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Abstract: In the non-supersymmetric γi-deformedN = 4 SYM theory, the scaling dimen-

sions of the operators tr[ZL] composed of L scalar fields Z receive finite-size wrapping and

prewrapping corrections in the ’t Hooft limit. In this paper, we calculate these scaling di-

mensions to leading wrapping order directly from Feynman diagrams. For L ≥ 3, the result

is proportional to the maximally transcendental ‘cake’ integral. It matches with an earlier

result obtained from the integrability-based Lüscher corrections, TBA and Y-system equa-

tions. At L = 2, where the integrability-based equations yield infinity, we find a finite ra-

tional result. This result is renormalization-scheme dependent due to the non-vanishing β-

function of an induced quartic scalar double-trace coupling, on which we have reported ear-

lier. This explicitly shows that conformal invariance is broken — even in the ’t Hooft limit.
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1 Introduction and summary

In this paper, we provide a field-theoretic test of integrability in the γi-deformed N = 4

SYM theory (γi-deformation). This theory was proposed as the field-theory part of a

non-supersymmetric example of the AdS/CFT correspondence [1], which is obtained by

applying a three-parameter deformation to both sides of the original correspondence [2–4].

On the string theory side, three consecutive T-duality, shift, T-duality (TsT) transforma-

tions — each depending on one of the real parameters γi, i = 1, 2, 3 — are applied to

the S5 factor of the AdS5 × S5 background. This breaks the SO(6) isometry group to its

U(1)q1 ×U(1)q2 ×U(1)q3 Cartan subgroup. On the gauge-theory side, phase factors deform

the Yukawa-type (fermion-fermion-scalar) and F-term (four-scalar) couplings of the N = 4

SYM theory with gauge group SU(N). They depend on the γi and the three Cartan charges

(q1, q2, q3). In the limit of equal deformation parameters γ1 = γ2 = γ3 = −πβ, a simple

(N = 1) supersymmetry is restored, and one obtains the setup of Lunin and Maldacena [5].

The gauge theory becomes the (real) β-deformation, which is a special case of the exactly

marginal deformations of N = 4 SYM theory classified by Leigh and Strassler [6]. Like the

undeformed N = 4 SYM theory, also these deformations are most accessible in the ’t Hooft

(planar) limit [7], where N → ∞ and the Yang-Mills coupling constant gYM → 0 such that

the ’t Hooft coupling λ = g2YMN is kept fixed. In this limit, the string theory becomes free

and in the gauge theory non-planar vacuum diagrams are suppressed.1

1Non-planar non-vacuum diagrams may, however, become planar when connected to external states, and

thus may contribute in the ’t Hooft limit [8]. They give rise to finite-size effects, which are the main subject

of this work.
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The β- and γi-deformation share certain important properties with their parent N = 4

SYM theory. One of these is claimed to be integrability in the planar limit. In the

asymptotic regime, i.e. in the absence of finite-size effects, the dilatation operator can be

obtained directly from its undeformed counterpart via a relation2 between planar single-

trace Feynman diagrams of elementary interactions: in the deformed theory such a diagram

is given by its undeformed counterpart multiplied by a phase factor which is determined

from the order and (q1, q2, q3)-charge of the external fields alone. This relation was used

in [10] to determine the one-loop dilatation operator of the deformed theories in terms of

theN = 4 SYM theory expression [11]. The obtained result, as well as the deformed gravity

background [1], is compatible [10, 12] with the integrability found in the original AdS/CFT

correspondence, see the review collection [13] and in particular chapter [14] therein. In the

integrability-based approach, the deformation can be incorporated by introducing twists

into the boundary conditions of the asymptotic Bethe ansatz [10].3

A simple test of the claimed integrability, also beyond the asymptotic regime, can be

performed by analyzing the spectrum of composite operators that are protected in the

N = 4 SYM theory but acquire anomalous dimensions in the β- and γi-deformation. If, in

addition, such operators are determined uniquely by their global charges, operator mixing

cannot occur. Thus, the calculations become relatively simple but still yield highly non-

trivial results. In the β-deformation, the single-impurity operators of the SU(2) subsectors

are of this type. For generic lengths L ≥ 2, they are given by

OL,1 = tr[(φi)L−1φj ] , i, j = 1, 2, 3 , j 6= i , (1.1)

and they correspond to single-magnon states in the spin-chain picture. In the asymptotic

regime, their anomalous dimensions (energies in the spin-chain picture) are determined

by the dispersion relation of the twisted Bethe ansatz [10]. These findings can directly

be verified in the Feynman diagram approach, where the modifications that capture the

deformation [18] can easily be incorporated into the explicit three-loop calculation of [19]

and the all-loop argument of [20]. Beyond the asymptotic regime, finite-size corrections

have to be taken into account. For the operators (1.1) with L ≥ 3, these are the wrapping

corrections,4 which start at loop order K = L called critical wrapping order. By a direct

Feynman diagram calculation at this order, explicit results were obtained up to eleven

loops [22]. These results were successfully reproduced in [23] for β = 1
2 and in [15] and [16]

for generic β, based on the Lüscher corrections, Y-system and TBA equations, respectively.

There are, however, important properties of the deformations that are not rooted in the

undeformed N = 4 SYM theory; in particular, they affect the anomalous dimensions and

hence integrability, forcing us to discuss the L = 2 case of the operators (1.1) separately.

2This relation follows when a theorem formulated by Filk for spacetime non-commutative field theories

in [9] is adapted to the deformed theories, implementing the deformations via noncommutative Moyal-like

∗-products [5].
3The twisted Bethe ansatz can be derived from a twisted transfer matrix [15] corresponding to operational

twisted boundary conditions [16] or, alternatively, a twisted S-matrix [17].
4Their general properties were first analyzed in the Feynman diagram approach in [8] and then in the

context of AdS/CFT-integrability in [21].
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While the N = 4 SYM theory is essentially the same if the gauge group SU(N) is replaced

by U(N), this is no longer the case after the theory is deformed. In the β-deformation with

gauge group U(N), quantum corrections induce the running of a quartic scalar double-trace

coupling, which breaks conformal invariance [24]. In the SU(N) theory, this coupling is at

its non-vanishing IR fix point value [25], such that this theory is conformal. As explained in

detail in our recent works [26, 27], the role of this double-trace coupling in the SU(N) theory

can be understood in terms of the finite-size effect of prewrapping, which is caused by the

absence of the U(1) mode in the SU(N) theory. Although this double-trace coupling has a

prefactor of 1
N
, it can contribute at the leading (planar) order in the large-N expansion: the

underlying mechanism is the same as in the case of wrapping, but the contributions start

one loop order earlier, i.e. it can affect length-L operators already at K = L− 1 loops. For

the operators (1.1), this occurs only at L = 2. The anomalous dimension ofO2,1 is vanishing

to all loop orders in the SU(N) theory [27],5 while it is non-vanishing already at one loop in

the U(N) theory without tree-level double-trace coupling [24]. At one loop, the dilatation

operator and twisted asymptotic Bethe ansatz of [10] reproduce the latter result for O2,1.

In [27], we have incorporated the prewrapping effect into the one-loop dilatation operator

of [10], which then captures the complete one-loop spectrum of the β-deformation with

SU(N) gauge group. It is an open problem how to incorporate prewrapping in addition to

wrapping into the integrability-based approach of Lüscher corrections, TBA and Y-system

equations. In fact, the present TBA result of [16] for the operators (1.1) is logarithmically

divergent when evaluated at L = 2.6

In the γi-deformation with either gauge group SU(N) or U(N), a further type of

double-trace coupling occurs in the action [26]. It reads

−
g2YM

N

3
∑

i=1

(QiiF ii + δQiiF ii) tr[φ̄iφ̄i] tr[φ
iφi] , (1.2)

where throughout this paper Einstein’s convention of implicit summation never applies.

In this expression, QiiF ii denotes the (undetermined) tree-level coupling which has to be

included in the action since one-loop corrections induce a counter-term contribution δQiiF ii.

In combination with the self-energy counter term of the scalar fields, it generates the β-

function

βQii
F ii

= 4g2
(

4 sin2 γ+i sin2 γ−i + (QiiF ii)
2
)

+O(g4) , (1.3)

where g =
√
λ

4π is the effective planar coupling constant and

γ±i = ∓
1

2
(γi+1 ± γi+2) , (1.4)

for i = 1, 2, 3 and cyclic identification i + 3 ∼ i. The function βQii
F ii

has no fix-points in

the perturbative regime of small g. Hence, this type of double-trace coupling is running,

5See [24] and [28] for explicit one- and two-loop calculations, respectively.
6Such a divergence was encountered earlier in the expressions for the ground-state energy of the TBA [29].

In [30], it was found that the divergent ground-state energy vanishes in the undeformed theory when a

regulating twist is introduced in the AdS5 directions. This regularization extends to the ground state of

the supersymmetric deformations [31].
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and conformal invariance is broken in the γi-deformation; see our paper [26] for a detailed

discussion in the context of the AdS/CFT correspondence. In analogy to the double-trace

coupling in the β-deformation, also the coupling (1.2) has a prefactor of 1
N

and enters

the planar spectrum of the theory via a finite-size effect one loop order earlier than the

critical wrapping order.7 By a slight generalization of the notion, we also associate it with

prewrapping.

Operators even simpler than those in (1.1) allow for a test of the claimed integrability

in the γi-deformation. For generic lengths L ≥ 2, these operators are given by

OL = tr[(φi)L] , (1.5)

and they correspond to ground states in the spin-chain picture. They have the properties

mentioned above (1.1), i.e. they are protected in the N = 4 SYM theory and are uniquely

determined by their global charges. In contrast to the single-impurity operators OL,1,

they are even protected in the β-deformation. In the γi-deformation, they do not receive

corrections from the twisted Bethe ansatz at the asymptotic level [33], but solely from

finite-size effects. For L ≥ 3, their anomalous dimensions were determined in [33] in

the integrability-based approach as Lüscher corrections and from the TBA and Y-system

equations up to next-to-leading wrapping order.8 At L = 2, the equations of [33] diverge

in a similar fashion as those of the β-deformation mentioned above.

In this paper, we determine the planar anomalous dimensions of the operators (1.5)

at leading wrapping order directly from Feynman diagrams. For L ≥ 3, the calculation

can be reduced to only four Feynman diagrams. They are proportional to the maximally

transcendental ‘cake’ integral of [35] and hence to the Riemann ζ-function ζ(2L− 3), such

that we find

γOL
= −64g2L sin2

Lγ+i
2

sin2
Lγ−i
2

(

2L− 3

L− 1

)

ζ(2L− 3) , (1.6)

where γ±i are defined in (1.4). Our result for γOL
matches the leading-order expression

obtained in [33] from integrability.9 For L = 2, we obtain the following result for the planar

anomalous dimension:

γO2 = 4g2QiiF ii − 32g4 sin2 γ+i sin2 γ−i − 2g2̺ βQii
F ii

. (1.7)

Already at one loop, it receives a contribution which is proportional to the tree-level cou-

pling QiiF ii in (1.2) and entirely originates from prewrapping. For QiiF ii = 0, the remaining

two-loop term can be traced back to wrapping diagrams only and a counter-term contribu-

tion involving δQiiF ii of (1.2). Since Q
ii
F ii is running, the two-loop term of (1.7) depends on

7Hence, as already explained in our paper [26], even in the planar limit conformal invariance is broken by

the running of the double-trace coupling (1.2). In this paper, we demonstrate this at an explicit example.

In the later work [32], the running of the double-trace coupling (1.2) was confirmed. Note, however, that

the author of [32] nevertheless claims that the γi-deformation is ‘conformally invariant in the planar limit’.
8These results are formally the same as their counterparts in an orbifolded theory, which were obtained

earlier up to leading wrapping order in [34]. We thank Stijn van Tongeren for this comment.
9Note that one has to absorb a factor of 2 into g and a factor L into γ±

i in order to match the definitions

of [33].
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the chosen renormalization scheme. This scheme dependence is indicated by the parameter

̺, and it is proportional to the β-function for QiiF ii given in (1.3).10 In the dimensional

reduction (DR) scheme used in the main part of this paper we have ̺ = 0, while in the

modified dimensional reduction (DR) scheme we have ̺ = −γE + ln 4π.11

In [26], we have proposed the following test of the integrability-based approach,

which involves the L = 2 result (1.7). The first step is to find a finite and correct

integrability-based description for the L = 2 single-impurity operator (1.1) in the con-

formal β-deformation (with gauge group SU(N)). Such a description must exist if this

theory is integrable as claimed. The second step is to apply the resulting modified descrip-

tion to the L = 2 ground-state operator (1.5) in the γi-deformation. If the corresponding

equations still yield an infinite result for the anomalous dimension, we can associate the

previously encountered divergence in the L = 2 states with the running of a contributing

double-trace coupling and hence the breakdown of conformal invariance. If the resulting

value is, however, finite, chances are high that it coincides with the expression (1.7) for a

particular choice of the tree-level coupling QiiF ii and the scheme, i.e. the parameter ̺. In

particular, the two-loop contribution in (1.7) has the same functional dependence on the

deformation parameters γi as the one found in [33] from the integrability-based equations

in the following cases: QiiF ii = 0, or QiiF ii ∝ sin2 γ+i sin2 γ−i , or ̺ = 0 and QiiF ii arbitrary.

The integrability-based description might then capture also the non-conformal theory in a

fixed scheme. Further tests of prewrapping-affected states sensitive to the non-conformality

would be required to check if this is indeed the case.12

This paper is organized as follows. In section 2, we analyze the diagrams which de-

termine the planar anomalous dimensions of the composite operators (1.5) and formu-

late restrictive criteria for them to have a non-trivial deformation dependence. Since the

contributions from the deformation-independent diagrams can be reconstructed from the

deformation-dependent ones, this drastically reduces the calculational effort. Section 3

contains the main part of the calculation, which treats the L ≥ 3 case and the L = 2

case in subsections 3.1 and 3.2, respectively. In appendix A, we present the action of the

γi-deformation as well as our notation and conventions. Some auxiliary identities for the

calculation in section 3 are derived in appendix B. We refer the reader to appendix C for

a short review of the renormalization theory of composite operators. In appendix D, we

discuss the renormalization-scheme dependence emerging at L = 2.

2 Deformation-dependence of diagrams

In this section, we analyze the diagrams which contribute to the renormalization of the

composite operators (1.5) at any loop order K. We identify a subclass of them which

10It is a well-known fact that in a conformal field theory the (anomalous) scaling dimensions of gauge-

invariant composite operators are observables and are hence renormalization-scheme independent. The

presence of ̺ in the planar anomalous dimension (1.7) therefore explicitly shows that the γi-deformation is

not conformally invariant in the planar limit — in contrast to the claim of [32].
11The DR and DR schemes are the supersymmetric analoga of the widely used minimal subtraction (MS)

scheme of [36] and the modified minimal subtraction (MS) scheme of [37], respectively.
12In [27], we have formulated necessary criteria for states to be affected by prewrapping in the β-

deformation. They can be straightforwardly generalized to the γi-deformation.
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contains all diagrams with a non-trivial deformation dependence. Only these diagrams

have to be evaluated explicitly. The contribution from the deformation-independent ones

can be reconstructed using the fact that the operators (1.5) are protected in the undeformed

theory as well as in the β-deformation.

As reviewed in appendix C, the renormalization constant ZOL
of the composite opera-

tors OL is determined by the same diagrams that yield the UV divergence of the connected

Green function 〈OL(x)φ̄i(x1) . . . φ̄i(xL)〉c (albeit occurring in different linear combinations).

Each diagram contributing to the connected Green function consists of the operator OL

and a subdiagram of the elementary interactions, which contains all information on the

deformation dependence. If we remove OL, the resulting subdiagram is a direct product

of c connected pieces, which we label by ξ = 1, . . . , c. In each piece, Rξ external fields

φi and Rξ external fields φ̄i interact, where the Rξ obey the condition
∑

ξ Rξ = L. For

K ≤ L − 2 loops, each such piece is a planar single-trace diagram with color structure

tr[(φi)Rξ(φ̄i)
Rξ ]. For K ≥ L− 1, all fields of the operator can also interact in a single non-

planar piece (c = 1 and R1 = L) such that the respective subdiagram has the double-trace

color structure tr[(φi)L] tr[(φ̄i)
L].

As mentioned in the introduction, a planar single-trace diagram of elementary inter-

actions in the γi- and β-deformation is given by its counterpart in the undeformed parent

theory times a phase factor which is determined from the order and (q1, q2, q3)-charge of

the external fields alone. This relation is based on the adaption of Filk’s theorem for

spacetime-noncommutative field theories [9], and in the formulation of [38] it reads

AR

AR−1

A1 A2R

AR+2

AR+1

planar

γi-def.
=

AR

AR−1

A1 A2R

AR+2

AR+1

planar

N = 4
Φ(A1 ∗A2 ∗ · · · ∗A2R) . (2.1)

where the arbitrary planar elementary interactions between the external fields An, n =

1, . . . , 2R are depicted as gray-shaded regions. The operator Φ extracts the phase factor of

its argument, which is determined by the non-commutative ∗-product defined in (A.2). Re-

lation (2.1) directly applies to each of the c connected single-trace pieces of the subdiagram

of elementary interactions. In this case, A1, . . . , AR become identical scalar fields φi and

AR+1, . . . , A2R become the respective anti-scalar fields φ̄i, where R ∈ {R1, . . . , Rc}. The ∗-

products then reduce to ordinary products yielding Φ = 1, and correspondingly each piece

individually and the subdiagram as a whole is deformation-independent. In the asymptotic

regime, i.e. for loop orders K ≤ L − 2, these deformation-independent diagrams are the

only contributions to the renormalization constant ZOL
. At least for K ≤ L− 2 loops, the

composite operators (1.5) are thus protected as in the parent N = 4 SYM theory.

AtK ≥ L−1 loops, also diagrams containing connected subdiagrams with double-trace

structure tr[(φi)L] tr[(φ̄i)
L] can contribute. They are associated with finite-size effects, i.e

with the prewrapping and wrapping corrections at K ≥ L − 1 and K ≥ L loops, respec-

tively. These diagrams are not captured by relation (2.1). Moreover, their deformation-

dependence cannot be determined from the extension of relation (2.1) to multi-trace dia-

grams formulated in [27], since their individual trace factors carry net (q1, q2, q3)-charge.

– 6 –
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Subdiagrams associated with prewrapping contributions contain couplings or contri-

butions to the propagator that are of double-trace type. The prewrapping effect already

present in the β-deformation cannot affect the operators (1.5), as discussed in [27]. Hence,

the coupling (1.2) is the only source of prewrapping contributions to ZOL
. According to the

criteria developed in [27], this coupling can only contribute if one of its trace factors carries

the same (q1, q2, q3)-charge as the operator OL. This restricts prewrapping contributions

to L = 2. Since the coupling (1.2) is deformation-dependent, so are these prewrapping

contributions.

Subdiagrams associated with wrapping contributions contain loops that wrap around

the L external fields φ̄i thereby generating the double-trace structure. By imposing condi-

tions on the wrapping loops, the sum of all wrapping-type subdiagrams can be decomposed

into two classes one of which contains only deformation-independent diagrams. This de-

composition reads

φi

φi φ̄i

φ̄i

=

φi

φi φ̄i

φ̄i

+

φi

φi φ̄i

φ̄i

. (2.2)

The diagrams in the first class on the rhs. contain at least one wrapping loop that is purely

made out of matter-type fields, i.e. a closed path running around the wrapping loop can

be built only from matter-type propagators joining in any type of vertices. Such a path

is depicted as a solid cycle. Diagrams in the second class on the rhs. do not contain such

a closed loop, i.e. in all closed paths along the wrapping loops at least one gauge-field

propagator occurs. This is represented by the wiggly lines.

We can now prove that the diagrams of the second class are undeformed. Given such

a diagram, we remove all gauge-field propagators and replace the vertices at their ends

according to

, −→ . (2.3)

As in (2.2), the central solid lines in (2.3) stand for matter-type fields. Since the gauge-

boson interactions are undeformed, the resulting diagram has the same dependence on

the deformation parameters as the original one. Furthermore, from the definition of the

second class it follows immediately that the above procedure cuts each closed path along

the wrapping loops at least once. The resulting diagram hence does no longer have a

wrapping loop; instead, it is a planar single-trace diagram (or a product thereof). Thus,

relation (2.1) can be applied to it (or each of its factors) showing that the diagram is

undeformed. All deformation-dependent wrapping diagrams must hence be contained in

the first class.

– 7 –
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3 Finite-size corrections to the ground state energies

In the following, we determine the anomalous dimensions of the composite operators (1.5)

to leading wrapping order K = L from Feynman diagrams. Specializing the previous

discussion to K = L, the only diagrams which can be affected by the deformation are

wrapping diagrams with a single matter-type wrapping loop and all prewrapping diagrams,

i.e. diagrams in which the double-trace coupling (1.2) occurs. These diagrams have to be

evaluated explicitly. The contributions from all other (deformation-independent) diagrams

can be reconstructed from the condition that the operators (1.5) are protected in the

undeformed theory.

3.1 Generic case L ≥ 3

At L ≥ 3, prewrapping is absent and all deformation-dependent diagrams are of wrapping

type with a matter-type wrapping loop. Only four of these diagrams are non-vanishing.

Using the conventions in appendix A and the identities (B.1), (B.3) given in appendix B,

they evaluate to

S(L) = L−1 2

1L

3

= g2LYMN
L

3
∑

j=1

(Q̂jiij)
LPL

= g2LYMN
L
(

2 eiLγ
−

i cosLγ+i +
1

2L

)

PL ,

S̄(L) = L−1 2

1L

3

= g2LYMN
L

3
∑

j=1

(Q̂ijji)
LPL

= g2LYMN
L
(

2 e−iLγ
−

i cosLγ+i +
1

2L

)

PL ,

F (L) = L−1 2

1L

3

= g2LYMN
L tr

[

((ρ† i)(ρi)
T)L

]

2(−1)L−1PL

= −4g2LYMN
L cosLγ+i PL ,

F̃ (L) = L−1 2

1L

3

= g2LYMN
L tr[((ρ̃† i)(ρ̃i)

T)L]2(−1)L−1PL

= −4g2LYMN
L cosLγ−i PL ,

(3.1)

where scalar and fermionic fields are represented by solid and dashed lines, respectively.

The composite operator (1.5) is drawn as the central dot. All these diagrams depend on

– 8 –
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the scalar ‘cake’ integral PL. Its diagrammatic representation and its UV divergence PL
read [35]

PL = L−1 2

3

1L

, PL = K(PL) =
1

(4π)2L
1

ε

2

L

(

2L− 3

L− 1

)

ζ(2L− 3) , (3.2)

where in D = 4− 2ε dimensions the operator K extracts all poles in ε. The integral PL is

free of subdivergences, and hence its overall UV divergence is given by a simple 1
ε
-pole.

The diagrams F (L) and F̃ (L) in (3.1) contain two particular configurations of the

Yukawa vertices. The scalar fields of any two adjacent vertices on the fermionic wrapping

loop always play a different role in the diagram: one is external while the other is contracted

with the composite operator. In all other possible diagrams with a fermionic wrapping

loop, the scalar fields of at least two adjacent Yukawa vertices are both either external or

contracted with the composite operator. Such diagrams vanish, as can be easily seen from

the following contractions of the corresponding coupling tensors

A

i i

B
∝

4
∑

C=1

ρi CAρ̃
BC
i = 0 ,

A

i i

B
∝

4
∑

C=1

ρ̃CAi ρi BC = 0 .

(3.3)

The negative sum of the poles of (3.1) yields the contribution of all deformation-

dependent diagrams to the renormalization constant ZOL
. It is given by

δZOL,def = −K[S(L) + S̄(L) + F (L) + F̃ (L)]

= 4g2LYMN
L

(

cosLγ+i + cosLγ−i − cosLγ+i cosLγ−i −
1

2L+1

)

PL .
(3.4)

Already at this point, the vanishing of the divergences for the operators (1.5) in the β-

deformation provides a non-trivial check: for γ1 = γ2 = γ3 = −πβ, which corresponds to

γ+i = −πβ, γ−i = 0, the above expression has to be independent of β, such that it cancels

with the remaining deformation-independent diagrams. This is indeed the case. Then, (3.4)

directly determines the contribution from the deformation-independent diagrams as

δZOL,non-def = −δZOL,def

∣

∣

∣

γ±i =0
= −4g2LYMN

L

(

1−
1

2L+1

)

PL . (3.5)

The renormalization constant ZOL
to L-loop order then reads

ZOL
= 1 + δZOL,def + δZOL,non-def = 1− 16g2LYMN

L sin2
Lγ+i
2

sin2
Lγ−i
2

PL . (3.6)

Inserting this expression into (C.12) and using the explicit result for PL given in (3.2),

we obtain the anomalous dimension

γOL
= −64g2L sin2

Lγ+i
2

sin2
Lγ−i
2

(

2L− 3

L− 1

)

ζ(2L− 3) , (3.7)
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where we have absorbed powers of 4π into the effective planar coupling constant g =
√
λ

4π .

It exactly matches the expression found from the integrability-based equations in [33].13

3.2 Special case L = 2

At L = 2, there are also deformation-dependent contributions from prewrapping diagrams

in addition to those from wrapping diagrams. Since the prewrapping effect contributes

already at one loop, we split the renormalization constant of the operator (1.5) at L = 2

as

ZO2 = 1 + δZ
(1)
O2

+ δZ
(2)
O2

+O(g6) , (3.8)

where the superscript in parenthesis denotes the loop order.

The only deformation-dependent one-loop diagram is a prewrapping diagram involving

the double-trace coupling (1.2) as subdiagram. It reads

QF = −2g2YMNQ
ii
F iiI1 , (3.9)

where the integral I1 is specified below. All other planar one-loop diagrams are indepen-

dent of the deformation according to the discussion in section 2. Their net contribution

vanishes since the composite operator is protected in the undeformed theory and in the

β-deformation where QiiF ii = 0. The one-loop contribution to the renormalization con-

stant (3.8) is therefore given by

δZ
(1)
O2

= 2g2YMNQ
ii
F iiK[I1] . (3.10)

The two-loop calculation requires the one-loop diagram (3.9), the remaining deforma-

tion-independent one-loop one-particle-irreducible (1PI) diagrams and their counter terms.

They occur as subdiagrams and hence we have to evaluate them explicitly keeping also finite

terms. The 1PI diagrams of operator renormalization and the self-energy correction of the

scalar fields respectively read

QF = g2YMNI1 , = g2YMNαI1 ,

= g2YMNp
2(1−ε)(−(1 + α)I1 + 2(α− 1)I ′1) ,

(3.11)

where α is the gauge-fixing parameter and pν is the external momentum. Since the com-

posite operators are gauge invariant, α has to drop out of the final result, and this serves

as a check of our calculation. The above expressions depend on the integrals I1 and I ′1,

13Note that one has to absorb a factor of a factor of 2 into g and a factor L into γ±

i in order to match

the definitions of [33].
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which are evaluated in terms of the G-functions [39, 40]

G(α, β) =
1

(4π)
D
2

Γ(α+ β − D
2 )Γ(

D
2 − α)Γ(D2 − β)

Γ(α)Γ(β)Γ(D − α− β)
,

G1(α, β) =
1

2
(G(α, β)−G(α, β − 1) +G(α− 1, β))

(3.12)

and are explicitly given by

I1 = =
µ4−D

p2(2−
D
2
)
G(1, 1) =

1

(4π)2

(

1

ε
+ 2− γE + ln

4πµ2

p2
+O(ε)

)

,

I ′1 = =
µ4−D

p2(2−
D
2
)
G1(2, 1) =

1

(4π)2
+O(ε) ,

(3.13)

where pν is the external momentum and γE is the Euler-Mascheroni constant. The arrows

in the second diagram indicate that the respective momenta occur in a scalar product

in the numerator. The integrals contain a power of the ’t Hooft mass µ, originating

from a rescaling of the Yang-Mills coupling constant in order to render it dimensionless in

D = 4 − 2ε dimensions [36]. In the divergent integral I1 the µ-dependence starts in the

finite terms, while in the finite integral I ′1 the µ-dependence is postponed to the terms of

order O(ε). Using these expansions, the counter terms for the diagrams (3.9) and (3.11)

read

QF

= δJ
(1)
O2,def

= 2g2QiiF ii
1

ε
,

QF

= δJ
(1)
O2,non-def

= −g2(1 + α)
1

ε
,

= −p2δ
(1)
φ , δ

(1)
φ = −g2(1 + α)

1

ε
,

(3.14)

where we have split the contributions to the counter term for the composite operator into

deformation-dependent and deformation-independent ones.14

At two loops, two types of deformation-dependent diagrams contribute. First, there

are the wrapping diagrams (3.1), which have to be evaluated at L = 2. Second, there are

diagrams which are deformation-dependent since they contain at least one coupling QiiF ii or

one of the counter terms δQiiF ii, δJO2,def. These prewrapping-generated contributions vanish

in the β-deformation and in the undeformed theory. Hence, the contribution from the

deformation-independent diagrams can be reconstructed from the one of the deformation-

dependent wrapping diagrams alone. Their sum is the contribution from all diagrams that

involve elementary single-trace couplings only. It is essentially given by setting L = 2

in (3.6). We only have to be careful when extracting the divergence P2 of the respective

cake integral. This integral contains an IR divergence which alters the 1
ε
-poles coming from

the UV divergences. In order to avoid this IR divergence, we have to inject an external

14Note that the deformation-independent counter term of operator renormalization and the one of the self

energy are equal, δJ
(1)
O2,non-def

= δ
(1)
φ , and hence their contributions cancel as expected when the expression

for the operator renormalization constant (C.6) is expanded to one loop.
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momentum pν into the composite operator. The resulting integral I2 and its pole-part

K[I2] are given by

I2 = =
µ2(4−D)

p4(2−
D
2
)
G(1, 1)G

(

3−
D

2
, 1

)

,

K[I2] =
1

(4π)4

(

1

2ε2
+

1

ε

(

5

2
− γE + ln

4πµ2

p2

))

,

(3.15)

where the latter replaces P2 in (3.6). Accordingly, the two-loop contribution to ZO2 from

all diagrams which only involve single-trace couplings is given by

δZ
(2)
O2,st

= −16g4YMN
2 sin2 γ+i sin2 γ−i K[I2] . (3.16)

This expression contains a 1
ε
-pole depending on ln p2, which cannot be absorbed into a local

counter term for O2. It originates from a non-subtracted subdivergence of the integral I2
given in (3.15). Consistency requires that this subdivergence is subtracted by contributions

from other Feynman diagrams, such that the result only contains the overall UV-divergence

I2 = KR[I2] = K[I2 −K[I1]I1] =
1

(4π)4

(

−
1

2ε2
+

1

2ε

)

, (3.17)

where the operation R subtracts the subdivergence.15 This shows that truncating the

action to only single-trace terms is inconsistent — even in the planar limit. Concretely, the

subdivergence in (3.16) can be traced back to the one-loop renormalization of the quartic

double-trace coupling (1.2). The counter term of this coupling was determined in [26], and

it reads

δQiiF ii = 2g2YMN(4 sin2 γ+i sin2 γ−i + (QiiF ii)
2 − (1 + α)QiiF ii)K[I1] . (3.18)

It occurs in one of the remaining diagrams whose deformation-dependence is associated

with the double-trace coupling QiiF ii. The respective 1PI two-loop diagrams read16

QF

= QF = −2g4YMN
2QiiF iiI

2
1 ,

QF

QF = 4g4YMN
2(QiiF ii)

2I21 ,

QF = −2g4YMN
2QiiF iiαI

2
1 ,

QF = −2g4YMN
2QiiF ii(2(3− α)I2 − (3− 2α)I21 ) ,

QF = −4g4YMN
2QiiF ii(−(1 + α)I2 + (α− 1)(2I2 − I21 )) .

(3.19)

15A 1
ε2
-pole persists, indicating that the contribution originated from a diagram with a one-loop

subdivergence.
16In the diagram involving the scalar self-energy in (3.11) as a subdiagram, one must keep the finite

contribution that is proportional to α − 1 and vanishes in Fermi-Feynman gauge. It contributes to the
1
ε
-pole of the two-loop diagram and is hence required for α to drop out of the final result.
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The 1PI one-loop diagrams involving one-loop counter terms read

QF = 4g2YMNδ
(1)
φ QiiF iiI1 ,

QF = −2g2YMNδQ
ii
F iiI1 ,

QF = −2g2YMNδJ
(1)
O2,non-def

QiiF iiI1 ,

QF

= g2YMNδJ
(1)
O2,def

I1 ,

QF

QF

= −2g2YMNδJ
(1)
O2,def

QiiF iiI1 ,

QF

= g2YMNδJ
(1)
O2,def

αI1 .

(3.20)

The negative sum of the pole parts of the above diagrams is given by

δZ
(2)
O2,dt,1PI

= g4YMN
2
(

16 sin2 γ+i sin2 γ−i K[K[I1]I1] + 2QiiF ii(α+ 1− 2QiiF ii)KR[I21 ]
)

,

(3.21)

where the contributions from terms in (3.18) depending on QiiF ii have combined with the

remaining diagrams such that the results depends on the overall divergence KR[I21 ] =

K[I21 − 2K[I1]I1] = −K[I1]
2 of the product I21 . Moreover, in contrast to the L ≥ 3 case, we

have to consider also one-particle reducible (non-1PI) diagrams. They generate products

of one-loop counter terms which contribute to δZ
(2)
O2,st

in (3.8), as follows from the loop

expansion (C.7) of the renormalization constant. The only deformation-dependent non-1PI

diagrams involve the one-loop counter term δJ
(1)
O2,def

, and they generate the contribution

δZ
(2)
O2,dt,non-1PI

=
1

2





QF

+

QF



 = −δ
(1)
φ δJ

(1)
O2,def

. (3.22)

The complete two-loop contribution to the renormalization constant (3.8) is given by

δZ
(2)
O2

= δZ
(2)
O2,st

+ δZ
(2)
O2,dt,1PI

+ δZ
(2)
O2,dt,non-1PI

= −g4YMN
2(16 sin2 γ+i sin2 γ−i I2 + 4(QiiF ii)

2KR[I21 ]) .
(3.23)

As discussed above, this result indeed contains the overall UV divergence I2 = KR[I2]

given in (3.17).

The two-loop renormalization constant is given by inserting the one- and two-loop

corrections given respectively in (3.10) and (3.23) into (3.8). Taking the logarithm and

expanding it to second loop order, we obtain

lnZO2 = δZ
(1)
O2

+ δZ
(2)
O2

−
1

2

(

δZ
(1)
O2

)2
+O(g6)

= 2g2QiiF ii
1

ε
+ 2g4

(

8 sin2 γ+i sin2 γ−i

(

1

2ε2
−

1

2ε

)

+ (QiiF ii)
2 1

ε2

)

+O(g6) .
(3.24)

The coefficient of the 1
ε2
-pole in (3.24) is 1

2 times the β-function βQii
F ii

given in (1.3). This

guarantees that the anomalous dimension derived according to (C.12) is finite in the limit
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ε→ 0. It reads

γO2 =

(

εg
∂

∂g
− βQii

F ii

∂

∂QiiF ii

)

lnZO2 = 4g2QiiF ii − 32g4 sin2 γ+i sin2 γ−i (3.25)

in the dimensional reduction (DR) scheme which we used in the calculation.

The above result for γO2 depends on the chosen renormalization scheme, as discussed

in appendix D. At one loop, the coupling QiiF ii transforms under a scheme change as

Q̺ iiF ii = QiiF ii −
̺
2βQii

F ii
, where the real parameter ̺ labels the scheme and the β-function

βQii
F ii

is given in (1.3). In particular, ̺ = 0 in the DR scheme. In a different scheme, the

two-loop contribution in (3.25) acquires a contribution which is proportional to ̺ and to

βQii
F ii

. The result in the scheme ̺ reads

γ̺O2
= 4g2QiiF ii − 32g4 sin2 γ+i sin2 γ−i − 2g2̺ βQii

F ii

= 4g2QiiF ii − 8g4
(

4(1 + ̺) sin2 γ+i sin2 γ−i + ̺(QiiF ii)
2
)

,
(3.26)

where in the second line we have inserted the explicit expression for βQii
F ii

.
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A The action of γi-deformed N = 4 SYM theory

In this appendix, we present the γi-deformation and our notation and conventions. For

further details, we refer to our publication [26].

The gauge-fixed action of the γi-deformation with gauge group SU(N) in Euclidean

space can be written as

S =

∫

d4x

(

tr

[

−
1

4
FµνFµν −

1

2α
(∂µAµ)

2 − (Dµ φ̄i)Dµ φ
i + i ψ̄α̇ADα̇

αψAα

+ gYM(ρ̃
BA
i ψ̄α̇Aφ

iψ̄α̇ B + (ρ̃† i)BAψ
αAφ̄iψ

B
α )

+ gYM(ρi BAψ
αAφiψBα + (ρ† i)BAψ̄α̇Aφ̄iψ̄α̇ B) + c̄ ∂µDµ c

]

+ g2YM

(

Q̂ijlk tr[φ̄iφ̄jφ
kφl] + Q̃ijkl tr[φ̄iφ

kφ̄jφ
l]−

1

N
Qijlk tr[φ̄iφ̄j ] tr[φ

kφl]

))

,

(A.1)

where we have adopted the conventions of [41], in particular the ones for raising, low-

ering and contractions of spinor indices. Note that in this action doubled spacetime in-

dices µ, ν ∈ {0, 1, 2, 3}, spinor indices α, α̇ ∈ {1, 2} and flavor indices i, j, k, l ∈ {1, 2, 3},

A,B ∈ {1, 2, 3, 4} are summed. This is the only exception to the rule that throughout

this paper Einstein’s summation convention never applies. The deformation parameters γi
only enter the coupling tensors of the Yukawa-type scalar-fermion and F-term-type scalar
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couplings. Apart from the coupling (1.2), the above action can be obtained by replacing

the product of two fields by a non-commutative ∗-product in the component expansion of

the N = 4 SYM theory before the auxiliary fields are integrated out [26]. This generates in

particular the double-trace coupling with tensor Qijlk. The coupling (1.2) can be introduced

by redefining Qijlk.

The ∗-products of two component fields A and B reads [10]

A ∗B = e
i
2
qA∧qB , (A.2)

where the antisymmetric product of the two (q1, q2, q3)-charge vectors qA and qB is de-

fined as

qA ∧ qB = (qA)
TCqB , C =







0 −γ3 γ2
γ3 0 −γ1
−γ2 γ1 0






. (A.3)

For the different fields, the components of the charge vectors are given by

B ψ1
α ψ2

α ψ3
α ψ4

α Aµ φ1 φ2 φ3

q1B +1
2 −1

2 −1
2 +1

2 0 1 0 0

q2B −1
2 +1

2 −1
2 +1

2 0 0 1 0

q3B −1
2 −1

2 +1
2 +1

2 0 0 0 1

, (A.4)

and for the anti-fields their signs are reversed.

We define the antisymmetric phase tensors ΓAB and Γ+
ij via

Γi4 = qψi ∧ qψ4 = γ−i , Γi i+1 = qψi ∧ qψi+1 = γ+i+2 , Γ+
i i±1 = qφi ∧ qφi±1 = γ−i ± γ+i ,

(A.5)

where cyclic identification i + 3 ∼ i is understood. In terms of these phase tensors, the

Yukawa-type coupling tensors in the action (A.1) are given by

ρi AB = iǫ4iAB e
i
2
ΓAB , ρ̃ABi = (δA4 δ

B
i − δB4 δ

A
i ) e

i
2
ΓAB , (A.6)

where we trust that the reader will not confuse the complex number i with the index i.

They obey the conjugation relations

(ρ†i)AB = (ρi BA)
∗ = ρi AB , (ρ̃†i)AB = (ρ̃BAi )∗ = −ρ̃ABi . (A.7)

The coupling tensors of the quartic scalar interactions read

Q̂ijlk = δikδ
j
l e

iΓ+
ij −

1

2
δilδ

j
k , Q̃ijkl = −

1

4
(δikδ

j
l +δ

i
lδ
j
k) , Qijlk = δikδ

j
l e

iΓ+
ij −δilδ

j
k+Q

ij
F lk , (A.8)

where QijF lk is a tree-level coupling tensor with nontrivial components only for i = j = k = l

which have to vanish in the special case γ1 = γ2 = γ3.

The Feynman rules for the γi-deformation can be found in appendix B of our work [26].

For the calculations in this paper, it is useful to alter the Feynman rules for the quartic
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scalar interactions: in [26] we have split these interactions into those originating from

the F-term and D-term couplings in the supersymmetric special cases. Here, we split the

interactions according to the two single-trace structures of four scalar fields in (A.1). In

this case, the entire F-term and parts of the D-term interactions contribute to the tensor

Q̂ijlk in (A.8), while Q̃ijkl is built from the remaining D-term interactions. Moreover, we have

kept the double-trace couplings with tensor structure QijF lk in a separate vertex.

B Tensor identities

In this appendix, we explicitly evaluate the combinations of the coupling tensors that

are encountered in the Feynman diagram analysis in section 3.1. Recall that Einstein’s

summation convention does not apply in the following expressions.

For the scalar diagrams, we need the expressions

3
∑

j=1

(Q̂jiij)
L =

3
∑

j=1
j 6=i

(Q̂jiij)
L + (Q̂iiii)

L =
3

∑

j=1
j 6=i

eiLΓ
+
ij +

1

2L
= 2 eiLγ

−

i cosLγ+i +
1

2L
,

3
∑

j=1

(Q̂ijji)
L =

3
∑

j=1
j 6=i

(Q̂ijji)
L + (Q̂iiii)

L =
3

∑

j=1
j 6=i

e−iLΓ
+
ij +

1

2L
= 2 e−iLγ

−

i cosLγ+i +
1

2L
,

(B.1)

where we have first used (A.8) and then (A.5).

For the diagrams with a fermionic wrapping loop, we first evaluate the contractions of

two Yukawa-type coupling tensors. The resulting expressions read

(ρ† i)(ρi)
TA

B =
4

∑

C=1

(ρ† i)AC(ρi)
T
CB = −δAB

4
∑

C=1

(ǫACi4)
2 eiΓAC ,

(ρ̃† i)(ρ̃i)
TA

B =
4

∑

C=1

(ρ̃† i)AC(ρ̃i)
T
CB = −δA4 δ

4
B eiΓ4i − δAi δ

i
B eiΓi4 ,

(B.2)

where we have used (A.6) and (A.7). With these results as well as (A.5), the required

traces are determined as

tr[((ρ† i)(ρi)
T)L] =

4
∑

A,C=1

(

−(ǫACi4)
2 eiΓAC

)L
= 2(−1)L cosLγ+i ,

tr[((ρ̃† i)(ρ̃i)
T)L] =

4
∑

A=1

(

−δA4 e
iΓ4i −δAi e

iΓi4
)L

= 2(−1)L cosLγ−i .

(B.3)

C Renormalization of composite operators

In this appendix, we review how composite operators are incorporated into the theory and

how they are renormalized; see e.g. the textbooks [42, 43].

Composite operators such as OL in (1.5) can be added to the action regularized in

D = 4 − 2ε dimensions via a coupling to an external source JOL
. If OL has scaling
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dimension ∆, the source JOL
has to have scaling dimension D −∆. The resulting term in

the action then reads

δSOL
=

∫

dDxJOL,0OL,0(φ
i
0) =

∫

dDxJOL

[

OL(φ
i) + δJOL

OL(φ
i)
]

, (C.1)

where the explicit expression is given first in terms of the bare quantities and second in

terms of renormalized quantities and a respective counter term. The renormalized and

bare quantities are related via respective renormalization constants as

φi = Z
− 1

2

φi
φi0 , JOL

= Z−1
JOL

JOL,0 , (C.2)

where Zφi and ZJOL
are given in terms of the counter terms δφi and δJOL

as

Zφi = 1 + δφi , ZJOL
= ZOL,1PIZ

−L
2

φi
, ZOL,1PI = 1 + δJOL

. (C.3)

The counter term δφi is
1
p2

times the sum of the divergences of the 1PI self-energy diagrams

for the field φi with momentum pν . The counter term δJOL
is the negative sum of the

divergences of the 1PI diagrams involving one operator OL.

Instead of renormalizing the sources, we can alternatively introduce a renormalization

constant that expresses the renormalized operators in terms of the bare ones OL,0 as

OL(φ
i) = ZOL

OL,0(φ
i
0) . (C.4)

We make contact with the source renormalization by demanding

JOL,0OL,0(φ
i
0) = JOL

OL(φ
i) , (C.5)

which immediately yields

ZOL
= ZJOL

= ZOL,1PIZ
−L

2

φi
. (C.6)

Inserting the counter terms, the first two terms in the loop expansion of the above equation

are given by

δZ
(1)
OL

= δJ
(1)
OL

−
L

2
δ
(1)
φi

,

δZ
(2)
OL

= δJ
(2)
OL

−
L

2
δ
(2)

φi
−
L

2
δ
(1)

φi

(

δJ
(1)
OL

−
L+ 2

4
δ
(1)

φi

)

,
(C.7)

where the superscript in parenthesis denotes the loop order of the respective contribution.

The products of one-loop counter terms in the two-loop contribution can be interpreted in

terms of non-1PI diagrams.

We consider Green functions that involve the operator OL as well as L anti-scalar fields

φ̄i. The bare connected Green function and its amputated counterpart are then given in

terms of the renormalized ones as

〈OL,0(x)φ̄i,0(x1) . . . φ̄i,0(xL)〉c = Z−1
OL,1PI

ZL
φi〈OL(x)φ̄i(x1) . . . φ̄i(xL)〉c ,

〈OL,0(x)φ̄i,0(x1) . . . φ̄i,0(xL)〉a = Z−1
OL,1PI

〈OL(x)φ̄i(x1) . . . φ̄i(xL)〉a .
(C.8)
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The UV divergence of the connected Green function and the renormalization constant ZOL

in (C.6) are determined by the same diagrams: these are the 1PI diagrams which renor-

malize the amputated Green function and the non-1PI diagrams which involve self-energy

corrections of the non-amputated propagators. While the above Green functions are gauge

dependent, the combination in (C.6) is, however, gauge invariant and thus independent of

the gauge-fixing parameter α.

The renormalization constants and renormalized Green functions on the rhs. of (C.8)

depend on the renormalization scale given by the ’t Hooft mass µ. This scale is introduced

in a relation for the bare Yang-Mills coupling constant gYM,0 = µεgYM. It guarantees that

gYM and hence the effective planar coupling constant g =
√
λ

4π , as well as Q
ii
F ii of (1.2), are

dimensionless in D = 4−2ε dimensions. The bare Green functions have to be independent

of µ. This condition leads to renormalization group equations (RGEs) for the renormalized

Green functions. They are given by
(

µ
∂

∂µ
+ βg

∂

∂g
+ βQii

F ii

∂

∂QiiF ii
+ δ

∂

∂α
+ γOL

± Lγφi

)

〈OL(x)φ̄i(x1) . . . φ̄i(xL)〉c
a
= 0 , (C.9)

where the upper and lower sign holds for the connected and amputated Green function,

respectively, and the renormalization group functions are defined as

βg = µ
dg

dµ
, βQii

F ii
= µ

dQiiF ii
dµ

, δ = µ
dα

dµ
, γOL

= −µ
d

dµ
lnZOL

, γφi =
µ

2

d

dµ
lnZφi .

(C.10)

Since gYM and hence also g is not renormalized in the theories we consider in this paper, βg
can be determined exactly. Using that the bare coupling g0 is independent of µ and that

it obeys the relation g0 = µεg, one obtains

0 = µ
dg0
dµ

=

(

µ
∂

∂µ
+ βg

∂

∂g

)

µεg = µε(εg + βg) , (C.11)

which yields βg = −εg. Inserting this result into the definition of the anomalous dimension

in (C.10), one finds

γOL
=

(

εg
∂

∂g
− βQii

F ii

∂

∂QiiF ii

)

lnZOL
. (C.12)

The above result must be finite in the limit ε → 0, which has to be taken at the end. If

βQii
F ii

vanishes in the limit ε → 0, lnZOL
must not contain higher poles in ε. If βQii

F ii

does not vanish, however, lnZOL
has to contain also higher-order poles in ε such that

cancellations of all poles occur among both terms in (C.12).

D Renormalization-scheme dependence

In this appendix, we discuss the renormalization-scheme dependence of the anomalous

dimension γO2 given in (3.25).

A renormalization scheme defines a prescription for the regularization of the UV di-

vergences and their absorption into the counter terms. In particular, it specifies which

finite contributions are absorbed into the counter terms together with the UV divergences

– 18 –
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and are hence subtracted from the regularized expressions. In the dimensional reduction

(DR) scheme [44], only the poles in ε of the theory regularized in D = 4 − 2ε dimen-

sions are absorbed into the counter terms, like in the famous minimal subtraction (MS)

scheme [36]. In a modified dimensional reduction (DR) scheme, the finite combination

̺ = −γE + ln 4π is also absorbed, in analogy to the widely used modified minimal subtrac-

tion (MS) scheme [37].17 Both, the DR and the DR scheme, are members of a family of

schemes labeled by a free parameter ̺. Two schemes of this family are related via a change

of the ’t Hooft mass µ, which induces a change of the renormalized fields and coupling con-

stants. In particular, the theory in the scheme ̺ at ’t Hooft mass µ is obtained by applying

the subtractions of the DR scheme (̺ = 0) at ’t Hooft mass µ̺, and then introducing µ

via the relation µ̺ = µ e−
̺
2 .

The effective planar coupling constant g̺ and the running coupling Q̺ iiF ii of the γi-

deformation in the scheme ̺ can be expressed as expansions of those in the DR scheme.

From the relation µε̺g̺ = µεg, the coupling g̺ is obtained as

g̺ = e
ε
2
̺ g . (D.1)

This relation holds to all orders in planar perturbation theory, since g is not renormalized.

The one-loop renormalization of the running coupling QiiF ii was determined in the DR

scheme in [26]. Replacing the coupling g by g̺ in the respective counter terms yields the

renormalization in the scheme ̺. Then reexpressing the result in terms of the couplings g

and QiiF ii and neglecting terms which vanish in the limit ε→ 0 yields the relation18

Q̺ iiF ii = QiiF ii −
̺

2
βQii

F ii
+O(g4) . (D.2)

The anomalous dimension γO2 given in (3.25) depends on the renormalization scheme

because of the finite redefinition of the coupling Q̺ iiF ii in (D.2). In the DR scheme, γO2 is

determined from the logarithm of the renormalization constant (3.24). The latter can be

rewritten in terms of the individual one- and two-loop contributions γ
(1)
O2

= 4g2QiiF ii and

γ
(2)
O2

= −32g4 sin2 γ+i sin2 γ−i taken from (3.25) and the β-function βQii
F ii

given in (1.3) as

lnZO2 =
1

2ε
γ
(1)
O2

+
g2

2ε2
βQii

F ii
+

1

4ε
γ
(2)
O2

+O(g6) . (D.3)

In the scheme ̺, the result for lnZ̺
O2

is obtained by inserting the couplings g̺ and Q
̺ ii
F ii of

this new scheme into the above expression. Expressing the result in terms of the couplings

in the DR scheme via (D.1) and (D.2), one finds that the difference of the logarithms in

the two schemes is finite and given by

lnZ̺
O2

− lnZO2 =
̺

2
γ
(1)
O2

+O(g4) . (D.4)

17See [45, 46] for a complete definition in the context of QCD, including also a description for handling

γ5 in D = 4− 2ε dimensions.
18The one-loop β-function βQii

F ii

given in (1.3) itself is scheme independent, since the replacement only

generates terms that vanish in the limit ε → 0 when no prefactor with poles in ε is present.
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Using this result to determine the anomalous dimension in the scheme ̺ via (C.12),

one obtains

γ̺O2
=

(

εg
∂

∂g
− βQii

F ii

∂

∂QiiF ii

)

lnZ̺
O2

= γO2 − 2g2̺ βQii
F ii

+O(g6) , (D.5)

where the term which is added to the anomalous dimension of the DR scheme originates

from the partial derivative of the one-loop term in (D.4) with respect to QiiF ii. Since this

derivative is multiplied by the one-loop β-function βQii
F ii

, the resulting term is a two-loop

contribution. Accordingly, it was possible to discard higher-loop contributions to (D.4),

since they contribute to the anomalous dimension only beyond two loops. The individual

one- and two-loop contributions to the anomalous dimension in the two schemes are hence

related as19

γ
̺ (1)
O2

= γ
(1)
O2

, γ
̺ (2)
O2

= γ
(2)
O2

− 2g2̺ βQii
F ii

. (D.6)
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double wrapping in twisted AdS/CFT, JHEP 12 (2011) 059 [arXiv:1108.4914] [INSPIRE].

[34] M. de Leeuw and S.J. van Tongeren, Orbifolded Konishi from the mirror TBA,

J. Phys. A 44 (2011) 325404 [arXiv:1103.5853] [INSPIRE].

[35] D.J. Broadhurst, Evaluation of a class of Feynman diagrams for all numbers of loops and

dimensions, Phys. Lett. B 164 (1985) 356 [INSPIRE].

[36] G. ’t Hooft, Dimensional regularization and the renormalization group,

Nucl. Phys. B 61 (1973) 455 [INSPIRE].

[37] W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep inelastic scattering beyond the

leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].

[38] V.V. Khoze, Amplitudes in the β-deformed conformal Yang-Mills, JHEP 02 (2006) 040

[hep-th/0512194] [INSPIRE].

[39] K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, New approach to evaluation of multiloop

Feynman integrals: the Gegenbauer polynomial x space technique,

Nucl. Phys. B 174 (1980) 345 [INSPIRE].

[40] A.A. Vladimirov, Method for computing renormalization group functions in dimensional

renormalization scheme, Theor. Math. Phys. 43 (1980) 417 [INSPIRE].
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