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1 Introduction

Finding explicit solutions of eleven-dimensional supergravity admitting dual N = 2 field

theories is a challenging, though well-owed problem. The first example was presented in [1],

while general features and properties have been developed since in [2–6], making contact

in particular with N = 2 quiver gauge theories.

Assuming a specific form for the metric and the antisymmetric fields, the problem boils

down to finding solutions of the continual Toda equation, subject to appropriate boundary

conditions. The solution of Toda equation can exhibit a symmetry, which translates at the

level of the geometry into an extra U(1) isometry. When this happens, the Toda problem

is equivalent to solving a Laplace equation [7] and addresses the cylindrically symmetric

electrostatic problem of a perfectly conducting plane with a line charge distribution normal

to it [3].

The electrostatic picture is useful for unravelling the quiver interpretation of the dual

field theory. It is however a stringent limitation and it is desirable to understand more

general situations without electrostatic analogue. A first step in that direction was taken

in [8], where an explicit two-parameter family of solutions of the Toda equation without

extra symmetry was exhibited. The idea underlying the construction was to borrow solu-

tions from other systems, where Toda equation governs the dynamics. Four-dimensional

gravitational configurations are among those, and in particular self-dual gravitational in-

stantons of the Boyer-Finley type [9–11]. Assuming that these are furthermore Bianchi

IX foliations, Toda solutions are obtained by solving other integrable systems such as

Darboux-Halphen [12], which are well understood irrespective of the symmetry, and using

the mapping provided in [13, 14].

The analysis performed in [8] is a real tour de force in terms of finding eleven-

dimensional supergravity solutions. The solutions obtained in this way have no smearing

and thus no extra U(1) symmetry, even asymptotically. This good feature in terms of
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novelty is altogether a caveat because it does not provide any handle for the interpretation

of the dual field theory.

In the present note, we propose another set of supergravity solutions, for which the

absent U(1) is restored in some asymptotic corner of the geometry. These are technically

less involved than that in [8]. They are based on solutions of Toda equation as they

appear in another class of remarkable four-dimensional geometries, namely metrics with

a symmetry, vanishing scalar curvature and Kähler structure. The specific metrics we

consider here belong to the more general class of LeBrun metrics [15], and combine again

the Bianchi IX feature as it emerges in a class known as Pedersen-Poon Kähler surfaces

with zero scalar curvature [16].

2 Scalar-flat four-dimensional Kähler spaces

The purview of this section is to set-up the contact with Toda equation via the so-called

Kähler-plus-symmetry LeBrun metrics [15] for the Pedersen-Poon class [16].

The LeBrun geometries possess a U(1) isometry, are Kähler and have vanishing scalar

curvature. The presence of the U(1) isometry, realised with the Killing vector ∂ϕ, enables

the metric to be set in the form

ds2 =
1

U
(dϕ+A)2 + Uγijdx

idxj , (2.1)

where

γijdx
idxj = eΨ(dx2 + dy2) + dz2, (2.2)

is the Toda frame and U,Ψ being generically functions of x, y and z, whereas A is a one-

form. Extra symmetries may in general appear and affect this dependence.

The Kähler condition entails

dA = ∂xU dy ∧ dz + ∂yU dz ∧ dx+ ∂z
(
U eΨ

)
dx ∧ dy , (2.3)

with integrability condition (
∂2
x + ∂2

y

)
U + ∂2

z

(
UeΨ

)
= 0 , (2.4)

also known as linearised Toda equation. Imposing in addition the vanishing of the scalar

curvature R gives the differential equation(
∂2
x + ∂2

y

)
Ψ + ∂2

zeΨ = 0, (2.5)

which is precisely the continual Toda.1

One should stress that according to LeBrun [15], every Kähler-plus-symmetry metric

with vanishing R is locally of the form (2.1) and (2.2), with A,U,Ψ satisfying (2.3)–(2.5),

1Notice that the left-hand side of the Toda equation can be recast as eΨ∇2
3Ψ, where ∇3 refers to the

three-dimensional metric (2.2).
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and conversely every metric in the class (2.1)–(2.5) is Kähler-plus-symmetry with vanishing

R. The Kähler form reads:

J = (dϕ+A) ∧ dz − UeΨdx ∧ dy, (2.6)

and satisfies dJ = 0.

Let us for completeness and later use remind that a four-dimensional Kähler metric

has vanishing scalar curvature if and only if it is Weyl anti-self-dual with respect to the

canonical orientation induced by the Kähler structure [17]. Due to the presence of this

canonical orientation, the equivalence between self-dual and anti-self-dual metrics is broken.

In practice this subtlety plays a role in a very limited number of instances,2 and discussing

them here is out of our main goal.

Kähler metrics with vanishing scalar curvature can have more that one isometry. A

class of geometries with at least three Killing vectors are Bianchi IX foliations, of the form:3

ds2 =
Ω1Ω2

Ω3
ω1ω

∗
1 +

Ω3

Ω1Ω2
ω2ω

∗
2, (2.7)

where

ω1 = Ω3dτ + iσ3 , ω2 = Ω2σ1 + iΩ1σ2 (2.8)

with Ωi functions of τ , and σi the left SU(2)-invariant Maurer-Cartan one-forms obeying

dσ1 = σ2 ∧ σ3 and cyclic. When necessary, we will use the explicit parameterisation

σ1 + iσ2 = −ei ψ (i dϑ+ sinϑ dϕ) , σ3 = dψ + cosϑ dϕ (2.9)

with Euler angles (ϑ, ψ, ϕ) ∈ [0, π]× [−2π, 2π]× [0, 2π]. This metric has generically SU(2)

symmetry, which can be enhanced to SU(2)×U(1) if two of the Ωs are equal or to SU(2)×
SU(2) if they are all equal.

Imposing the Kähler condition and vanishing scalar curvature on (2.7) leads to the

developments of Pedersen and Poon [16] (the reader is redirected to the original reference

for details). The requirement of (2.7) being Kähler leads to the system of first-order coupled

differential equations:

Ω′1 = Ω2Ω3 − aΩ1, Ω′2 = Ω3Ω1 − aΩ2, Ω′3 = Ω1Ω2 , (2.10)

where a is a real function of τ and the prime stands for the derivative with respect to τ .

Demanding furthermore that the scalar curvature vanishes, imposes a be constant, which

we take here positive. The resulting (manifestly closed) Kähler form is

J =
i

2

(
Ω1Ω2

Ω3
ω1 ∧ ω∗1 +

Ω3

Ω1Ω2
ω2 ∧ ω∗2

)
= Ω1Ω2 dτ ∧ σ3 + Ω3 dσ3 . (2.11)

2These include the Fubini-Study metric on CP2 = SU(3)
U(2)

and its non-compact counterpart, the (pseudo-

)Fubini-Study metric on C̃P2 = SU(2,1)
U(2)

. The latter geometries are Kähler-Einstein and Weyl self-dual —

the only known of this type with SU(2) action [18].
3Alternatively expressed as ds2 = Ω1Ω2Ω3dτ2 + Ω2Ω3

Ω1
σ2

1 + Ω3Ω1
Ω2

σ2
2 + Ω1Ω2

Ω3
σ2

3 . Unlike the hyper-Kähler

and quarternionic cases, for Kähler metrics with vanishing scalar curvature, the diagonal ansatz is not the

most general one [19].
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Before scanning the solutions of eqs. (2.10), we would like to set up the dictionary

for translating them into solutions of the Toda equation. This is possible since, being

Kähler with vanishing scalar curvature, (2.7)–(2.10) can always be recast along the lines

of (2.1)–(2.5) [20]. The transformation reads:

U−1 = Ω1Ω2Ω3

3∑
i=1

(
ni
Ωi

)2

,

Ai dxi = U

((
Ω1Ω3

Ω2
− Ω2Ω3

Ω1

)
sinϑ sinψ cosψ dϑ+

Ω1Ω2

Ω3
cosϑ dψ

)
,

Ψ = −2aτ ,

x = eaτ n1 Ω1 , y = eaτ n2 Ω2 , z = n3 Ω3 ,

(2.12)

where n1 = cosψ sinϑ, n2 = sinψ sinϑ and n3 = cosϑ are the directional cosines obeying
3∑
i=1

n2
i = 1. Furthermore, using the Jacobian of the transformation relating (x, y, z) and

(τ, θ, ψ), as well as the Pedersen-Poon eqs. (2.10), one obtains the following relations:

∂zΨ = − 2an3 Ω1Ω2

n2
1Ω2

2Ω2
3 + n2

2Ω2
3Ω2

1 + n2
3Ω2

1Ω2
2

, (2.13)

and
∂zΨ

z
= − 2aΩ1Ω2

Ω3

(
n2

1Ω2
2Ω2

3 + n2
2Ω2

3Ω2
1 + n2

3Ω2
1Ω2

2

) , (2.14)

which will prove useful later. Using (2.10), one finally checks that (A,U,Ψ) satisfy eqs. (2.3),

(2.4) and (2.5), respectively. As already advertised, solving eqs. (2.10) translates via (2.12)

into solutions of the Toda equation.

In practice using the latter of (2.12), we eliminate (ϑ, ψ) and we obtain the equation

of an ellipsoid
x2

e2aτ Ω2
1

+
y2

e2aτ Ω2
2

+
z2

Ω2
3

= 1 , (2.15)

which implicitly determines τ (and the Toda potential, using Ψ = −2aτ) as a function of

(x, y, z).

3 Toda from Pedersen-Poon

3.1 Boundary conditions and general equations

Our scope is now to analyse the system (2.10) and interpret its solutions in the Toda frame.

Keeping in mind that these are meant to serve as building blocks for eleven-dimensional

supergravity admitting N = 2 duals, one should be careful with their boundary conditions,

and keep only those which satisfy

∂zΨ|z→0 ∼ z → 0 , eΨ
∣∣
z→0

= finite 6= 0 . (3.1)

In the case of punctures, the U(1)R circle shrinks in a smooth manner if [3, 6]

z = zc = 2N5 , ∂zΨ|z→zc →∞ , eΨ
∣∣
z→zc ∼ z − zc , (3.2)

where N5 is the number of M5-branes.
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There are several branches of solutions to the system (2.10) under investigation. The

simplest one has a = 0, and the associated four-dimensional geometries are the Riemann

self-dual (thus Ricci-flat) gravitational instantons found by Eguchi-Hanson [21, 22] and

generalised in [23]. It is known that their Toda potential is trivial, as one can readily see

from (2.12). Therefore we will assume that a 6= 0, and study separately two distinct cases,

according to their symmetries. In the first, the symmetry is enhanced and we recover

the known electrostatic analogy; in the second, the symmetry remains unaltered, and we

provide new solutions.

The best way to perform the analysis is to recast the system (2.10) into a single

second-order differential equation. It is convenient to introduce a new coordinate t as

at = e−aτ . (3.3)

We learn from the first two eqs. (2.10) that

s ≡ 1

t2a2

(
Ω2

1 − Ω2
2

)
(3.4)

is a first integral. If non-zero, its value is irrelevant because it can be reabsorbed in a

redefinition of t; so either s = 0 or s = 1. This enables us to parametrise the functions Ωi

in terms of a single function w(t) as follows:

Ω1 =
at

2

(
w +

s

w

)
, Ω2 = ε

at

2

(
w − s

w

)
, ε = ±1 . (3.5)

When s = 0, Ω1 = εΩ2 and the isometry of (2.7) is enhanced to SU(2) × U(1), where

the last factor is generated by ∂ψ; this configuration is called biaxial. In the instance

where s = 1, the symmetry is SU(2) and the solution is called triaxial. Hence, the Toda

equation will have an electrostatic analogue for s = 0 only. The option ε = ±1 in (3.5)

deserves a comment. As one can see from (2.7) (or its form given in footnote 3), the four-

dimensional metric is equally well-defined with positive or negative Ωs — up to an overall

sign — provided their signs do not change along τ (or t). The allowed range of variation

for the latter is thus defined by demanding that every Ωi keeps its sign unaltered. From

the eleven-dimensional perspective, the range of allowed t is mostly dictated by the limits

set with (3.1) and (3.2).

Using the system (2.10), one finds the differential equation obeyed by w:

d2w

dt2
=

1

w

(
dw

dt

)2

− 1

t

dw

dt
+
w3

4
− s

4w
, (3.6)

whereas Ω3 is given by

Ω3 = −εat
w

dw

dt
. (3.7)

Equation (3.6) is Painlevé4 III with (α, β, γ, δ) =
(
0, 0, 1

4 ,
−s
4

)
. It has remarkable features

that will be useful in the subsequent analysis. Notice that by setting w = expG, this

4The general Painlevé III equation is

d2w

dt2
=

1

w

(
dw

dt

)2

− 1

t

dw

dt
+

1

t

(
αw2 + β

)
+ γw3 +

δ

w
.
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equation is mapped onto the central-symmetric two-dimensional Liouville (s = 0) or sinh-

Gordon (s = 1) equations:

1

t

d

dt

(
t

d

dt
G

)
=

1

4

(
e2G − s e−2G

)
. (3.8)

Before proceeding with the separate analysis of biaxial and triaxial solutions, a few

generic remarks should be made here. From (2.12) and (3.3) we obtain:

eΨ = (ta)2, (3.9)

which vanishes at t = 0, and is otherwise finite. Hence, punctures can only emerge at the

locus t = 0 provided ∂zΨ diverges. We also recall from (2.12) that

z = cosϑΩ3(t). (3.10)

The latter vanishes ∀t at ϑ = π
2 , which should be interpreted as a coordinate artefact, as

well as at any value t∗ such that Ω3(t∗) = 0. Condition (3.1) should be fulfilled at these

points.

Finally, solutions to Painlevé III equation are algebraic or transcendental. In either

case, they systematically possess poles (or branch points) at ta, sometimes in infinite num-

ber inside C. On the real axis, a bona fide solution w will set intervals (ta, ta+1), which

naturally restrict the range for the coordinate t. On the one hand, within such an in-

terval, w may have an extremum, and thus Ω3 a root (following (3.7)), while generically

Ω1,2 remain finite and thus ∂zΨ vanishes (see (2.13) and (3.10)). According to (3.1), this

invalidates the solution. On the other hand, w may vanish at t∗, making Ω3 diverge, and

Ω1,2 vanish or diverge depending on s (see (3.5)). This behaviour is acceptable, but further

restricts the interval to (ta, t∗) or (t∗, ta+1).

3.2 Enhanced SU(2)×U(1) symmetry and electrostatics

Lets us consider the biaxial situation, and set for concreteness ε = 1 in eqs. (3.5) and (3.7)

— the case ε = −1 does not bring any physically new input. The equation of Painlevé III

now at hand is algebraically integrable, with general solution

w = 4κ
ζ
a

(κt)1− ζ
a − (κt)1+ ζ

a

, (3.11)

where ζ and κ are two arbitrary constants. There is always a pole or a branch point

(depending on the actual value of ζ
a) at t = 1

κ . The value of κ is otherwise irrelevant and

we will set it equal to 1. Furthermore, w is invariant under ζ → −ζ, and the parameter

space is therefore reduced to ζ > 0. From eqs. (3.5) and (3.7), using (3.11) we obtain:

Ω1 = Ω2 = 2ζ
t
ζ
a

1− t
2ζ
a

, Ω3 = a− ζ 1 + t
2ζ
a

1− t
2ζ
a

. (3.12)

The corresponding four-dimensional Kähler metric with vanishing scalar curvature (2.7) is

known as LeBrun metric.
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In the case under consideration, there are two natural intervals for t: (0, 1) and (1,+∞).

In the range (1,+∞), no t makes w extremal, and this interval is a priori acceptable for

any ζ. For t ∈ (0, 1), however, we must impose that ζ > a to avoid vanishing Ω3 at t∗ > 0

(extremum of w).

We can refine this analysis by calling for the alternative electrostatic picture. Re-

member that the extra U(1) isometry originates from the choice of a foliation (2.7) over

three-spheres that are homogeneous and axially symmetric (because Ω1 = Ω2
5). It also

emerges in the Toda frame, where Ψ(x, y, z) is effectively a function of two coordinates

only: r =
√
x2 + y2 and z.

Let us for completeness show how this description arises in general, following [7] and

the analysis performed in [3, 4, 8]. The Toda potential Ψ(r, z) satisfies eq. (2.5), which

simplifies:
1

r
∂r(r∂rΨ) + ∂2

zeΨ = 0 . (3.13)

In this case, we can map the Toda potential Ψ to an electrostatic potential Φ. This requires

trading (r, z) for (ρ, η) as

ln r = ∂ηΦ , z = ρ∂ρΦ , ρ = re
Ψ(r,z)

2 , (3.14)

which, together with (3.13), leads for Φ = Φ(ρ, η) to the equation

1

ρ
∂ρ(ρ∂ρΦ) + ∂2

ηΦ = 0 . (3.15)

This is the scalar Laplacian equation in cylindrical coordinates (ρ, η).

We can now apply the above for an axisymmetric Bianchi IX foliation. The ignorable

coordinate is ψ, and the coordinates (t, ϑ) are ultimately replaced with (ρ, η), via (r, z).

Using (2.12) and (3.14), one finds:

ρ = |Ω1| sinϑ , η = cosϑ(Ω3 − a) , (3.16)

where Ω1,3 are displayed in (3.12). The electrostatic potential finally reads:

Φ(ρ, η) = η ln
( ρ
ta

)
+ a

(
cosϑ+ ln tan

ϑ

2

)
, (3.17)

where t and ϑ are implicit functions of (ρ, η), obtained by inverting (3.16).

Equations (3.16) and (3.17) provide the electrostatic picture of Pedersen-Poon ax-

isymmetric solution (3.12), describing some Kähler Bianchi IX foliation with zero scalar

curvature. We can recast the boundary conditions for Ψ, eqs. (3.1) and (3.2), in elec-

trostatic language as well as in terms of the Ωs, and compare with the already quoted

literature [1–6].

The locus z = 0 in (3.1) leads to ∂ρΦ
∣∣
η=0

= 0 or ρ = 0. This actually reflects a

boundary condition: Φ being an electrostatic potential, the surface η = 0 appears as an

infinite conducting plane, and

λ(η) ≡ ρ∂ρΦ
∣∣
ρ=0

= z(ρ = 0, η) (3.18)

5The same holds for Ω1 = −Ω2.
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as a line charge density along the η-semiaxis.6 Since we know Φ (eq. (3.17)), we can readily

find λ(η) and, using eqs. (2.12), (3.3) and (3.16)–(3.18), express it in terms of the original

Pedersen-Poon data. This can be performed in the two distinct ranges of t quoted above,

potentially corresponding to two different eleven-dimensional solutions:

t ∈ (1,+∞). At η = 0, i.e. on the infinite conducting plane, the range ρ ∈ (0,+∞) covers

t ∈ (+∞, 1). At large t, Ω1 = Ω2 vanish as −t
−ζ
a (see (3.12)), whereas Ω3 reaches its

asymptotic value a+ ζ. Combining all the data one finds:

λ(η) =

{
a+ζ
ζ η , 0 6 η 6 ζ (π2 > ϑ > 0 & t→ +∞)

η + a , ζ 6 η (ϑ = 0 & +∞ > t > 1) .
(3.19)

Regularity of the corresponding eleven-dimensional supergravity solution (originally

charge conservation) also demands [3] the reduction of slope at η = ζ be of 1 unit.

Thus a = ζ. The change of slope must furthermore occur at integer values of η, en-

forcing thereby a be a positive integer. In summary, the eleven-dimensional interpre-

tation brings supplementary constraints with respect to the original Pedersen-Poon

four-dimensional, Kähler scalar-flat space:

a = ζ ∈ N∗ , ϑ ∈ [0, π/2]. (3.20)

t ∈ (0, 1). In this case we are restricted to the range ζ > a. On the conducting plane

η = 0, t varies from 0 to 1 while ρ increases from 0 to +∞. At t = 0, Ω1 = Ω2 = 0

and Ω3 = a− ζ. We now obtain for the line-charge density:

λ(η) =

{
ζ−a
ζ η , 0 6 η 6 ζ (π2 6 ϑ 6 π & t = 0)

η − a , ζ 6 η (ϑ = π & 0 6 t < 1) .
(3.21)

Punctures might be present in the range 0 6 η 6 ζ, where t = 0 and z = (a−ζ) cosϑ.

However, this configuration lacks regularity because the slope increases from the first

branch to the second. The only way out is to set a = ζ = 0, which trivializes the

solution.

In conclusion, the first biaxial solution obtained using Pedersen-Poon procedure (3.19)

is regular but resembles the AdS7×S4 solution. Although the second one (3.21) is degener-

ate, it has the virtue to suggest that moving to the triaxial configurations may leave some

freedom for accommodating regularity, while recovering the electrostatics in some corner

of the space.

3.3 Strict SU(2) symmetry and new solutions

We now set s = 1 in eq. (3.6), and deal with the triaxial problem, where generically

Ω1 6= Ω2 6= Ω3 are given in eqs. (3.5) and (3.7); again ε = 1 for concreteness.7 Painlevé III

6More rigorously, eq. (3.15) should be ∂ρ (ρ∂ρΦ) + ρ ∂2
ηΦ = λ(η)δ(ρ).

7Notice that choosing ε = −1 is equivalent to trading w for 1
w

, while keeping ε = 1. Painlevé III with

(α, β, γ, δ) =
(
0, 0, 1

4
, −1

4

)
in invariant under w → 1

w
, hence if w is a solution, so is 1

w
.
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is no longer algebraically integrable. Its solution is a Painlevé III transcendent, which is, as

usual, better described in terms of its movable singularities (poles or branch points), rather

than in terms of initial conditions. The interested reader can find precious information

about these properties in [24], or in the literature on sinh-Gordon equation as e.g. [25].

The useful properties for our subsequent analysis can be summarised as follows:

• The solutions have an infinite number of simple poles in C.

• At large t, |w| is exponentially decreasing.

• At small t, the behaviour is

w =
κ

tζ
(
1 +O

(
t2
))
, 0 6 ζ < 1 . (3.22)

The large-t region is not so appealing for two reasons. Firstly, according to the general

discussion of the end of section 3.1, we do not expect any puncture in this regime. Secondly,

at large t, Ω1 and Ω2 do not converge towards each other because Ω1−Ω2 = at
w diverges ex-

ponentially. We therefore miss the potential contact with the biaxial regime. Nevertheless,

solutions to Painlevé III equation can make sense from the eleven-dimensional perspective.

Indeed, exp Ψ is regular, and when t decreases from infinity, |w| increases, until it hits

|w| = 1, for some t∗. There, either Ω1 or Ω2 vanishes, and this sets the acceptable domain

for the eleven-dimensional solution: (t∗,+∞).

The small-t regime is more interesting. Indeed, exp Ψ = (at)2 vanishes at t = 0,

potential location of punctures, and Ω1−Ω2 ∝ t1+ζ
(
1 +O

(
t2
))
≈ 0 in this neighborhood,

restoring thereby the extra U(1) symmetry. More precisely, using (3.5), (3.7) and (3.22),

we obtain:

Ω1 ≈ Ω2 =
aκ

2
t1−ζ

(
1 +O

(
t2
))
, (3.23)

Ω3 = aζ +O
(
t2
)
. (3.24)

We conclude that at t = 0, z = aζ cosϑ (see (3.10)). This excludes the limiting case ζ = 0,

for if ζ = 0, z|t=0 = 0, and this cannot be the location of punctures (see (3.1)). For

0 < ζ < 1 we can check the condition (3.2), and use it for determining the exact location

of the punctures. We find from eq. (2.13):

∂zΨ|t=0 = − 2 cosϑ

aζ2 sin2 ϑ
, (3.25)

which diverges at ϑ = 0, whereas ϑ = π is disregarded due to the expectation zc > 0. The

punctures are thus located at (t = 0, ϑ = 0) i.e. at z = zc, where zc = aζ > 0.

Our conclusion is that the Painlevé III transcendants at hand provide a Pedersen-

Poon configuration, corresponding, via the Toda frame, to a regular eleven-dimensional

supergravity solution with

N5 =
aζ

2
, ϑ ∈

[
0,
π

2

]
. (3.26)

This solution being triaxial, it has just SO(2, 4)× SO(3)×U(1)R isometry.

– 9 –
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As anticipated at the end of section 3.2, although biaxial Pedersen-Poon solutions

that incorporate punctures are not available, triaxial configurations do exist. Moreover,

the extra U(1) biaxial symmetry is restored, in these solutions, in the vicinity of the

punctures, at z = zc. This is the main achievement of the present letter.

4 Conclusion and outlook

The scope of this note was to generalise the results of [8], where the first family of eleven-

dimensional supergravity solutions, dual to four-dimensional SCFTs, and with everywhere

strict SO(2, 4)×SO(3)×U(1)R isometry was constructed. The generalisation we presented

here, exhibits an asymptotic emergence of the extra U(1) symmetry, that if it were present

everywhere, would allow for a genuine electrostatic description. This asymptotic emer-

gence sets the bridge with previous works on electrostatics [3–6], and may turn useful for

unravelling the nature of the dual gauge theories of our supergravity configurations.

Our construction is based of the Toda frame for four-dimensional Kähler surfaces with

vanishing scalar curvature, LeBrun spaces [15] specialised to Bianchi IX foliations [16]. The

extra U(1) isometry is realised around the punctures. Understanding the consequences of

the existence of this region deserves further investigation, in particular from the perspective

of the dual gauge field theory. The latter is expected to be a non-perturbative quiver, but

the arguments in favor of this interpretation are too primitive to be exposed here.
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