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1 Introduction

Hadronic contributions dominate the uncertainty in the Standard-Model prediction of the

anomalous magnetic moment of the muon aµ = (g−2)µ/2, see e.g. [1, 2]. In view of the next

round of (g − 2)µ experiments at FNAL and J-PARC aimed at reducing the experimental

error by a factor of 4, control over these hadronic effects has to be improved substantially

to make sure that experiment and Standard-Model prediction continue to compete at the

same accuracy.
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The leading hadronic contribution, hadronic vacuum polarization (HVP), can be re-

lated directly to the total hadronic cross section in e+e− scattering and, given a dedicated

e+e− program, it is expected to allow for the required improvement, see e.g. [3]. In con-

trast, the subleading1 hadronic light-by-light (HLbL) scattering contribution has so far

been evaluated within hadronic models and frameworks that partially incorporate rigor-

ous constraints from QCD [7–19]. In this context, a reliable estimate of the uncertainty

associated with HLbL scattering as well as future reductions thereof appear difficult. As

an alternative, model-independent approach to the problem, lattice QCD calculations have

been proposed [20], but it is yet premature to make predictions about when such calcu-

lations will become competitive (for the present status see [3, 21]). Accordingly, HLbL

scattering will soon dominate the theory error and thus become the roadblock in fully

exploiting the new (g − 2)µ measurements.

Here, we propose to use dispersion theory to analyze HLbL scattering, similarly to

what is done for HVP. In this framework, the amplitude is characterized by its analytic

structure, i.e. poles and cuts, so that the relevant quantities are residues and imaginary

parts, and thus, by definition, on-shell form factors and scattering amplitudes. In this

way, a direct correspondence to experimentally accessible quantities can ultimately be

established. While the advantages are evident, such an approach has been long sought

after. However, due to the more complicated structure of HLbL scattering, it has not been

possible so far to write down a formula strictly analogous to that for HVP that includes all

possible hadronic intermediate states. In the present paper we make the first step in that

direction, based on the assumption that the most important contributions are due to the

single- and double-pion intermediate states. While the former has been analyzed in several

papers in a (to a large extent) model-independent way, this is not the case for the latter.

The main novelty of this paper is a master formula that explicitly relates the contribution

of two-pion intermediate states to aµ to the partial waves for γ∗γ∗ → ππ. In particular,

within our framework the issues raised in [22–24] concerning the dressing of the pion loop

can be settled with input from experiment.

The outline of the paper is as follows: in section 2 we introduce our dispersive approach,

we illustrate it using the example of the pion pole, commenting on its definition within this

picture, and then collect the necessary notation concerning γ∗γ∗ → ππ partial waves which

will later be needed for the analysis of ππ intermediate states. In section 3, we derive a set

of dispersion relations for HLbL scattering, leading to an expression for the ππ contribution

to aµ in terms of γ∗γ∗ → ππ partial waves. Finally, we offer our conclusions and an outlook

in section 4. Various details of the calculation are discussed in the appendices.

2 Dispersive framework for hadronic light-by-light scattering

2.1 Notation

We define the HLbL tensor Πµνλσ as

Πµνλσ
(
q1, q2, q3

)
= i3

∫
d4x

∫
d4y

∫
d4z e−i(x·q1+y·q2+z·q3)〈0|T

{
jµ(x)jν(y)jλ(z)jσ(0)

}
|0〉,

(2.1)

1At next-to-leading order also two-loop diagrams with HVP insertions appear [4]. Next-to-next-to-

leading-order hadronic contributions have been recently considered in [5, 6].
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where jµ(x) =
∑

iQiq̄i(x)γµqi(x), i = u, d, s, is the electromagnetic current (Qi being the

charge of the quark in proton charge units) and the matrix element is to be evaluated in

pure QCD (i.e. for α = e2/(4π) = 0). In the calculation of aµ we take the external photon

to couple with the fourth current, and denote its momentum by k = q1 + q2 + q3. In

addition, we need the above tensor in the kinematic configuration k2 = 0. Contracted with

the appropriate polarization vectors this gives the matrix element of the leading-order (in

α) hadronic contribution to the reaction

Hλ1λ2,λ3λ4(s, t, u) ≡M(γ∗(q1, λ1)γ
∗(q2, λ2)→ γ∗(−q3, λ3)γ(k, λ4))

= εµ(λ1, q1)εν(λ2, q2)ε
∗
λ(λ3,−q3)ε∗σ(λ4, k)Πµνλσ(q1, q2, q3), (2.2)

with Mandelstam variables

s = (q1+q2)
2 = (k−q3)2, t = (q1+q3)

2 = (k−q2)2, u = (q2+q3)
2 = (k−q1)2, (2.3)

and s-channel scattering angle

zs = cos θs =
s(

s− q23
)√
λ12

(
t− u+

(
q21 − q22

)
q23

s

)
, λ12 = λ

(
s, q21, q

2
2

)
, (2.4)

with λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) the Källén function. For the contribution

to aµ we only need the derivative with respect to the external photon momentum kσ, since

by virtue of gauge invariance [25]

Πµνλσ

(
q1, q2, k − q1 − q2

)
= −kρ ∂

∂kσ
Πµνλρ

(
q1, q2, k − q1 − q2

)
. (2.5)

The contribution to aµ follows from

aµ = lim
k→0

Tr
{(
/p+m

)
Λρ
(
p′, p

)(
/p
′ +m

)
Γρ
(
p′, p

)}
,

Γρ
(
p′, p

)
= e6

∫
d4q1
(2π)4

∫
d4q2
(2π)4

1

q21q
2
2q

2
3

γµ
(
/p′ + /q1 +m

)
γλ
(
/p− /q2 +m)γν(

(p′ + q1)2 −m2
)(

(p− q2)2 −m2
)kσ ∂

∂kρ
Πµνλσ,

(2.6)

with the projector [26]

Λρ
(
p′, p

)
=

m2

k2
(
4m2 − k2

){γρ +
k2 + 2m2

m
(
k2 − 4m2

)(p+ p′
)ρ}

. (2.7)

m denotes the mass of the muon, p and p′ = p − k the momenta of the incoming and

outgoing muon, respectively, and we have assumed that Πµνλσ is already manifestly gauge

invariant and crossing symmetric. The general relation (2.6) can be further simplified using

the identity(
/p+m

)
γρ
(
/p
′ +m

)
=
(
/p+m

)[ 1

2m

(
p+ p′

)ρ
+

i

2m
σρτkτ

](
/p
′ +m

)
. (2.8)

Explicit expressions will be given in (2.12) and (F.1).
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2.2 Layout of the dispersive approach

In a dispersive approach one exploits the analytic properties of the matrix element of inter-

est and reconstructs it completely from information on its analytic singularities: residues

of poles, values along cuts, and subtraction constants (representing singularities at infin-

ity). Depending on the complexity of the singularity structure of a given amplitude such

a program can be carried out until the very end (as in the case of form factors), or lead

to integral equations amenable to numerical treatment. In the worst case the singular-

ity structure may be too complex to allow for an exact treatment. The HLbL amplitude

clearly belongs to the latter class, unfortunately: it has single poles, cuts in all channels

(and simultaneously in different channels), and in all photon momenta squared, as well as

anomalous thresholds [27–29].

On the basis of model calculations (see, e.g. [9]) of the HLbL contributions to aµ, it

is clear that singularities having higher thresholds (like the cut due to K̄K intermediate

states) are less important. It appears therefore reasonable to reduce the complexity of the

problem by limiting ourselves to the lowest-lying intermediate states, pions,2 and to allow

for at most two pions in intermediate states. In this approximation the HLbL tensor can

be broken down into the following contributions

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · · , (2.9)

where Ππ0-pole
µνλσ refers to the pion pole, ΠFsQED

µνλσ to the amplitude in scalar QED with vertices

dressed by the (appropriate power of) pion vector form factors F Vπ (q2) (FsQED), Π̄µνλσ

to the remaining ππ contribution, and the ellipsis to higher-mass poles and intermediate

states.

The reason for separating the FsQED contribution from the rest and its precise mean-

ing can be explained as follows: ΠFsQED
µνλσ includes the contribution due to simultaneous

two-pion cuts in two of the channels (by crossing symmetry it contains three contributions

with simultaneous singularities in the (s, t), (s, u), and (t, u) channels, respectively). One

first takes the two-pion cut in the s-channel, which gives the discontinuity as the product

of two γ∗γ∗ → ππ amplitudes, and then selects the Born term (the pure pole term) in each

of the two amplitudes, as illustrated by the leftmost diagram in figure 1. The singularity

of this diagram is therefore given by four π+π−γ∗ vertices with on-shell pions — which

implies that these vertices are nothing but the full pion vector form factors. On the other

hand, the singularity structure of this contribution is identical to that of a Feynman box

diagram with four pion propagators: since the four vertices depend only on the momentum

squared of the external photons and on none of the internal momenta, this contribution

is given by the box-diagram multiplied by three pion vector form factors (since one of the

photons is on-shell). In sQED the box diagram in figure 1 is not gauge invariant on its

own, however. The photon-scalar-scalar vertex comes together with the seagull term (two-

photon-two-scalar vertex), with couplings strictly related to each other: in any amplitude

2We are well aware of the fact that the single poles due to η, η′, and other higher-mass states are

not negligible. They are, however, easily taken into account and can be just added to the contributions

considered here. For the sake of clarity, we limit the discussion to pions only.
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F Vπ
(
q21
)
F Vπ
(
q22
)
F Vπ
(
q23
)
×




Figure 1. Scalar QED diagrams with photon-pion vertices dressed by the (appropriate power of)

pion vector form factors, in the following referred to as FsQED. Solid lines denote pions, wiggly

lines photons, and the dashed lines indicate the cutting of the pion propagators.

with two or more photons both vertices have to be taken into account to form a subset of

gauge-invariant diagrams. Therefore, in sQED the box diagram has to be accompanied by

a triangle and a bulb diagram in order to respect gauge invariance, as shown in figure 1.

We do the same here and define our gauge-invariant box diagram as the charged pion loop

calculated within sQED multiplied by the pion vector form factors.

We stress that the separation of this contribution from the rest is unambiguous as it is

based on its analytic properties, namely the presence of simultaneous cuts in two channels.

The request to have the two simultaneous cuts is equivalent to putting all pions in the

box diagram on-shell, but does not put constraints on the vertex with the photon, which

is allowed to have its full q2-dependence. The fact that the two pions in the vertex are

both on-shell, however, allows us to identify that vertex with the pion vector form factor:

multiplying the sQED contribution by three pion form factors, as shown in figure 1, is not

an approximation, but the exact and unambiguous representation of the contribution with

these analytic properties. How to technically separate this contribution from the others

with two-pion intermediate states and how they contribute to aµ will be discussed in more

detail in section 3.4.

Since we only explicitly consider cuts from up to two-pion intermediate states, this

implies that the analytic structure of the remainder Π̄µνλσ in (2.9) does not involve so-called

double-spectral regions, i.e. parts of the Mandelstam plane with simultaneous singularities

in two Mandelstam variables, and can therefore be expanded in partial waves, making a

dispersive treatment of this part feasible. In the rest of this section we first specify the

contribution of the pion pole to aµ, and then set up the notation for the γ∗γ∗ → ππ reaction.

Based on these conventions, we will derive dispersion relations for Π̄µνλσ in section 3.

2.3 Pion pole

The dominant contribution to HLbL scattering at low energy is given by the π0-poles.

Their residues are determined by the on-shell, doubly-virtual pion transition form factor

Fπ0γ∗γ∗(q
2
1, q

2
2), which is defined as the current matrix element

i

∫
d4x eiq·x

〈
0
∣∣T{jµ(x)jν(0)

}∣∣π0(p)〉 = εµναβq
αpβFπ0γ∗γ∗

(
q2, (p− q)2

)
. (2.10)

– 5 –
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In these conventions, the π0-pole HLbL amplitude reads

Ππ0-pole
µνλσ =

Fπ0γ∗γ∗
(
q21, q

2
2

)
Fπ0γ∗γ∗

(
q23, 0

)
s−M2

π0

εµναβq
α
1 q

β
2 ελσγδq

γ
3k

δ

+
Fπ0γ∗γ∗

(
q21, q

2
3

)
Fπ0γ∗γ∗

(
q22, 0

)
t−M2

π0

εµλαβq
α
1 q

β
3 ενσγδq

γ
2k

δ

+
Fπ0γ∗γ∗

(
q22, q

2
3

)
Fπ0γ∗γ∗

(
q21, 0

)
u−M2

π0

ενλαβq
α
2 q

β
3 εµσγδq

γ
1k

δ. (2.11)

Its contribution to aµ can be derived from

aµ =
1

48m
Tr
{(
/p+m

)[
γρ, γσ

](
/p+m

)
Γρσ

}
,

Γρσ = −e6
∫

d4q1
(2π)4

∫
d4q2
(2π)4

1

q21q
2
2s

γµ
(
/p+ /q1 +m

)
γλ
(
/p− /q2 +m)γν(

(p+ q1)2 −m2
)(

(p− q2)2 −m2
)[ ∂

∂kρ
Πµνλσ

]
k=0

.

(2.12)

This formula holds true if the derivative has a well-defined limit for k → 0, a condition

fulfilled by the π0-pole amplitude (2.11). It follows from (2.6) by averaging over the spatial

directions of k, see [30–32], whereupon the limit may be pulled inside the integral. The

final result can be expressed as [16]

aπ
0-pole
µ = (2.13)

−e6
∫

d4q1
(2π)4

∫
d4q2
(2π)4

1

q21q
2
2s
(
(p+ q1)2 −m2

)(
(p− q2)2 −m2

)
×
{
Fπ0γ∗γ∗

(
q21, q

2
2

)
Fπ0γ∗γ∗

(
s, 0
)

s−M2
π0

T1(q1, q2; p)+
Fπ0γ∗γ∗

(
s, q22

)
Fπ0γ∗γ∗

(
q21, 0

)
q21 −M2

π0

T2(q1, q2; p)

}
,

with

T1(q1, q2; p)=
8

3

{
2p · q1 p · q2 q1 · q2 + p · q1 q22

(
q1 · q2 + q21 − 2p · q1

)
− m2λ12

4

}
, (2.14)

T2(q1, q2; p)=
16

3

{
p·q1

(
p·q2 q1 ·q2 − p·q1 q22+(q1 ·q2)2

)
− q

2
1

2

(
3p·q1 q22−p·q2 q1 ·q2

)
−m

2λ12
4

}
.

Due to the q1 ↔ −q2 symmetry of the integrand, the t- and u-channel terms give the same

contribution.

We stress that in our dispersive framework the analytic structure of the HLbL tensor

has to be analyzed for the full four-point function, i.e. with k2 = 0 but otherwise general

k. In this setting s and q23 are independent variables and the pion-pole contribution to the

HLbL tensor is unambiguously given by (2.11), which leads to the result in (2.13). Within

our formalism, the pion pole defined in this manner (2.13) is therefore unique.

In [18] it was pointed out that the pion-pole contribution as defined in (2.11) goes

faster to zero for large q2 than what is required by perturbative QCD, thereby becoming

sub-dominant in that regime. As a cure to this problem, it was proposed in [18] to replace

– 6 –
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the singly-virtual form factor by a constant, arguing that in this way one obtains an

expression which correctly interpolates between high and low q2. As stated in that paper,

the transition Fπ0γ∗γ∗(q
2, 0) → const for large q2 is generated by the exchange of heavier

pseudoscalar resonances, which we are explicitly neglecting here. We are well aware that

restoring the correct high-energy behavior has a non-negligible impact in the numerical

estimate of the HLbL contribution to aµ. Therefore, enforcing additional short-distance

constraints onto our representation is indeed a direction for future improvements of the

formalism [33]. This statement pertains not only to the pion pole, but to a dispersive

approach in general: with a limited number of intermediate states explicitly taken into

account, the representation will be adequate at low and intermediate energies, while the

correct high-energy behavior has to be enforced in a second step.

We also observe that the leading and subleading logarithmic contributions to aµ in

a chiral and 1/NC expansion discussed in [15, 17] are automatically reproduced in this

approach: the leading one by construction, and the subleading one provided the measured

decays η → µ+µ− and π0 → e+e− are used to constrain the off-shell dependence in

Fπ0γ∗γ∗
(
q21, q

2
2

)
.

We conclude with a brief comment about an alternative, model-dependent implementa-

tion of the pole amplitude in which the pion transition form factor is generalized to arbitrary

pion virtualities [1], e.g. Fπ0γ∗γ∗(s, s, 0) for the s-channel pole (the first argument referring

to the pion virtuality). When expanded around the pole mass, any offshell-dependence

from the form factors yields a polynomial contribution, as long as it does not entail more

complicated analytic structure (and thus intermediate states beyond our framework). In

the dispersive picture a polynomial arises if the dispersive integrals do not converge suffi-

ciently fast and have to be subtracted. Off-shell terms calculated in a given model can be

absorbed into this polynomial. Frequently, the coefficients of the subtraction polynomial

are free parameters in a dispersive approach, but for HLbL scattering constraints by gauge

invariance completely fix these parameters, as will be shown in sections 3.2 and 3.3.

2.4 Conventions for γ∗γ∗ → ππ

In this section we collect notation and conventions for γ∗γ∗ → ππ. We take pion Compton

scattering

γ∗(q1, λ1, µ)πa(p1)→ γ∗(q2, λ2, ν)πb(p2), (2.15)

with momenta, helicities, and Lorentz indices as indicated as well as isospin indices a, b as

the s-channel process and define Mandelstam variables according to3

s = (q1 + p1)
2, t = (q1 − q2)2, u = (q1 − p2)2. (2.16)

The scattering angle in the crossed channel

γ∗(q1, λ1, µ)γ∗(−q2, λ2, ν)→ πa(−p1)πb(p2) (2.17)

3To keep the notation as simple as possible we use the same symbols as before, the understanding being

that in this section s, t, etc. refer to γ∗π → γ∗π kinematics, but in the rest of the paper to HLbL scattering.

– 7 –
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is given by

zt =
s− u
4ptqt

, (2.18)

with momenta

pt =

√
t

4
−M2

π ≡
√
t

2
σt, qt =

√
λt12

2
√
t
, λt12 = λ

(
t, q21, q

2
2

)
. (2.19)

The objects of interest for HLbL scattering are the helicity amplitudes corresponding

to (2.17)

out〈π(−p1)π(p2)|γ∗(q1, λ1)γ∗(−q2, λ2)〉in = ie2(2π)4δ4(q1 + p1 − q2 − p2)Hλ1λ2e
i(λ1−λ2)ϕ

Hλ1λ2 = εµ(q1, λ1)εν(−q2, λ2)Wµν , (2.20)

parameterized in terms of the tensor Wµν (ϕ denotes the azimuthal angle). Its Lorentz

decomposition into gauge-invariant structures that separately fulfill the Ward identities

qµ1Wµν = qν2Wµν = 0 (2.21)

reads

Wµν =
5∑
i=1

T iµνAi, (2.22)

where

T 1
µν = −q1 · q2gµν + q2µq1ν ,

T 2
µν = −4q1 · q2∆µ∆ν − (s− u)2gµν + 2(s− u)

(
∆µq1ν + q2µ∆ν

)
,

T 3
µν = q1 · q2q1µq2ν + q21q

2
2gµν − q22q1µq1ν − q21q2µq2ν ,

T 4
µν = −2q1 · q2q1µ∆ν + 2q21q2µ∆ν − (s− u)q21gµν + (s− u)q1µq1ν ,

T 5
µν = −2q1 · q2∆µq2ν + 2q22∆µq1ν − (s− u)q22gµν + (s− u)q2µq2ν , (2.23)

and

∆µ = p1µ + p2µ. (2.24)

To work out the explicit form of the helicity amplitudes, we choose momenta and

polarization vectors as follows4

qµ1 = (Eq1 , 0, 0, qt), qµ2 = (−Eq2 , 0, 0, qt),
pµ1 = (−Ep1 ,−pt sin θt, 0,−pt cos θt), pµ2 = (Ep2 ,−pt sin θt, 0,−pt cos θt),

εµ(q1,±) = ∓ 1√
2

(0, 1,±i, 0), εµ(−q2,±) = ∓ 1√
2

(0, 1,∓i, 0),

εµ(q1, 0) =
1

ξ1
(qt, 0, 0, Eq1), εµ(−q2, 0) =

1

ξ2
(−qt, 0, 0, Eq2),

Eq1 =
t+ q21 − q22

2
√
t

, Eq2 =
t− q21 + q22

2
√
t

, Ep1 = Ep2 =

√
t

2
, (2.25)

4We choose the signs of the transversal helicities in accordance with the conventions in [34].
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leaving the normalization ξi of the longitudinal polarization vectors general. In these

conventions, we find the following expressions for the helicity amplitudes5

H++ = H−− = −1

2

(
t−q21−q22

)
A1+

(
t−4M2

π

){(
t−q21−q22

)(
1−z2t

)
+4q2t z

2
t

}
A2−q21q22A3

+ 4ptqtzt

(
q21A4 + q22A5

)
,

H+− = H−+ = −
(
t− 4M2

π

)(
t− q21 − q22

)(
1− z2t

)
A2,

H+0 = −H−0 =
q22
ξ2

[
−
(
t− 4M2

π

)√2

t

(
t+ q21 − q22

)
zt

√
1− z2tA2 + 2ptqt

√
2t
√

1− z2tA5

]
,

H0+ = −H0− =
q21
ξ1

[
−
(
t− 4M2

π

)√2

t

(
t− q21 + q22

)
zt

√
1− z2tA2 + 2ptqt

√
2t
√

1− z2tA4

]
,

H00 = −q
2
1q

2
2

ξ1ξ2

{
A1 − 4

(
t− 4M2

π

)
z2tA2 +

1

2

(
t− q21 − q22

)
A3 + 4ptqtzt

(
A4 +A5

)}
.

(2.26)

We define the partial waves as

H++(s, t) =

∞∑
J=0

(2J + 1)PJ(zt)hJ,++(t),

H+−(s, t) =

∞∑
J=2

(2J + 1)dJ20(zt)hJ,+−(t),

H+0(s, t) =
∞∑
J=2

(2J + 1)dJ10(zt)hJ,+0(t),

H0+(s, t) =
∞∑
J=2

(2J + 1)dJ10(zt)hJ,0+(t),

H00(s, t) =

∞∑
J=0

(2J + 1)PJ(zt)hJ,00(t), (2.27)

where PJ(z) denotes Legendre polynomials and dJmm′(z) Wigner d-functions, e.g.

d220(z) =

√
6

4

(
1− z2

)
, d210(z) = −

√
3

2
z
√

1− z2. (2.28)

Due to Bose symmetry and invariance of strong interactions under charge conjugation,

only even partial waves are allowed to contribute. S-waves only occur for the ++ and 00

projection, while all other helicity projections start at D-wave level. Explicit expressions

for the partial-wave projections of the Born terms, NJ,λ1λ2 , are given in appendix A.

The helicity partial waves for γ∗γ∗ → ππ as defined in (2.27) constitute the key input

for ππ intermediate states in the HLbL contribution to aµ. They fulfill important con-

straints known as soft-photon zeros [35, 36], which will prove crucial for the construction of

5Bose symmetry in the pion system requires that the full amplitude remain invariant under p1 ↔ −p2.

Since T 4
µν and T 5

µν are odd under this transformation, the corresponding scalar functions need to be odd as

well, so that one factor in s− u can be separated without introducing kinematic singularities. Accordingly,

A4 and A5 are eliminated, in practice, in favor of Ã4 = A4/(s− u) and Ã5 = A5/(s− u).
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dispersion relations in section 3.2. The soft-photon theorem states that in the limit q21 → 0

the Born-term-subtracted helicity amplitudes vanish if t = q22 and vice versa. Its origin can

be inferred from the decomposition (2.26). For later use it will be convenient to express

these soft-photon zeros more explicitly on the level of partial waves, in the framework of

partial-wave dispersion relations (see [37, 38] for the on-shell case γγ → ππ and [36] for

a generalization to the singly-virtual process γ∗γ → ππ). In particular, one can derive a

system of so-called Roy-Steiner equations

hJ,i(t) =
1

π

∑
J ′ even

5∑
j=1

∞∫
4M2

π

dt′Kij
JJ ′(t, t

′)ImhJ ′,j(t
′) + · · · , i, j ∈ {++,+−,+0, 0+, 00},

(2.29)

where the ellipsis refers to integrals involving partial waves for γ∗π → γ∗π [33, 38]. The

precise form how the soft-photon zeros manifest themselves may be read off from the

diagonal kernel functions

K11
00 (t, t′) = K55

00 (t, t′) =
1

t′ − t −
t′ − q21 − q22

λt
′
12

,

K11
22 (t, t′) = K55

22 (t, t′) =
p2t q

2
t

p′2t q
′2
t

(
1

t′ − t −
t′ − q21 − q22

λt
′
12

)
,

K22
22 (t, t′) =

(
t− q21 − q22

)
p2t

(t′ − t)
(
t′ − q21 − q22

)
p′2t
,

K33
22 (t, t′) = K44

22 (t, t′) =

√
t

t′
p2t q

2
t

(t′ − t)p′2t q′2t
. (2.30)

The form of these kernel functions will be instrumental for the construction of dispersion

relations for HLbL scattering in section 3.2. Apart from the diagonal kernel functions (2.30)

there are also non-diagonal ones, e.g. for the S-waves

K15
00 (t, t′) =

2ξ1ξ2

λt
′
12

, K51
00 (t, t′) =

2q21q
2
2

ξ1ξ2λt
′
12

. (2.31)

The necessity of these additional kernel functions using the example of the 1-loop ampli-

tudes in Chiral Perturbation Theory (ChPT) is demonstrated in appendix B.

3 ππ intermediate states

In this section we discuss a dispersive treatment of the Π̄µνλσ part of the HLbL tensor

defined in (2.9). Modifications due to the subtraction of the FsQED loop, as well as the

symmetry factor for π0π0 intermediate states, will be discussed in more detail in section 3.4.

The outline of the derivation is as follows: in section 3.1 we first analyze the unitarity

relation for ππ intermediate states. This leads to a set of Lorentz structures diagonal in

the space of helicity amplitudes that serves as a basis for the HLbL tensor. Dispersion

relations are then written down for the scalar coefficients of these Lorentz structures. The

– 10 –
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q1, µ

q2, ν

q3, λ

k, σ

Wµν W ∗
λσ

Figure 2. Unitarity relation for ππ intermediate states in HLbL scattering. The blobs refer to the

full γ∗γ∗ → ππ amplitude, otherwise conventions as in figure 1.

form of the diagonal kernel functions of these dispersion relations can be immediately read

off from γ∗γ∗ → ππ, as detailed in section 3.2. Apart from the diagonal kernels, there are

in general non-diagonal contributions, in analogy to (2.31). In section 3.3 we discuss the

origin of these terms and derive their explicit form for S-waves, before presenting our main

result in section 3.4.

3.1 Unitarity and decomposition of the HLbL amplitude

We start off from the unitarity relation for ππ intermediate states, as illustrated in figure 2.

The s-channel discontinuity of Πµνλσ due to ππ intermediate states follows from

Imππ
s Πµνλσ =

1

2

∫
d3k1

(2π)32E1

∫
d3k2

(2π)32E2
Wµν

(
γ∗(q1, µ)γ∗(q2, ν)→ π(k1)π(k2)

)
(3.1)

×W ∗λσ
(
γ∗(q3, λ)γ(−k, σ)→ π(−k1)π(−k2)

)
(2π)4δ4

(
k1 + k2 − q1 − q2

)
.

The phase-space integral in (3.1) may be rewritten in terms of loop integrals

Imππ
s Πµνλσ (3.2)

= Ims
1

i

∫
d4l

(2π)4
1(

l2 −M2
π

)(
(l − Σ)2 −M2

π

)
×Wµν

(
γ∗(q1, µ)γ∗(q2, ν)→ π(l)π(Σ− l)

)
W ∗λσ

(
γ∗(q3, λ)γ(−k, σ)→ π(−l)π(l − Σ)

)
,

where Σ = q1+q2. This relation can be analyzed at a given order in a partial-wave expansion

for γ∗γ∗ → ππ in terms of tensor integrals. Including partial waves up to D-waves, we find

Imππ
s Πµνλσ

=
σs

16π
θ
(
s− 4M2

π

){(
h1
(
s; q21, q

2
2

)
h∗1
(
s; q23, 0

)
+

1

5
P2(zs)h3

(
s; q21, q

2
2

)
h∗3
(
s; q23, 0

))
Aµνλσ1,s

+
(
h2
(
s; q21, q

2
2

)
h∗1
(
s; q23, 0

)
+

1

5
P2(zs)h7

(
s; q21, q

2
2

)
h∗3
(
s; q23, 0

))
Aµνλσ2,s

+h3
(
s; q21, q

2
2

)(
h∗4
(
s; q23, 0

)
Aµνλσ3,s + h∗6

(
s; q23, 0

)
Aµνλσ4,s

)
+h4

(
s; q21, q

2
2

)(
h∗3
(
s; q23, 0

)
Aµνλσ5,s + h∗4

(
s; q23, 0

)
Aµνλσ6,s + h∗6

(
s; q23, 0

)
Aµνλσ7,s

)
+h5

(
s; q21, q

2
2

)(
h∗3
(
s; q23, 0

)
Aµνλσ8,s + h∗4

(
s; q23, 0

)
Aµνλσ9,s + h∗6

(
s; q23, 0

)
Aµνλσ10,s

)
+h6

(
s; q21, q

2
2

)(
h∗3
(
s; q23, 0

)
Aµνλσ11,s + h∗4

(
s; q23, 0

)
Aµνλσ12,s + h∗6

(
s; q23, 0

)
Aµνλσ13,s

)
+h7

(
s; q21, q

2
2

)(
h∗4
(
s; q23, 0

)
Aµνλσ14,s + h∗6

(
s; q23, 0

)
Aµνλσ15,s

)}
, (3.3)
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with

h1
(
s; q21, q

2
2

)
= h0,++

(
s; q21, q

2
2

)
, h5

(
s; q21, q

2
2

)
= 5

√
3

2

ξ2
q22

√
s

2
h2,+0

(
s; q21, q

2
2

)
,

h2
(
s; q21, q

2
2

)
= − ξ1ξ2

q21q
2
2

h0,00
(
s; q21, q

2
2

)
, h6

(
s; q21, q

2
2

)
= 5

√
3

2

ξ1
q21

√
s

2
h2,0+

(
s; q21, q

2
2

)
,

h3
(
s; q21, q

2
2

)
= 5h2,++

(
s; q21, q

2
2

)
, h7

(
s; q21, q

2
2

)
= −5

ξ1ξ2
q21q

2
2

h2,00
(
s; q21, q

2
2

)
,

h4
(
s; q21, q

2
2

)
= −5

√
6

4
h2,+−

(
s; q21, q

2
2

)
, (3.4)

indicating the photon virtualities in the argument of the partial waves, and Lorentz struc-

tures Aµνλσi,s as summarized in appendix C. The discontinuities for t- and u-channel involve

the tensors Aµνλσi,t and Aµνλσi,u , which follow from the s-channel analysis by means of cross-

ing symmetry (q2, ν) ↔ (q3, λ) and (q1, µ) ↔ (q3, λ), respectively. The fifteen Lorentz

structures which have emerged from the unitarity relation represent a key element for our

derivation of the dispersion relation for the HLbL tensor, as we are now going to explain.

In general, the HLbL tensor with one of the four photons on-shell contains 29 inde-

pendent scalar amplitudes. We have explicitly constructed 29 independent gauge-invariant

Lorentz tensors, but doing so in a way that makes crossing symmetry manifest, or even

easy to express, is more difficult. For our purposes we find it more convenient to use a

redundant basis, in which however crossing symmetry is evident. Therefore, we exploit

the crucial property of the Aµνλσi,s that if we project the s-channel HLbL tensor on helicity

amplitudes, only a single function Πs
i ≡ Πi(s, t, u) contributes for each helicity amplitude,

and write

Π̄µνλσ(s, t, u) =
15∑
i=1

(
Aµνλσi,s Πi(s, t, u) +Aµνλσi,t Πi(t, s, u) +Aµνλσi,u Πi(u, t, s)

)
. (3.5)

We have checked that the 45 tensors in (3.5) form a complete, though redundant, basis.

In fact, already the 30 tensors Aµνλσi,s and Aµνλσi,t alone saturate the number of linearly

independent structures, with just one redundant tensor. If we project the whole tensor

onto s-channel helicity amplitudes, besides the diagonal contribution from Πs
i , we will

get contributions from all Πt
i and Πu

i to each helicity amplitude. Explicitly, the first few

s-channel helicity amplitudes as defined in (2.2) read6

H̄++,++(s, t, u) = Π1(s, t, u) + Ĥ++,++(s, t, u),

H̄00,++(s, t, u) = −q
2
1q

2
2

ξ1ξ2
Π2(s, t, u) + Ĥ00,++(s, t, u),

H̄++,+−(s, t, u) = − 4

5
√

6
d202(zs)Π3(s, t, u) + Ĥ++,+−(s, t, u), (3.6)

6The bar over the helicity amplitudes Π̄λ1λ2,λ3λ4 indicates that these are the projections of the ten-

sor Π̄µνλσ.
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and similarly for the remaining ones. The hat amplitudes defined by

Ĥλ1λ2,λ3λ4(s, t, u) =

15∑
i=1

(
f iλ1λ2,λ3λ4Πi(t, s, u) + f̃ iλ1λ2,λ3λ4Πi(u, t, s)

)
(3.7)

with coefficients f i and f̃ i obtained from the contraction of the polarization vectors with

Aµνλσi,t and Aµνλσi,u , respectively, are responsible for the left-hand cut in the corresponding

helicity amplitude. The right-hand cut for s ≥ 4M2
π on the other hand is solely incorporated

in the Πs
i amplitude. In this sense, the decomposition (3.5) leads to diagonal unitarity

relations for the helicity amplitudes, see appendix D.

The final step in the dispersive calculation of Π̄µνλσ concerns the construction of dis-

persion relations for the coefficient functions Πi. In the next section, we determine the

diagonal kernel functions by comparison with γ∗γ∗ → ππ, while the issue of non-diagonal

kernels will be discussed in section 3.3.

3.2 Dispersion relations: diagonal kernel functions

The construction of dispersion relations for the Πi functions becomes greatly simplified if

we consider that here we are only interested in the HLbL contribution to aµ. This involves

the derivative of the HLbL tensor with respect to k evaluated at k = 0. We therefore

construct dispersion relations only for this very special limit and omit from the start any

contribution to the HLbL tensor of O(k2). Since the Aµνλσi,s scale as O(k0), any contribution

of O(k2) in Πi can be dropped right away. In particular, this concerns most of the D-wave

contributions due to the angular-momentum factor7

q234 =

(
s− q23

)2
4s

= O
(
k2
)
, (3.8)

whereas for S-waves the expected overall O(k) scaling is restored by the soft-photon zero,

which requires a factor

s− q23 = −2k · q3 +O
(
k2
)
. (3.9)

Not all D-wave contributions to aµ vanish, however. As it follows from the decomposition of

the γ∗γ∗ → ππ helicity amplitudes in (2.26), or, alternatively, the kernel function K22
22 (t, t′)

in (2.30),8 the threshold behavior for the +− system differs from (3.8), in the sense that

only a single factor in s− q23 appears. Such D-waves do contribute to aµ since after taking

the derivative with respect to k and the k → 0 limit they do not vanish. Ultimately, this

special threshold behavior is a consequence of gauge invariance, which dictates the general

decomposition in (2.26).

Considering all terms in (3.5) we find that the only diagonal kernels that contribute

in the end are those with i ∈ {1, 2, 3, 6, 9, 12, 14}. Moreover, for i ∈ {1, 2} only S-waves

are relevant, with the D-waves exhibiting the angular-momentum factor as in (3.8), while

the other non-vanishing terms, i ∈ {3, 6, 9, 12, 14}, start at D-wave level in the first place.

7We discuss the case of D-waves in the s-channel here, but the same argument applies to D-waves in all

other channels.
8In the present context, one should take q21 → q23 , q22 → 0, and t→ s in these equations.
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Since even there the dependence on the scattering angle is completely hidden in Aµνλσi,s (or

its crossed versions), this implies that all Πi effectively become single-variable functions,

which, by construction, only have a right-hand cut. Unitarity fixes the discontinuity of

these functions, see appendix D, on the right-hand cut and therefore the whole function,

up to a polynomial contribution. As we will show, however, this polynomial is completely

fixed by soft-photon constraints. We stress that the separation of right- and left-hand cut

— the property of the Πi amplitudes to only have a right-hand cut — is possible only in

the absence of double-spectral regions, which holds true for ππ intermediate states after

separating the FsQED pion loop as discussed in section 2.2. This reduction to single-

variable dispersion relations can also be understood in the framework of ππ Roy equations,

where it occurs if one neglects the contribution to the discontinuities from non-leading

partial waves, as explained in appendix E. The original idea, which goes under the name

of reconstruction theorem, has been first formulated in [39].

Based on the discussion above, we construct a dispersive representation of the Πs
i

amplitudes which has the following properties

1. For each Πs
i we only take into account the discontinuity due to the lowest partial wave.

2. We fix the discontinuity to what unitarity prescribes.

3. The Πs
i amplitudes have the required soft-photon zeros.

4. The exact form of the soft-photon zeros follows from γ∗γ∗ → ππ by means of factor-

ization.

5. The number of subtractions is chosen according to what the implementation of the

soft-photon zeros naturally generates (which is sufficient to ensure convergence).

Soft-photon zeros are also properties of the γ∗γ∗ → ππ sub-amplitudes, where they manifest

themselves as a modification of the Cauchy kernel. The form of the kernel functions of

the dispersion relations for the Πs
i can be read off from the γ∗γ∗ → ππ kernel functions

in (2.30) in the following way. After dropping the pion angular-momentum factors, these

kernel functions lead to modifications of the Cauchy kernel due to soft-photon zeros and

photon angular-momentum factors

K12(s, s
′) =

f12(s, s
′)

s′ − s , K34(s, s
′) =

f34(s, s
′)

s′ − s , (3.10)

for the initial- and final-state photon pair, respectively. The corresponding kernel in HLbL

scattering, which has exactly the same soft-photon behavior in each sub-amplitude, can be

easily obtained by factorization

K12,34(s, s
′) =

f12(s, s
′)f34(s, s

′)

s′ − s . (3.11)
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These arguments uniquely lead to the following dispersive integrals for the Πs
i amplitudes9

Πs
1= h̄0++,++(s) =

s− q23
π

∞∫
4M2

π

ds′

s′ − q23

(
1

s′ − s −
s′ − q21 − q22

λ′12

)
Im h̄0++,++(s′),

(3.12)

−q
2
1q

2
2

ξ1ξ2
Πs

2= h̄000,++(s) =
s− q23
π

∞∫
4M2

π

ds′

s′ − q23

(
1

s′ − s −
s′ − q21 − q22

λ′12

)
Im h̄000,++(s′),

−2
√

6

75
Πs

3= h̄2++,+−(s)=

(
s−q23

)
λ12

s π

∞∫
4M2

π

ds′ s′(
s′−q23

)
λ′12

(
1

s′−s−
s′−q21−q22

λ′12

)
Im h̄2++,+−(s′),

8

75
Πs

6= h̄2+−,+−(s) =

(
s− q23

)(
s− q21 − q22

)
π

∞∫
4M2

π

ds′
Im h̄2+−,+−(s′)(

s′ − q23
)(
s′ − q21 − q22

)(
s′ − s

) ,
− 4

75

√
2

s

q22
ξ2

Πs
9= h̄2+0,+−(s) =

(
s− q23

)
λ12√

s π

∞∫
4M2

π

ds′
√
s′ Im h̄2+0,+−(s′)(

s′ − q23
)
λ′12
(
s′ − s

) ,
− 4

75

√
2

s

q21
ξ1

Πs
12= h̄20+,+−(s) =

(
s− q23

)
λ12√

s π

∞∫
4M2

π

ds′
√
s′ Im h̄20+,+−(s′)(

s′ − q23
)
λ′12
(
s′ − s

) ,
2
√

6

75

q21q
2
2

ξ1ξ2
Πs

14= h̄200,+−(s)=

(
s−q23

)
λ12

s π

∞∫
4M2

π

ds′ s′(
s′−q23

)
λ′12

(
1

s′−s−
s′−q21−q22

λ′12

)
Im h̄200,+−(s′),

and accordingly for the crossed channels, with imaginary parts

Im h̄0++,++(s) =
σs

16π
θ
(
s− 4M2

π

)
S
[
h0,++

(
s; q21, q

2
2

)
h∗0,++

(
s; q23, 0

)]
,

Im h̄000,++(s) =
σs

16π
θ
(
s− 4M2

π

)
S
[
h0,00

(
s; q21, q

2
2

)
h∗0,++

(
s; q23, 0

)]
,

Im h̄2++,+−(s) =
σs

16π
θ
(
s− 4M2

π

)
S
[
h2,++

(
s; q21, q

2
2

)
h∗2,+−

(
s; q23, 0

)]
,

Im h̄2+−,+−(s) =
σs

16π
θ
(
s− 4M2

π

)
S
[
h2,+−

(
s; q21, q

2
2

)
h∗2,+−

(
s; q23, 0

)]
,

Im h̄2+0,+−(s) =
σs

16π
θ
(
s− 4M2

π

)
S
[
h2,+0

(
s; q21, q

2
2

)
h∗2,+−

(
s; q23, 0

)]
,

Im h̄20+,+−(s) =
σs

16π
θ
(
s− 4M2

π

)
S
[
h2,0+

(
s; q21, q

2
2

)
h∗2,+−

(
s; q23, 0

)]
,

Im h̄200,+−(s) =
σs

16π
θ
(
s− 4M2

π

)
S
[
h2,00

(
s; q21, q

2
2

)
h∗2,+−

(
s; q23, 0

)]
. (3.13)

The relations (3.13) without the bars on the left-hand side and the S[. . .] operators, defined

in (3.14), on the right-hand side simply express unitarity for partial-wave helicity ampli-

tudes. Since we have subtracted the FsQED contributions and are dealing with subtracted

9This representation neglects non-diagonal terms, which will be discussed in section 3.3.
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partial-wave helicity amplitudes, we have to correspondingly adapt the unitarity relations.

This is taken care of by the operator S[. . .], which either subtracts the FsQED contribution

for charged (c) pions, or restores the symmetry factor for neutral (n) pions

S
[
hcJ,λ1λ2

(
s; q21, q

2
2

)(
hcJ,λ3λ4

(
s; q23, 0

))∗]
≡ hcJ,λ1λ2

(
s; q21, q

2
2

)(
hcJ,λ3λ4

(
s; q23, 0

))∗
−NJ,λ1λ2

(
s; q21, q

2
2

)
NJ,λ3λ4

(
s; q23, 0

)
,

S
[
hnJ,λ1λ2

(
s; q21, q

2
2

)(
hnJ,λ3λ4

(
s; q23, 0

))∗]
≡ 1

2
hnJ,λ1λ2

(
s; q21, q

2
2

)(
hnJ,λ3λ4

(
s; q23, 0

))∗
. (3.14)

The occurrence of two soft-photon zeros, both in the initial- and final-state photon pair,

implies that the convergence behavior of the dispersion relations in (3.12) benefits from

two parameter-free subtractions. Since, in addition, perturbative QCD in the factorization

framework of [40] predicts an asymptotic behavior O(1/s) of the helicity amplitudes for

large momentum transfer s, the dispersive integrals should, in principle, converge even

faster than in the case of HVP.10

At this point, imposing soft-photon zeros on the Πs
i amplitudes might appear un-

justified, since it is the full Born-subtracted helicity amplitudes which have to obey this

property, and the relation among the two sets of quantities involves also the Πt,u
i ampli-

tudes, see (3.6). Kinematics, however, implies that if the direct-channel amplitudes fulfill

soft-photon zeros, so do the crossed-channel amplitudes, as we will now demonstrate.

Consider for example the Πt
i amplitudes. Soft-photon constraints for these lead to an

overall prefactor t − q22. In addition, for q21 → 0 all Πt
i behave like t − q23. Based on the

s-channel angle (2.4), these factors can be rewritten as

t− q22 =
s− q23

2s

(
q21 − q22 − s+ zs

√
λ12

)
everywhere,

t− q23 = −s− q
2
2

2s

(
s+ q23 − zs

(
s− q23

))
for q21 → 0. (3.15)

The first equation implies not only that the s-channel projection of the t-channel contri-

bution has a soft-photon zero at s = q23, but also that the amplitude vanishes at s = q21 for

q22 = 0. As the second equation covers the opposite case, kinematics alone already ensures

that soft-photon constraints are automatically respected by the crossed-channel integrals.

To summarize the key points: in the derivation of (3.12) we have

1. neglected from the start any contribution with more than two pions in intermediate

states in all possible channels,

2. separated the pion-pole and FsQED pion-loop contributions,

3. and provided a dispersive representation of the remainder in which only the lowest

partial-wave contribution to the discontinuity is kept.

10It should be stressed that the asymptotic behavior as predicted by [40] pertains to the full partial

waves, including the Born terms NJ,λ1λ2 . However, even if NJ,λ1λ2 and the Born-subtracted amplitudes

hJ,λ1λ2 − NJ,λ1λ2 might not exhibit the correct asymptotic behavior separately, the full amplitudes will,

provided that these constraints have been incorporated into the calculation of hJ,λ1λ2 in the first place.
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We stress that the second approximation (point 3) is no approximation at all if what

we are interested in is just the HLbL contribution to aµ, since contributions from higher

partial waves vanish due to angular-momentum factors (3.8). In particular, this implies

that even in the single-meson approximation for aµ resonances with spin larger than 2

cannot contribute.

3.3 Non-diagonal kernel functions

While the diagonal kernel functions for the dispersion relations of the Πi follow immediately

from γ∗γ∗ → ππ, there can be further non-diagonal contributions, analogous to (2.31).

To derive these terms one needs to start with a set of Lorentz structures constructed in

such a way that the scalar coefficient functions are free of kinematic singularities, e.g. for

γ∗γ∗ → ππ these are the tensors given in (2.23). For the S-waves in HLbL scattering one

possible choice is

Π̄µνλσ = Ãµνλσ1,s Π̃s
1 + Ãµνλσ2,s Π̃s

2 + crossed,

Ãµνλσ1,s =
(
kλqσ3 − k · q3gλσ

)(
qµ2 q

ν
1 − q1 · q2 gµν

)
,

Ãµνλσ2,s =
(
kλqσ3 − k · q3gλσ

)(
q1 · q2qµ1 qν2 + q21q

2
2g
µν − q22qµ1 qν1 − q21qµ2 qν2

)
. (3.16)

The next steps in the derivation are

1. Write down unsubtracted dispersion relations for Π̃s
i .

2. Calculate the helicity projections of Ãµνλσi,s and express Π̃s
i in terms of helicity ampli-

tudes.

3. Express Aµνλσi,s in terms of Ãµνλσi,s and infer the dispersion relations for Πs
i .

This procedure leads to

Πs
1=

s− q23
π

∞∫
4M2

π

ds′

s′−q23

[(
1

s′−s−
s′−q21−q22

λ′12

)
Im h̄0++,++(s′)+

2ξ1ξ2
λ′12

Im h̄000,++(s′)

]
,

(3.17)

−q
2
1q

2
2

ξ1ξ2
Πs

2=
s−q23
π

∞∫
4M2

π

ds′

s′−q23

[(
1

s′−s−
s′−q21 − q22

λ′12

)
Im h̄000,++(s′)+

2q21q
2
2

ξ1ξ2λ′12
Im h̄0++,++(s′)

]
,

in agreement with the diagonal kernels given in (3.12). We stress that these non-diagonal

kernels do not contribute to imaginary parts in s: from the point of view of the analytic

structure of the amplitudes, they are polynomial contributions. In order to better illus-

trate the precise role of the non-diagonal kernels and explain why their presence is not

tantamount to a generic subtraction polynomial, it is instructive to invert the derivation

described above. If one starts from (3.17) and inverts the relation between the Π̃s
i and

the helicity amplitudes, one recovers the unsubtracted dispersion relations for the Π̃s
i we

started from. If one repeats the same derivation after removing the non-diagonal kernel
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functions from the dispersion relations (3.17) for the Πs
i , one easily discovers that the dis-

persion relations so obtained for the Π̃s
i contain kinematic singularities. We conclude that

the presence of non-diagonal kernels in the dispersion relations for Πs
i is mandated by the

absence of kinematic singularities in Π̃s
i .

The generalization of this derivation to D-waves requires the analog of (2.23) for the

full HLbL tensor. We derived such a basis along the lines described in [41–43], and will

provide a full version of the dispersive system including a complete treatment of D-waves

in a subsequent publication [33].

3.4 Master formula

The relation between the HLbL tensor and its contribution to aµ as given in (2.12) is not

valid for the D-wave contributions, which involve terms ambiguous in the limit k → 0.

A formula valid also in the D-wave case could be derived by an expansion of the vertex

function in powers of k, but this is impractical since in this formulation the limit k → 0

and the loop integration in general do not commute. Therefore, we follow an approach

that relies on an angular average over the spatial directions of k, wherein the limit k → 0

and the loop integrations may be interchanged, see appendix F.11 Performing the angular

average along these lines, we obtain

aππµ = e6
∫

d4q1
(2π)4

∫
d4q2
(2π)4

Iππ

q21q
2
2s
(
(p+ q1)2 −m2

)(
(p− q2)2 −m2

) ,
Iππ =

∑
i∈{1,2,3,6,14}

(
Ti,sIi,s + 2Ti,uIi,u

)
+ 2T9,sI9,s + 2T9,uI9,u + 2T12,uI12,u, (3.18)

with dispersive integrals Ii,(s,u) given in appendix G and integration kernels Ti,(s,u) in

appendix H. Throughout, we used the symmetry of the integrand under q1 ↔ −q2 to

map the t-channel contributions onto the u-channel and simplify the s-channel kernels.

Moreover, this symmetry transforms the amplitudes corresponding to h2+0,+− and h20+,+−
into each other, with the t-channel of one equaling the u-channel of the other, and makes

the s-channel contribution of h20+,+− coincide with the one generated by h2+0,+−.

The use and interpretation of (3.18) requires some discussion. In particular, we return

to the separation of the FsQED term from the rest which we introduced in section 2.2.

To implement this separation correctly and avoid double counting, we must specify what

we mean by the partial waves of γ∗γ∗ → π+π− which appear in (3.18) via the Ii,(s,u) (see

appendix G and (3.13)). We decompose the charged-pion partial waves into Born terms

NJ,λ1λ2 (see appendix A) and a remainder ĥJ,λ1λ2 to obtain the decomposition (i = λ1λ2,

j = λ3λ4)

hJ,i
(
s; q21, q

2
2

)
h∗J,j

(
s; q23, 0

)
= NJ,i

(
s; q21, q

2
2

)
NJ,j

(
s; q23, 0

)
+NJ,i

(
s; q21, q

2
2

)
ĥ∗J,j

(
s; q23, 0

)
+ ĥJ,i

(
s; q21, q

2
2

)
NJ,j

(
s; q23, 0

)
+ ĥJ,i

(
s; q21, q

2
2

)
ĥ∗J,j

(
s; q23, 0

)
.

(3.19)

11In fact, this phenomenon is an artifact of the basis we are using. It is possible to reformulate the

dispersive system in such a way that no angular average is required [33].
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Figure 3. Classes of unitarity diagrams in HLbL scattering. The grey blobs denote (transition)

form factors and the blobs with vertical line a polynomial contribution in the crossed channel.

The first term has to be removed from all the Ii,(s,u) entering (3.18) since it is accounted

for by the FsQED charged pion loop, see (3.14). The second and third term correspond

to a triangle-type contribution (fourth diagram in figure 3), and the last term to a bulb

topology (last diagram in figure 3).12 Physically, the amplitudes ĥJ,λ1λ2 include for instance

ππ rescattering effects, and thus allow for a model-independent treatment of degrees of

freedom corresponding to resonances coupling to the ππ channel, such as the σ-resonance.

We now discuss in more detail the precise meaning of our initial statement that in our

dispersive approach we neglected multi-pion intermediate states. Consider the different

classes of unitarity diagrams that involve ππ intermediate states in the s-channel, as shown

in figure 3. Although, by definition, all these diagrams are ππ reducible in the s-channel,

they differ in the analytic structure in the crossed channel: sub-diagrams feature a pion

pole, multi-pion exchange, or polynomial contributions. Our dispersive representation

of the HLbL amplitude was derived in a partial-wave picture and therefore cannot, by

construction, have any crossed-channel cut. Box diagrams with multi-pion exchange involve

crossed-channel multi-pion cuts, representing intermediate states with more than two pions.

These unitarity diagrams are not neglected completely, but only included in a partial-wave

approximation. In this framework, the second diagram in figure 3 is partially covered by the

second and third term in (3.19), because the partial-wave projection of the left-hand side of

the diagram (which contains the multi-pion exchange) is contained in ĥJ,j . Analogously the

third and fifth diagram belong to the last term therein. Indeed, if the first term in (3.19)

is kept, the contribution from the dispersive integrals in (3.18) exactly corresponds to the

first term of the partial-wave expansion of the charged-pion loop calculated within sQED

multiplied by the appropriate power of the pion vector form factor.

The subtleties concerning Born terms are absent for neutral pions. However, since

we have assumed distinguishable particles in the derivation of the unitarity relation, their

contribution has to be accompanied by a symmetry factor of 1/2, see (3.14), so that the

explicit form of the γ∗γ∗ → ππ amplitudes occurring in the imaginary part reads

S
[
hcJ,i
(
s; q21, q

2
2

)(
hcJ,j

(
s; q23, 0

))∗]
+ S

[
hnJ,i
(
s; q21, q

2
2

)(
hnJ,j

(
s; q23, 0

))∗]
(3.20)

= hcJ,i
(
s; q21, q

2
2

)(
hcJ,j

(
s; q23, 0

))∗
+

1

2
hnJ,i
(
s; q21, q

2
2

)(
hnJ,j

(
s; q23, 0

))∗
−NJ,i

(
s; q21, q

2
2

)
NJ,j

(
s; q23, 0

)
,

12In sQED the occurrence of the seagull term mandated by gauge invariance implies that NJ,i includes

certain non-pole pieces, which gives rise to triangle and bulb topologies. However, to ensure gauge invariance

at each step, these contributions should be kept within the FsQED part of the calculation.

– 19 –



J
H
E
P
0
9
(
2
0
1
4
)
0
9
1

e+

e−
π

π

e+

e−
π

π

Figure 4. γ∗γ∗ → ππ physics in space-like (left) and time-like (right) kinematics.

adding the contributions from charged and neutral pions and subtracting the FsQED part.

Alternatively, (3.20) may be expressed in the isospin basis. Changing basis towards isospin

0 and 2 according to [38] (
hcJ,i

hnJ,i

)
=

 1√
3

1√
6

1√
3
−
√

2
3

(h0J,i
h2J,i

)
, (3.21)

we find

S
[
hcJ,i
(
s; q21, q

2
2

)(
hcJ,j

(
s; q23, 0

))∗]
+ S

[
hnJ,i
(
s; q21, q

2
2

)(
hnJ,j

(
s; q23, 0

))∗]
(3.22)

=
1

2
h0J,i
(
s; q21, q

2
2

)(
h0J,j

(
s; q23, 0

))∗
+

1

2
h2J,i
(
s; q21, q

2
2

)(
h2J,j

(
s; q23, 0

))∗
−NJ,i

(
s; q21, q

2
2

)
NJ,j

(
s; q23, 0

)
.

As long as the virtualities remain below the two-pion threshold, Watson’s theorem [44]

implies that the phase of hIJ,i
(
s; q21, q

2
2

)
is equal to δIJ(s), the phase shift of the corresponding

ππ partial wave. Since the Born terms NJ,i

(
s; q21, q

2
2

)
are real, this proves that indeed the

final result for the imaginary part is a real quantity.

Experimentally, γ∗γ∗ → ππ partial waves are accessible in the process e+e− →
e+e−ππ, either in space-like or time-like configuration, see figure 4. Using similar manipula-

tions of the loop integrals as in the case of the pion pole [1, 16], only negative virtualities are

required for HLbL scattering. However, within the dispersive approach information from

all kinematic regions is highly welcome to provide additional experimental constraints and

potentially improve the accuracy, as dispersion theory is the ideal framework to reliably

perform the required analytic continuation. In this particular case, the construction of

dispersion relations for the doubly-virtual process γ∗γ∗ → ππ in time-like kinematics is

complicated by the occurrence of anomalous thresholds [27, 28]. For a description of how

to account for those effects within our framework see [29].

In summary, we obtain a decomposition of the full HLbL contribution into

aHLbL
µ = aπ

0-pole
µ + aFsQED

µ + aππµ , (3.23)

with the pion pole (2.13), the FsQED charged pion loop,13 and the remaining effects from

ππ intermediate states according to (3.18) with imaginary parts as given in (3.20) or (3.22)

in particle or isospin basis, respectively. aππµ covers unitarity diagrams both with triangle

13An explicit representation is provided in appendix A. For the derivation of the sQED contribution we

refer to [12, 45, 46] and for a calculation of higher chiral orders to [22].

– 20 –



J
H
E
P
0
9
(
2
0
1
4
)
0
9
1

and bulb topologies. As far as FsQED Born terms are concerned, this is exemplified by the

decomposition in (3.19). It should be stressed that both the pion loop and the Born-term

contribution to the triangle topologies in aππµ are entirely fixed by the pion vector form

factor for the π+π−γ∗ vertex. Due to the fact that only space-like kinematics are relevant

for aµ, the dispersive integrals also for triangle topologies are free of anomalous thresholds.

But even if they were not, the present formalism would still be useful: one would merely

have to extend the framework along the lines sketched in [29].

4 Conclusions and outlook

The main result of this paper is presented in (3.23) and (3.18): a master formula that gives

the contribution from ππ intermediate states in HLbL scattering to the anomalous magnetic

moment of the muon, expressed in terms of helicity partial waves for γ∗γ∗ → ππ. Within the

general framework of dispersion theory, ππ intermediate states constitute the second most

important contribution after pseudoscalar pole terms, also included in (3.23). This result is

important progress towards a model-independent, data-driven analysis of HLbL scattering.

A first numerical evaluation of these contributions as they appear in (3.23) and (3.18) as

well as a generalization to a complete treatment of D-waves is in progress [33].

Although in principle the required helicity partial waves for γ∗γ∗ → ππ can be mea-

sured, a dispersive treatment of γ∗γ∗ → ππ in the framework of Roy-Steiner equations

allows for a combined analysis of all experimental constraints available for the relevant

pion-photon interactions [33, 38], in particular from kinematic regions different from those

directly relevant for HLbL scattering. While heavier two-particle, scalar intermediate states

(such as KK̄) are amenable to the same treatment, it is more challenging to account for

multi-pion contributions at the same level of rigor that we have adhered to here. To es-

timate the impact of multi-pion intermediate states, possible ansätze would be to try to

generalize the calculation of the FsQED pion loop to include resonances or to approximate

missing physical degrees of freedom in terms of resonance poles along the lines of [47].

The final goal of the approach laid out here is a calculation of HLbL scattering con-

sistent with the general principles of analyticity, unitarity, crossing symmetry, and gauge

invariance and backed by data as closely as possible. To this end, also the pseudoscalar

transition form factors should be subject to a similar analysis, see [48–51] for first steps

in this direction. Ultimately, this approach should allow for a more reliable estimate of

uncertainties in the HLbL contribution to the anomalous magnetic moment of the muon.
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A FsQED Born terms and contribution to aµ

In our conventions, the S- and D-wave projections of the Born terms for γ∗γ∗ → ππ

read [33]

NJ,++

(
t; q21, q

2
2

)
=

{
2

ptqt
QJ(xt)

(
M2
π+

tq21q
2
2

λt12

)
+2δJ0

(
q21−q22

)2−t(q21+q22
)

λt12

}
F Vπ
(
q21
)
F Vπ
(
q22
)
,

N2,+−
(
t; q21, q

2
2

)
=

{
− 2

ptqt

(
d220(xt)Q0(xt) +

√
6

4
xt

)(
M2
π +

tq21q
2
2

λt12

)
+

2√
6

t
(
t− q21 − q22

)
λt12

}
× F Vπ

(
q21
)
F Vπ
(
q22
)
,

N2,+0

(
t; q21, q

2
2

)
=− t+q

2
1−q22

t−q21−q22
q22
ξ2

√
3

t

2pt
qt

{
x2t
(
1−x2t

)
Q0(xt)+xt

(
x2t−

2

3

)}
F Vπ
(
q21
)
F Vπ
(
q22
)
,

N2,0+

(
t; q21, q

2
2

)
=− t−q

2
1+q22

t−q21−q22
q21
ξ1

√
3

t

2pt
qt

{
x2t
(
1−x2t

)
Q0(xt)+xt

(
x2t−

2

3

)}
F Vπ
(
q21
)
F Vπ
(
q22
)
,

NJ,00

(
t; q21, q

2
2

)
=− q21q

2
2

ξ1ξ2λt12

{(
t2 −

(
q21 − q22

)2) 1

ptqt
QJ(xt)− 8tδJ0

}
F Vπ
(
q21
)
F Vπ
(
q22
)
,

(A.1)

with

xt =
t− q21 − q22

4ptqt
, (A.2)

and the lowest Legendre functions of the second kind

Q0(z) =
1

2

1∫
−1

dx

z − x, Q0(z±iε) =
1

2
log

∣∣∣∣1 + z

1− z

∣∣∣∣∓iπ2 θ(1−z2), Q2(z) = P2(z)Q0(z)−
3

2
z.

(A.3)

F Vπ (q2) denotes the pion vector form factor and the kinematic quantities are defined as in

section 2.4.

However, for the reasons discussed in sections 2.2 and 3.4 the FsQED contribution

to aµ cannot be analyzed within a partial-wave framework, but rather based on Feynman

integrals. We find the representation

aFsQED
µ =

2e6

3π2

∫
d4q1
(2π)4

∫
d4q2
(2π)4

F Vπ
(
q21
)
F Vπ
(
q22
)
F Vπ (s)

(
Is + 2Iu + J1 + J2

)
q21q

2
2s
(
(p+ q1)2 −m2

)(
(p− q2)2 −m2

) , (A.4)

where

Is =
{
m2s− 2p · q1

(
p · q1 + p · q2 − q1 · q2 − q22

)} 1∫
0

dx
x(1− x)

M2
π − x(1− x)s

, (A.5)

Iu =
{
q21
(
m2 + p · q2

)
− p · q1

(
p · q1 + q1 · q2

)} 1∫
0

dx
x(1− x)

M2
π − x(1− x)q21

,
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J1 =

1∫
0

dx

1−x∫
0

dy∆−1(x, y)

{
2(16xy − 6x− 6y + 3)p · q1 p · q2 − 4x(8x− 5)(p · q1)2

+ 2p·q1
[
2x(5x+2y−3)q1 ·q2−

(
8xy+2y2−6x−6y+3

)
q22

]
−8m2x(y q1 ·q2+(1−x)q21

)}
,

J2 =

1∫
0

dx

1−x∫
0

dy∆−2(x, y)

{
m2

2
xy(1− x− y)λ12

+ 2(p · q1)2
[
x(x+ 2y − 1)q1 · q2 + y

(
2x(x+ y − 1) + 1− y

)
q22

]
− p·q1 p·q2

[(
x2(4y−1)+x(1−2y)2+y(1−y)

)
q1 ·q2+x(x+2y−1)q21+y(2x+y−1)q22

]
+ p · q1

[
y
[
(1− 2y)2(2x+ y − 1)q22 − (2x− 1)

(
4x2 + 6x(y − 1) + 1− y

)
q21

]
q22

+ x
[
8(x−1)xy q1 ·q2+(1−2x)2(x+2y−1)q21−

(
4(3x−2)y2+(8y−1)(1−x)

)
q22

]
q1 ·q2

]}
,

and

∆(x, y) = M2
π − xys− x(1− x− y)q21 − y(1− x− y)q22. (A.6)

B 1-loop ChPT for γ∗γ∗ → ππ

At 1-loop order the only non-vanishing partial-wave amplitudes are (for the on-shell case

see [52, 53])

h0,++

(
t; q21, q

2
2

)
=

l̄6 − l̄5
48π2F 2

π

(
t− q21 − q22

){1

0

}
− 1

8π2F 2
π

{
t/2

t−M2
π

}{
1 + 2

(
M2
π +

tq21q
2
2

λt12

)
C0

(
t, q21, q

2
2

)
+
t
(
q21 + q22

)
−
(
q21 − q22

)2
λt12

J̄(t)− q21
(
t+ q22 − q21

)
λt12

J̄
(
q21
)
− q22

(
t+ q21 − q22

)
λt12

J̄
(
q22
)}
,

h0,00
(
t; q21, q

2
2

)
=
q21q

2
2

ξ1ξ2

[
l̄6 − l̄5

24π2F 2
π

{
1

0

}
+

1

8π2F 2
πλ

t
12

{
t/2

t−M2
π

}{(
t2 −

(
q21 − q22

)2)
C0

(
t, q21, q

2
2

)
+ 4tJ̄(t)− 2

(
t+ q21 − q22

)
J̄
(
q21
)
− 2
(
t− q21 + q22

)
J̄
(
q22
)}]

, (B.1)

where the upper/lower result refers to charged/neutral pions and the loop functions are

defined as

C0

(
t, q21, q

2
2

)
= −

1∫
0

dx

1−x∫
0

dy
1

M2
π − txy − q21x(1− x− y)− q22y(1− x− y)

,

J̄(t) = −
1∫

0

dx log

[
1− x(1− x)

t

M2
π

]
, (B.2)
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with imaginary parts

Imt J̄(t) = πσtθ
(
t− 4M2

π

)
, ImtC0

(
t, q21, q

2
2

)
= −πθ

(
t− 4M2

π

)√
λt12

log
t− q21 − q22 + σt

√
λt12

t− q21 − q22 − σt
√
λt12

.

(B.3)

In the limit q2i → 0, (B.1) reproduces the leading term of the chiral expansion of the pion

polarizabilities

h0,++(t; 0, 0) =
Mπ

2α

(
α1 − β1

)
t+O

(
t2
)
,

Mπ

2α

(
α1 − β1

)
=

1

96π2F 2
π

{
2(l̄6 − l̄5)
−1

}
. (B.4)

In practice, subtractions have to be introduced into the Roy-Steiner equations for γ∗γ∗ →
ππ sketched in section 2.4 in order to suppress the high-energy tail of the integrals. The

ChPT result (B.1) as well as experimental information on pion polarizabilities provide

valuable constraints for this subtraction term. Moreover, the 1-loop chiral amplitudes

themselves can be used to illustrate the S-wave part of the Roy-Steiner system (2.30)

and (2.31). Inserting (B.1) into these equations, one finds the relations14

1

π

∞∫
4M2

π

dt′

{(
1

t′ − t −
t′ − q21 − q22

λt
′
12

)
Imt h1

(
t′; q21, q

2
2

)
+

2q21q
2
2

λt
′
12

Imt h2
(
t′; q21, q

2
2

)}
(B.5)

= 1 + 2

(
M2
π +

tq21q
2
2

λt12

)
C0

(
t, q21, q

2
2

)
+
t
(
q21 + q22

)
−
(
q21 − q22

)2
λt12

J̄(t)

− q21
(
t+ q22 − q21

)
λt12

J̄
(
q21
)
− q22

(
t+ q21 − q22

)
λt12

J̄
(
q22
)
,

1

π

∞∫
4M2

π

dt′

{(
1

t′ − t −
t′ − q21 − q22

λt
′
12

)
Imt h2

(
t′; q21, q

2
2

)
+

2

λt
′
12

Imt h1
(
t′; q21, q

2
2

)}

= − 1

λt12

{(
t2−

(
q21 − q22

)2)
C0

(
t, q21, q

2
2

)
+4tJ̄(t)−2

(
t+q21−q22

)
J̄
(
q21
)
−2
(
t−q21+q22

)
J̄
(
q22
)}
,

where h1 and h2 with imaginary parts

Imt h1
(
t; q21, q

2
2

)
= 2

(
M2
π +

tq21q
2
2

λt12

)
ImtC0

(
t, q21, q

2
2

)
+
t
(
q21 + q22

)
−
(
q21 − q22

)2
λt12

Imt J̄(t),

Imt h2
(
t; q21, q

2
2

)
= − 1

λt12

[(
t2 −

(
q21 − q22

)2)
ImtC0

(
t, q21, q

2
2

)
+ 4tImt J̄(t)

]
, (B.6)

correspond to h0,++ and h0,00, respectively. We checked numerically that the relations (B.5)

hold. In particular, we find that in general the contribution from the non-diagonal kernels

is non-negligible.

14Due to the high-energy behavior of the ChPT amplitudes a subtraction is required. The subsequent

relations follow e.g. from the charged channel when subtracting at t = 0. Note that the dispersive integrals

in the formulation given here apply to the situation where the virtualities are sufficiently small that no

anomalous thresholds occur. If anomalous thresholds are present, the integration contour has to be deformed

as described in [29].
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C Lorentz structures for the HLbL tensor

The Lorentz structures that appear in the unitarity relation (3.3) are

Aµνλσ1,s =
8(

s− q23
)
λ12

(
kλqσ3 − k · q3 gλσ

)(
qµν12 +

λ12
4
gµν
)
,

Aµνλσ2,s =
8(

s− q23
)
λ12

(
kλqσ3 − k · q3 gλσ

)(
q1 · q2 qµ1 − q21 qµ2

)(
q22 q

ν
1 − q1 · q2 qν2

)
,

Aµνλσ3,s = − 8

5
(
s− q23

)
λ12

{(
1− z2s

)(
kλqσ3 − k · q3 gλσ

)
+

4s qλtuq
σ
tu(

s− q23
)
λ12

}(
qµν12 +

λ12
4
gµν
)
,

Aµνλσ4,s =
32z̄s q

σ
tu

5
(
s− q23

)2
λ12

(
k · q3 qλ3 − q23 kλ

)(
qµν12 +

λ12
4
gµν
)
,

Aµνλσ5,s = − 4

5
(
s− q23

)(kλqσ3 − k · q3 gλσ)
{

1

2

(
1− z2s

)
gµν − 2z̄s

(
qµ1 q

ν
1 − qµ2 qν2

)
+
(
qµ1 +qµ2

)(
qν1 +qν2

)1

s

(
1+z2s+2z̄s

(
q21−q22

))
+

2
(
kµkνs +kµs kν

)
s−q23

+
2

λ12

(
1+z2s

)
qµν12

}
,

Aµνλσ6,s =
16

15
(
s− q23

)2
λ12

{
−
(
s− q23

)2
λ12

4

(
gµλgνσ + gµσgνλ

)
+
s− q23

2

[
gµν
[
λ12
2

(
z2s − 3

)(
kλqσ3 − k · q3 gλσ

)
− 2s

s− q23
qλtuq

σ
tu

]

+ gµλ
[
λ12

(
kνqσ3 − k · q3 gνσ

)
− qσtu

((
s− q21 + q22

)
qν1 −

(
s+ q21 − q22

)
qν2

)]
+ gνλ

[
λ12

(
kµqσ3 − k · q3 gµσ

)
− qσtu

((
s− q21 + q22

)
qµ1 −

(
s+ q21 − q22

)
qµ2

)]
+ gµσ

[
λ12

(
qν3k

λ − k · q3 gνλ
)

+ qλtu

((
q21 − q22

)(
qν1 + qν2

)
− s
(
qν1 − qν2

))
− 2λ12 k

ν

s− q23

(
k · q3 qλ3 − q23 kλ

)]
+ gνσ

[
λ12

(
qµ3 k

λ − k · q3 gµλ
)

+ qλtu

((
q21 − q22

)(
qµ1 + qµ2

)
− s
(
qµ1 − qµ2

))
− 2λ12 k

µ

s− q23

(
k · q3 qλ3 − q23 kλ

)]]

−λ12
(
kλqσ3−k ·q3 gλσ

)[
kµkνs +kµs k

ν+
s−q23

2s

[(
1+z2s+2z̄s

(
q21−q22

))(
qµ1 +qµ2

)(
qν1 +qν2

)
− 2sz̄s

(
qµ1 q

ν
1 − qµ2 qν2

)
+

2s

λ12

(
z2s + 3

)
qµν12

]]
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+ 2qσtu

[
qλtu

((
qµ1 + qµ2

)(
qν1 + qν2

)
+

2s

λ12
qµν12

)
− kλ

((
q21 − q22

)(
qµ1 + qµ2

)(
qν1 + qν2

)
− s
(
qµ1 q

ν
1 − qµ2 qν2

))]
+

[
2
(
qλ1 + qλ2

)
qσtu −

(
s− q23

)(
qλ1 q

σ
2 − qλ2 qσ1

)
+ 2λ12z̄sk

λqσ3

]
×
[(
s− q21 + q22

)(
qµ1 k

ν + kµqν1
)
−
(
s+ q21 − q22

)(
qµ2 k

ν + kµqν2
)]

+ 2kλ
[
s
(
kν
(
qµ1 + qµ2

)
+ kµ

(
qν1 + qν2

))(
q22 q

σ
1 + q21 q

σ
2

)
− s2

(
qσ1
(
qµ2 k

ν + kµqν2
)

+ qσ2
(
qµ1 k

ν + kµqν1
))

− qσ3
((
λ12 + sq22

)(
qµ1 k

ν + kµqν1
)

+
(
λ12 + sq21

)(
qµ2 k

ν + kµqν2
))]

+
2λ12
s− q23

kµkνqσ3

((
s− q23

)
qλ3 +

(
s+ q23

)
kλ
)}

,

Aµνλσ7,s =
16

15
(
s− q23

)2
λ12

(
k · q3 qλ3 − q23 kλ

){λ12
s

(
kµqσ3 − k · q3 gµσ

)( s kν

s− q23
+ kνs

)

+
λ12
s

(
kνqσ3 − k · q3 gνσ

)( s kµ

s− q23
+ kµs

)
− 2qσtu
s− q23

((
s− q21 + q22

)(
qµ1 k

ν + kµqν1
)
−
(
s+ q21 − q22

)(
qµ2 k

ν + kµqν2
))

+ qσtu

[
λ12z̄sg

µν+2
(
qµ1 q

ν
1−qµ2 qν2

)
− 2

s

(
qµ1 +qµ2

)(
qν1 +qν2

)(
q21−q22+λ12z̄s

)
−4z̄sq

µν
12

]}
,

Aµνλσ8,s =
32z̄s

5
(
s− q23

)2
λ12

(
q22 q

ν
1 − q1 · q2 qν2

)(
kλqσ3 − k · q3 gλσ

)
×
{(
t− q22

)(
q1 · q2 qµ1 − q21 qµ2

)
−
(
u− q21

)(
q22 q

µ
1 − q1 · q2 qµ2

)
+
λ12
2
kµ
}
,

Aµνλσ9,s =
16

15
(
s− q23

)
λ12

(
q22 q

ν
1 − q1 · q2 qν2

){ 2qσtu
s− q23

(
qµ3 k

λ − k · q3 gµλ
)

+ gµσqλtu

− 4qσtuq
λ
tu(

s− q23
)
λ12

(
qµ1
(
s− q21 + q22

)
− qµ2

(
s+ q21 − q22

))
− λ12z̄s

s

(
kλqσ3 − k · q3 gλσ

)[
qµ1 + qµ2 − z̄s

(
qµ1
(
s− q21 + q22

)
− qµ2

(
s+ q21 − q22

))]

+
kµ

s− q23

[
2λ12z̄s

(
kλqσ3 − k · q3 gλσ

)
+ 2qσtu

(
2q23 k

λ

s− q23
+ qλ3

)
+ 2qσ3 q

λ
tu

]}
,
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Aµνλσ10,s =
32

15s
(
s− q23

)2
λ12

(
k · q3 qλ3 − q23 kλ

)(
q22 q

ν
1 − q1 · q2 qν2

)

×
{
s
(
kµqσ1 − k · q1 gµσ − kµqσ2 + k · q2 gµσ

)
+
(
q21 − q22

)(
kµqσ3 − k · q3 gµσ

)

+ qσtu

[
4s kµ

s− q23
− qµ1 − qµ2 + 2z̄s

(
qµ1
(
s− q21 + q22

)
− qµ2

(
s+ q21 − q22

))]}
,

Aµνλσ11,s =
32z̄s

5
(
s− q23

)2
λ12

(
q1 · q2 qµ1 − q21 qµ2

)(
kλqσ3 − k · q3 gλσ

)
×
{(
t− q22

)(
q1 · q2 qν1 − q21 qν2

)
−
(
u− q21

)(
q22 q

ν
1 − q1 · q2 qν2

)
+
λ12
2
kν
}
,

Aµνλσ12,s =
16

15
(
s− q23

)
λ12

(
q1 · q2 qµ1 − q21 qµ2

){ 2qσtu
s− q23

(
qν3k

λ − k · q3 gνλ
)

+ gνσqλtu

− 4qσtuq
λ
tu(

s− q23
)
λ12

(
qν1
(
s− q21 + q22

)
− qν2

(
s+ q21 − q22

))
− λ12z̄s

s

(
kλqσ3 − k · q3 gλσ

)[
qν1 + qν2 − z̄s

(
qν1
(
s− q21 + q22

)
− qν2

(
s+ q21 − q22

))]

+
kν

s− q23

[
2λ12z̄s

(
kλqσ3 − k · q3 gλσ

)
+ 2qσtu

(
2q23 k

λ

s− q23
+ qλ3

)
+ 2qσ3 q

λ
tu

]}
,

Aµνλσ13,s =
32

15s
(
s− q23

)2
λ12

(
k · q3 qλ3 − q23 kλ

)(
q1 · q2 qµ1 − q21 qµ2

)

×
{
s
(
kνqσ1 − k · q1 gνσ − kνqσ2 + k · q2 gνσ

)
+
(
q21 − q22

)(
kνqσ3 − k · q3 gνσ

)

+ qσtu

[
4s kν

s− q23
− qν1 − qν2 + 2z̄s

(
qν1
(
s− q21 + q22

)
− qν2

(
s+ q21 − q22

))]}
,

Aµνλσ14,s = − 8

5
(
s− q23

)
λ12

{(
1− z2s

)(
kλqσ3 − k · q3 gλσ

)
+

4s qλtuq
σ
tu(

s− q23
)
λ12

}
×
(
q1 · q2 qµ1 − q21 qµ2

)(
q22 q

ν
1 − q1 · q2 qν2

)
,

Aµνλσ15,s =
32z̄s q

σ
tu

5
(
s− q23

)2
λ12

(
k · q3 qλ3 − q23 kλ

)(
q1 · q2 qµ1 − q21 qµ2

)(
q22 q

ν
1 − q1 · q2 qν2

)
, (C.1)

where z̄s = zs/
√
λ12, zs is defined in (2.4), and

qλtu =
(
t− q22

)
qλ1 −

(
u− q21

)
qλ2 − λ12z̄s kλ, qσtu =

(
t− q22

)
qσ1 −

(
u− q21

)
qσ2 ,

kµs =
s kµ

s− q23
− qµ1

(
1− z̄s

(
s− q21 + q22

))
− qµ2

(
1 + z̄s

(
s+ q21 − q22

))
,

qµν12 = qµ1

(
q22 q

ν
1 − q1 · q2 qν2

)
− qµ2

(
q1 · q2 qν1 − q21 qν2

)
. (C.2)
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D Unitarity and helicity amplitudes

The imaginary parts of the helicity amplitudes that follow from Πµνλσ by contraction with

the pertinent polarization vectors have to reproduce the imaginary parts as expected from

general arguments about helicity amplitudes [54]. In our conventions we find for momenta

and polarization vectors

qµ1 =
(
E1, 0, 0, q12

)
, qµ3 =

(
− E3,−q34 sin θs, 0,−q34 cos θs

)
,

qµ2 =
(
E2, 0, 0,−q12

)
, kµ =

(
E4,−q34 sin θs, 0,−q34 cos θs

)
,

εµ
(
q1,±

)
= ∓ 1√

2

(
0, 1,±i, 0

)
, εµ∗

(
− q3,±

)
= ∓ 1√

2

(
0, cos θs,∓i,− sin θs

)
,

εµ
(
q2,±

)
= ∓ 1√

2

(
0, 1,∓i, 0

)
, εµ∗

(
k,±

)
= ∓ 1√

2

(
0, cos θs,±i,− sin θs

)
,

εµ
(
q1, 0

)
=

1

ξ1

(
q12, 0, 0, E1

)
, εµ∗

(
− q3, 0

)
=

1

ξ3

(
q34, E3 sin θs, 0, E3 cos θs

)
,

εµ
(
q2, 0

)
=

1

ξ2

(
− q12, 0, 0, E2

)
, (D.1)

where

E1 =
s+ q21 − q22

2
√
s

, E2 =
s− q21 + q22

2
√
s

, E3 =
s+ q23
2
√
s
, E4 =

s− q23
2
√
s
, (D.2)

and

q12 =

√
λ12

2
√
s
, q34 =

s− q23
2
√
s
. (D.3)

Contracting these expressions with the Aµνλσi,s from appendix C, we find the following

imaginary parts15

Imππ
s H++,++=

σs
16π

{
h0,++

(
s; q21, q

2
2

)
h0,++

(
s; q23, 0

)
+5P2

(
zs
)
h2,++

(
s; q21, q

2
2

)
h2,++

(
s; q23, 0

)}
,

Imππ
s H00,++=

σs
16π

{
h0,00

(
s; q21, q

2
2

)
h0,++

(
s; q23, 0

)
+ 5P2

(
zs
)
h2,00

(
s; q21, q

2
2

)
h2,++

(
s; q23, 0

)}
,

Imππ
s H++,+−=

σs
16π

5 d202
(
zs
)
h2,++

(
s; q21, q

2
2

)
h2,+−

(
s; q23, 0

)
,

Imππ
s H++,0+=− σs

16π
5 d20,−1

(
zs
)
h2,++

(
s; q21, q

2
2

)
h2,0+

(
s; q23, 0

)
,

Imππ
s H+−,++=

σs
16π

5 d220
(
zs
)
h2,+−

(
s; q21, q

2
2

)
h2,++

(
s; q23, 0

)
,

Imππ
s H+−,+−=

σs
16π

5 d222
(
zs
)
h2,+−

(
s; q21, q

2
2

)
h2,+−

(
s; q23, 0

)
,

Imππ
s H+−,0+=− σs

16π
5 d22,−1

(
zs
)
h2,+−

(
s; q21, q

2
2

)
h2,0+

(
s; q23, 0

)
,

Imππ
s H+0,++=

σs
16π

5 d210
(
zs
)
h2,+0

(
s; q21, q

2
2

)
h2,++

(
s; q23, 0

)
,

Imππ
s H+0,+−=

σs
16π

5 d212
(
zs
)
h2,+0

(
s; q21, q

2
2

)
h2,+−

(
s; q23, 0

)
,

15The additional sign for each occurrence of the amplitude h0+ originates from our convention in (2.27),

since dJ10 = −dJ−1,0.
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Imππ
s H+0,0+=− σs

16π
5 d21,−1

(
zs
)
h2,+0

(
s; q21, q

2
2

)
h2,0+

(
s; q23, 0

)
,

Imππ
s H0+,++=− σs

16π
5 d2−1,0

(
zs
)
h2,0+

(
s; q21, q

2
2

)
h2,++

(
s; q23, 0

)
,

Imππ
s H0+,+−=− σs

16π
5 d2−1,2

(
zs
)
h2,0+

(
s; q21, q

2
2

)
h2,+−

(
s; q23, 0

)
,

Imππ
s H0+,0+=

σs
16π

5 d2−1,−1
(
zs
)
h2,0+

(
s; q21, q

2
2

)
h2,0+

(
s; q23, 0

)
,

Imππ
s H00,+−=

σs
16π

5 d202
(
zs
)
h2,00

(
s; q21, q

2
2

)
h2,+−

(
s; q23, 0

)
,

Imππ
s H00,0+=− σs

16π
5 d20,−1

(
zs
)
h2,00

(
s; q21, q

2
2

)
h2,0+

(
s; q23, 0

)
. (D.4)

Indeed, these expressions could have been written down immediately based on general

properties of helicity partial waves [54], and thus provide a powerful check on the calculation

of the Aµνλσi,s . Moreover, they provide the proof that the general decomposition of the HLbL

tensor in (3.5) leads to diagonal unitarity relations.

E Scalar Roy equations

Dispersion relations for single-variable functions can be constructed in close analogy to

ππ Roy equations [55]. We illustrate this here for a scalar example, e.g. ππ scattering

without isospin. The starting point in the derivation is given by a twice-subtracted fixed-t

dispersion relation for the scattering amplitude T (s, t)

T (s, t) = C(t) +
1

π

∞∫
4M2

π

ds′

s′2

{
s2

s′ − s +
u2

s′ − u

}
ImT (s′, t). (E.1)

The subtraction function C(t) can be determined by imposing st crossing symmetry in the

form T (0, t) = T (t, 0), leading to

T (s, t) = C(0) +
1

π

∞∫
4M2

π

ds′

s′2

{
s2

s′ − s +
t2

s′ − t +
u2

s′ − u

}
ImT (s′, t)

+
1

π

∞∫
4M2

π

ds′

s′2

{
t2

s′ − t +

(
4M2

π − t
)2

s′ − 4M2
π + t

}[
ImT (s′, 0)− ImT (s′, t)

]
. (E.2)

Due to Bose symmetry only even partial waves are allowed in the absence of isospin, so

that restricting ourselves to the S-wave t0(s), (E.2) becomes

T (s, t) = C(0) +
1

π

∞∫
4M2

π

ds′

s′2

{
s2

s′ − s +
t2

s′ − t +
u2

s′ − u

}
Im t0(s

′) + (l ≥ 2)

= T (s) + T (t) + T (u) + (l ≥ 2), T (s) =
C(0)

3
+
s2

π

∞∫
4M2

π

ds′ Im t0(s
′)

s′2(s′ − s) , (E.3)
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and the amplitude factorizes into single-variable functions T (s).16 For HLbL scattering

we encounter precisely the same situation that only the leading partial wave in a given

amplitude is relevant. Moreover, the analog of the parameter C(0) is determined by soft-

photon constraints, whose precise form can be inferred from the kernel functions in (2.30).

F Angular average

The D-wave contributions involve terms such as k · qi/k · q3, whose limit for k → 0 depends

on the direction in which k is taken to zero. Therefore, even though all Aµνλσi scale as

O(1), the result for the derivative in the limit k → 0 is ambiguous. Such terms also appear

in γ∗γ∗ → ππ, see (2.26), e.g. H++ involves a D-wave contribution without the expected

angular-momentum factor for the photon pair, so that the same phenomenon occurs for

qt → 0 [33, 36]. A generalization of (2.12) valid also in this case may be derived by including

these terms in the average over the spatial directions of k

aµ=
1

16m
Tr
{(
/p+m

)[
γρ, γτ

](
/p+m

)
Γ̃ρτ

}
, (F.1)

Γ̃ρτ =−e6
∫

d4q1
(2π)4

∫
d4q2
(2π)4

1

q21q
2
2s

γµ
(
/p+ /q1+m

)
γλ
(
/p− /q2+m)γν(

(p+q1)2−m2
)(

(p−q2)2−m2
)[∫ dΩ(p, k)

4π

kτk
σ

k2
∂

∂kρ
Πµνλσ

]
k=0

,

where the angular average occurs with respect to the fixed axis defined by p. The tensor

decomposition [ ∫
dΩ(p, k)

4π

kµkν

k2

]
k=0

=
1

3
Σµν , Σµν = gµν − pµpν

m2
, (F.2)

then reproduces (2.12), as the terms depending on p vanish in the trace.

Here, we need a generalization involving the following integrals[ ∫
dΩ(p, k)

4π

kµkνkλ

k2 k · q3

]
k=0

=
m2

3Z

[
ξp

(
Σµνpλ + Σµλpν + Σνλpµ

)
−
(

Σµνqλ3 + Σµλqν3 + Σνλqµ3

)]
+

2m4

3Z2

[
ξ3pp

µpνpλ − ξ2p
(
pµpνqλ3 + pµpλqν3 + pνpλqµ3

)
+ ξp

(
qµ3 q

ν
3p
λ + qµ3 q

λ
3p

ν + qν3q
λ
3p

µ
)
− qµ3 qν3qλ3

]
,[ ∫

dΩ(p, k)

4π

kµkνkλkσ

k2 (k · q3)2
]
k=0

=
m2

3Z

(
ΣµνΣλσ + ΣµλΣνσ + ΣµσΣνλ

)
+

2m4

3Z2

[
ξ2p

(
Σµνpλpσ + Σµλpνpσ + Σµσpνpλ + Σνλpµpσ + Σνσpµpλ + Σλσpµpν

)
16A similar decomposition has been used for a dispersive description of the processes γπ → ππ [56–58]

and ω, φ → 3π [59], where only odd partial waves are allowed. In the P -wave approximation one finds a

result completely analogous to (E.3). The extension to the F -wave is discussed in [59].
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− ξp
(

Σµν
(
pλqσ3 + pσqλ3

)
+ Σµλ

(
pνqσ3 + pσqν3

)
+ Σµσ

(
pνqλ3 + pλqν3

)
+ Σνλ

(
pµqσ3 + pσqµ3

)
+ Σνσ

(
pµqλ3 + pλqµ3

)
+ Σλσ

(
pµqν3 + pνqµ3

))
+
(

Σµνqλ3 q
σ
3 + Σµλqν3q

σ
3 + Σµσqν3q

λ
3 + Σνλqµ3 q

σ
3 + Σνσqµ3 q

λ
3 + Σλσqµ3 q

ν
3

)]
+

8m6

3Z3

[
ξ4pp

µpνpλpσ − ξ3p
(
pµpνpλqσ3 + pµpνpσqλ3 + pµpλpσqν3 + pνpλpσqµ3

)
+ ξ2p

(
pµpνqλ3 q

σ
3 + pµpλqν3q

σ
3 + pµpσqν3q

λ
3 + pνpλqµ3 q

σ
3 + pνpσqµ3 q

λ
3 + pλpσqµ3 q

ν
3

)
− ξp

(
qµ3 q

ν
3q
λ
3p

σ + qµ3 q
ν
3q
σ
3 p

λ + qµ3 q
λ
3 q

σ
3 p

ν + qν3q
λ
3 q

σ
3 p

µ
)

+ qµ3 q
ν
3q
λ
3 q

σ
3

]
, (F.3)

where

Z = (p · q3)2 −m2q23, ξp =
p · q3
m2

. (F.4)

The result for the fourth-order tensor can most easily be obtained by means of∫
dΩ(p, k)

4π

kµkνkλkσ

k2 (k · q3)2
= − ∂

∂q3σ

∫
dΩ(p, k)

4π

kµkνkλ

k2 k · q3
. (F.5)

A powerful check on the calculation is provided by gauge invariance, as the result after the

angular average still has to vanish when contracted with qµ1 , qν2 , or (q1 + q2)
λ.

G Dispersion integrals

The dispersive integrals in (3.18) read (including only diagonal kernels for D-waves)

I1,s =
1

π

∞∫
4M2

π

ds′

s′ − s

[(
1

s′ − s −
s′ − q21 − q22
λ
(
s′, q21, q

2
2

))Im h̄0++,++

(
s′; q21, q

2
2; s, 0

)
(G.1)

+
2ξ1ξ2

λ
(
s′, q21, q

2
2

) Im h̄000,++

(
s′; q21, q

2
2; s, 0

)]
,

I1,u =
1

π

∞∫
4M2

π

ds′

s′ − q21

[(
1

s′ − q21
− s′ − s− q22
λ
(
s′, s, q22

))Im h̄0++,++

(
s′; s, q22; q21, 0

)
+

2ξsξ2

λ
(
s′, s, q22

) Im h̄000,++

(
s′; s, q22; q21, 0

)]
,

I2,s =
1

π

∞∫
4M2

π

ds′

s′ − s

[(
1

s′ − s −
s′ − q21 − q22
λ
(
s′, q21, q

2
2

))Im h̄000,++

(
s′; q21, q

2
2; s, 0

)
+

2q21q
2
2

ξ1ξ2λ
(
s′, q21, q

2
2

) Im h̄0++,++

(
s′; q21, q

2
2; s, 0

)](
− ξ1ξ2
q21q

2
2

)
,

I2,u =
1

π

∞∫
4M2

π

ds′

s′ − q21

[(
1

s′ − q21
− s′ − s− q22
λ
(
s′, s, q22

))Im h̄000,++

(
s′; s, q22; q21, 0

)
+

2s q22
ξsξ2λ

(
s′, s, q22

) Im h̄0++,++

(
s′; s, q22; q21, 0

)](
− ξsξ2
s q22

)
,
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I3,s =
1

π

∞∫
4M2

π

ds′ s′(
s′−s

)
λ
(
s′, q21, q

2
2

)( 1

s′−s−
s′−q21−q22
λ
(
s′, q21, q

2
2

))Im h̄2++,+−
(
s′; q21, q

2
2; s, 0

)(
− 25

4

√
6

)
,

I3,u =
1

π

∞∫
4M2

π

ds′ s′(
s′−q21

)
λ
(
s′, s, q22

)( 1

s′−q21
− s′−s−q22
λ
(
s′, s, q22

))Im h̄2++,+−
(
s′; s, q22; q21, 0

)(
− 25

4

√
6

)
,

I6,s =
1

π

∞∫
4M2

π

ds′(
s′ − q21 − q22

)(
s′ − s

)2 Im h̄2+−,+−
(
s′; q21, q

2
2; s, 0

)(75

8

)
,

I6,u =
1

π

∞∫
4M2

π

ds′(
s′ − s− q22

)(
s′ − q21

)2 Im h̄2+−,+−
(
s′; s, q22; q21, 0

)(75

8

)
,

I9,s =
1

π

∞∫
4M2

π

ds′
√
s′

λ
(
s′, q21, q

2
2

)(
s′ − s

)2 Im h̄2+0,+−
(
s′; q21, q

2
2; s, 0

)(
− 75

8

√
2
ξ2
q22

)
,

I9,u =
1

π

∞∫
4M2

π

ds′
√
s′

λ
(
s′, s, q22

)(
s′ − q21

)2 Im h̄2+0,+−
(
s′; s, q22; q21, 0

)(
− 75

8

√
2
ξ2
q22

)
,

I12,u =
1

π

∞∫
4M2

π

ds′
√
s′

λ
(
s′, s, q22

)(
s′ − q21

)2 Im h̄20+,+−
(
s′; s, q22; q21, 0

)(
− 75

8

√
2
ξs
s

)
,

I14,s =
1

π

∞∫
4M2

π

ds′ s′(
s′ − s

)
λ
(
s′, q21, q

2
2

)( 1

s′ − s −
s′ − q21 − q22
λ
(
s′, q21, q

2
2

))

× Im h̄200,+−
(
s′; q21, q

2
2; s, 0

)(25

4

√
6
ξ1ξ2
q21q

2
2

)
,

I14,u =
1

π

∞∫
4M2

π

ds′ s′(
s′ − q21

)
λ
(
s′, s, q22

)( 1

s′ − q21
− s′ − s− q22
λ
(
s′, s, q22

))

× Im h̄200,+−
(
s′; s, q22; q21, 0

)(25

4

√
6
ξsξ2
s q22

)
,

with the notation

Im h̄Jλ1λ2,λ3λ4
(
s; q21, q

2
2; q23, q

2
4

)
=

σs
16π

θ
(
s− 4M2

π

)
S
[
hJ,λ1λ2

(
s; q21, q

2
2

)
h∗J,λ3λ4

(
s; q23, q

2
4

)]
(G.2)

for the imaginary parts. ξi refers to the normalization of the longitudinal polarization

vectors (D.1), ξs denotes ξi with q2i → s, and S[. . .] is defined in (3.14).

H Integral kernels

The integration kernels of the final loop integration in (3.18) may be expressed as

T1,s=
16

3
s

{
m2 +

8P21 p · q1
λ12

}
, T1,u =

16

3

{
4P 2

12

λ12
− P12 − Zu

}
,
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T2,s=
128

3λ12
q22
(
P12 + P21

)
P12, T2,u = − 8

3λ12
P12

{
4P21

(
s+ q21 − q22

)
+ q22λ12

}
,

T3,s=−16
(
8P21 p · q1 +m2λ12

)
15λ12

{
s2 +

(
q21 − q22

)2
+
m2s

Zs

(
λ12 + 4s

(
q21 + q22

))

+
s

Zs

(
1+

2m2s

Zs

)[
m2
(
s2+

(
q21−q22

)2)−4s p·q1 p·q2−2
(
q21−q22

)(
(p·q1)2−(p·q2)2

)]}
,

T3,u=−32λ12m
2P12

15Zu
− 16

15q21

(
4P 2

12−λ12Zu
)
− 16

(
4P 2

12−λ12(P12+Zu)
)

15λ12

{
4q22+

m2

Zu

(
8q21q

2
2+λ12

)
+

4

Zu

(
1 +

2m2q21
Zu

)[
m2(q1 · q2)2 − P12 p · q2 − p · q1 p · q2 q1 · q2

]}
,

T6,s=
128(P12 + P21)(s− q21 − q22)

45λ212

{
λ212 +

3λ12m
2s

Zs
p · q1

(
s− q21 + q22

)
+

(
1 +

3m2s

Zs
+

2m4s2

Z2
s

)
p · q1

(
q21 − q22

)2(
3s− q21 + q22

)
+
s2

Zs

(
1+

2m2s

Zs

)
p·q1

(
p·q1−p·q2

)2(
s−3q21+3q22

)}
− 32

45

(
s−q21−q22

)(
5m2s+Zs

)
,

T6,u=−32P12(s− q21 + q22)

45λ212

{
3λ12m

2q21
Zu

(
4P12 − λ12

)
+ 16

(
1 +

3m2q21
Zu

+
2m4q41
Z2
u

)
(q1 · q2)2

(
P12 − 2q21 p · q2

)
+

16q41
Zu

(
1 +

2m2q21
Zu

)
(p · q2)2

(
2q21 p · q2 + 3P12

)}
+

32

45

(
s− q21 + q22

)(
5m2q21 + Zu

)
,

T9,s=
16(P12 + P21)

45λ12

{
3λ12q

2
2

(
s− 3q21 − q22

)
+ 8
(
q21 − q22

)2
p · q2

(
s− q21 − 3q22

)
− 2λ12 p · q2

(
s+ q21 − 5q22 +

3m2

Zs

(
q21 − q22

)(
s− q21 + 5q22

))
+

12m2

Zs

(
1 +

2m2s

3Zs

)
p · q2

(
q21 − q22

)2(
s
(
s− 4q22

)
−
(
q21 − q22

)2)
+

4s

Zs

(
1 +

2m2s

Zs

)
p · q2

(
p · q1 − p · q2

)2(
s
(
s+ 4q22

)
−
(
q21 − q22

)2)
− 3λ12q

2
2

Zs

(
s+ q21 − q22

)(
m2
(
q21 − q22

)
− (p · q1)2 + (p · q2)2

)
+
(
s− q21 + q22

)(
p · q1 − p · q2)

[
3λ12+

3λ12m
2

Zs

(
s+ 4q22

)
−4
(
q21 − q22

)(
s+ q21 − 5q22

)]
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− 12m2s

Zs

(
1 +

2m2s

3Zs

)(
q21 − q22

)(
s+ q21 − 5q22

)(
s− q21 + q22

)(
p · q1 − p · q2

)
− 1

Zs

(
s− q21 + q22

)(
p · q1 − p · q2

)2(
p · q1 + p · q2

)
×
[(

1 +
2m2s

Zs

)(
s
(
3s+ 14q22 − 10q21

)
−
(
q21 − q22

)2)− 6λ12m
2s

Zs

]}

− 16

45
λ12
(
2m2q22 + q22 p · q1 + 2(p · q2)2

)
,

T9,u=
64P 2

12

45λ12

{
16q22 q1 · q2 +

3λ12q
2
2

Zu

(
2m2 − p · q1

)
+

16m2q21q
2
2 q1 · q2

Zu

(
3 +

2m2q21
Zu

)

− 16

Zu

(
1 +

2m2q21
Zu

)
p · q2

(
q21q

2
2 p · q1 + P12 q1 · q2

)}
− 16

45
q22λ12

(
2m2 − p · q1

)
,

T12,u=
32P 2

12

45λ12q21

{(
s+q21−q22

)[
8

(
1− 4m4q41

Z2
u

)
(q1 ·q2)2−24q21q

2
2

(
1+

2m2q21
Zu

)
− 3λ12q

2
1 p·q2
Zu

]

+
6λ12q

2
1

Zu

(
m2
(
s− q21 + q22

)
− P21

)
− 2q21λ12P12

Zu

(
1− 4m2q21

Zu

)

+
16q21
Zu

(
1 +

2m2q21
Zu

)
p · q2

(
s+ q21 − q22

)(
q21 p · q2 + 2P12

)}

− 8λ12
45q21

(
4m2q21s+ 2(p · q1)2

(
s+ q21 − q22

)
− p · q1 q21

(
s− q21 + q22

))
,

T14,s=−128q22P12(P12 + P21)

15λ12

{
2
(
q21 + q22

)
− m2

Zs

(
λ12 − 4s

(
q21 + q22

))

+
1

Zs

(
1+

2m2s

Zs

)[
m2
(
s2+

(
q21−q22

)2)−4s p·q1 p·q2 − 2
(
q21−q22

)(
(p·q1)2−(p·q2)2

)]}
,

T14,u=
8P12

(
4P21(s+ q21 − q22) + q22λ12

)
15λ12

{
4q22 +

m2

Zu

(
8q21q

2
2 − λ12

)
+

4

Zu

(
1 +

2m2q21
Zu

)[
m2(q1 · q2)2 − P12 p · q2 − p · q1 p · q2 q1 · q2

]}
, (H.1)

with the abbreviations

P12 = p · q1 q1 · q2 − p · q2 q21, P21 = p · q1 q22 − p · q2 q1 · q2,
Zs =

(
p · q1 + p · q2

)2 −m2s, Zu =
(
p · q1

)2 −m2q21. (H.2)
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[48] E. Czerwiński et al., MesonNet Workshop on Meson Transition Form Factors,

arXiv:1207.6556 [INSPIRE].

[49] S.P. Schneider, B. Kubis and F. Niecknig, The ω → π0γ∗ and φ→ π0γ∗ transition form

factors in dispersion theory, Phys. Rev. D 86 (2012) 054013 [arXiv:1206.3098] [INSPIRE].

[50] M.J. Amaryan et al., MesonNet 2013 International Workshop. Mini-proceedings,

arXiv:1308.2575 [INSPIRE].
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