coupled field theories [49]. Besides, the

second-order phase transition of a topological AdS black hole to a hairy configuration was

found reflected in the quasinormal modes of the electromagnetic and scalar perturbations,

respectively [50, 51]. Moreover the phase transition in the charged topological-AdS black

holes was observed in the quasinormal modes of the electromagnetic and gravitational per-

turbations [52]. Different phase properties between the massless BTZ black hole and the

generic nonrotating BTZ hole were also detected in the scalar field as well as the fermonic

field perturbations [53]. Phase transition between scalar and non-rotating BTZ black holes

in three dimensions was also shown in the dynamical perturbation behaviors [54]. In [55],

it was even argued that the thermodynamical stability is closely related to the dynamical

stability for black brane solutions. More recently, the phase transitions before and after

the scalar field condensation in the backgrounds of the AdS black hole and AdS soliton

were further observed in the quasinormal modes of dynamical perturbations [56–59].

It is of great interest to generalize the discussions on the relation between thermody-

namical phase transitions and dynamical perturbations to the Van der Waals like phase

transitions in RN-AdS black holes. In this paper we will concentrate on this topic and

disclose the fact that quasinormal modes can again be a probe of the phase transition

in the Van der Waals analogy system. In section 2 we will first review the analogy of

the small-large black hole system with the Van der Waals system in the extended phase

space. In section 3, we will disclose numerically that different phases can be reflected by

the quasinormal modes of dynamical perturbations. We will summarize our results in the

last section.

2 Phase transition in charged AdS black hole spacetime

We consider a four-dimensional RN-AdS black hole with the metric

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

2, (2.1)

f(r) = 1 +
r2

l2
− 2M

r
+
Q2

r2
, (2.2)

where M and Q are the mass and charge of the black hole. In terms of the black hole

event horizon rH , the mass M , Hawking temperature T , entropy S and electromagnetic
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potential Φ of the RN-AdS black hole can be expressed as

M =
rH
2

(

1 +
r2H
l2

+
Q2

r2H

)

, T =
1

4πrH

(

1 +
3r2H
l2

− Q2

r2H

)

,

S =πr2H , Φ =
Q

rH
. (2.3)

Considering the thermodynamic volume V = 4πr3H/3 and the pressure P = 3/(8πl2),

we can have the first law of black hole thermodynamics in an extended phase space [24]

dM = TdS +ΦdQ+ V dP, (2.4)

where the black hole mass M can be considered as the enthalpy rather than the internal

energy of the gravitational system [23].

In addition, the expression of the black hole temperature can be translated into the

equation of state P (V, T )

P =
T

2rH
− 1

8πr2H
+

Q2

8πr4H
, rH = (3V/4π)1/3. (2.5)

Then the critical point can be obtained from

∂P

∂rH

∣

∣

∣

T=Tc,rH=rc
=
∂2P

∂r2H

∣

∣

∣

T=Tc,rH=rc
= 0, (2.6)

which leads to Tc =
√
6

18πQ , rc =
√
6Q and Pc =

1
96πQ2 .

In the extended phase space, the Gibbs free energy for fixed charge is read

G(T, P ) =
1

4

[

rH − 8πPr3H
3

− 3Q2

rH

]

. (2.7)

Here G is understood as a function of pressure and temperature by considering the equation

of state eq. (2.5).

Figure 1 shows the Gibbs free energy and temperature coincide for small and large

black holes [24]. The curve is the coexistence line of small-large black hole phase transition

of the charged AdS black hole system. The critical point is highlighted by a small circle at

the end of the coexistence line. From figure 1 we can see that to accommodate the phase

transition from small to large black holes, we can choose either the isobaric or isothermal

process. Then, we display the behaviors of the Gibbs free energy in the isobaric process

by fixing P in figure 2 and the Gibbs free energy in the isothermal process by fixing

the temperature of the system in figure 3, respectively. It is clear that both G surfaces

demonstrate the characteristic swallow tail behavior, marking the first order transition in

the system. In addition, the corresponding T − rH and P − rH diagrams of charged AdS

black holes for the isobaric and isothermal processes are also shown in figure 2 and figure 3,

respectively. Both of them contain inflection points and the behaviors are reminiscent of

Van der Waals system [24].
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Figure 1. The coexistence line of charged AdS black hole of small-large black hole phase transition

in P-T plane with a unit black hole charge.

3 Perturbations in the charged AdS black hole spacetime

Now we consider a massless scalar field perturbation in the surrounding geometry of the

four-dimensional RN-AdS black hole background eq. (2.1). The radial part of the pertur-

bation, Ψ(r, t) = ψ(r)e−iωt, is described by the Klein-Gordon equation

ψ′′(r) +

[

f ′(r)

f(r)
+

2

r

]

ψ′(r) +
w2ψ(r)

f(r)2
= 0, (3.1)

where ω indicates the frequency of the perturbation.

Near the black hole horizon rH , we can impose the ingoing boundary condition, ψ(r) ∼
(r−rH)−i ω

4πT . Defining ψ(r) as ψ(r)exp[−i
∫

ω
f(r)dr], where exp[−i

∫

ω
f(r)dr] asymptotically

approaches the ingoing wave near horizon, we can rewrite eq. (3.1) into

ψ′′(r) + ψ′(r)

[

f ′(r)

f(r)
− 2iω

f(r)
+

2

r

]

− ψ(r)
2iω

rf(r)
= 0, (3.2)

so that when r → rH , we can set ψ(r) = 1. At the AdS boundary r → ∞, we need ψ(r) = 0.

With the boundary conditions we solve eq. (3.2) numerically and find the frequencies of

the quasinormal modes by using the shooting method.

We are going to study whether the signature of thermodynamical first order phase

transition in charged AdS black holes, in analogy to the liquid-gas phase transition, can be

reflected in the dynamical quasinormal modes behavior in the massless scalar perturbation.

We will examine the dynamical perturbations in the possible two processes, namely isobaric

process by fixing the pressure P and the isothermal process by fixing the temperature T , to

accommodate the phase transitions between small-large black holes. We will set the black

hole charge to be unity in our following numerical computations.

3.1 Isobaric phase transition

In this case, P (or l) is fixed so that the black hole horizon rH is the only variable in

the system. We have seen the behavior of isobar in the T − rH diagram in figure 2. The

oscillating part is for P < Pc, where a small-large black hole phase transition occurs in
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Figure 2. Left: the Gibbs free energy is given as a function of black hole temperature for P = 0.001.

Solid line(Line1-2) and dotted line(Line3-4) cross at the point “5”, indicating the place where the

phase transition happens. Right: the black hole temperature T is depicted as a function of the

black hole horizon rH for P = 0.001. The dashed line indicates the phase transition temperature.
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Figure 3. Left: the Gibbs free energy is given as a function of pressure P for the isothermal phase

transition with T = 0.0032. Solid line 1-2 and dotted line 3-4 cross each other at the point “5”,

which indicates the phase transition point. Right: the black hole pressure P is depicted as a function

of black hole horizon rH with T = 0.0032. The dashed line indicates the phase transition pressure.

the system. The critical isobar Pc is got by ∂T
∂rH

= ∂2T
∂r2

H

= 0. More information of the

phase transition is reflected in the Gibbs free energy in the left panel of figure 2. The solid

line and the dotted line cross each other at the intersection point marked as “5”, which

indicates the coexistence of two phases in equilibrium. In the right panel this point is

separated into “L5” and “R5”, which have the same Gibbs free energy and the same black

hole temperature T = Tc ≃ 0.02630 for small and large black holes. Combining the Gibbs

free energy and the phase diagram, we find that the physical phase marked between points

“1-5” or “1-L5” is for the small black hole, while physical phase indicated between points

“5-4” or “R5-4” is for the large black hole.

In table 1, we list the frequencies of the quasinormal modes of the massless scalar

perturbation around small and large black holes described between points “1-L5” and “R5-

4” respectively in figure 2 for different temperatures. The frequencies above the horizontal

line are for the small black hole phase while the frequencies below are for the large black

hole phase.

For the small black hole phase, we see that when the temperature decreases from the

phase transition critical point Tc, the black hole becomes smaller. In this process the

real part frequencies change very little, while the absolute values of the imaginary part
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T (10−2) rH ω

2.2 1.190 0.2223-0.02397I

2.3 1.206 0.2222-0.02408I

2.4 1.223 0.2222-0.02421I

2.5 1.242 0.2221-0.02436I

2.55 1.252 0.2221-0.02445I

2.6 1.262 0.2220-0.02454I

2.65 8.774 0.2364-0.1963I

2.7 9.248 0.2403-0.2070I

2.8 10.099 0.2478-0.2262I

2.9 10.871 0.2551-0.2436I

3.1 12.282 0.2695-0.2752I

Table 1. The quasinormal frequencies of massless scalar perturbation with the change of black hole

temperature. The upper part, above the horizontal line, is for the small black hole phase, while the

lower part is for the large black hole phase.

of quasinormal frequencies decrease. This result is consistent with the objective picture

obtained in [60]. Considering that the decay of the test field outside the black hole is due

to the black hole absorption, it is natural to understand that when the black hole becomes

much smaller, its absorption ability decreases so that the field will decay slower and the

oscillation (real part of the perturbation) nearly keeps as a constant.

For the large black hole phase, we find that when the temperature increases from the

critical value Tc, the black hole gets bigger. The real part together with the absolute value

of the imaginary part of quasinormal frequencies increase. The massless scalar perturbation

outside the black hole gets more oscillations but it decays faster. To have a physical picture

of this result, we plot the effective potential behavior near the AdS boundary. In the AdS

boundary, when r → ∞, the tortoise coordinate r∗AdS tends to a constant value [61]. With

the increase of rH , r∗AdS at the AdS boundary becomes smaller. Thus the infinite potential

wall at the AdS boundary will be moved towards the black hole. This will bounce back more

outgoing perturbation towards the black hole, which will add energy to the perturbation

and make the real part frequency increase. On the other hand, when the black hole becomes

bigger, it becomes more greedy and can absorb more things. This can explain that the

absolute value of the imaginary part increases with the black hole size, so that the decay

of the perturbation becomes faster.

The drastically different quasinormal frequencies for small and large black hole phases

are plotted in figure 4. In the left panel, to plot the figure we took the value of the real part

as five significant digits while it was taken as four in table 1, actually the real part varies

little here. From the figure, we can see different slopes of the quasinormal frequencies in

the massless scalar perturbations reveal that small and large black holes are in different

phases. To change the small black hole to be a large one, one has to encounter a phase

transition. The different properties disclosed here in dynamical perturbations reflect the

idea of the thermodynamic phase transitions between small-large RN-AdS black holes.

– 6 –
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Figure 4. The left panel shows the behavior of quasinormal modes for small black holes and the

right panel shows the behavior of quasinormal modes for large black holes. The arrow indicates the

increase of black hole horizon.

3.2 Isothermal phase transition

Fixing the black hole temperature T , we can plot the P − rH diagram of charged AdS

black holes in the right panel of figure 3. For T < Tc there is an inflection point and the

behavior is reminiscent of the Van der Waals system. The critical point can be got from
∂P
∂rH

= ∂2P
∂r2

H

= 0. The behavior of the Gibbs free energy is plotted in the left panel of

figure 3. The cross point “5” between the solid line marked as “1-5” and the dotted line

denoted as “4-5” shows that the Gibbs free energy and P coincide for small and large black

holes. In the right panel of the phase diagram, the point “5” is separated into “L5” and

“R5” for the same Gibbs free energy and the chosen P ≃ 0.00156 where the small and large

black hole can coexist. Combining the Gibbs free energy and the phase diagram, we find

that the physical phase marked between points “1-5” or “1-L5” is for the small black hole,

while physical phase indicated between points “5-4” or “R5-4” is for the large black hole.

In table 2 we list the frequencies of quasinormal modes for small and large black hole

phases in the isothermal phase transition with T = 0.032. The data above the horizontal

line are the frequencies for small black holes, while those below are for large black holes.

We can see that for the small black hole phase, as the black hole horizon grows, the cor-

responding pressure P decreases. In this process the real parts of the frequencies decrease

and the absolute imaginary parts decrease as well. For the large black hole case, with the

increase of the black hole size, the pressure decreases. In this process, the real parts of the

quasinormal frequencies decrease while the absolute values of the imaginary parts increase.

Figure 5 shows the behaviors of the quasinormal modes for small and large holes. The

arrows indicate the increase of the black hole size. It is clear that in small and large black

hole phases, the properties of the quasinormal frequencies are completely different.

In the isothermal phase transition, besides the variable rH , the AdS radius l is another

variable to influence the quasinormal behaviors. They are related by the fixed temperature,

however each of them has independent influence on the quasinormal modes. Now let’s first

examine the independent influence on the quasinormal frequencies by each of these two

parameters. By fixing l (P ), we list the influence of rH on the frequencies for small and

large black holes in table 3 and 4. As the physical interpretation given above, for the small

black hole phase the quasinormal modes exhibits a nearly constant oscillation and decays

slower when the black hole further shrinks. For the large black holes when rH increases,

– 7 –
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P (10−3) rH ω

2.0 1.350 0.2955-0.06489I

1.9 1.359 0.2892-0.06100I

1.8 1.368 0.2827-0.05714I

1.7 1.377 0.2761-0.05328I

1.6 1.387 0.2692-0.04944I

1.5 6.906 0.2860-0.2320I

1.45 7.389 0.2854-0.2400I

1.4 7.880 0.2848-0.2472I

1.35 8.388 0.2840-0.2538I

1.3 8.919 0.2831-0.2599I

1.25 9.480 0.2822-0.2656I

1.2 10.075 0.2811-0.2710I

1.1 11.396 0.2790-0.2809I

Table 2. The quasinormal frequencies of massless scalar perturbations for black holes with different

sizes in the isothermal phase transition with T = 0.032. The upper part, above the horizontal line,

is the frequency for the small black hole phase, while the lower part is for the large black hole phase.
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Figure 5. The left panel shows the behavior of quasinormal modes for small black holes and the

right panel exhibits the behavior of quasinormal modes for large black holes. The arrows in the

figure indicate the increase of the black hole size.

as shown in figure 6 the AdS wall moves closer to the black hole which will bounce back

the outgoing perturbations more strongly to increase the real part of the quasinormal

frequency. At the meantime, the black hole becomes bigger to swallow more things, which

results in the fast decay of the perturbation.

Now let’s turn to discuss the independent effect of l (P ) on the quasinormal frequency

by fixing the black hole size rH . For small and large black hole phases, the results are

listed in table 5 and 6. For both small and large holes, with the decrease of P (the increase

of l), both the real parts and the absolute imaginary parts of quasinormal frequencies

decrease. The effects of increasing l on the quasinormal frequency for small and large holes

are completely different from the effect of increasing the black hole size rH . This can be

– 8 –



J
H
E
P
0
9
(
2
0
1
4
)
1
7
9

P (10−3) rH ω

2.0 1.35 0.29547-0.06489I

2.0 1.40 0.29542-0.06604I

2.0 1.45 0.29540-0.06734I

2.0 1.50 0.29540-0.06875I

Table 3. This table shows how the quasinormal frequencies change as the black hole horizons rH
increase for small black holes. The pressure is fixed as P = 0.002.

P (10−3) rH ω

1.4 7.70 0.2826-0.2415I

1.4 7.88 0.2848-0.2472I

1.4 8.00 0.2862-0.2510I

Table 4. This table shows how the quasinormal frequencies change as black hole horizons rH
increase for large black holes. The pressure is fixed as P = 0.0012.

attributed to different boundary behaviors caused by the increases of l and rH . With the

increase of rH , we saw in figure 6 that the AdS wall moves closer to the black hole. But

when the AdS radius l increases, the AdS wall moves further away, which is illustrated in

figure 7. This results in the mildly bouncing back of the outgoing perturbations when l

increases compared with the increase of rH , which explains the decrease of the real part

of the frequency. But the outgoing perturbation will be mildly bounced back continuously

with the increase of l, while the black hole size is fixed so that the amount of perturbation

it can swallow is fixed. This accounts for the physical reason that the decay becomes slower

when l increases.

Thus we see that the influences given by rH and l on quasinormal frequencies of

the perturbation are different. The competition between these two factors result in the

properties of the quasinormal frequencies for small and large black holes shown in table 2

and figure 5.

To see closely how these two factors compete with each other to influence the quasinor-

mal frequencies, we do a double-series expansion of the frequency ω(rH +△rH , P +△P )
in (△rH ,△P ),

ω(rH +△rH , P +△P )
= ω(rH , P ) + ∂rHω△rH + ∂Pω△P +O(△r2H ,△P 2,△rH△P ). (3.3)

This means that the changes of the quasinormal frequency get two influences, one is from

the change of the black hole size rH , and the other is from the change of the pressure P

(or AdS radius l). For simple discussions in the following, we define ∆1 ≡ ∂rHω△rH and

∆2 ≡ ∂Pω△P .

– 9 –
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rH P (10−3) ω

1.35 1.8 0.2827-0.0578I

1.35 1.9 0.2892-0.0608I

1.35 2.0 0.2955-0.0649I

1.35 2.1 0.3016-0.0690I

Table 5. This table shows how the quasinormal frequencies change as the pressure P increases for

small black holes, where the black hole horizon is fixed as rH = 1.4.

rH P ω

7.880 0.0013 0.2712-0.2294I

7.880 0.0014 0.2848-0.2472I

7.880 0.0015 0.2982-0.2650I

Table 6. This table shows how the quasinormal frequencies change as the pressure P increases for

large black holes, where the black hole horizon is fixed as rH = 11.

10 20 30 40
r*

2

4

6

8

10

VHr*L

Figure 6. The potential is depicted for the fixed pressure P = 0.0014 (or the fixed AdS radius l).

At the AdS boundary, r∗ approaches a constant. With the increase of the black hole size (the solid

line is for rH = 7.7, the dashed is for rH = 7.88 and the dotted line for rH = 8), the constant of r∗

decreases, so that the potential wall moves towards the black hole.

10 20 30 40
r*

20

40

60

80

VHr*L

Figure 7. The potential is depicted for the fixed black hole size rH = 7.88, but different pressure

P (or AdS radius l). At the AdS boundary, r∗ approaches a constant. With the increase of the

pressure P (or the decrease of AdS radius l), the potential wall moves towards the black hole. The

solid line is for P = 0.0013, the dashed line is for P = 0.0014 and the dotted for P = 0.0015.
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rH P (10−3) ω̃ △1 △2

1.35 2.0 0.2955-0.06489I 0 0

1.359 1.9 0.2893-0.06100I 0-0.00022I -0.0062+0.0041I

1.368 1.8 0.2831-0.05713I -0.000013-0.00044I -0.012+0.0082I

1.377 1.7 0.2769-0.05325I -0.000019-0.00066I -0.019+0.012I

Table 7. For the small black hole phase, ω̃ is the quasinormal frequency from the linear approxi-

mation. △1 and △2 are contributions from changes of the black hole size and pressure, respectively.

Considering the equation of state eq. (2.5), the changes of P and rH are not completely

independent. They are related by

dP =

(

1

4πr3H
− Q2

2πr5H
− T

2r2H

)

drH . (3.4)

Thus it is not arbitrary to choose the step length of △p, it should be chosen following the

step length of △rH .

From the frequencies of small black holes shown in tables 3 and 4, we can get the

derivative of ω with respect to rH at rH = 1.35 and P = 0.0002, ∂rHω|rH=1.35,P=0.002 ≃
−0.0007−0.0245I and the derivative of ω with respect to P , ∂Pω|rH=1.35,P=0.002 ≃ 62−41I.

Employing eq. (3.3), we can estimate the quasinormal frequencies, ω̃, for small black holes

from analytic linear expansion. The analytically obtained ω̃ are listed in table 7, whose

behaviors are in good agreement with the numerical computation results listed in table II

with the increase of the black hole size and the decrease of the pressure for small black

holes. Comparing △1 and △2 in table 7, we see that for small black holes, the change of

P (or l) clearly wins over the change of the black hole size, which dominantly contributes

to the behavior of quasinormal frequencies for small black hole phase.

For the large black hole phase, to keep the linear approximation, we consider the small

change of the black hole size. Near P = 0.0014 and rH = 7.880 we have the derivatives

∂rHω|P=0.0014,rH=7.880 ≃ 0.012 − 0.032I and ∂Pω|P=0.0014,rH=7.880 ≃ 135 − 178I. Using

eq. (3.3), we can estimate the quasinormal frequencies ω̃ from the linear approximation for

the large black hole phase as shown in table 8. To keep the linear approximation valid in

eq. (3.3), we just did the estimation in the narrow range of rH . ω̃ keeps the property of

the quasinormal frequencies with the increase of the black hole size and the decrease of the

pressure as listed in table 2 and figure 5 for large black hole phase. △1 and △2 mark the

contributions from the change of the black hole size and the pressure, respectively. It is

clear that for the large black hole case, the change of the horizon size contributes more to

the imaginary part of the frequency change. Thus the perturbation decays faster following

the increase of the black hole size and has little dependence on the change of the pressure

or the AdS length. The contributions of △1 and △2 on the real part of the frequency are

comparable. But the change of P (or l) wins out a little. Thus with the decrease of the P ,

the perturbation oscillation becomes a bit quieter.
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rH P (10−3) ω̃ △1 △2

7.389 1.45 0.2856-0.2405I -0.0059+0.016 0.0068-0.0089I

7.880 1.4 0.2848-0.2472I 0 0

8.388 1.35 0.2841-0.2544I 0.0061-0.016I -0.0068+0.0089I

Table 8. For the large black hole phase, ω̃ is the quasinormal frequency from the linear ap-

proximation. △1 and △2 are contributions from the changes of the black hole size and pressure,

respectively.

1

3

2

4

2 4 6 8 10

0.000

0.002

0.004

0.006

0.008

rH

P

Figure 8. Lines marked 1-4 from the top to the bottom indicate the decrease of the temperature.

Line 2 is for T = Tc. The cross of the dashed lines indicates the phase transition point of the critical

isotherm state T = Tc.

We would like to point out that the quasinormal modes we considered are near the

critical points of the phase transition. In the approximation we see that if the horizon

rH becomes very big, eq. (3.4) will reduce to dP = − T
2r2

H

drH , so that △P will be small

enough and ω(rH , P ) will slowly vary with P , going back to the behavior in table 4. Thus

only near the critical point of the phase transition, we can have the behavior of slopes of

quasinormal modes shown in figure 5, which is consistent with the description in the linear

approximation.

4 The behavior of quasinormal frequencies at the critical point

For the isothermal phase transition, the critical point in figure 1 appears when the isotherm

system starts to have an inflection point at P = P (rH), which is given by

∂P

∂rH

∣

∣

∣

T=Tc,rH=rc
=
∂2P

∂r2H

∣

∣

∣

T=Tc,rH=rc
= 0, (4.1)

where Tc =
√
6

18πQ , rc =
√
6Q and Pc =

1
96πQ2 . At T = Tc, a second-order phase transition

occurs [25]. Figure 8 shows the P − rH diagram for fixed temperature. The line 1 is for

T > Tc, where there is no phase transition in the system. Line 2 marks the inflection point

indicating the critical isotherm state T = Tc. Lines 3 and 4 are of T < Tc. The cross point

of the dashed line shows the small-large black hole phase transition point at the T = Tc.

Figure 9 depicts the free energy at T = Tc, the cross of the dashed lines indicates the phase
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Figure 9. The free energy of the critical isotherm T = Tc. The dashed line indicates the phase

transition point.

P (10−3) rH ω

3.3160 2.376 0.4986-0.49766I

3.3158 2.401 0.4982-0.49768I

3.3157 2.425 0.4979-0.49770I

3.3157 2.449 0.4976-0.49773I

3.3157 2.474 0.4973-0.49776I

3.3157 2.498 0.4969-0.49780I

3.3153 2.572 0.4959-0.49794I

3.3125 2.694 0.4942-0.49826I

Table 9. The quasinormal frequencies of small and large black holes in the critical isothermal

phase transition T = Tc. The data above the horizontal line are the frequencies for small black

holes, while those below are for large black holes.

transition point. The free energy continuously varies from the small black hole phase to

the large black hole phase which shows the character of a second-order phase transition.

The quasinormal frequencies of massless scalar perturbation for different size black hole

near the critical isothermal phase transition point with T = Tc are given in table 9. The

data above the horizontal line are the frequencies for small black holes, while those below

are for large black holes. The quasinormal frequencies for small and large black holes keep

the same behavior as the black hole horizon increases.

For the isobaric phase transition T = T (rH), the phase transition begins to happen at

the critical position,

∂T

∂rH

∣

∣

∣

P=Pc,rH=rc
=
∂2T

∂r2H

∣

∣

∣

P=Pc,rH=rc
= 0. (4.2)

Figure 10 depicts the T − rH diagram for fixed P . Lines from top to bottom correspond

to the decrease of the pressure. Line 2 is for P = Pc. The cross of the dashed lines

indicates the small-large black hole phase transition point in the isobaric phase transition

at the critical point. The free energy at the critical point is depicted in figure 11, where

the dashed line marks the transition point. Table 10 shows the quasinormal frequencies
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rH

T

Figure 10. The lines from top to bottom are for different fixed pressure. Line 2 is for P = Pc.

The cross point of the dashed lines indicates the phase transition point of the isobaric system at

the critical point P = Pc.

0.01 0.02 0.03 0.04 0.05

0.3
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0.9

1.0

T

G

Figure 11. The free energy of the isobaric system at the critical point P = Pc. The dashed line

indicates the phase transition point.

of the small and large black holes. The data above the horizontal line are the frequencies

for small black holes, while those below are for large black holes. From the table we can

see that at the critical point both the small and large black holes’ quasinormal frequencies

have the same behavior as the black hole horizon increases.

From both the critical isothermal and isobaric phase transitions, we learn that at the

critical point the quasinormal frequencies keep the same behavior as the black hole horizon

increases. Below these critical points(P < Pc,T < Tc), quasinormal frequencies can reflect

the phase transition between small and large black holes. Due to our numerical code

efficiency, the difference in quasinormal frequencies can be clearer in a state much below

the critical point.

5 Conclusion

We have calculated the quasinormal modes of massless scalar perturbations around small

and large four-dimensional RN-AdS black holes. We found that when the Van der Waals

analogy thermodynamic phase transition happens, no matter in the isobaric process by

fixing the pressure in the extended space or in the isothermal process by fixing the temper-

ature of the system, the slopes of the quasinormal frequency change drastically different

in the small and large black holes as we increase the value of the horizon radius. This

clearly presents the signature of the phase transition between small and large black holes.
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T (10−2) rH ω

4.32 2.079 0.5006-0.4968I

4.32 2.103 0.5006-0.4969I

4.33 2.168 0.5005-0.4973I

4.33 2.449 0.4976-0.4977I

4.34 2.790 0.4933-0.4991I

4.34 2.889 0.4924-0.5000I

4.34 2.962 0.4919-0.5008I

4.35 3.022 0.4916-0.5016I

Table 10. The quasinormal frequencies of small and large black holes in the isobaric phase transi-

tion at P = Pc. The data above the horizontal line are the frequencies for small black holes, while

those below are for large black holes.

This is one more example shows that the quasinormal mode can provide dynamical phys-

ical phenomenon of the thermodynamic phase transition. Since the quasinormal mode is

expected to be detected and has strong astrophysical interest, its ability to reflect the ther-

modynamic phase transition is interesting, which is expected to disclose the observational

signature of the thermodynamic phase transition.
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