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1 Introduction

The Wess-Zumino (WZ) model was proposed forty years ago [1, 2]. It is the third oldest

supersymmetric field theory in four dimensions.1 It is the first off-shell and renormalised

supersymmetric field theory ever constructed. As such, it has long acted as both a testbed

and a teaching tool for supersymmetry.

We recall that the classical action for the WZ model is2

S[Φ, Φ̄] =

∫
d8z Φ̄Φ +

∫
d6z P(Φ) +

∫
d6z̄ P̄(Φ̄) , (1.1)

where P(Φ) denotes the superpotential

P(Φ) =
m

2
Φ2 +

λ

6
Φ3 , (1.2)

1Only the supersymmetric massive QED of Golfand and Likhtman [3] and the Goldstino model of Volkov

and Akulov [4, 5] appeared before the WZ model.
2We follow the conventions and notation of [6].
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with m and λ constant parameters. The dynamical variables are a chiral scalar superfield

Φ, D̄α̇Φ = 0, and its complex conjugate Φ̄. The superpotential, P(Φ), must be at most

cubic for the model to be renormalisable. The mass parameter m can always be chosen to

be real and non-negative. The coupling constant λ is complex in general. In the massless

case, m = 0, the WZ action is superconformal [1, 2].

This paper primarily focuses on the one-loop quantum corrections to the effective

potential of the WZ model, in particular, on the auxiliary field potential defined below. In

superspace, the full effective action of the WZ model has the generic form [6–8]

Γ[Φ, Φ̄] =

∫
d8z L(Φ, DAΦ, . . . , Φ̄, DAΦ̄, . . . ) +

(∫
d6z Lc(Φ) + c.c.

)
, (1.3)

where L = Φ̄Φ+O(~) is the effective superspace Lagrangian, Lc = P+O(~) is the effective

superpotential,3 with P(Φ) the classical superpotential. In the first term in the right-

hand side of (1.3), DA denotes the superspace covariant derivatives, DA = (∂a, Dα, D̄
α̇).

For fields constant in spacetime, ∂aΦ = ∂aΦ̄ = 0, the effective superspace Lagrangian

decomposes into

L
∣∣
∂aΦ=∂aΦ̄=0

= K(Φ, Φ̄) + F(Φ, DαΦ, D
2Φ, Φ̄, D̄α̇Φ̄, D̄

2Φ̄) , (1.4)

where

K = Φ̄Φ +
∞∑

n=1

~
nK(n) , (1.5)

is the effective Kähler potential, and

F =
∞∑

n=1

~
n
F
(n) , F

∣∣
DαΦ=D̄α̇Φ̄=0

= 0 , (1.6)

is called the effective auxiliary field potential (EAFP). The name for F is appropriate since,

when reduced to components in a constant background, the EAFP is of at least third order

in the auxiliary fields [6, 8]. Modulo total derivatives and terms proportional to ∂aΦ and

∂aΦ̄, the EAFP can always be reduced to the form

F = (DαΦ)(DαΦ)(D̄α̇Φ̄)(D̄
α̇Φ̄)G(Φ, D2Φ, Φ̄, D̄2Φ̄) . (1.7)

This shows that its leading term must have at least four spinor derivatives. The supersym-

metric effective potential is determined by K, F and Lc.

3When all fields are massive, the (chiral) superpotential does not receive any quantum corrections, this

was one of the earliest supersymmetric nonrenormalization theorems [2, 9–14]. When there are massless

fields present, finite corrections to the superpotential can exist [15, 16]. In the massless WZ model, the first

quantum correction to the superpotential occurs at two loops. It was originally calculated in components by

Jack et al. in [17] and then using superfield methods by Buchbinder et al. in [18]. No chiral superpotential

is generated at the quantum level if one starts from the effective action for the massive WZ model and then

considers a massless limit.
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Using the component formulation of the model, the one-loop correction to the effective

potential of the WZ model was calculated in the year following the model’s proposal [19].

Subsequently this was extended by many authors to include more general models, higher

loops and superspace based calculations [20–26]. However, all superspace calculations used

a background chiral superfield that did not include a spinor component,

Φ(θ) = φ+ θ2F , ∂aφ = ∂aF = 0 , (1.8)

thus breaking explicit supersymmetry. In all of these papers, the effective potential was

always computed as a function of the scalars φ, F and their conjugates, and never as a

superspace Lagrangian of the form (1.4). The point is that, within the standard supergraph

technique [14], the problem of computing the quantum corrections to F is analogous to

that of computing quantum corrections with derivatives of fields in ordinary scalar field

theories. Actually, in order to determine F, one has to evaluate quantum corrections

with an arbitrarily large number of spinor covariant derivatives, which appears to be a

daunting task.

The first manifestly supersymmetric calculation of the effective potential of the WZ

model was not until 1993 [7, 8]. These papers developed a superfield heat kernel technique

to compute quantum corrections to the effective potential of the WZ model. The one-loop

effective action was expressed in terms of the Green’s function for a real scalar superfield

in the presence of a background chiral scalar Φ. The heat kernel corresponding to this

superpropagator was computed exactly in the case when Φ satisfies the supersymmetric

constraint ∂aΦ = 0 and has the explicit form

Φ(θ) = φ+ θβψβ + θ2F , ∂aφ = ∂aF = 0 , ∂aψβ = 0 . (1.9)

Due to the presence of the spinor ψβ in the background superfield, the heat kernel derived

in [7, 8] is significantly more complicated than that which occurs when using the non-

supersymmetric background (1.8).

The heat kernel derived in [7, 8] suffices to compute the one-loop supersymmetric effec-

tive potential (1.4) exactly, which will be done in this paper. However, explicit calculations

were given in [7, 8] only for two special structures: the Kähler potential and the leading

four-derivative contribution to the EAFP. The one-loop Kähler potential was found to be

K(1) = − 1

2(4π)2
|P ′′(Φ)|2

(
ln

|P ′′(Φ)|2
µ2

− 2

)
, P ′′(Φ) = m+ λΦ , (1.10)

with µ the renormalisation scale. The four-derivative correction to F was found to be

F
(1)
4-deriv = ζ

|λ|4
(4π)2

(DαΦ)(DαΦ)(D̄α̇Φ̄)(D̄
α̇Φ̄)

|P ′′(Φ)|4 , (1.11)

for some numerical coefficient ζ. This coefficient was not evaluated explicitly in [7, 8], but

an integral representation for ζ was given. In what follows, it will be referred to as ζBKY.

Since the four-derivative correction (1.11) is UV finite, no regularisation was used in [7, 8]

for its evaluation.
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The one-loop Kähler potential, K(1), and the leading contribution to the EAFP,

F
(1)
4-deriv, were subsequently recalculated using supergraphs [27] and a covariant superfield

derivative expansion [28]. Both of these methods are equivalent in spirit to the expansion

described in section 3 and would be cumbersome to take to higher orders.

As pointed out in [7, 8], the Kähler potential is much easier to calculate than the full

supersymmetric effective potential. This is because during the calculation it suffices to

use the condition DαΦ = 0 for the background field, leading to much simpler propagators.

This allows for calculations in more general models and at higher loops [29–31].

Despite the long history described above, many interesting aspects remain to be ex-

plored in the calculation of the one-loop supersymmetric effective potential of the WZ

model. In this paper we further examine the issues arising in the superfield calculation

of the one-loop EAFP. This was motivated by the observation that the direct evaluation

of the integral ζBKY given in [7, 8] did not match the value of ζ found in the later pa-

pers [27, 28], which used dimensional regularisation. We resolve this issue by repeating the

earlier calculations and demonstrating that the result is ambiguous due to conditionally

convergent integrals. However, using dimensional regularisation fixes the result and yields

a coefficient that matches the corresponding term in the earlier component results. We

then proceed to use our techniques to present the first superfield calculation of the full

one-loop EAFP and compare it to the component results.

Before turning to the computational aspects of this paper, we would like to discuss

the functional form of the four-derivative quantum correction (1.11). In the case of the

massless WZ model, the expression on the right of (1.11) becomes λ-independent and

proportional to

(DαΦ)(DαΦ)(D̄α̇Φ̄)(D̄
α̇Φ̄)

(ΦΦ̄)2
= (Dα lnΦ)(Dα lnΦ)(D̄α̇ ln Φ̄)(D̄

α̇ ln Φ̄) . (1.12)

For the massless WZ model, it is more advantageous to define the four-derivative quantum

correction in a somewhat different form as follows

F̃
(1)
4-deriv =

ζ

(4π)2
Ξ , (1.13a)

where we have introduced

Ξ :=
[
(Dα lnΦ)(Dα lnΦ) + (D2 lnΦ)

][
(D̄α̇ ln Φ̄)(D̄

α̇ ln Φ̄) + (D̄2 ln Φ̄)
]

=
(D2Φ)(D̄2Φ̄)

ΦΦ̄
. (1.13b)

It holds that
∫
d8z F̃

(1)
4-deriv ≈

∫
d8z F

(1)
4-deriv modulo the terms proportional to vector deriva-

tives of Φ and Φ̄. The main advantage of the new definition (1.13a) is that

(Dα lnΦ)(Dα lnΦ) + (D2 lnΦ) =
D2Φ

Φ

is a (conformal) primary superfield such that the functional
∫
d8z Ξ is invariant under the

N = 1 superconformal transformations (see [6] for a review on N = 1 superconformal

– 4 –
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field theories). We recall that the massless WZ model is superconformal at the classical

level [1, 2]. Of course, the superconformal symmetry is anomalous in the quantum theory.

However, it is the effective Kähler potential which encodes the information about the

superconformal anomaly. It is quite natural to define the EAFP to be superconformal.

In the massless case, the entire one-loop EAFP may be chosen to be a primary super-

field of the form

F̃
(1)
massless = ΞH

(
Ξ

ΦΦ̄

)
, (1.14)

for some real function H(x) such that H(0) = ζ/(4π)2. It may be seen that
∫
d8z F̃(1)

is invariant under the superconformal transformations. In accordance with [8], the one-

loop effective action of the massless WZ model is invariant under phase transformations

Φ → eiτΦ, with τ a constant parameter.

The structure of this paper is as follows. In section 2 we examine the quantisation

of the WZ model and the structure of its one-loop effective action. In section 3 we use

a brute force approach that emulates the diagrammatics of [27] to calculate the one-loop

Kähler potential and leading term to the EAFP (1.11). In section 4 we use the heat kernel

of appendix A to calculate the one-loop Kähler potential as well as the leading correction

and the full expression for the EAFP. The component results for the effective potential

and their comparisons to the superfield results are given in section 5. In the last section of

this paper summarises the results and looks at the further work that could be done. The

paper contains one appendix that repeats the calculation of [7, 8] to find the heat kernel

for the WZ model. The result is put into the simplest form possible and the Kähler limit

is investigated.

Most of the original results given in this work first appeared in the PhD thesis [32] and

many more details can be found in that text and the accompanying auxiliary Mathematica

files. Section 2 and appendix A are comprised of review material from [6–8].

2 Quantization

The functional integral representation for the effective action (1.3) is [6, 8]

e
i
~
Γ̃[Φ,Φ̄] = N

∫
DϕDϕ̄ e

i
~
S(Ψ)[ϕ,ϕ̄]+i~1/2Sint[ϕ,ϕ̄]−i~−1/2

(

ϕ· δΓ̃
δΦ

+ϕ̄· δΓ̃
δΦ̄

)

, (2.1)

where Γ̃[Φ, Φ̄] = Γ[Φ, Φ̄]− S[Φ, Φ̄] and we have introduced the background chiral scalar

Ψ := P ′′
(Φ) = m+ λΦ (2.2)

and the action

S(Ψ)[ϕ, ϕ̄] =

∫
d8z ϕ̄ϕ+

1

2

(∫
d6zΨϕ2 + c.c.

)
, (2.3a)

Sint[ϕ, ϕ̄] =
λ

6

∫
d6z ϕ3 + c.c. (2.3b)

From the above, it is clear that the effective action depends on Φ only through the combina-

tion Ψ. The only interaction terms in the theory are the cubic vertices of (2.3b), however,

these are not needed in the one-loop calculations of this paper.

– 5 –
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2.1 Propagators of the WZ model

To find the propagators for the model, we note that the Hessian for the free action (2.3a)

is defined by

S(Ψ)[ϕ, ϕ̄] =
1

2
(ϕ, ϕ̄) ·H(Ψ) ·

(
ϕ

ϕ̄

)
, H(Ψ) =

(
Ψ −1

4D̄
2

−1
4D

2 Ψ̄

)(
δ+ 0

0 δ−

)
. (2.4)

Where the functional inner product “·” is a matrix product as well as the integration

over the appropriate superspaces, we suppress the superspace coordinates and use the

chiral/antichiral delta function matrix
(
δ+ 0

0 δ−

)
= −1

4

(
D̄2 0

0 D2

)
δ8 . (2.5)

We can invert the Hessian by writing G(Ψ) = −H(0) · (H(Ψ) ·H(0))−1 and using the block

matrix inverse formula to get

G(Ψ) =




1
16D̄

2 1
�− 1

16
Ψ̄D2 1

�
ΨD̄2 Ψ̄

1
�
D2 1

4D̄
2 1
�− 1

16
Ψ̄D2 1

�
ΨD̄2

1
4D

2 1
�− 1

16
ΨD̄2 1

�
Ψ̄D2

1
16D

2 1
�− 1

16
ΨD̄2 1

�
Ψ̄D2Ψ

1
�
D̄2



(
δ+ 0

0 δ−

)
,

where, for the rest of this paper we use the convention that all derivatives act on all terms

to the right unless bracketed or otherwise indicated. After using equation (2.5), expanding

the inverses as a geometric series and performing some D-algebra, the Green’s function

becomes

G(Ψ) =
1

16

∞∑

n=0

(
D̄2(− 1

�

Ψ̄D2

−4 − 1
�

ΨD̄2

−4 )nD̄2 D̄2(− 1
�

Ψ̄D2

−4 − 1
�

ΨD̄2

−4 )nD2

D2(− 1
�

Ψ̄D2

−4 − 1
�

ΨD̄2

−4 )nD̄2 D2(− 1
�

Ψ̄D2

−4 − 1
�

ΨD̄2

−4 )nD2

)
−1

�
δ8 .

Resumming the above series recovers the result of [8] and we see that the Green’s function

can be written in the form

G(Ψ)(z, z′) =

(
G

(Ψ)
++(z, z

′) G
(Ψ)
+−(z, z

′)

G
(Ψ)
−+(z, z

′) G
(Ψ)
−−(z, z

′)

)
=

1

16

(
D̄2D̄′2 D̄2D′2

D2D̄′2 D2D′2

)
G

(Ψ)
V (z, z′) , (2.6)

where the auxiliary Green’s function G
(Ψ)
V , introduced in [7, 8], satisfies the equation

∆G
(Ψ)
V (z, z′) = −δ8(z, z′) , with ∆ = �− 1

4
ΨD̄2 − 1

4
Ψ̄D2 . (2.7)

This auxiliary propagator can be understood in terms of its heat kernel representation

G
(Ψ)
V (z, z′) = i

∫ ∞

0
U

(Ψ)
V (z, z′|s)ds , (2.8a)

(∂s − i∆)U
(Ψ)
V (z, z′|s) = 0 , U

(Ψ)
V (z, z′|0) = δ8(z, z′) . (2.8b)

In the constant background ∂aΨ = ∂aΨ̄ = 0 that is the main focus of this paper, the

heat kernel factorises to

U
(Ψ)
V (z, z′|s) = Ω(s)U

(0)
V (z, z′|s) , (2.9)

– 6 –
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where U
(0)
V (z, z′|s) = δ4(θ − θ′)U(x, x′|s) is the bosonic heat kernel

U(x, x′|s) = −i

(4πs)2
e

i
4s

(x−x′)2 . (2.10)

The operator Ω(s) = e−
is
4
(ΨD̄2+Ψ̄D2) can be expanded in powers of spinor derivatives

Ω(s) =
1

16
AD2D̄2 +

1

16
ÃD̄2D2 +

1

8
BαDαD̄

2 +
1

8
B̃α̇D̄

α̇D2 +
1

4
CD2 +

1

4
C̃D̄2 + 1 , (2.11)

where A, . . . , C̃ are functions of ∂a, Ψ, DαΨ, (D2Ψ) and their complex conjugates. The

expressions for these functions are derived in detail in appendix A.

2.2 One-loop effective action

The one-loop effective action can be written as the functional determinant obtained by

turning off the interactions (2.3b) and performing the remaining Gaussian functional inte-

gral (2.1) to get

Γ(1) =
i

2
logDet(H(Ψ)/H(0)) =

i

2
Tr log(H(Ψ)/H(0)) , (2.12)

where the functional determinant and trace follow from the inner product defined in (2.4).

In particular, the full functional trace decomposes into a trace over the chiral and antichi-

ral subspaces.

Tr

(
A++ A+−

A−+ A−−

)
= Tr+A++ +Tr−A−− (2.13)

The argument of the log in (2.12) is equivalent to

(H(0))−1 ·H(Ψ) =

(
1 +

1

�

(
0 −1

4D̄
2Ψ̄

−1
4D

2Ψ 0

))(
δ+ 0

0 δ−

)
, (2.14)

and since only the diagonal terms survive the trace (2.13), we obtain

Γ(1) =
i

4
Tr+ log

(
1− D̄2

4�
Ψ̄
D2

4�
Ψ

)
+ c.c. (2.15)

By using both the the cyclicity of the functional trace and the fact that the trace over

chiral superspace is equivalent to the chiral projection4 of the trace over full superspace

4The N = 1 superspace projection operators [33, 34] are

P+ =
D̄2D2

16�
, P− =

D2D̄2

16�
, P0 =

DαD̄2Dα

−8�
=

D̄α̇D
2D̄α̇

−8�
, (2.16a)

PiPj = δij , P0 + P+ + P− = 1 . (2.16b)

– 7 –
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Tr+F++ = Tr(F++P+), we obtain two useful forms for the one-loop effective action

Γ(1) =
i

4
Tr

∞∑

n=1

−1

n

(
(P+Ψ̄

1

�
Ψ)nP+ + c.c.

)
(2.17a)

=
i

2
Tr

∞∑

n=1

−1

n

(
1

�
Ψ̄
D2

4
+

1

�
Ψ
D̄2

4

)n

=
i

2
Tr log

(∆
�

)
. (2.17b)

The first form lends itself to a direct expansion of one-loop effective potential performed in

section 3, which is similar to the graphical expansion undertaken in [27]. The second form,

which can also be derived starting from (2.6), is used for the heat kernel based calculations

of [7, 8] and section 4.

All of the above expressions hold in an arbitrary background; however, for the rest

of this paper we will primarily focus on the effective potential calculations in a constant

background field ∂aΨ = ∂aΨ̄ = 0. We find it convenient to use the following notation for

the various combinations of derivatives of the background fields

a = (DαΨ)(DαΨ) , ā = (D̄α̇Ψ̄)(D̄α̇Ψ̄) , b = (D2Ψ) , b̄ = (D̄2Ψ̄) ,

u2 = Ψ̄Ψ� , F2 = b̄b/64 , G2 = u2 + F2 . (2.18)

For more details, see appendix A.

3 Direct expansion of the one-loop effective action

In this section we expand the expression for the one-loop effective action (2.17a) and only

keep up to the 4-derivative terms. From (2.17a), we see that we need to examine the term

Tn := (P+Ψ̄
1

�
Ψ)nP+ , (3.1)

and its complex conjugate, remembering that all derivatives, unless otherwise indicated,

act on all terms to the right. Since we’re in the effective potential approximation we can

commute all of the �
−1 terms to the left.

We’re interested in only the Kähler potential and the leading term in the auxiliary

potential. To calculate the Kähler potential, we can commute all of the derivatives and

therefore all of the projection operators through the background fields to get

Tn ≈ �
−n(Ψ̄Ψ)nP+ . (3.2)

To find the first term in the auxiliary potential, we want to let a total of four Grassmann

derivatives hit the backgrounds fields. So, most of the chiral projectors will go straight

through to the right; however, there must be a first (from the right) chiral projector that

hits a field, so we will need to sum over all possibilities:

Tn = �
−n

n−1∑

j=0

(P+Ψ̄Ψ)n−j−1 D̄
2D2

16�
(Ψ̄Ψ)j+1P+ . (3.3)

– 8 –
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3.1 Kähler potential

From (2.17a) and (3.2) we see that we can resum the one-loop effective action in the Kähler

approximation to get

Γ(1) =

∫
d8z K(1) =

i

4
Tr

(
log

(
1− Ψ̄Ψ

�

)
(P+ + P−)

)
. (3.4)

Evaluating the trace by moving to momentum space with dimensional regularisation gives

the Kähler potential as

K(1) = − i

2
µ2ε
∫

ddk

(2π)d
1

k2
log

(
1 +

Ψ̄Ψ

k2

)
, (3.5)

where d = 4− 2ε parametrises the dimensional regularisation scheme and µ is the minimal

subtraction renormalisation mass scale. The integral can be performed to obtain

K(1) =
1

2
J(Ψ̄Ψ)

=
µ2ε

2(4π)2−ε

Γ(ε)

(1− ε)2
(Ψ̄Ψ)1−ε =

Ψ̄Ψ

2(4π)2

(
1

ε
+ 2− log

Ψ̄Ψ

µ̄2
+O(ε)

)
,

(3.6)

where µ̄2 = 4πe−γµ2 is the modified minimal subtraction mass scale. This result agrees

with (1.10).

3.2 Four-derivative term

The four derivatives in the first projection operator to hit a field in (3.3) can hit the fields

in many different ways. Summing over the possibilities we get the terms

Tn = �
−n

n−1∑

j=0

(P+Ψ̄Ψ)n−j−1

([
D̄2D2, (Ψ̄Ψ)j+1

] 1

16�

+
[
D̄2Dα, (Ψ̄Ψ)j+1

] Dα

8�
+
[
D̄2, (Ψ̄Ψ)j+1

] D2

16�

+
[
D̄α̇Dα, (Ψ̄Ψ)j+1

] D̄α̇Dα

4�
+
[
D̄α̇, (Ψ̄Ψ)j+1

] D̄α̇D2

8�

)
P+

:= T (1)
n + T (2)

n + T (3)
n + T (4)

n + T (5)
n . (3.7)

We will evaluate each term, T
(1,...,5)
n , in sequence. Note that for n = 1, only the first term

exists, but it is a total derivative and can thus be ignored.

Evaluation of T
(1)
n

. Since all four derivatives come from a single P+, the rest of the

projection operators commute through to the right,

T (1)
n =

1

�n

n−1∑

j=0

(ΨΨ̄)n−j−1

16�

[
D̄2D2, (ΨΨ̄)j+1

]
P+

=
(ΨΨ̄)n−2

16�n+1

n−1∑

j=0

(j + 1)2(Ψ̄b̄+ jā)(Ψb+ ja)P+ .

– 9 –
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Performing the simple sums of polynomials, we find

T (1)
n =

(ΨΨ̄)n−2

16�n+1
n(n+ 1)

(
āa

(n− 1)(3n2 − 2)

15

+ (āΨb+ aΨ̄b̄)
(n− 1)(3n+ 2)

12
+ Ψ̄b̄Ψb

2n+ 1

6

)
P+

= āa
(ΨΨ̄)n−2

16�n+1

n(n4 − 1)

30
P+ + surface terms .

Evaluation of T (2)
n

. The first projection operator provides three derivatives to give

T (2)
n =

1

8�n+1

n−1∑

j=0

(j + 1)2(P+Ψ̄Ψ)n−j−1Ψ̄j−1(Ψ̄b̄+ jā)Ψj(DαΨ)DαP+ .

Since P+DαP+ = 0, the final Dβ to hit a field must come from the next projector on the

right. This yields

T (2)
n = −(Ψ̄Ψ)n−2

8�n+1

n−1∑

j=0

(j + 1)2(Ψ̄b̄+ jā)(Ψb+ (j + 1)a)P+

=
−(Ψ̄Ψ)n−2

8�n+1

n(n+ 1)

60

(
āa(n− 1)

(
12n2 + 15n+ 2

)
+ 5āΨb(n− 1)(3n+ 2)

+ 15aΨ̄b̄n(n+ 1) + 10Ψ̄b̄Ψb(2n+ 1)
)
P+

= −āa(Ψ̄Ψ)n−2

8�n+1

(n− 2)(n− 1)n(n+ 1)(2n− 1)

60
P+ + surface terms .

Evaluation of T
(3)
n

. Although only two derivatives come from the first P+, because

P+D
2P+ = 0 the rest of the derivatives must come from the next projection operator, so

the evaluation of T
(3)
n is very similar to T

(2)
n . The result is

T (3)
n =

(Ψ̄Ψ)n−2

16�n+1

n(n+ 1)(n+ 2)

60

(
3āa(n− 1)(4n+ 2) + 15āΨb(n− 1)

+ 5aΨ̄b̄(3n+ 1) + 20Ψ̄b̄Ψb
)
P+

= āa
(Ψ̄Ψ)n−2

16�n+1

(n− 2)(n− 1)n(n+ 1)(n+ 2)

30
P+ + surface terms .

Evaluation of T
(4)
n

. One Dα and one D̄α̇ from the first projection operator hit fields

leaving

T (4)
n =

1

4�n+1

n−1∑

j=0

(j + 1)2(P+Ψ̄Ψ)n−j−1(Ψ̄Ψ)j(D̄α̇Ψ̄)(DaΨ)D̄α̇DαP+ .

– 10 –
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Since D̄α̇DαP+ = −2i∂αα̇P+, the next derivative can come from any of the remaining

projection operators. We sum over all possibilities and, after some work get the result

T (4)
n = −a(Ψ̄Ψ)n−2

8�n+1

n−1∑

j=0

n−j−2∑

k=0

(j + 1)2(Ψ̄b̄+ (j + k + 1)ā)P+

= −a(Ψ̄Ψ)n−2

8�n+1

(n− 1)n(n+ 1)

12

(
nΨ̄b̄+

ā

10
(8n2 − 5n− 2)

)
P+

= āa
(Ψ̄Ψ)n−2

8�n+1

(n− 2)(n− 1)n(n+ 1)(2n− 1)

120
P+ + surface terms .

Evaluation of T (5)
n

. The evaluation of T
(5)
n is similar to that of T

(4)
n , the final result is

T (5)
n = −(Ψ̄Ψ)n−2

8�n+1

n(n+ 1)(n+ 2)

60

(
āa(16n2 − 13n− 3)

+ 5āΨb(3n+ 1) + 20Ψ̄b̄a(n− 1) + 20Ψ̄b̄Ψb
)
P+

= −āa(Ψ̄Ψ)n−2

8�n+1

(n− 2)(n− 1)n(n+ 1)(n+ 2)

60
P+ + surface terms .

Total. Combining all of the above, we find that

Tn = −(Ψ̄Ψ)n−2

16�n+1

n(n+ 1)

12

(
āa(8n3 + 5n2 − 11n− 2) (3.8)

+ 2āΨb(3n2 + 5n+ 4) + 2aΨ̄b̄(5n2 + 3n− 8) + 2Ψ̄b̄Ψb(4n+ 5)
)
P+ ,

which becomes remarkably simple after integration by parts

Tn = āa
(Ψ̄Ψ)n−2

16�n+1

n2(n2 − 1)

12
P+ + surface terms . (3.9)

We can now calculate the 4-derivative correction to the EAFP

Γ
(1)
4-deriv =

i

4
Tr

∞∑

n=1

−1

n

(
TnP+ + c.c.

)
.

Using the expression of Tn after integration by parts (3.9) and moving to momentum space

to diagonalise the trace, we have

Γ
(1)
4-deriv =

1

(4π)2

∫
d8z

āa

32

∫ ∞

0
dk

k3

(k2 + Ψ̄Ψ)4
. (3.10)

Performing the final momentum integral yields a result of the form Γ
(1)
4-deriv =

∫
d8z F4-deriv,

where F4-deriv is given by (1.11) with

ζ =
1

384
, (3.11)

in agreement with the calculations of [27] and [28].

If, instead, we use (3.8), then, provided we integrate by parts before performing the

momentum integral, we obtain the same result. However, if we leave the integration by

– 11 –
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parts until last, then each of the four terms in the momentum integral are IR divergent. In

which case, the momentum integrals can be performed if, e.g., we regularise with dimen-

sional regularisation. The result is

Γ
(1)
4-deriv =

(4πµ2)ε

Γ(2− ε)(4π)2

∫
d8z

1/96

(Ψ̄Ψ)2

(
āa

2

(
1

ε
− log(Ψ̄Ψ)− 13

2

)
(3.12)

+ (āΨb+ c.c. )

(
1

ε
− log(Ψ̄Ψ) + 1

)
− Ψ̄b̄Ψb

2

(
5

ε
− 5 log(Ψ̄Ψ)− 9

))
.

Integrating by parts, the 1
ε and log terms cancel and we once again recover the result (1.11)

with ζ given by (3.11).

4 Auxiliary field potential via the heat kernel

In this section we examine the one-loop effective action of the WZ model starting with its

expression in terms of the heat kernel U
(Ψ)
V (s) studied in appendix A. As shown in [7, 8],

the one-loop effective action may be represented in the form

Γ(1) =
i

2
Tr log

(
∆

�

)
= − i

2
Tr log(G

(Ψ)
V ) = − i

2

∫ ∞

0

ds

s
TrU

(Ψ)
V (s) . (4.1)

In the effective potential limit, where ∂aΦ = ∂aΦ̄ = 0, it reduces to

Γ(1) = − i

2

∫
d8z

∫ ∞

0

ds

s

(
A(s) + Ã(s)

)
U(x, x′|s)

∣∣∣
x′→x

, (4.2)

which is the sum of the Kähler and auxiliary potentials

Γ(1) =

∫
d8z

(
K(1) + F

(1)
)
. (4.3)

In the following subsections we evaluate the Kähler potential to check the above and

to establish some notation. We then evaluate the four-derivative term in the auxiliary

potential, first using the integral introduced in [7, 8]

J(s) :=
2

s

∫ ∞

0
sin(p)e−p2/sdp =

√
π

s
e−s/4erfi

(√
s

2

)
, (4.4)

and then using other methods to show that the term is actually conditionally convergent.

Finally we use the lessons learnt in the previous subsections to evaluate the full auxiliary

potential.

4.1 Kähler potential

In the Kähler approximation (see section A.3) the diagonal of the heat kernel reduces to

U
(Ψ)
V (z, z|s) = (cos su− 1)(P+ + P−)δ

4(θ − θ′)U(x, x′|s)
∣∣
z′→z

= 2Ψ̄Ψ
cos su− 1

u2
U(x, x′|s)

∣∣
x′→x

,

(4.5)

– 12 –
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where u2 = Ψ̄Ψ� and U(x, x′|s) is the dimensionally regularised bosonic heat kernel defined

in (A.25).

The proper-time integral in (4.1) can then be evaluated by first moving to momentum

space. After Wick rotating and integrating out the angular parts this leads to the following

expression for the Kähler potential

K(1) =
−µ2ε

(4π)2−ε

2

Γ(2− ε)

∫ ∞

0

∫ ∞

0
k1−2ε

(
cos
(
sk |Ψ|

)
− 1
)
e−k2sdkds . (4.6)

The remaining integrals can be performed in either order to get the result

K(1) =
1

2
J(Ψ̄Ψ) =

Ψ̄Ψ

2(4π)2

(
1

ε
+ 2− log

Ψ̄Ψ

µ̄2
+O(ε)

)
, (3.6)

which matches (3.6).

Alternatively, we can follow [7, 8] and swap dimensional regularisation for a proper-

time cutoff s0 → 0. Performing the momentum integral in (4.6) now gives

K(1) =
ΨΨ̄

2(4π)2

∫ ∞

is0

ds

s
J(sΨΨ̄) , (4.7)

where J is defined in (4.4). This integral can be evaluated in terms of a hypergeometric

function and expanded around s0 = 0 to give

K(1) =
ΨΨ̄

2(4π)2

(
− log(is0µ

2eγ) + 2− log

(
Ψ̄Ψ

µ2

)
+O(s0)

)
, (4.8)

for some renormalisation scale µ2.

4.2 Four-derivative term

To find the coefficient of the leading term in the auxiliary potential, we need to evalu-

ate (4.2) keeping only the four-derivative terms in the expression for A(s)+ Ã(s). Expand-

ing the results of section A.2 gives

A(s) + Ã(s)
∣∣∣
4-deriv

=
sāa

512u3

((
7− 10

3
s2u2

)
sin(su) + su

(
s2u2 − 7

)
cos(su)

)

+
s(Ψ̄b̄a+ c.c. )

64u3

(
su cos(su)−

(
1− s2u2

3

)
sin(su)

)
(4.9)

+
sΨ̄b̄Ψb

64u3

(
sin(su)− su cos(su)

)
.

A general term in (4.9) is of the form A = su−3A(su) and its contribution to the

effective potential (4.2) is

Γ(1)
∣∣
A
= − i

2

∫
d8z

∫ ∞

0

ds

s

s4

(su)3
A(su)U(x, x′|s)

∣∣∣
x′→x

. (4.10)
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By using the d-dimensional momentum space representation for U(x, x′|s), eq. (A.25), then
integrating out the angular parts of the momentum integral, Wick rotating and rescaling

the proper-time integral, we obtain

Γ(1)
∣∣
A
=

µ2ε

Γ(2− ε)(4π)d/2

∫
d8z

(Ψ̄Ψ)2+ε

∫ ∞

0

ds

s1−2ε

∫ ∞

0

dq

q2ε
A(q)e−

q2

s , (4.11)

where we’ve defined q = s|k|
√
Ψ̄Ψ.

Removing the dimensional regularisation, it is now straightforward to use the defini-

tion (4.4) in order to perform the momentum integral in (4.11) to write the four derivative

contribution as

Γ
(1)
4-deriv =

1

64(4π)2

∫
d8z

(Ψ̄Ψ)2

∫ ∞

0

ds

s

(
sΨ̄b̄Ψb

4

(
(s+ 2)J(s)− 2

)

− s(Ψ̄b̄a+ c.c. )

24

((
s2 + 4s+ 12

)
J(s)− 2(s+ 6)

)

+
sāa

384

((
3s3 + 2s2 + 44s+ 168

)
J(s)− 2

(
3s2 + 8s+ 84

)))
.

Each of the three terms in the above proper-time integral are IR divergent, but the di-

vergences cancel when combined using integration by parts. This gives a result of the

form

F4-deriv = ζ
(DαΦ)(DαΦ)(D̄α̇Φ̄)(D̄

α̇Φ̄)

(4π)2 |m+ λΦ|4
, (1.11)

where ζ = ζBKY is defined by the integral

ζBKY =
1

1024

∫ ∞

0
ds

(
1− J(s) +

s

2
(J(s) + 4)− s2

4
(5J(s) + 1) +

s3

8
J(s)

)
. (4.12)

Up to some typographical errors, this matches equation (5.15) of [7, 8]. This integral can

be evaluated to give the numerical result ζBKY = − 1
64 , which clearly does not match the

value of ζ = 1
384 found in the previous section.

Alternatively if we first integrate (4.9) by parts to get the expression

A(s) + Ã(s)
∣∣∣
4-deriv

≈ sāa

1536u3

(
3(1 + 2s2u2) sin(su)− (3− s2u2)su cos(su)

)
, (4.13)

which holds up to surface terms, we can then evaluate (4.11) without regularisation, as in

the last paragraph, to find the four-derivative correction (1.11) with

ζ =
1

1024

∫ ∞

0
ds

(
J(s)− 1 +

s

2

(
3J(s) +

8

3

)
− s2

4

(
3J(s) +

1

3

)
+
s3

8

1

3
J(s)

)
.

This result is different from (4.12) and evaluates to the numerical value of 1
192 which agrees

with neither of the previously found values for ζ.

The problem lies in the fact that the unregularised (ε → 0) integrals are only con-

ditionally convergent and not invariant under the rescaling required to obtain (4.11). If

– 14 –
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we don’t perform the rescaling then it is convenient to try exchanging the order of the

proper-time and momentum integrals, as it leads to simpler intermediate expressions that

are free from the error functions J(s). However, when the order of the unregularised inte-

grals is exchanged the result of the integration changes. This is a clear sign of conditional

convergence.

If we keep the dimensional regularisation used in (4.11) then we consistently get the

correction (1.11) with ζ = 1
384 . We demonstrate this with two possible order of operations.

First, we start with (4.13) and perform the proper-time integral to get

Γ
(1)
4-deriv =

µ2ε

Γ(2− ε)(4π)d/2

∫
d8z

āa

32

∫ ∞

0
dk

k3−2ε

(k2 + Ψ̄Ψ)4
.

This momentum integral is clearly equivalent to (3.10) and converges for −2 < ε < 2, so

it does not need dimensional regularisation. We recover the result (1.11) with ζ = 1
384 .

However, if we start with (4.9) and leave the integration by parts until the very end, then

we definitely need the dimensional regularisation. Once again, for simplicity, performing

the proper-time integral first, we find

Γ
(1)
4-deriv =

(4πµ2)ε

Γ(2− ε)(4π)2

∫
d8z

Ψ̄Ψ

8

∫ ∞

0

dk

k1+2ε

(
āa

12

5Ψ̄Ψ− 4k2

(k2 + Ψ̄Ψ)4

− aΨ̄b̄+ c.c.

3(k2 + Ψ̄Ψ)3
+

bb̄

4(k2 + Ψ̄Ψ)2

)
.

The momentum integrals are IR divergent (i.e., in dimensional regularisation, they converge

for −2 < ε < 0) and we get the ε-expansion

Γ
(1)
4-deriv =

(4πµ2)ε

Γ(2− ε)(4π)2

∫
d8z

1/96

(Ψ̄Ψ)2

(
āa

2

(
− 5

ε
+ 5 log(Ψ̄Ψ)− 21

2

)

+ (aΨ̄b̄+ c.c. )

(
2

ε
− 2 log(Ψ̄Ψ) + 3

)
− 3Ψ̄b̄Ψb

2

(
1

ε
− log(Ψ̄Ψ) + 1

))
.

This looks similar to (3.12), however the coefficients of the terms are different. Nevertheless,

integrating by parts yields the same (1.11) with ζ = 1
384 .

We note that in [7, 8], the action of A(s) + Ã(s) on U(x, x′|s) was not evaluated by

going to momentum space, but rather by series expansion and using (A.4). This leads

to essentially identical results and problems to those discussed above. See the auxiliary

Mathematica documents in [32] for more details of this calculation and for other calculations

using different regularisation schemes.

4.3 Full auxiliary field potential

In the previous subsections, we have seen that the most robust and compact way to calculate

the leading correction to the auxiliary potential is to use the dimensionally regularised

heat kernel, integrate by parts first, then perform the proper-time integral and finally the

momentum space integral. We will now follow this procedure to calculate the full one-

loop EAFP.
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The first step is to use integration by parts to get A(s) + Ã(s) into a usable form.

Starting with the results (A.23) we find, after some work,

ΨC(s) + Ψ̄C̃(s) ≈ −2iΨ̄Ψ
sin(su)

u
− i

āa

b̄b

((
s2u2 − 1

2u
− u

F2

)
sin(su)

− 3s

2
cos(su) +

G

F

(
cos(sF) sin(sG)

F
+

sin(sF) cos(sG)

G

))
,

which can then be integrated using (A.9a) to get

A(s) + Ã(s) ≈ 2Ψ̄Ψ
cos(su)− 1

u
(4.14)

+
āa

b̄b

(
s2

2

(
cos(su) +

sin(su)

su

)
+

cos(sF) cos(sG)− cos(su)

F2

)
.

The first term is derivative free and corresponds to the Kähler approximation discussed

above. The second term contains all of the terms that generate the auxiliary potential,

starting with four derivative term (4.13).

Equation (4.14) is an amazingly simple expression, considering the complexity of the

results found in appendix A, and is quite easily integrated to give the low-energy effective

action. The general structure is

Γ(1) =
µ2ε(4π)−d/2

Γ(2− ε)

∫
d8z

∫ ∞

0
dk k3−2ε

∫ ∞

0

ds

s

(
A(−is, u) + Ã(−is, u)

)
e−k2s .

Performing the proper-time integral yields

Γ(1) =
µ2ε(4π)−d/2

Γ(2− ε)

∫
d8z

∫ ∞

0
dk k3−2ε

[
2Ψ̄Ψ

log(1 + Ψ̄Ψ/k2)

2k2Ψ̄Ψ

+
āa

b̄b

(
−1

(k2 + Ψ̄Ψ)2
+

2 log( Ψ̄Ψ
k2

+ 1)− log
((

Ψ̄Ψ
k2

+ 1
)2 − 4F2

k2

)

4F2

)]
.

Factorising the final logarithm term, the momentum integral can then be evaluated to get

Γ(1) =
µ2εΓ(ε)

(4π)d/2Γ(2− ε)

∫
d8z

[
Γ(1− ε)

2(1− ε)
(Ψ̄Ψ)1−ε − āa

2b̄b

(
Γ(2− ε)

(Ψ̄Ψ)ε

+
Γ(1− ε)

(2− ε)

2(Ψ̄Ψ)2−ε − (Ψ̄Ψ + 2F)2−ε − (Ψ̄Ψ− 2F)2−ε

4F2

)]
.

Expanding around d = 4 and simplifying we get our result

Γ(1) =

∫
d8z

(
K(1) + F

(1)
)
, (4.15)

where the Kähler potential K(1) was given in (3.6) and the EAFP is

(4π)2F(1) =
1

4

āa

b̄b

(
3−

(
1 +

16Ψ̄2Ψ2

b̄b

)
log

(
1− b̄b

16Ψ̄2Ψ2

)

− 16Ψ̄Ψ√
b̄b

coth−1

(
4Ψ̄Ψ√
b̄b

))
.

(4.16)
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This has the series expansion

(4π)2F(1) =
āa

4

∞∑

n=1

1

n(n+ 1)(2n+ 1)

(b̄b)n−1

(4Ψ̄Ψ)2n
(4.17)

=
āa

Ψ̄2Ψ2

(
1

384
+

1

30720

b̄b

(Ψ̄Ψ)2
+

1

1376256

(b̄b)2

(Ψ̄Ψ)4
+ . . .

)
,

where the natural expansion parameter is the dimensionless

p2 =
b̄b

(4Ψ̄Ψ)2
. (4.18)

Using integration by parts to remove āa from the EAFP essentially requires that we

integrate F (1) with respect to p twice. This yields an expression with dilogarithms

(4π)2F(1) =
1

4

∞∑

n=1

1

n(n+ 1)(2n+ 1)(2n− 1)2
(b̄b)n

(4Ψ̄Ψ)2n
(4.19)

=
Ψ̄Ψ

36

(
8 + 3pLi2(p)− 3pLi2(−p)

− 1

2p2

(
(p+ 1)

(
11p2 + 7p+ 2

)
log(p+ 1) +

(
p→ −p

)))
. (4.20)

This is reminiscent of [28, 30, 35] where, for a N = 2 SYM theory written in terms of N = 1

superfields, the one-loop Kähler potential was twice integrated to recover the N = 2 non-

holomorphic potential. Their results were also expressed using dilogarithms.

5 Comparisons to the component results

Note that in the above two sections, the complicated and often poorly behaved expressions

simplified enormously after unifying the various terms through integration by parts. In the

component form of the effective potential with the background

Φ = φ+ θ2f , ∂φ = ∂f = 0 , (1.8)

the functional forms are unique.5 This makes the component expressions a lot simpler to

work with than their superfield counterparts.

The calculation of the full one-loop effective potential for the Wess-Zumino model has

be performed many times before [19–26] and does not need to be repeated here. We will

just quote the results, see [32] for more details. The effective potential can be written as

the dimensionally regularised momentum space integral

V (1) =
i

2

∫
ddk

(2π)d
log

(
1− |λf |2

(k2 + |m′|2)2
)
, (5.1)

5If instead of working with the effective potential, we are interested in the effective action, then the

functional forms are once again not unique due to integration by parts identities in the spacetime integrals.
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where m′ = Ψ|θ=θ̄=0 = m+ λφ. The momentum integral can be performed and yields

(4π)2V (1) =
|λf |2
2

(
− 1

ε
+ log

|m′|2
µ̄2

+O(ε)

)
(5.2a)

− |λf |2
(
3

4
− |m′|2

|λf | tan
−1 |λf |

|m′|2 − 1

4

(
1 +

|m′|4
|λf |2

)
log

(
1− |λf |2

|m′|4
))

. (5.2b)

Remembering that Γ(1) = −
∫
d4xV (1), we see that the Kähler potential in superspace

projects to give the first line in (5.2) through the relation

∫
d8z K(Φ, Φ̄) =

∫
d4x f̄f∂φ∂φ̄K(φ, φ̄) . (5.3)

Equally as straightforward, the first line in (5.2) can be lifted to superspace to give the

Kähler potential by a simple double integral.

The derivative expansion of the EAFP is expressed using the dimensionless quantity

p2 defined in (4.18). It projects to the same ratio of component fields seen in (5.2b)

p2
∣∣
Φ=φ+θ2f

= p2| =

∣∣∣∣
λf

m′2

∣∣∣∣
2

. (5.4)

Given the EAFP in the form Ψ̄Ψf(p2), it can easily be projected to components using

∫
d8z Ψ̄Ψf(p2) =

∫
d4x |λf |2(1− p|∂p|)

2f(p2| ) . (5.5)

Equivalently, the component expression for the EAFP in the form |λf |2g(p2| ) can be lifted

to the superfield expression

F
(1)(Φ, Φ̄, a, ā, b, b̄) =

āa

(4Ψ̄Ψ)2
g(p2)

p2
.

Either way, we see that the EAFP given in (4.16) and (5.2b) are equivalent.

6 Conclusion and outlook

In this paper we have completed the calculation started in [7, 8] and used superfield tech-

niques to compute the full one-loop supersymmetric effective potential for the WZ model.

This includes both the effective Kähler potential and the previously unpublished result for

the EAFP. In the purely bosonic sector our results match the older component results for

the effective potential of the WZ model.

The supersymmetric effective potential contains more information than the ordinary

effective potential of the WZ model. The point is that the superfield expressions (3.6)

and (4.16) also generate two- and four-fermionic contributions (generalised Yukawa cou-

plings). Of course, once the most general functional structure of the supersymmetric effec-

tive potential is known, one can read off the expressions for K and F from the component

results. However, this functional structure became available as a result of the superfield

heat kernel calculation of [7, 8].
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We have also compared different methods for calculating the leading term in the EAFP

and accounted for the different results in the literature by noting that the calculation

includes conditionally convergent integrals. We observed that dimensional regularisation

removes the conditional convergence and gives results that agree with the corresponding

term in the component calculations. It is interesting to observe that apparently finite

terms in the effective action can result from conditionally convergent integrals in some

calculation schemes. This leads to possible ambiguities in calculations that can not be fixed

by renormalisation conditions like those in nominally divergent terms. One of the authors

(SJT) has observed a similar problem occur in a two-loop effective action calculation in

N = 2 super-Yang-Mills. How to identify when such cases can occur and how to fix the

ambiguity is an open question.

The calculation of the leading term in the EAFP had possible IR divergences before

the different structures were unified through integration by parts, while the full EAFP does

not appear to have such a problem and seems to not suffer any conditional convergence.

However, the expressions in the EAFP calculation are more unwieldy and this hinders their

exploration. The momentum integrals in the EAFP are also difficult to perform as a whole

and we used dimensional regularisation to handle the UV divergences that appeared when

treating them separately. The issue of any possible conditional convergence and ambiguity

in the full EAFP is not completely closed. Although, we should note that some of the

component results were calculated using other regularisation schemes and they yielded

consistent results that match that which we presented in (4.16).

In calculating the EAFP at the one-loop level, we used the highly simplified structure of

the heat kernel that occurs after integration by parts. However, in higher loop calculations

the full structure of the heat kernel is needed. This would make it an interesting challenge

to try to carry out the superfield calculation of the EAFP to two loops. Alternatively,

the calculation could be performed with the background (1.8) and that result lifted to

superspace using the results in the above section. There are three published component

calculations of the two-loop effective potential of the WZ model [26, 36–38]. However the

results of [36] were left as unevaluated Feynman integrals and the results in [26, 37, 38]

contain terms that are less than quadratic in the auxiliary fields and thus can not come

from the projection of a superfield action. As for two-loop superfield calculations, both

the effective Kähler potential and the effective chiral potential have been calculated many

times, but the EAFP does not appear in the literature. It would be good to have a definitive

result for it and the component effective potential at two loops.

In the massless case, as discussed in section 1, the one-loop EAFP of the massless WZ

model can be chosen in the form (1.14) such that the functional
∫
d8z F̃(1) is superconformal.

This naturally leads us to consider a higher-derivative extension of the massless WZ model

that is superconformal. It is described by an action of the form

S[Φ, Φ̄] =

∫
d8z Φ̄Φ

{
1 + Σ̄ΣH(Σ, Σ̄)

}
+ λ

∫
d6zΦ3 + λ̄

∫
d6z̄ Φ̄3 , (6.1)

where H(w, w̄) is a real analytic function and the chiral scalar

Σ := Φ−2D̄2Φ̄ (6.2)
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is a (conformal) primary superfield of dimension zero.6 The massless WZ model possesses

a Z3 symmetry generated by Φ → e
2
3
πiΦ. This symmetry remains intact for the higher-

derivative extension of the WZ model given by (6.1), since Σ is invariant under the Z3

group. In the massless case, the one-loop effective action is invariant under U(1) phase

transformations Φ → eiτΦ. Requiring this symmetry gives H(Σ, Σ̄) = Ĥ(ΣΣ̄). It would

be interesting to see whether the U(1) invariant functional form of the EAFP, eq. (1.14),

survives at two loops.

A Calculation of the heat kernel

The superfield heat kernel (2.8) was computed in [8] in the constant background case,

∂aΨ = ∂aΨ̄ = 0. The original derivation presented in [8] contained some typographical

errors. In this appendix we provide a corrected and simplified derivation of the heat kernel.

This is essential for our new results in section 4.

A.1 The differential equations for the heat kernel

As we saw in section 2, all propagators that occur in the Wess-Zumino model with arbitrary

background chiral superfields Ψ and Ψ̄ can be obtained as different chiral projections of

the Green’s function of the operator

∆ = �− 1

4
(ΨD̄2 + Ψ̄D2) . (2.6)

The heat kernel of this operator obeys the differential equation (DE) and initial condition

(
i
d

ds
+∆

)
U

(Ψ)
V (z, z′|s) = 0 , (A.1)

U
(Ψ)
V (z, z′|0) = δ4(θ − θ′)δ4(x− x′) . (A.2)

If we assume that the background is constant over space-time, ∂aΨ = ∂aΨ̄ = 0, then the

heat kernel factorises as [7, 8]

U
(Ψ)
V (z, z′|s) = Ω(s)U

(0)
V (z, z′|s) , Ω(s) := e−

is
4 (Ψ̄D2+ΨD̄2) , (A.3)

where U
(0)
V (z, z′|s) = δ4(θ − θ′)U(x, x′|s),

�U(x, x′|s) = −i
∂

∂s
U(x, x′|s) , (A.4)

and
U(x, x′|s) = exp(is�)δ4(x− x′)

=

∫
d4k

(2π)4
e−ik2s+ik(x−x′) = − i

(4πs)2
e

i
4
(x−x′)2/s ,

(A.5)

is the free bosonic heat kernel. To find the full heat kernel (A.3) we need only obtain an

explicit form of the operator Ω(s).

6The superfield Ξ defined by (1.13b) can be represented as Ξ = Φ̄ΦΣ̄Σ.

– 20 –



J
H
E
P
0
9
(
2
0
1
4
)
1
3
5

The heat equation (A.1) implies that the operator Ω(s) satisfies

i
d

ds
Ω(s) =

1

4
Ω(s)

(
ΨD̄2 + Ψ̄D2) , Ω(0) = 1 . (A.6)

To solve this, following [7, 8], we expand the operator Ω(s) as

Ω(s) =
1

16
A(s)D2D̄2 +

1

16
Ã(s)D̄2D2 +

1

8
Bα(s)DαD̄

2 +
1

8
B̃α̇(s)D̄

α̇D2

+
1

4
C(s)D2 +

1

4
C̃(s)D̄2 + 1 . (A.7)

Note that only A and Ã can contribute to the 1-loop potential. At this point, it is convenient

to introduce some notation

a = (DαΨ)(DαΨ) , b = (D2Ψ) , µ = (DαΨ)(D̄α̇Ψ̄)∂αα̇ , (A.8)

u2 = Ψ̄Ψ� , F2 = b̄b/64 , G2 = u2 + F2 , β =
1

8

(
0 b̄

b 0

)
.

We can move between the tilded and non-tilded symbols in (A.7) by making the replace-

ments Dα ↔ D̄α̇, Ψ ↔ Ψ̄ which imply that a ↔ ā, b ↔ b̄ and µ ↔ −µ. Since we are

using the convention that derivatives act on all terms to their right unless bracketed, µ is

actually a differential operator that obeys µ2 = −1
2 āa�.

With the above expansion, the heat equation (A.6) decomposes as

d

ds

(
A

Ã

)
= −i

(
Ψ 0

0 Ψ̄

)(
C

C̃

)
, (A.9a)

(
d

ds
+

(
0 Ψ∂α̇α

Ψ̄∂αα̇ 0

))(
Bα

B̃α̇

)
= −i

(
(DαΨ)C

(D̄α̇Ψ̄)C̃

)
, (A.9b)

(
d

ds
+ 2iβ

)(
C

C̃

)
+ i

(
Ψ̄(�A+ 1)

Ψ(�Ã+ 1)

)
= −1

2

(
Bα∂αα̇(D̄

α̇Ψ̄)

B̃α̇∂
α̇α(DαΨ)

)
, (A.9c)

with A(0) = Ã(0) = Bα(0) = B̃α̇(0) = C(0) = C̃(0) = 0. We can eliminate A and Ã from

the equation for C and C̃ by moving to the second order DE

(
d2

ds2
+ 2iβ

d

ds
+ Ψ̄Ψ�

)(
C

C̃

)
= −1

2

d

ds

(
Bα∂αα̇(D̄

α̇Ψ̄)

B̃α̇∂
αα̇(DαΨ)

)
, (A.9d)

where we need the initial “velocity” ∂s
(
C, C̃

)∣∣
s=0

= −i
(
Ψ̄,Ψ

)
.

We solve the coupled equations (A.9b), (A.9d) for B and C by expanding with respect

to the Grassmann parameters DαΨ and D̄α̇Ψ̄,

C = C0 + aC20 + āC02 + µC11 + āaC22 ,

C̃ = C̃0 + āC̃20 + aC̃02 − µC̃11 + āaC̃22 ,
(A.10a)

Bα = (DαΨ)(B̂0 + āB̂2) + (D̄α̇Ψ̄)∂α̇α(B̌0 + aB̌2) ,

B̃α̇ = (D̄α̇Ψ̄)( ˆ̃B0 + a ˆ̃B2) + (DαΨ)∂αα̇(
ˇ̃B0 + ā ˇ̃B2) .

(A.10b)
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This expansion is used to find a system of ordinary second order differential equations for

B and C. For the rest of this subsection, we simply extract and list the DEs order by order

in DαΨ and D̄α̇Ψ̄. In the next subsection we note the common structure to the DEs and

provide their solutions.

Keeping all terms independent of DαΨ and D̄α̇Ψ̄ in (A.9d) gives the homogeneous

second order DE
(

d2

ds2
+ 2iβ

d

ds
+ u2

)(
C0

C̃0

)
= 0 , (A.11)

with the initial conditions
(
C0

C̃0

)∣∣∣
s=0

= 0 ,
d

ds

(
C0

C̃0

)∣∣∣
s=0

= −i

(
Ψ̄

Ψ

)
. (A.12)

Keeping only the first order terms in (A.9b) gives
(

d

ds
+

(
0 Ψ∂αα̇

Ψ̄∂αα̇ 0

))(
(DαΨ)B̂0 + (D̄α̇Ψ̄)∂αα̇B̌0

(D̄α̇Ψ̄) ˆ̃B0 + (DαΨ)∂αα̇
ˇ̃B0

)
= −i

(
(DαΨ)C0

(D̄α̇Ψ̄)C̃0

)
.

Extracting the coefficients of DαΨ and D̄α̇Ψ̄ leads to two equations that can be recombined

to give the second order DE for B̌0

(
d2

ds2
+ u2

)(
B̌0
ˇ̃B0

)
= i

(
0 Ψ

Ψ̄ 0

)(
C0

C̃0

)
, (A.13)

the solution of which immediately gives B̂0 through the relation

(
B̂0

ˆ̃B0

)
=

−1

Ψ̄Ψ

(
0 Ψ

Ψ̄ 0

)
d

ds

(
B̌0
ˇ̃B0

)
. (A.14)

Keeping only the second order terms in (A.9d) yields the two second order DEs

(
d2

ds2
+ 2iβ

d

ds
+ u2

)(
aC20 + āC02

āC̃20 + aC̃02

)
=

�

2

d

ds

(
āB̌0

a ˇ̃B0

)
, (A.15)

(
d2

ds2
+ 2iβ

d

ds
+ u2

)(
C11

−C̃11

)
= −1

2

d

ds

(
B̂0

− ˆ̃B0

)
. (A.16)

Although we could separate the DEs for C20 and C02, it is simpler (more symmetric) to

solve for them simultaneously.

Keeping only the third order terms in (A.9b) gives
(

d

ds
+

(
0 Ψ∂α̇α

Ψ̄∂αα̇ 0

))(
ā(DαΨ)B̂2 + a(D̄β̇Ψ̄)∂β̇αB̌2

a(D̄α̇Ψ̄) ˆ̃B2 + ā(DβΨ)∂βα̇
ˇ̃B2

)

= −i

(
(DαΨ)(āC02 + µC11)

(D̄α̇Ψ̄)(aC̃02 − µC̃11)

)
.

(A.17)
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Using (DαΨ)µ = 1
2a(D̄α̇Ψ̄)∂α̇α and (D̄α̇Ψ̄)µ = −1

2 ā(D
αΨ)∂αα̇ we can split the above to

get the second order DE for B̌2

(
d2

ds2
+ u2

)(
B̌2
ˇ̃B2

)
= i

(
0 Ψ

Ψ̄ 0

)(
C02

C̃02

)
− i

2

d

ds

(
C11

C̃11

)
, (A.18)

the solution of which immediately gives B̂2 through the relation

(
B̂2

ˆ̃B2

)
=

−1

Ψ̄Ψ

(
0 Ψ

Ψ̄ 0

)(
d

ds

(
B̌2
ˇ̃B2

)
+

i

2

(
C11

C̃11

))
. (A.19)

The final DE is easily read from the highest order terms in (A.9d),

(
d2

ds2
+ 2iβ

d

ds
+ u2

)(
C22

C̃22

)
=

�

2

d

ds

(
B̌2
ˇ̃B2

)
. (A.20)

A.2 Results for the heat kernel

The differential equations (A.11) for (C0, C̃0) are the only ones that are both homogeneous

and have non-vanishing initial conditions. So, their integration is straightforward, with the

results given in (A.23a). The DEs that need to be solved to find the terms of higher order

in DaΨ and D̄α̇Ψ̄ all second order, inhomogeneous DEs with vanishing initial conditions.

That is, they are all of the form

(
d2

ds2
+ 2iβ

d

ds
+ u2

)
χC(s) = vC(s) , χC(0) = χ̇C(0) = 0 , (A.21a)

(
d2

ds2
+ u2

)
χB(s) = vB(s) , χB(0) = χ̇B(0) = 0 , (A.21b)

where the χB,C are component 2-vectors of B or C respectively and the inhomogeneous

terms vB,C depend on the solutions to lower order components. Using variation of param-

eters on the general solutions to the associated homogeneous differential equations yields

χC(s) = eisβ(G/F−1)

∫ s

0
dt e−2itβG/F

∫ t

0
dτ eiτβ(G/F+1)vC(τ) , (A.22a)

χB(s) = eisu
∫ s

0
dt e−2itu

∫ t

0
dτ eiτuvB(τ) . (A.22b)

The following solutions have all been found by hand and checked that they satisfy the orig-

inal DEs and boundary conditions using Mathematica. The solutions for the components

of
(
C(s), C̃(s)

)
are

(
C0

C̃0

)
= − i

sin(sG)

G
e−isβ

(
Ψ̄

Ψ

)
, (A.23a)

(
C11

C̃11

)
=

s

8F2

(
sin(su)

su
− sin(sG)

sG
cos(sF)

)(
Ψ̄

Ψ

)
, (A.23b)

– 23 –



J
H
E
P
0
9
(
2
0
1
4
)
1
3
5

(
C20

C̃20

)
=

�β

8F2

(
0 Ψ

Ψ̄ 0

)[
is

2u2

(
sin(sF)

sF
cos(sG)− cos(sF)

sin(sG)

sG

)

+
β

u2

(
cos(su)

F2
− sin(sF) sin(sG)

FG
− cos(sF) cos(sG)

F2

)
(A.23c)

− is

2G2

(
cos(sG)− sin(sG)

sG

)
e−isβ

](
Ψ̄

Ψ

)
,

(
C02

C̃02

)
=

�

16

(
0 Ψ

Ψ̄ 0

)
−iβ

F2

[
sin(sG) cos(sF)

u2G
− sin(sF) cos(sG)

u2F
(A.23d)

+
se−isβ

G2

(
cos(sG)− sin(sG)

sG

)](
Ψ̄

Ψ

)
,

(
C22

C̃22

)
=

−i�

128F2

[
is2β

F2

(
sin(sF)

sF

sin(sG)

sG
− sin(su)

su

)
+ s e−isβ× (A.23e)

×
(
sin(sG)

sG

(
1 + isβ

F2
− 3F2 + (1 + s2u2)G2

2G4

)
+ cos(sG)

3F2 + G2

2G4

)

− s

u2

(
u2

F2

sin(su)

su
+

sin(sF)

sF
cos(sG)− cos(sF)

sin(sG)

sG

)](
Ψ̄

Ψ

)
,

and the solutions for the components of
(
Bα(s), B̃α̇(s)

)
are

(
B̌0
ˇ̃B0

)
=

is

2u2

(
0 Ψ

Ψ̄ 0

)(
β

F

cos(su)

sF
− e−isβ

(
i
sin(sG)

sG
+
β

F

cos(sG)

sF

))(
Ψ̄

Ψ

)
, (A.24a)

(
B̂0

ˆ̃B0

)
=

isβ

2F2

(
sin(su)

su
− sin sG

sG
e−isβ

)(
Ψ̄

Ψ

)
, (A.24b)

(
B̌2
ˇ̃B2

)
=

−is2

32F2

[
2iβ

su2

(
G2

F2

sin(sG)

sG
cos(sF)− cos(sG)

sin(sF)

sF

)
(A.24c)

+
sin(su)

su

(
1− 2iβ

sF2

)
− e−isβ

((
1 +

iβ

sG2

)
sin(sG)

sG
− iβ

G

cos(sG)

sG

)](
Ψ̄

Ψ

)
,

(
B̂2

ˆ̃B2

)
=

−i

Ψ̄Ψ

1

16F2

(
0 Ψ

Ψ̄ 0

)[
sin(su)

2u
− cos(su)

sF2 − 2iβ

2F2
(A.24d)

−
(
sin(sG)

G
+

iβ

F2
cos(sG)

)
cos(sF)

+
1

2G2

(
u2s cos(sG) + (F2 + G2)

sin(sG)

G

)
e−isβ

](
Ψ̄

Ψ

)
.

The solution for
(
A, Ã

)
is just a term-by-term integration (A.9a) of the expression for(

C, C̃
)
given in (A.23) above.

From the above results, it is easily checked that the solutions satisfy the initial condition

Ω(0) = 1. They also satisfy the initial velocity condition Ω′(0) = − i
4(Ψ̄D

2 +ΨD̄2), which

implies that only
(
C0, C̃0

)
has a non-vanishing first derivative at s = 0.

– 24 –
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The above results for the coefficients in the expansion of Ω(s) =

exp
(
− is

4

(
Ψ̄D2 +ΨD̄2

))
combined with the factorisation

U
(Ψ)
V (z, z′|s) = Ω(s)U

(0)
V (z, z′|s) , U

(0)
V (z, z′|s) = δ4(θ − θ′)U(x, x′|s) ,

give the full solution for the heat kernel of the Wess-Zumino model in four dimensions in

terms of the bosonic heat kernel (A.5). The dimensionally reduced heat kernel is obtained

by simply replacing the momentum integral in (A.5) with its dimensionally reduced coun-

terpart

U(x, x′|s) = exp(is�)δd(x− x′)

= µ2ε
∫

ddk

(2π)d
e−ik2s+ik(x−x′) =

iµ2ε

(4πis)d/2
e

i
4
(x−x′)2/s .

(A.25)

A.3 Kähler approximation

As a check on the general results above, we examine the limit of the heat kernel that is

appropriate for computing the corrections to the Kähler potential. That is, we enforce

the condition Ψ = const by taking the limits as a, b, and µ go to 0, which implies that

u2 = G2 = Ψ̄Ψ� and A = Ã = Ψ̄Ψ(cos(su)− 1)/u2. So, the expansion of Ω(s) reduces to

Ω(s) = 1− i

4

sin su

u

(
Ψ̄D2 +ΨD̄2

)
+

Ψ̄Ψ

16

cos su− 1

u2
{
D2, D̄2

}
, (A.26)

which matches that presented in [6–8].

This result can also be derived directly from (A.6). When Ψ = const, we can take a

second proper-time derivative to find the inhomogeneous harmonic oscillator equation7

Ω′′(s) = − 1

16
Ω(s)(Ψ̄D2 +ΨD̄2)2 = −u2Ω(s)(P+ + P−) = −u2Ω(s) + u2P0 ,

with the initial conditions Ω(0) = 1, Ω′(0) = − i
4(Ψ̄D

2 + ΨD̄2). This is easily solved to

give (A.26).
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