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1 Introduction

The phase diagram of QCD at finite temperature and baryon density is still largely unknown

today, because lattice QCD suffers from a severe sign problem when chemical potential

for baryon number is non-vanishing. Several methods have been devised to circumvent

this obstacle (see e.g. [1] and references therein), but all of them introduce additional

approximations that are valid for small quark chemical potentials only, µ/T . 1. In order

to reach higher chemical potentials and/or low temperatures, methods are required which at

least potentially may solve this problem. Among these are Complex Langevin Dynamics

(CLD) [2, 3], transformation of the degrees of freedom into so-called dual variables as

demonstrated in scalar models [4, 5], and the formulation of quantum field theories on

a Lefshetz thimble [6]. In particular, CLD has recently been applied to full QCD in a

previously inaccessible parameter range [7]. However, even if an approach should finally

succeed in solving the sign problem, it will remain very hard to study the regime of cold

and dense matter. This is because, in order to avoid the limiting artifact of saturation at

finite lattice spacing, very fine lattices are required for high density, which implies in turn

very large temporal lattice extents near T = 0.

In this work we further elaborate on an effective theory approach [8–11], where ana-

lytic strong coupling and hopping expansion methods are used to derive an effective lattice

action whose numerical simulation is feasible also in the cold and dense regime. The sign

problem can be handled by complex Langevin simulations in a controlled way, and in cer-

tain parameter ranges even Monte Carlo simulations are possible. Moreover, the effective

action resembles a three-dimensional spin model, such that the numerical effort is vastly

smaller than for full lattice QCD simulations. At the present stage of the project, simu-

lations can still be run on time scales of days on university PC clusters. The drawback is

that the effective action is only valid in parameter ranges where the expansion converges,

which is currently restricted to the heavy mass region and the confined phase. Even there,

the effective theory is unsuitable for long range correlation functions, but it gives accu-

rate results for bulk thermodynamic quantities and phase transitions [12]. In particular, it

has already provided predictions with better than 10% accuracy for the critical couplings

of SU(2), SU(3) Yang-Mills [8], the critical quark masses where the deconfinement transi-

tion changes to a crossover [9] and the tricritical point of the deconfinement transition at

imaginary chemical potential [13]. A similar approach is used in [14–17] with staggered

fermions. There, the chiral regime can be studied directly but the strong coupling series is

much harder to compute and no continuum extrapolations are possible so far.

The paper is organised as follows. In section 2 we summarise the derivation of the

effective action in the pure gauge sector and give a systematic calculation of the fermion

determinant. In section 3 we analyse the effective action by analytic methods to leading and

next-to-leading order in the small effective couplings. Section 4 is devoted to a systematic

study of the validity of complex Langevin simulations. Finally, section 5 contains our

physics results for the cold and dense regime of QCD with heavy quarks. Readers not

interested in the technical aspects of the derivation and simulation may skip sections 2, 4

and read sections 3, 5 only.
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2 The effective action

Starting point is a (3 + 1)-dimensional lattice with Wilson’s gauge and fermion actions for

Nf flavours, which after Grassmann integration may be written as

Z =

∫

[dUµ] exp [−Sg]

Nf
∏

f=1

det
[

Qf
]

, −Sg =
β

2Nc

∑

p

[

TrUp +TrU †
p

]

, (2.1)

with elementary plaquettes Up, the quark hopping matrix for the flavour f ,

(Qf )abαβ,xy = δabδαβδxy (2.2)

−κf

3
∑

ν=0

[

eaµf δν0(1 + γν)αβU
ab
ν (x)δx,y−ν̂ + e−aµf δν0(1− γν)αβU

ab
−ν(x)δx,y+ν̂

]

,

and Uab
−ν(x) = U †ab

ν (x − ν̂). The effective action is then defined by integrating out the

spatial link variables

Z =

∫

[dU0] exp[−Seff ] ,

exp[−Seff ] ≡

∫

[dUk] exp [−Sg]

Nf
∏

f=1

det
[

Qf
]

,

Seff =
∞
∑

i=0

Ss
i (β, κf , Nτ ;W ) +

∞
∑

i=1

Sa
i (β,Nτ , κf , µf ;W )

=
∞
∑

i=0

Sg
i (β, κf , Nτ ;W ) +

∞
∑

i=0

Sf
i (β,Nτ , κf , µf ;W ) . (2.3)

In the first line we split into a part which is Z(Nc) centre symmetric and a part with

symmetry breaking terms. For the present work it is more convenient to split the action

into a purely gluonic part and a fermionic part due to the determinant, which contains

both symmetric and symmetry breaking contributions. All terms depend only on temporal

Wilson lines W~x or their traces, the Polyakov loops,

L~x ≡ TrW~x ≡ Tr

Nτ
∏

τ=1

U0 (~x, τ) . (2.4)

The effective action features an infinite tower of interaction terms between loops to all

powers and at all distances, where Sx
i denote i-point-interactions. These are completely

determined in terms of Wilson lines and the parameters of the original theory. Note that,

without truncations, the effective action is unique and exact. Non-perturbative determi-

nations of the effective action [18–22] can in principle be applied at all parameter values.

In practice they necessarily imply truncation and modelling, which may have to be differ-

ent in different parameter regimes. In our approach we compute the effective action in a

combined strong coupling and hopping parameter expansion, which orders terms according

to their leading powers in β, κ. By summing up all temporal windings we make sure that

we have the complete dependence on chemical potential, or fugacity, in each order of the

hopping parameter expansion.

– 3 –
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2.1 Pure gauge theory

For the Yang-Mills part, it is advantageous to perform a character expansion

exp

[

β

2Nc

(

TrUp +TrU †
p

)

]

= c0(β)



1 +
∑

r 6=0

drar(β)χr(Up)



 , (2.5)

where the factor c0(β) can be neglected as it is independent of gauge links and cancels in

expectation values. In earlier publications [8, 9, 23], we have shown how to compute the

effective gauge theory up to rather high orders in the fundamental character expansion

coefficient u(β) ≡ af (β) = β
18 + . . . . In leading order we have a chain of Nτ fundamen-

tal plaquettes winding around the temporal direction and closing via periodic boundary

conditions. Therefore the leading order is a two-point interaction,

−Sg
2(β,Nτ ) = λ(u,Nτ )

∑

<~x~y>

(

L~xL
∗
~y + L∗

~xL~y

)

, λ(u,Nτ ) = uNτ

[

1 + . . .
]

, (2.6)

where higher order corrections of λ(u,Nτ ) as well as a discussion of higher order interaction

terms can be found in [8]. In the leading order expression of eq. (2.6) we already see that

λ(u,Nτ ) is suppressed for large Nτ , since u < 1, see also [9] for a further discussion. In

this work we aim at temperatures T ≤ 10MeV with lattice parameters β <∼ 6, Nτ ≥ 100,

where λ<∼ 10−25 can be safely neglected.

2.2 Static quark determinant

The quark determinant is expanded in a hopping expansion. In order to keep the complete

dependence on chemical potential it is useful to split the quark matrix in positive and

negative temporal and spatial hops,

Q = 1− T − S = 1− T+ − T− − S+ − S− . (2.7)

The static determinant is then given by neglecting the spatial parts,

det[Qstat] = det[1− T ] = det[1− T+ − T−]

= det
[

1− κeaµ(1 + γ0)U0(x)δx,y−0̂

−κe−aµ(1− γ0)U
†
0(x− 0̂)δx,y+0̂

]

, (2.8)

with propagation in the temporal direction only. Calculating the space and spin determi-

nant we get

det[Qstat] =
∏

~x

det
[

1 + (2κeaµ)NτW~x

]2
det
[

1 + (2κe−aµ)NτW †
~x

]2
. (2.9)

Note that this includes all windings of Wilson lines around the temporal direction and

thus the full fugacity dependence. A well-known relation valid for SU(3) then allows us to

reformulate this in terms of Polyakov loops,

det[Qstat] =
∏

~x

[

1 + cL~x + c2L∗
~x + c3

]2 [
1 + c̄L∗

~x + c̄2L~x + c̄3
]2

, (2.10)

– 4 –
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with the abbreviation

c(µ) ≡ (2κeaµ)Nτ = e
µ−m
T ≡ c̄(−µ) , (2.11)

and the constituent quark mass am = − ln(2κ) = amB

3 , to leading order of eq. (2.49).

When det[Qstat] is exponentiated, the parameter c also constitutes the effective one-point

coupling constant of Sf
1 to leading order [9],

h1 = c, h̄1 = c̄ . (2.12)

2.3 Kinetic quark determinant

In order to compute a systematic hopping expansion about the static limit, we define the

kinetic quark determinant

det[Q] ≡ det[Qstat] det[Qkin] ,

det[Qkin] = det[1− (1− T )−1(S+ + S−)]

≡ det[1− P −M ] = exp [Tr ln(1− P −M)] , (2.13)

which we then split into parts describing quarks moving in positive and negative spatial

directions, P =
∑

k Pk and M =
∑

k Mk. The reason for this is that the trace occurring in

eq. (2.13) is also a trace in coordinate space. This means that only closed loops contribute

and hence we need the same number of P s and Ms in the expansion of the logarithm.

Through O
(

κ4
)

we have

det[Qkin] = exp

[

−TrPM − TrPPMM −
1

2
TrPMPM

]

[

1 +O(κ6)
]

(2.14)

=

[

1− TrPM − TrPPMM −
1

2
TrPMPM +

1

2
(TrPM)2

]

[

1 +O(κ6)
]

.

The next step is to consider the different directions in P and M which also need to come

in pairs,

∑

ij

TrPiMj =
∑

i

TrPiMi , (2.15)

∑

ijkl

TrPiPjMkMl =
∑

i

TrPiPiMiMi +
∑

i 6=j

TrPiPjMiMj

+
∑

i 6=j

TrPiPjMjMi , (2.16)

1

2

∑

ijkl

TrPiMjPkMl =
1

2

∑

i

TrPiMiPiMi +
1

2

∑

i 6=j

TrPiMiPjMj

+
1

2

∑

i 6=j

TrPiMjPjMi , (2.17)

1

2

∑

ijkl

TrPiMjTrPkMl =
1

2

∑

i,j

TrPiMiTrPjMj . (2.18)

– 5 –
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2.4 Static quark propagator

We now compute the static quark propagator (1 − T )−1 appearing in eq. (2.13). Since

(1+ γµ)(1− γµ) = 0, hops in forward and backward time direction do not mix and the full

static quark propagator is given by

(Qstat)
−1 = (Q+

stat)
−1 + (Q−

stat)
−1 − 1 . (2.19)

In order to compute the positive static quark propagator, we use the series expansion

(Q+
stat)

−1 =
(

1− T+
)−1

=
∞
∑

n=0

(T+)n . (2.20)

The inverse is then given by

(Q+
stat)

−1
τ1τ2

= δτ1τ2
(

1− qzNτW
)

+ qzτ2−τ1W (τ1, τ2)
[

Θ(τ2 − τ1)− zNτΘ(τ1 − τ2)
]

,

q ≡
1

2
(1 + γ0)

(

1 + zNτW
)−1

, z = 2κeaµ . (2.21)

W (τ1, τ2) is a temporal Wilson line from τ1 to τ2 and we have suppressed its spatial location.

If τ1 = τ2, the Wilson line winds around the lattice, W (τ1, τ1) = W . The contribution in

negative time direction (Q−
stat)

−1
τ1τ2

can then be obtained from (Q+
stat)

−1
τ1τ2

by the following

replacements

τ1 ↔ τ2 , W (τ1, τ2) ↔ W †(τ1, τ2) , µ ↔ −µ , (2.22)

and reads

(Q−
stat)

−1
τ1τ2

= δτ1τ2

(

1− q̄z̄NτW †
)

+ q̄z̄τ1−τ2W †(τ1, τ2)
[

Θ(τ1 − τ2)− z̄NτΘ(τ2 − τ1)
]

,

q̄ =
1

2
(1− γ0)

(

1 + z̄NτW †
)−1

, z̄ = 2κe−aµ . (2.23)

Finally we split the temporal quark propagator in spin space as well as in propagation in

positive and negative temporal direction according to

(Qstat)
−1 = A+ γ0B = A+ + γ0B

+ +A− − γ0B
− , (2.24)

A+
xy =

1

2

[

1−
cW

1 + cW

]

δxy +
1

2
zτy−τx

W (τx, τy)

1 + cW

[

Θ(τy − τx)− cΘ(τx − τy)

]

δ~x~y ,

B+
xy = −

1

2

cW

1 + cW
δxy +

1

2
zτy−τx

W (τx, τy)

1 + cW

[

Θ(τy − τx)− cΘ(τx − τy)

]

δ~x~y ,

A−
xy =

1

2

[

1−
c̄W †

1 + c̄W †

]

δxy +
1

2
z̄τx−τy

W †(τx, τy)

1 + c̄W †

[

Θ(τx − τy)− c̄Θ(τy − τx)

]

δ~x~y ,

B−
xy = −

1

2

c̄W †

1 + c̄W †
δxy +

1

2
z̄τx−τy

W †(τx, τy)

1 + c̄W †

[

Θ(τx − τy)− c̄Θ(τy − τx)

]

δ~x~y .

– 6 –
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2.5 Gauge integrals for the leading fermionic action

Next we compute the leading strong coupling contribution to the effective action by per-

forming the group integrations. We will arrange the fermionic part of the effective action as

∫

[dUk]
∏

f

det[Qf
kin] = e

∑
∞

i=1
S
f
i (β=0,κf ,Nτ ,µf ) . (2.25)

Since it is not known how to analytically perform the gauge integral over links in the

exponent, we have expanded it in a Taylor series. After the integration we shall see that

it is possible to resum some terms back into an exponential. At the order κ4 there are

zero-point contributions (or vacuum graphs) from closed hops around a plaquette. In a

strong coupling series these only contribute after being dressed with a plaquette, ∼ κ4u,

and thus are neglected here. The one-point contributions of the Polyakov loops constitute

the static determinant and have been computed already.

2.5.1 Two-point interaction

Dealing with more than one trace, as in
(

∑

iTrPiMi

)2
, it will be necessary to explicitly

display spatial coordinates, i.e.

(TrPiMi)
2 =

∑

~x,i

(TrP~x,iM~x,i)
∑

~y,j

(TrP~y,jM~y,j) . (2.26)

Here we have to consider three different possibilities: the two nearest-neighbour contri-

butions may share 0, 1 or 2 sites, where only the last one contributes to the two-point

interaction. To the order κ4 it is then

e−S
f
2 ≡

∫

[dUk]
[

−
∑

i

TrPiMi −
1

2

∑

i

TrPiMiPiMi (2.27)

+
1

2

∑

~x,i

TrP~x,iM~x,iTrP~x,iM~x,i

]

.

The first contribution to the two-point interaction is of order κ2:

−

∫

[dUk]
∑

i

TrPiMi = −
∑

i

∫

[dUk]Tr
[

Q−1
stat S

+
i Q−1

stat S
−
i

]

(2.28)

= −
8κ2

Nc

∑

u,i

TrBu,uTrBu+ı̂,u+ı̂

= −2h2
∑

~x,i

[

(

Tr
cW~x

1 + cW~x

− Tr
c̄W †

~x

1 + c̄W †
~x

)(

Tr
cW~x+ı̂

1 + cW~x+ı̂

− Tr
c̄W †

~x+ı̂

1 + c̄W †
~x+ı̂

)

]

.

Here we have used the expressions eq. (2.24) for B, evaluated the trace over spin and

coordinate space and introduced the coupling

h2 =
κ2Nτ

Nc
. (2.29)

– 7 –
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The group integrations have been computed via

∫

dU UijU
†
kl =

1

Nc
δilδjk . (2.30)

Note that this enforces the spatial link variables to be at the same temporal location and

yields a factor Nτ rather than N2
τ from the two temporal traces. From now on we will skip

the last step, where one has to insert the definitions of A and B and perform the temporal

sums. Explicit expressions for all types of terms appearing in the following can be found

in the appendix.

The next correction to the two-point interaction is of order κ4:

−
1

2

∫

[dUk]
∑

i

TrPiMiPiMi (2.31)

= −
16κ4

N2
c

∑

u 6=v,i

[

TrBu,vBv,u

(

TrBu+ı̂,u+ı̂

)2
+
(

TrBu,u

)2
TrBu+ı̂,v+ı̂Bv+ı̂,u+ı̂

]

−
16κ4

(N2
c − 1)

∑

u,i

{

TrBu,uBu,u

(

TrBu+ı̂,u+ı̂

)2
+
(

TrBu,u

)2
TrBu+ı̂,u+ı̂Bu+ı̂,u+ı̂

−
1

Nc

[

TrBu,uBu,uTrBu+ı̂,u+ı̂Bu+ı̂,u+ı̂ +
(

TrBu,u

)2(

TrBu+ı̂,u+ı̂

)2
]}

.

In this calculation it can happen that there is a spatial link which is occupied by four

matrices and we need the group integral (see e.g. [24])

∫

dU Ui1j1Ui2j2U
†
k1l1

U †
k2l2

=
1

N2
c − 1

[

δi1l1δi2l2δj1k1δj2k2 + δi1l2δi2l1δj1k2δj2k1

]

(2.32)

−
1

Nc(N2
c − 1)

[

δi1l2δi2l1δj1k1δj2k2 + δi1l1δi2l2δj1k2δj2k1

]

.

The next contribution of order κ4 comes from eq. (2.26), which is a two-point interaction

in the case that ~x = ~y and i = j:

1

2

∫

[dUk]
∑

~x,i

TrP~x,iM~x,iTrP~x,iM~x,i (2.33)

=
32κ4

N2
c

∑

u 6=v,i

[

(

TrBu,u

)2(

TrBv+ı̂,v+ı̂

)2
+TrBu,vBv,uTrBu+ı̂,v+ı̂Bv+ı̂,u+ı̂

]

+
32κ4

N2
c − 1

∑

u,i

{

(

TrBu,u

)2(

TrBu+ı̂,u+ı̂

)2
+TrBu,uBu,uTrBu+ı̂,u+ı̂Bu+ı̂,u+ı̂

−
1

Nc

[

TrBu,uBu,u

(

TrBu+ı̂,u+ı̂

)2
+
(

TrBu,u

)2
TrBu+ı̂,u+ı̂Bu+ı̂,u+ı̂

]

}

.

Higher corrections to the two-point interaction start with O(κ6).

– 8 –
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2.5.2 Three-point interaction

The three-point interaction starts at O(κ4);

e−S
f
3 ≡

∫

[dUk]

[

−
∑

i

TrPiPiMiMi −
∑

i 6=j

TrPiPjMjMi (2.34)

−
1

2

∑

i 6=j

TrPiMiPjMj −
1

2

∑

i 6=j

TrPiMjPjMi +
1

2

∑

~x,~y,i,j

TrP~x,iM~x,iTrP~y,jM~y,j

]

.

The different contributions are evaluated to be

−

∫

[dUk]
∑

i

TrPiPiMiMi =

−
32κ4

N2
c

∑

u,v,i

TrBu,uTrAu+ı̂,v+ı̂Av+ı̂,u+ı̂TrBu+2ı̂,u+2ı̂ , (2.35)

−

∫

[dUk]
∑

i 6=j

TrPiPjMjMi =

−
16κ4

N2
c

∑

u,v,i 6=j

TrBu−ı̂,u−ı̂

[

TrAu,vAv,u +TrBu,vBv,u

]

TrBu+̂,u+̂ ,

(2.36)

−
1

2

∫

[dUk]
∑

i 6=j

TrPiMiPjMj =

−
8κ4

N2
c

∑

u,v,i 6=j

TrBu+ı̂,u+ı̂

[

TrAu,vAv,u +TrBu,vBv,u

]

TrBu+̂,u+̂ ,

(2.37)

−
1

2

∫

[dUk]
∑

i 6=j

TrPiMjPjMi =

−
8κ4

N2
c

∑

u,v,i 6=j

TrBu−ı̂,u−ı̂

[

TrAu,vAv,u +TrBu,vBv,u

]

TrBu−̂,u−̂ ,

(2.38)

1

2

∫

[dUk]
∑

~x,~y,i,j

TrP~x,iM~x,iTrP~y,jM~y,j =

32κ4

N2
c

∑

u,v,i,j

TrBu,uTrBu+ı̂,u+ı̂TrBv,vTrBv+̂,v+̂ , (2.39)

where the sum is only over terms where the two traces share one spatial point.

2.5.3 Four-point interaction

There are only two four-point interactions to order κ4:

e−S
f
4 ≡

∫

[dUk]
[

−
∑

i 6=j

TrPiPjMiMj +
1

2

∑

~x,~y,i,j

TrP~x,iM~x,iTrP~y,jM~y,j

]

. (2.40)
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Figure 1. Finite gauge coupling corrections to the Polyakov line. After spatial link integration

these graphs give rise to terms ∼ TrW .

After integration the first contribution vanishes in the strong coupling limit and only gives

a non-zero contribution if a plaquette is inserted into the fermionic loop:

∫

[dUk]
∑

i 6=j

TrPiPjMiMj = O(κ4u) . (2.41)

Since we only calculate the action to order κmun with m + n = 4 we neglect this term.

The second contribution is

1

2

∫

[dUk]
∑

~x,~y,i,j

TrP~x,iM~x,iTrP~y,jM~y,j = (2.42)

32κ4

N2
c

∑

u,v,i,j

TrBu,uTrBu+ı̂,u+ı̂TrBv,vTrBv+̂,v+̂ ,

where the sum is only over terms where the traces share no common spatial point.

2.6 Resummations

In order to include as many terms as possible and improve convergence we perform a

resummation. Note that in order to perform the gauge integration, we had to expand the

exponential of hopping matrices, e.g.,

e−
∑

i TrPiMi = 1−
∑

i

TrPiMi +
1

2

(

∑

i

TrPiMi

)2

−O(κ6) . (2.43)

After the integration it is possible to resum many of the resulting terms back into an

exponential,

∫

[dUk]e
−

∑
i TrPiMi = 1−

8κ2

Nc

∑

u,i

TrBu,uTrBu+ı̂,u+ı̂

+
32κ4

N2
c

∑

u,v,i,j

TrBu,uTrBu+ı̂,u+ı̂TrBv,vTrBv+̂,v+̂

= e−
8κ2

Nc

∑
u,i TrBu,uTrBu+ı̂,u+ı̂ +O(κ6) . (2.44)

Inspection of higher order terms indicates that this should always be possible. Note that

terms that have been resummed, like the higher orders in eq. (2.44), have to be excluded

in the appropriate higher order to avoid double counting.
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2.7 Leading gauge corrections to the strong coupling limit

Leaving the strong coupling limit, i.e. for β 6= 0, the gauge action has to be included when

performing the group integration. As a consequence the effective coupling constants depend

on the gauge coupling also. The leading gauge corrections are of order Nτκ
2u coming from

attaching plaquettes to the Wilson line, cf. figure 1, and

c → h1 = (2κeaµ)Nτ

[

1 + 6κ2Nτu+O(κ2u5)
]

. (2.45)

This can also be exponentiated by summing over multiple attached, disconnected plaquettes

at different locations

h1 = exp

[

Nτ

(

aµ+ ln 2κ+ 6κ2
u− uNτ

1− u

)]

, (2.46)

and we see that in this way the Polyakov line receives mass corrections due to interactions.

Note that this generates overcounting in higher orders, but in our opinion the resummation

effects of this procedure more than compensates for this additional care. Let us finally also

give the gauge correction for the prefactor of the leading order of Sf
2

h2 =
κ2Nτ

Nc

[

1 + 2
u− uNτ

1− u
+ . . .

]

. (2.47)

This correction does not appear to exponentiate.

2.8 Effective action for the cold and dense regime

The terms evaluated in the last sections and displayed in the appendix can now be added

up to provide the complete effective action. Fortunately, simplifications occur because

some terms have the same structure. Moreover, in this work we focus on the cold and

dense regime and mostly simulate with Nτ > 100, for which λ<∼ 10−25, and terms that are

of subleading order in Nτ as well as terms proportional to h̄1 are neglected, since h̄1 → 0

as T → 0. For Nf = 1 we then simulate the simplified action

−Seff = log
∑

~x

(1 + h1TrW~x + h21TrW
†
~x + h31)

2 − 2h2
∑

~x,i

Tr
h1W~x

1 + h1W~x

Tr
h1W~x+i

1 + h1W~x+i

+ 2
κ4N2

τ

N2
c

∑

~x,i

Tr
h1W~x

(1 + h1W~x)2
Tr

h1W~x+i

(1 + h1W~x+i)2

+
κ4N2

τ

N2
c

∑

~x,i,j

Tr
h1W~x

(1 + h1W~x)2
Tr

h1W~x−i

1 + h1W~x−i

Tr
h1W~x−j

1 + h1W~x−j

+ 2
κ4N2

τ

N2
c

∑

~x,i,j

Tr
h1W~x

(1 + h1W~x)2
Tr

h1W~x−i

1 + h1W~x−i

Tr
h1W~x+j

1 + h1W~x+j

+
κ4N2

τ

N2
c

∑

~x,i,j

Tr
h1W~x

(1 + h1W~x)2
Tr

h1W~x+i

1 + h1W~x+i

Tr
h1W~x+j

1 + h1W~x+j

.

(2.48)

For Nf = 2 some care has to be taken when introducing the determinant for the second

flavour, which introduces mixing terms that are not present in the above expression.
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2.9 Hadron masses in strong coupling and hopping expansion

In order to interpret the results in the following sections, it is convenient to also have the

leading order of the meson and baryon masses,

amM = −2 ln(2κ)− 6κ2 − 24κ2
u

1− u
+ . . . ,

amB = −3 ln(2κ)− 18κ2
u

1− u
+ . . . . (2.49)

To the orders given here, these expressions are the same for Nf = 1, 2 degenerate masses.

From the second equation we extract the running of the hopping parameter in the strong

coupling limit for later use,

∂κ

∂a

∣

∣

∣

∣

u=0

= −κ
mB

3
+O(κ2) . (2.50)

3 Analytic analysis of the effective theory

3.1 NLO perturbation theory for Nf = 1

A lot of insight about the behaviour of the effective theory can be gained by studying

the static strong coupling limit, where the partition function factorises into a product of

one-link integrals which can be solved analytically. For the case of Nf = 1 we previously

observed the onset transition as a step function from zero density to lattice saturation [10].

Here we extend this analysis beyond the static strong coupling limit by using perturbation

theory in the small couplings λ, h2, permitting a clear understanding how the nuclear liquid

gas transition is driven by interactions.

To this end we consider the partition function with nearest-neighbour interaction be-

tween a Polyakov loop and its conjugate, as well as between two Polyakov loops, i.e. includ-

ing the couplings λ, h1, h2. Here we are interested in the cold and dense regime. Near the

zero temperature limit and for µ > 0, the anti-quark contributions vanish exponentially

because h̄1 → 0 for T → 0 and the simplified partition function is

Z =

∫

[dW ]
∏

<~x,~y>

[

1 + λ(L~xL
∗
~y + L∗

~xL~y)
]

∏

~x

[1 + h1L~x + h21L
∗
~x + h31]

2 (3.1)

×
∏

<~x,~y>

[

1− 2h2

(

h1L~x + 2h21L
∗
~x + 3h31

1 + h1L~x + h21L
∗
~x + h31

)

(

h1L~y + 2h21L
∗
~y + 3h31

1 + h1L~y + h21L
∗
~y + h31

)]

.

Note that the coupling h1 parametrises (µ−m) and moreover approaches one around the

onset transition. Therefore it cannot serve as an expansion parameter. On the other hand,

there are physically interesting parameter regimes where λ, h2 are sufficiently small to allow

for a power series expansion. The leading orders for the partition function and pressure

read

Z = z
N3

s

0 + 6λN3
s z

N3
s−2

0 z1z2 − 6h2N
3
s z

N3
s−2

0 z23 ,

p =
T

V
lnZ =

1

a4NτN3
s

lnZ

a4p = N−1
τ

(

ln z0 + 6λ
z1z2
z20

− 6h2
z23
z20

)

, (3.2)
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with

z0 = 1 + 4h31 + h61 ,

z1 = 3h21 + 2h51 ,

z2 = 2h1 + 3h41 ,

z3 = 6h31 + 3h61 . (3.3)

In the cold and dense regime we are working with Nτ ≥ 10 for which λ(β = 6.0, Nτ ) < 10−5

plays no quantitative role, so we neglect it from here on. The static strong coupling limit

is obtained for λ = h2 = 0 and has already been discussed in [10]. In this case the partition

function factorises into one-link partition functions z0, i.e. it represents a non-interacting

system. We identify z0 to consist of baryons, a spin 3/2 quadruplet and a spin 0 baryon

made of six quarks. Note that the Pauli principle for Nf = 1 does not admit spin 1/2

doublets. The quark number density and the energy density then follow as

a3n =
1

NτN3
s

∂

∂aµ
lnZ

=
1

NτN3
s

∂h1
∂aµ

∂

∂h1
lnZ

=
12h31 + 6h61

z0
− 648h2

h61(2 + h31)(1 + h31 + h61)

z30
= 3a3nB , (3.4)

a4e = −
a

NτN3
s

∂

∂a
lnZ

= −
a

NτN3
s

(

∂h1
∂a

)

∂

∂h1
lnZ +

6a

Nτ

(

∂h2
∂a

)(

z3
z0

)2

= amBa
3nB − 4amB

h2
Nτ

(

z3
z0

)2

, (3.5)

where the derivative with respect to a has to be taken at constant fugacity exp(aµNτ ) and

we have made use of eq. (2.50).

3.2 The nuclear liquid gas transition for Nf = 1

With these formulae at hand, it is easy to analyse the physics of the cold and dense regime.

Let us begin with the static strong coupling limit. At high density, the lattice is populated

until it is saturated with six quarks per lattice site according to the Pauli principle,

lim
µ→∞

(a3n) = 2 ·Nc ≡ 2(a3nB,sat) . (3.6)

Note that the dominating contribution to z0 is a bosonic baryon. However, it is a composite

of quarks such that the Pauli principle, built into the partition function in the original QCD

action, is still contained in z0. Another limit of interest is that of zero temperature. In
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Figure 2. The onset transition in lattice units, eq. (3.4), for κ = 0.01, β = 0 and different Nτ (left)

and for Nτ = 10, β = 0 and different κ (right).

this case we have

lim
T→0

a4p =

{

0, µ < m

2Nc(aµ− am), µ > m
,

lim
T→0

a3n =

{

0, µ < m

2Nc, µ > m
. (3.7)

Thus we find the so-called silver blaze property, i.e. the thermodynamic functions stay zero

as the chemical potential is raised until it crosses the constituent quark mass. Then it is

possible to excite baryons and the onset phase transition to nuclear matter takes place. In

the static strong coupling limit, this transition is a step function from zero to saturation

density. This step function gets immediately smeared out to a smooth crossover as soon

as a finite temperature (Nτ < ∞) or coupling h2 is switched on, cf. figure 2.

We can unambiguously identify this transition as baryon condensation by also looking

at the energy density. Away from the static limit, there are non-vanishing attractive quark-

quark (and hence baryon-baryon) interactions parametrised by h2. These are identified by

the quantity

ǫ ≡
e− nBmB

nBmB
=

e

nBmB
− 1 , (3.8)

which gives the energy per baryon minus its rest mass in units of mB. For temperatures

approaching zero, this is the binding energy per baryon. In perturbation theory, the result is

ǫ = −
4

3

1

a3nB

(

z3
z0

)2

κ2 = −
1

3

1

a3nB

(

z3
z0

)2

e−amM , (3.9)

where we have used the leading order of eq. (2.49) to express the hopping parameter by the

meson mass. This result beautifully illustrates several interesting physics points. In the

non-interacting static limit with κ = h2 = 0, there is no binding energy and hence no true

phase transition for the onset to nuclear matter. For finite κ we see from the behaviour of

z3, z0 that for µ < m and T → 0 the binding energy is also zero, another manifestation of

– 14 –



J
H
E
P
0
9
(
2
0
1
4
)
1
3
1

✲✵✳✶✷

✲✵✳✶

✲✵✳✵✽

✲✵✳✵✻

✲✵✳✵✹

✲✵✳✵✷

✵

✵✳✵✷

✵✳✾ ✵✳✾✺ ✶ ✶✳✵✺ ✶✳✶ ✶✳✶✺ ✶✳✷

ǫ

µB/mB

κ = 0.08
κ = 0.10
κ = 0.12

✲✵✳✶✷

✲✵✳✶

✲✵✳✵✽

✲✵✳✵✻

✲✵✳✵✹

✲✵✳✵✷

✵

✵✳✵✷

✵ ✵✳✵✵✺ ✵✳✵✶ ✵✳✵✶✺ ✵✳✵✷ ✵✳✵✷✺

ǫ

nB/m
3
B

κ = 0.08
κ = 0.10
κ = 0.12

Figure 3. Binding energy per nucleon in the strong coupling limit, eq. (3.9) with Nτ = 10. Quark

mass decreases with growing κ.

the silver blaze phenomenon. On the other hand, for µ > m, T → 0 it is explicitly negative

and its absolute value increases with decreasing meson mass. This is in complete accord

with expectations from nuclear physics models based on meson exchange.

The binding energy as a function of chemical potential is shown in figure 3 (left), the

asymptotes towards larger chemical potential are due to lattice saturation. Plotting against

the number density, we obtain the equation of state as qualitatively expected for nuclear

matter, figure 3 (right). In particular, the binding energy per baryon gets more negative

as the quarks get lighter, until we see a minimum forming. Note that all curves eventually

should turn upwards again, but for finite lattice spacing they are limited by the saturation

density. With the explicit mass dependence in the binding energy and without a continuum

extrapolation, quantitative predictions for physical QCD cannot be made until the physical

flavour content and masses can be controlled. Nevertheless, it is interesting to compare the

binding energy per nucleon from figure 3 with ǫ = (µc −mB)/mB = −0.38 obtained from

lattice QCD with staggered fermions in the strong coupling and chiral limit [25], as well as

with the physical value ǫ ≈ 0.017 at the nuclear saturation density, nB0/m
3
proton ≈ 0.016.

3.3 The static strong coupling limit for Nf = 2 at finite baryon density

For β = 0, the partition function consists of the static determinant factors only

Z(β = 0) =
[

∫

[dW ]
∏

~x

(1 + huL~x + h2uL
∗
~x + h3u)

2(1 + h̄uL
∗
~x + h̄2uL~x + h̄3u)

2 (3.10)

(1 + hdL~x + h2dL
∗
~x + h3d)

2(1 + h̄dL
∗
~x + h̄2dL~x + h̄3d)

2
]V

= zV0 .

We again consider the zero temperature limit at µ > 0, for which the anti-quark contribu-

tions vanish. After the gauge integration the result reads

z0 = (1 + 4h3d + h6d) + (6h2d + 4h5d)hu + (6hd + 10h4d)h
2
u + (4 + 20h3d + 4h6d)h

3
u

+(10h2d + 6h5d)h
4
u + (4hd + 6h4d)h

5
u + (1 + 4h3d + h6d)h

6
u . (3.11)

All exponents of hnuh
m
d come in multiples of three, n+m = mod 3. Just as in the one-flavour

case (with hd = 0), this has the form of a free baryon gas where the prefactors give the
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degeneracy of the spin multiplets. Note that for Nf = 2 we also find the standard spin 1/2

nucleons and many more combinations. To illustrate the prefactors, consider the example

h2uhd. There is the spin 1/2 doublet, the proton, as well as a spin 3/2 quadruplet, the ∆+,

i.e. six states altogether. The states corresponding to h2dhu are the neutron and the ∆0,

while h3u, h
3
d are the ∆++,∆− quadruplets, respectively. It continues with six-quark states.

For example, h4uh
2
d has 10 allowed spin-flavour combinations, corresponding to three spin

1 triplets and one spin 0 singlet. These are consistent with an interpretation as di-baryon

states built of ∆++∆0 or pp. Thus, eq. (3.11) contains all baryonic spin-flavour multiplets

that are consistent with the Pauli principle, i.e. up to a maximum of 12 constituent quarks.

The quark density reads

a3nB =
T

V

∂

∂(aµB)
lnZ

= 2
[

h3u(2 + h3u) + hdh
2
u(3 + 4h3u) + h5dhu(4 + 9h3u)

+h4dh
2
u(10 + 9h3u) + h2dhu(3 + 10h3u)

+h6d(1 + 6h3u + 2h6u) + h3d(2 + 20h3u + 6h6u)
]

/
[

1 + 4h3u + h6u + 2h4dh
2
u(5 + 3h3u) + 2h2dhu(3 + 5h3u) + h5d(4hu + 6h4u)

+hd(6h
2
u + 4h5u) + h6d(1 + 4h3u + h6u) + 4h3d(1 + 5h3u + h6u)

]

. (3.12)

In the high density limit numerator and denominator are dominated by the term with the

highest power and we obtain

lim
µ→∞

(a3n) = 2 · 2 ·Nc ≡ 4(a3nB,sat) . (3.13)

This is the saturation density with two spin, two flavour and three colour states per lattice

site and fermion. In the zero temperature limit we have again the silver blaze property

followed by a transition to lattice saturation

lim
T→0

a4p =

{

0, µ < m

4Nc(aµ− am), µ > m
,

lim
T→0

a3n =

{

0, µ < m

4Nc, µ > m
. (3.14)

3.4 The static strong coupling limit for Nf = 2 at finite isospin density

Finite isospin density is realised for µI = µu = −µd [26]. Choosing µu > 0, the zero

temperature limit implies h̄u, hd → 0 for T → 0. Omitting the corresponding terms

from eq. (3.11) and performing the gauge integration we find the expression

z0 = (1 + 4h̄3d + h̄6d) + (4h̄d + 6h̄4d)hu + (10h̄2d + 6h̄5d)h
2
u + (4 + 20h̄3d + 4h̄6d)h

3
u

+(6h̄d + 10h̄4d)h
4
u + (6h̄2d + 4h̄5d)h

5
u + (1 + 4h̄3d + h̄6d)h

6
u . (3.15)

With isospin chemical potential, d-anti-quarks are now playing the same role as u-quarks

and the partition function is a free gas of baryons, anti-baryons and mesons. Differentiating
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with respect to isospin chemical potential gives the isospin density,

a3nI =
T

V

∂

∂(aµI)
lnZ (3.16)

= 2
[

3h3u(2 + h3u) + 5h̄4dhu(3 + 8h3u) + h̄dhu(4 + 15h3u) + h̄5dh
2
u(21 + 20h3u)

+h̄2dh
2
u(20 + 21h3u) + 3h̄6d(1 + 6h3u + 2h6u) + 6h̄3d(1 + 10h3u + 3h6u)

]

/
[

1 + 4h3u + h6u + 2h̄2dh
2
u(5 + 3h3u) + 2h̄4dhu(3 + 5h3u)

+h̄d(4hu + 6h4u) + h̄5d(6h
2
u + 4h5u) + h̄6d(1 + 4h3u + h6u) + 4h̄3d(1 + 5h3u + h6u)

]

.

Also in this case, we find saturation in the high density limit,

lim
µ→∞

(a3nI) = 2 · 2 ·Nc ≡ 4(a3nI,sat) . (3.17)

Just as in the case of finite baryon density, the high density expression is dominated by a

bosonic composite state which “knows” that it consists of constituent quarks, of which only

a finite number can be packed on one lattice site. The saturation level is hence identical

to that for large baryon chemical potential.

Similarly, in the zero temperature limit we find again the silver blaze property followed

by a non-analytic transition to isospin condensation,

lim
T→0

a4p =

{

0, µ < m

4Nc(aµ− am), µ > m
,

lim
T→0

a3nI =

{

0, µ < m

4Nc, µ > m
. (3.18)

Note that for static quarks, mB/3 = mπ/2 and the onset transition to nuclear or isospin

matter fall on top of each other as a function of quark chemical potential. We shall see in our

numerical investigations that a gap between them opens up as expected when interactions

between the hadrons are switched on.

4 Simulation of the effective theory by complex Langevin

The effective theory specified in the last sections has a sign problem. With less degrees of

freedom and the theory being only three-dimensional, the sign problem is milder than in

the original theory such that Monte Carlo methods are feasible at finite temperatures and

chemical potentials µ/T <∼ 3 [9]. If, however, one is interested in cold dense matter in the

zero temperature limit, the sign problem becomes strong and Monte Carlo methods are

restricted to small volumes. Fortunately, the effective theory is amenable to simulations

using complex Langevin algorithms (for an introductory review, see [27]) and the onset

transition to nuclear matter could be demonstrated explicitly for very heavy quarks [10].

In this section we discuss the validity of complex Langevin for the effective theory. We will

only sketch the general method here, as there is an abundant literature on this subject [27–

31].
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Figure 4. Test of the convergence criterion for complex Langevin in the effective theory to order

κ2 (left) and κ4 (right) for κ2Nτ/Nc = 0.01 and β = 5.7. L̂ refers to the Langevin operator in (4.6)

The basic idea is to introduce a fictitious Langevin time θ, in which a field theoretical

system with a generic field φ evolves according to the Langevin equation

∂φ(x, θ)

∂θ
= −

δS

δφ(x, θ)
+ η(x, θ) , (4.1)

where η(x, θ) denotes Gaussian noise. In the case of a complex action, the field variables

have to be complexified too, φ → φr + iφi. In our case, the degrees of freedom of the

effective theory are the temporal Wilson lines

∫

[dU0]f(W,W †) =

∫

[dW ]f(W,W †) . (4.2)

We may further simplify this by taking the trace of the Wilson lines and parametrising the

resulting Polyakov loops in terms of two angles, bringing them into a diagonal form [32]

L(θ, φ) = eiθ + eiφ + e−i(θ+φ) . (4.3)

This introduces a potential term denoted by eV with

V =
1

2
ln(27− 18|L|2 + 8Re(L3)− |L|4) . (4.4)

Hence the integration measure we use in our simulation is the reduced Haar measure

∫

[dW ] =

∫

[dL]eV =

∫ π

−π

[dθ]

∫ π

−π

[dφ] e2V . (4.5)

This means instead of an integration over SU(3) matrices we have 2 complex degrees of

freedom on every spatial lattice point. Furthermore, having only diagonal matrices their

inversion is trivial. With these ingredients eq. (4.1) was solved numerically using stepsizes

of around ǫ = 10−3 and applying the adaptive stepsize technique proposed in [33] to avoid

numerical instabilities.
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Figure 5. Distribution of the static determinant, eq. (2.10), in the course of simulations with

Nf = 1, κ = 0.0173, Nτ = 100, β = 0. No crossings of the negative real axis are observed.

4.1 Criteria for correctness

It is well known that the complex Langevin algorithm is not a general solution to the

complex action problem since it converges to the wrong limit in some cases, including

some parameter ranges for QCD [27, 34]. The failure can be attributed to insufficient

localisation of the probability distribution in the complex field space, and a set of criteria

was developed to check whether this localisation is sufficient in a given simulation [30]. A

necessary condition is that the expectation value of all observables O[φ] vanishes after a

Langevin operator L̂ has been applied to them,

〈L̂O[φ]〉 = 0, L̂ =
∑

a,x

(

∂

∂φa(x)
−

∂S

∂φa(x)

)

∂

∂φa(x)
. (4.6)

While, strictly speaking, this test is necessary on all observables of the theory, in practice

only a select few can be tested. Note that in the framework of our effective theory, all

observables are expressed as functions of Polyakov loops and one might hope that its

proper behaviour propagates to more complicated functions of it. In figure 4 we show

the expectation value of the Polyakov loop as a function of the step size of the Langevin

algorithm for the effective theory to order κ2 (left) and κ4 (right). In both cases the

criterion is satisfied in the limit of vanishing stepsize.

4.2 The logarithm of the static determinant

Another problem related to the distribution in the complexified field space has recently

been pointed out for all partition functions containing a complex determinant [35]. Its

contribution to the effective action is ∼ log det, and the logarithm develops a cut along

the negative real axis, i.e. it is multi-valued. This may cause a problem whenever the

calculation of the drift term for the Langevin time requires a derivative to be taken across

the cut. In [35] it was found for a random matrix model that these crossings lead to

incorrect predictions for observables if they happen frequently in a Monte Carlo history.

Here we can see another benefit of the effective theory compared to a Langevin simulation
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Figure 6. Comparison between Langevin and Monte Carlo for quark number density at different

values of κ with Nτ = 100 and β = 0 (left) and the Polyakov loop at different µ with β = 5.7, κ =

0.01 and Nτ = 200 (right), both using the κ4-action for Nf = 1.

of full QCD. In the effective theory, only the static determinant features this problem,

while the corrections to the effective action in the hopping expansion are exponentials of

polynomials. We have monitored the static determinant during the Langevin evolution,

an example is shown in figure 5 at baryon density slightly below (left) and above (right)

the onset transition to nuclear matter. Note that the static determinant is dominated

by the Polyakov loop. One observes the expected distortion from the centre symmetric

distribution of the vacuum state to the distribution preferring the real centre sector, and

this distortion is amplified exponentially with chemical potential. For simulation purposes,

the crucial observation is that there are nearly no crossings of the negative real axis, in

accord with the satisfied convergence criterion above. We have monitored such scatter

plots over a wide range of parameter values. Occasionally crossings of the negative axis do

occur, but the observed frequency was < 10−4 in all cases.

4.3 Comparison with Monte Carlo

As a final and complementary check of the validity of the complex Langevin simulations,

one may also compare with reweighted Monte Carlo results where this is possible, i.e. on

small volumes. In [10] we have shown a successful comparison for very small hopping

parameters κ ∼ 10−4. Figure 6 shows that this test is also passed for significantly larger

values κ ∼ 0.01. We conclude that complex Langevin simulations of the effective theory

constructed here are fully controlled for the entire coupling range investigated, 0 < β < 6

and 0 < κ < 0.12. This is an algorithmic advantage over Langevin simulations in full QCD,

where gauge cooling techniques [36] are required to control the field distribution and even

then simulations at small lattice couplings are ruled out [7].

5 Numerical Results

5.1 Convergence region of the hopping series

An important task is to find the region of validity of the effective theory. By this we

mean the region, determined by a self-consistent test, where the truncated effective theory
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Figure 7. Comparison between κ2, κ4 actions, with and without resummation for Nf = 1, c = 0.8

and β = 0 (left) and resummed, including gauge corrections for β = 5.7 (right).

is a good approximation to the full theory. As criteria we choose the difference between

expectation values of observables, calculated from the κ2 and the κ4 action, 〈O〉κ2 , 〈O〉κ4 .

These can be evaluated as a function of the expansion parameter κ2Nτ

Nc
, and the convergence

region is where the difference is smaller than the desired accuracy. Since we are interested

in the onset of baryon number, we choose the density in lattice units a3n as an observable

and compute it at a fixed value of the coupling h1 = 0.8. As can be seen in figure 7, the

static limit is only a valid approximation in the κ → 0 limit. Note that the resummed action

offers a slightly better convergence. Therefore, we will use this version for our simulations.

The expansion parameter already shows that the region of convergence is limited in the

direction of low temperatures and light quarks, i.e. one can reach lower quark masses at

larger temperatures.

5.2 Setting a scale and units

Setting a scale and performing continuum limits along lines of constant physics is a compu-

tationally very demanding task. Rigorously speaking, this is truly possible only at or near

the physical point. On the other hand, the effective theory considered here is only valid for

very heavy quarks, due to the truncated hopping series. While it exhibits most qualitative

features of physical QCD, its spectrum is still far from the experimentally observed one.

For this reason we do not attempt to accurately fix our hadron masses. (In the mass ranges

considered this would anyway demand heavy quark effective theories [37]). Instead we only

provide a very rough guide where we are in parameter space.

Our procedure is as follows: heavy quarks have little influence on the running of the

coupling. Thus we use the non-perturbative beta-function of pure gauge theory for the

lattice spacing in units of the Sommer parameter, a(β)/r0 [38]. Taking r0 = 0.5 fm sets

a physical scale for our lattices, while Nτ tunes temperature via T = (aNτ )
−1. In a very

rough approximation we then use the strong coupling expressions eq. (2.49) for the hadron

masses.

5.3 The nuclear liquid gas transition in heavy dense QCD

To ensure convergence of our expansion, we consider the case of very heavy quarks cor-

responding to mB ≈ 30GeV, mM ≈ 20GeV. In our previous work [10] we performed a
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Figure 8. Example for the continuum extrapolation for Nf = 2 (left). Shown are extrapola-

tions with one d.o.f. Continuum extrapolated results for the transition to cold nuclear matter for

T=10MeV and one or two flavours (right).
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Figure 9. Pressure and equation of state for Nf = 2 at T = 10MeV.

continuum extrapolation for the transition to cold nuclear matter based on the κ2 action.

In figure 8 we repeat this calculation including the κ4 corrections. This allows us to sim-

ulate smaller lattice spacings a = 0.08 fm without leaving the region of convergence, since

reducing a while keeping mB/T and T fixed means going to higher κ and Nτ . Nevertheless,

the extrapolation suffers from considerable uncertainties, resulting in large errors in the

high density phase. This can be seen in figure 8 (left), where we show the two best fits for

our data at µB/mB = 1 at several lattice spacings. This is the chemical potential where

different extrapolation fits differ the most. The systematic truncation error for our κ4 data

is estimated as the difference to the data obtained from the κ2 action and included in the

error bars in the figure. This data was then fitted to get a value for a → 0. For each value of

the chemical potential we tried several fits (linear and quadratic) with one to three degrees

of freedom. For the best fits we always achieved χ2
red < 2 as long as µB/mB < 1.0014. For

the continuum result we quote the average of the two best fits, the error was estimated

as difference between those two fits. We note that the results at κ4 are somewhat higher

than our κ2-results in [10]. This is because inclusion of κ4 is the first order allowing for a
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Figure 10. Left: energy density, eq. (3.5). Right: binding energy per nucleon, eq. (3.8). Both

plots show Nf = 2, T = 10MeV.

realistic estimate of the truncation error, and thus permits inclusion of data with smaller

lattice spacing.

This results in the continuum extrapolated baryon number density in figure 8 (right),

where we display the results forNf = 1, 2 for a temperature T = 10MeV. In the low density

region the “silver blaze” property, i.e. the independence of the thermodynamic functions

of chemical potential can be seen. The growing uncertainties in the high density region

are caused by the unphysical saturation on the lattice which limits the density to 2NfNc

quarks per lattice site, while in the continuum no such saturation exists. As expected, the

onset of nuclear matter happens at a pseudo-critical value µc
B < mB, due to the nuclear

binding energy, which we explicitly evaluate below, as well as any remaining temperature

effects. The location of the onset suggests a very small binding energy ∼ 10−3mB for

the heavy quarks considered here, in accord with our perturbative analysis, section 3.2.

This explains why the onset transition is a smooth crossover rather than the first-order

transition expected for light quarks. The endpoint of the nuclear liquid gas transition sits

at a temperature of the order of the binding energy and is not visible for very heavy quarks.

In accord with expectation, the onset with two flavours is steeper than with one flavour.

It is now straightforward to compute the other thermodynamic functions and from

them the equation of state. Figure 9 shows the pressure as a function of baryon chemical

potential as well as a function of baryon density, whereas the binding energy per nucleon is

shown in figure 10. Note that in all plots the error bars include the systematic uncertainty

of both, the truncation of the effective theory as well as the continuum extrapolation.

The plot of the binding energy is particularly intriguing. For small density it is zero,

another manifestation of the silver blaze property, until it turns negative, thus causing

the condensation of nuclear matter. At larger density, lattice saturation is reached before

the expected upturn of the curve, which should happen before µB/mB = 1, i.e. here the

continuum extrapolation is not yet controlled. Nevertheless, the numerical size of ǫ ∼ 10−3

is consistent with that observed from the location of the onset transition in figure 8 (right).
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Figure 11. Distributions of the quark density in the transition region with temperature increasing

from left to right, κ = 0.12 and β = 5.7
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Figure 12. Quark number susceptibility for κ = 0.12 and β = 5.7 and Nτ = 500 (left) and

Nτ = 250. The divergence with volume signals a true phase transition, whereas saturation at a

finite value implies a smooth crossover.

5.4 Nuclear liquid gas transition for decreasing quark mass

As in our previous work [10], the accessible quark masses in the convergence region of the

effective theory are too high to realise the expected first order transition for the onset of

nuclear matter. Finite size scaling analyses reveal the transition to be a smooth crossover,

in accord with the interplay between accessible temperatures and the values of the binding

energies. Of course it is highly interesting to see whether the effective theory includes

the expected physics features when the quark mass is lowered. We now consider κ =

0.12, corresponding to a smaller quark mass, albeit still larger than ΛQCD, and very low

temperatures parametrised by Nτ ∼ O(103). We stress that this choice of parameters is

far outside the convergence region of our κ4-action, cf. figure 7. In other words, there is no

reason to expect the results to accurately represent QCD and an attempt at a continuum

extrapolation makes no sense. Nevertheless, this is an interesting check of the qualitative

features of the effective theory.

Figure 11 shows distributions of the Polyakov loop in the onset transition region for

three choices of Nτ , corresponding to increasing temperatures from left to right. We clearly

observe the coexistence of two phases at the lowest temperatures, which indicates a first

order transition between them. As the temperature is raised (Nτ is lowered), the two-

state signal weakens and merges to a single gaussian distribution, signalling a weakening
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Figure 13. Onset of finite isospin density vs. baryon density for Nf = 2, Nτ = 100, β = 5.7 and

heavy quarks, κ = 0.03 (left) and light quarks, κ = 0.12 (right).

and eventual disappearance of the first-order transition. This picture is corroborated by a

finite size analysis of the quark number susceptibility in figure 12. First-order and crossover

transition are clearly distinguished by diverging and finite susceptibility as a function of

volume. Thus we conclude, while our κ4-action used in this work is not quantitatively

reliable in this parameter range, it displays all the qualitative features expected for the

nuclear liquid gas transition: a first-order transition from the vacuum to nuclear matter

which weakens with temperature until it vanishes in a critical endpoint. We therefore

expect higher orders in the effective action to only correct the quantitative details of this

transition.

5.5 Isospin vs. baryon chemical potential

Let us finally consider the situation in the two-flavour theory with finite isospin chemical

potential, µI = µu = −µd. In section 3.4 we have discussed the situation in the static

strong coupling limit, where the onset transition for pion condensation at µI = mπ/2

happens at the same chemical potential as the one for baryon condensation at µB = µB/3.

With interactions included, this gets modified in two ways. Firstly, we have mπ/2 < mB/3

in this case, and secondly the onset gets shifted to smaller chemical potentials by the non-

vanishing binding energy. The first effect also leads to the expected gap opening between

the onset to pion condensation vs. that to baryon condensation [39], when plotted against

quark chemical potential, as shown in figure 13.

6 Conclusions

In this work we further elaborated the construction of an effective three-dimensional lattice

theory for QCD thermodynamics. It is formulated entirely in terms of Polyakov loops and

calculated from the 4d Wilson action as a strong coupling and hopping series which is now

complete to order κnum, (n+m) = 4. In the static strong coupling limit, the effective theory

can be solved exactly, providing the complete spin-flavour structure of the hadron spectrum

as well as an onset transition from zero density to lattice saturation. The interacting
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effective theory has a sign problem that can be handled by complex Langevin simulations

with fully satisfied convergence criteria. Moreover, the sign problem is mild enough that

on small volumes Monte Carlo simulations are feasible, even at real chemical potential.

The couplings of the effective theory are sufficiently small to also permit a perturbative

evaluation, which agrees with numerical results in wide regions of the parameter space.

Altogether this allows for a controlled and very efficient evaluation of thermodynamic

functions and critical couplings.

Working in the heavy quark region near the static limit, where continuum extrapola-

tions of thermodynamic functions are feasible, we have explicitly demonstrated the onset

transition to cold nuclear matter and calculated the nuclear equation of state for the first

time directly from QCD. In particular, we find a negative binding energy per nucleon as

the expected reason for baryon condensation. In accord with expectations from models of

nuclear interactions, the binding energy is governed by exponentials of the meson mass and

suppressed for heavy quarks. Decreasing the quark mass beyond the convergence region

of our expansion, we indeed observe the nuclear onset transition to emerge as a first order

liquid gas transition with an endpoint at some small temperature. In this parameter range

also the expected gap opens up between the onset of pion condensation in the case of finite

isospin chemical potential and the nuclear onset at finite baryon density.

In summary, the effective lattice theory described in this work contains all the qualita-

tive physics expected for cold nuclear matter. It remains to be seen whether high enough

orders of the hopping expansion can be generated in the future in order to reach physical

quark mass values. However, since the hopping convergence is much faster at high tempera-

tures, the current effective theory might already be useful to describe the finite temperature

phase structure of QCD with light quarks. Work in this direction is in progress.
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A Wilson line contributions to the effective action

In this appendix we list final expressions for all types of terms appearing in the kinetic

determinant derived in section 2.5.

−
1

2

∫

[dUk]
∑

~x,i

TrP~x,iM~x,iP~x,iM~x,i = (A.1)

κ4Nτ (Nτ − 1)
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+
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†
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