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1 Introduction

The new particle discovered recently by the ATLAS [1] and CMS [2] Collaborations at the

LHC looks very much like the Higgs boson of the Standard Model, although its properties

remain to be fully explored. For this exploration, detailed predictions of the expected

characteristics of Higgs production within the Standard Model will be essential, in order

to optimize signal to background ratios and to search for any signs of new physics. One

such characteristic is the amount and distribution of initial-state QCD radiation, which

is predicted to be exceptionally high in production by gluon fusion and exceptionally low

in vector boson fusion. A thorough understanding of initial-state radiation is therefore

essential for the separation of these production mechanisms.

In the present paper we study the distribution of the total amount of transverse energy

(ET ) emitted in Standard Model Higgs boson production by gluon fusion at the LHC.

Results are presented at next-to-leading order (NLO) in QCD perturbation theory and
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also resummed to all orders in the QCD coupling αS. The resummation applies to leading,

next-to-leading and some important next-to-next-to-leading logarithms of ET /Q ((N)NLL)

where Q is the hard process scale, taken to be the Higgs mass mH . Thus it improves the

treatment of the small-ET region, where the fixed-order prediction diverges whereas the

actual distribution must tend to zero as ET → 0. By matching the resummed prediction

to the NLO result valid at large ET , we provide a uniform description from the low-ET to

the high-ET region.

Our approach follows on from ref. [3], based in turn on the early work on ET resumma-

tion in vector-boson production [4–6] and closely related to the resummation of transverse

momentum in vector-boson [7–10] and Higgs production [11–14].1 We make a number of

improvements relative to ref. [3], including:

• Predictions for the experimentally relevant Higgs mass of 126 GeV, at centre-of-mass

energies
√
s = 8 and 14 TeV;

• Fixed-order predictions to NLO, i.e. O(α4
S).

• Expansion of the ET resummation formula to NLO, and demonstration that to this or-

der the structure of the logarithmic terms is consistent with the fixed-order prediction;

• Matching of the resummed and NLO predictions across the whole range of ET ;

• A constraint on the perturbative unitarity of the prediction, using the method of

ref. [11], which reduces the impact of logarithmic terms in the large-ET region;

• Studies of the effects of renormalization scale variation and unknown higher-order

terms;

• Monte Carlo studies of the effects of hadron-level cuts on pseudorapidity and trans-

verse momentum, with fixed-order matching to parton showers using aMC@NLO inter-

faced to Herwig++ and Pythia8.

The paper is organized as follows. In section 2, we review the resummation proce-

dure and then describe the necessary modifications to implement the unitarity condition

mentioned above. This involves some changes in the formalism and the evaluation of new

integrals in this prescription. In section 3, we expand our resummed result to next-to-

leading order in order to match our results to the fixed-order prediction at this accuracy.

This renders our predictions positive throughout the ET -range. In section 4, we investigate

the ET distribution further through Monte Carlo studies. We first reweight Monte Carlo

results to our analytic distribution and then investigate the impact of hadronisation and

underlying event. We end the main text in section 5 with conclusions and discussion. A

number of appendices then contain supplementary results.

1The resummation of the jet-veto pT distribution has been considered in refs. [15–19].
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2 Resummation of logarithmically enhanced terms

Here we summarize the results of ref. [3] as applied to Higgs boson production. The

resummed component of the transverse-energy distribution in the process h1h2 → HX at

scale Q has the form[
dσH

dQ2 dET

]
res.

=
1

2π

∑
a,b

∫ 1

0
dx1

∫ 1

0
dx2

∫ +∞

−∞
dτ e−iτET fa/h1(x1, µ) fb/h2(x2, µ)

· WH
ab (x1x2s;Q, τ, µ) (2.1)

where fa/h(x, µ) is the parton distribution function (PDF) of parton a in hadron h at

factorization scale µ, taken to be the same as the renormalization scale here (we illustrate

the impact of varying this scale in section 3). In what follows we use the MS renormalization

scheme. To take into account the constraint that the transverse energies of the emitted

partons should sum to ET , the resummation procedure is carried out in the domain that

is Fourier conjugate to ET . The transverse-energy distribution (2.1) is thus obtained by

performing the inverse Fourier transformation with respect to the “transverse time”, τ . The

factor WH
ab is the perturbative and process-dependent partonic cross section that embodies

the all-order resummation of the large logarithms ln(Qτ). Since τ is conjugate to ET , the

limit ET � Q corresponds to Qτ � 1.

As in the case of transverse-momentum resummation [20], the resummed partonic cross

section can be written in the following form:

WH
ab (s;Q, τ, µ) =

∫ 1

0
dz1

∫ 1

0
dz2 Cga(αS(µ), z1; τ, µ) Cgb(αS(µ), z2; τ, µ) δ(Q2 − z1z2s)

· σHgg(Q,αS(Q)) Sg(Q, τ) . (2.2)

Here σHgg is the cross section for the partonic subprocess of gluon fusion, gg → H, through

a massive-quark loop:

σHgg(Q,αS(Q)) = δ(Q2 −m2
H)σH0 , (2.3)

where in the limit of infinite quark mass

σH0 =
α2

S(mH)GFm
2
H

288π
√

2
. (2.4)

Sg(Q, τ) is the appropriate gluon form factor, which in the case of ET resummation takes

the form [5, 6]

Sg(Q, τ) = exp

{
−2

∫ Q

0

dq

q

[
2Ag(αS(q)) ln

Q

q
+Bg(αS(q))

] (
1− eiqτ

)}
. (2.5)

The functions Ag(αS), Bg(αS), as well as the coefficient functions Cga in eq. (2.2), contain

no ln(Qτ) terms and are perturbatively computable as power expansions with constant
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coefficients:

Ag(αS) =

∞∑
n=1

(αS

π

)n
A(n)
g , (2.6)

Bg(αS) =
∞∑
n=1

(αS

π

)n
B(n)
g , (2.7)

Cga(αS, z) = δga δ(1− z) +
∞∑
n=1

(αS

π

)n
C(n)
ga (z) . (2.8)

Thus a calculation to NLO in αS involves the coefficients A
(1)
g , A

(2)
g , B

(1)
g , B

(2)
g and C

(1)
ga .

The coefficients A
(1)
g , A

(2)
g , B

(1)
g and C

(1)
ga read [21, 22]

A(1)
g = CA , A(2)

g =
1

6
CA

[
CA

(
67

6
− π2

2

)
− 5

3
nf

]
, B(1)

g = −1

6
(11CA − 2nf ) ,

C(1)
gg (z) =

1

4

[
CA

(
2− π2

3

)
+ 5 + 4π2

]
δ(1− z) ≡ c(1)

g δ(1− z) ,

C(1)
gq (z) = C

(1)
gq̄ (z) =

1

2
CF z . (2.9)

The coefficient B
(2)
g for the Higgs transverse-momentum spectrum is [23, 24]

B
(2)
g = C2

A

(
23

24
+

11

18
π2 − 3

2
ζ3

)
+

1

2
CF nf − CA nf

(
1

12
+
π2

9

)
− 11

8
CFCA . (2.10)

However, the value of the coefficient B
(2)
g for the transverse energy in Higgs production

could be different.2 In section 3, we will perform a fit to the fixed-order NLO result at

small transverse energy, with this coefficient as a free parameter.

Returning to eq. (2.1), we may recast it in a form with a real integrand as[
dσH

dQ2 dET

]
res.

=
1

πs

∫ ∞
0

dτ e−F
(R)
g (Q,τ)

[
R(R)
g (s;Q, τ) cos{F (I)

g (Q, τ) + τET }

+R(I)
g (s;Q, τ) sin{F (I)

g (Q, τ) + τET }
]
σHgg(Q,αS(Q)) (2.11)

where F
(R)
g and F

(I)
g are the real and imaginary parts of

Fg(Q, τ) = 2

∫ Q

0

dq

q

[
2Ag(αS(q)) ln

Q

q
+Bg(αS(q))

] (
1− eiqτ

)
. (2.12)

As explained in [3], the coefficient functions in eq. (2.2) contain logarithms of µτ ,
which are eliminated by the choice of factorization scale µF = τ0/τ , where τ0 =
exp(−γE) = 0.56146 . . ., γE being the Euler-Mascheroni constant. The resulting expressions

2We are grateful to Jon Walsh for a useful discussion on this point.
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for R
(R,I)
g are

R(R)
g (ξ, τ) =

∫ 1

ξ

dx1
x1

{
fg/h1

(x1)fg/h2

(
ξ

x1

)(
1 +

αS

π
2c(1)g

)
+
αS

π

∫ 1

ξ/x1

dz

z

[
fg/h1

(x1)fs/h2

(
ξ

zx1

)
+ fs/h1

(x1)fg/h2

(
ξ

zx1

)]
1

2
CF z

}
,

R(I)
g (ξ, τ) =

αS

2

∫ 1

ξ

dx1
x1

∫ 1

0

dz

z

{
2fg/h1

(x1)fg/h2

(
ξ

zx1

)
Pgg(z)

+

[
fg/h1

(x1)fs/h2

(
ξ

zx1

)
+ fs/h1

(x1)fg/h2

(
ξ

zx1

)]
Pgq(z)

}

=
αS

2

∫ 1

ξ

dx1
x1

{
2fg/h1

(x1)fg/h2

(
ξ

x1

)[
2CA ln

(
1− ξ

x1

)
+

1

6
(11CA − 2nf )

]

+

∫ 1

ξ/x1

dz

z

[
4CAfg/h1

(x1)

{
fg/h2

(
ξ

zx1

)[
z

1− z
+

1−z
z

+z(1−z)
]
−fg/h2

(
ξ

x1

)
z

1−z

}

+

{
fg/h1

(x1)fs/h2

(
ξ

zx1

)
+ fs/h1

(x1)fg/h2

(
ξ

zx1

)}
CF

1 + (1− z)2

z

]}
, (2.13)

where fs =
∑

q(fq + fq̄) and all PDFs and coefficient functions are understood to be

evaluated at scale µF = τ0/τ . We have defined ξ = Q2/s for convenience.

2.1 Evaluation of the exponent

We now seek to evaluate the exponent of the form factor, (2.12), analytically. We will

use the method of ref. [11] where the analogous calculation was performed for transverse-

momentum resummation. In the notation of that paper, we have, for a renormalization

scale µR,

Gg(aR, L) ≡ −2

∫ Q

b0/b

dq

q

[
2Ag(αS(q)) ln

Q

q
+Bg(αS(q))

]
=Lg1(Y )+g2(Y )+aR g3(Y ) + . . .

(2.14)

where aR = αS(µR)/π, L = 2 ln(Qb/b0), Y = β0aRL and β0 = (11CA − 2nf )/12 is the

lowest-order coefficients of the beta function:

d ln aR
d lnµ2

R

= β(aR) = −
∞∑
n=0

βna
n+1
R . (2.15)

The term Lg1(Y ) collects the LL contributions αnSL
n+1, the function g2 resums the NLL

contributions αnSL
n, the function g3 controls the NNLL terms αnSL

n−1, and so forth. We

will give the explicit form of the gi functions below. We can therefore deduce that in general

− 2

∫ Q

Q0

dq

q

[
2Ag(αS(q)) ln

Q

q
+Bg(αS(q))

]
= 2λg1(y) + g2(y) + aR g3(y) + . . . (2.16)

where now

y ≡ 2β0aRλ and λ ≡ ln(Q/Q0) . (2.17)
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Now by expressing αS(q) in terms of αS(Q) and relating this in turn to αS(µR), we can

write the integrand in (2.16) as a function of ln(Q/q), and then use the result∫ Q

Q0

dq

q
f

(
ln
Q

q

)
= f

(
d

du

)
1

u

(
eλu − 1

)∣∣∣
u=0

, (2.18)

which is easily seen by expanding the exponential. This allows one to calculate the gi
functions explicitly. They are given by [11, 25, 26]:

g1(y) =
A

(1)
g

β0y
(y + ln(1− y)) ,

g2(y) =
B

(1)
g

β0
ln(1− y)− A

(2)
g

β2
0

(
y

1− y
+ ln(1− y)

)
+
A

(1)
g β1

β3
0

(
1

2
ln2(1− y) +

y + ln(1− y)

1− y

)
+
A

(1)
g

β0

(
y

1− y
+ ln(1− y)

)
ln

(
Q2

µ2
R

)
,

g3(y) = −A
(3)
g

2β2
0

(
y

1− y

)2

− B
(2)
g

β0

y

1− y
+
A

(2)
g β1

β3
0

y(3y − 2)− 2(1− 2y) ln(1− y)

2(1− y)2
(2.19)

+
A

(1)
g

β4
0

(
β2

1(1− 2y) ln2(1− y)

2(1− y)2
+ ln(1− y)

(
β0β2 − β2

1 +
β2

1

1− y

)
+
y(β0β2(2− 3y) + β2

1y)

2(1− y)2

)
+
B

(1)
g β1

β2
0

y + ln(1− y)

1− y
− A

(1)
g

2

y2

(1− y)2
ln2

(
Q2

µ2
R

)
+

(
B(1)
g

y

1− y
+
A

(2)
g

β0

y2

(1− y)2
+A(1)

g

β1

β2
0

(
y

1− y
+

(1− 2y) ln(1− y)

(1− y)2

))
ln

(
Q2

µ2
R

)
.

Now, the actual integral we require is

Fg(αS, λ) ≡ 2

∫ Q

0

dq

q

[
2Ag(αS(q)) ln

Q

q
+Bg(αS(q))

] (
1− eiqτ

)
(2.20)

and so we must introduce
(
1− eiqτ

)
in the integrand. The analogue of eq. (2.18) is∫ Q

0

dq

q
f

(
ln
Q

q

)(
1− eiqτ

)
= f

(
d

du

)
J (Qτ ;−u)|u=0 (2.21)

where the generating function

J (Qτ ;u) =

∫ Q

0

dq

q

(
q

Q

)u (
1− eiqτ

)
=

1

u
− (−iQτ)−u γ(u,−iQτ) , (2.22)

γ(u, z) being the incomplete gamma function,

γ(u, z) = Γ(u)− zu−1e−z
∞∑
k=0

Γ(u)

Γ(u− k)
z−k . (2.23)
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The series represents power corrections, which we do not wish to include in the resumma-

tion, so we write instead

J (Qτ ;−u) =
1

u
[(−iQτ)u Γ(1− u)− 1]

=
1

u

[
exp

(
λu+

∑
k=2

ζk
k
uk

)
− 1

]
≡ 1

u

[
eλuZ(u)− 1

]
(2.24)

where now

λ = ln

(
Qτ

iτ0

)
, (2.25)

i.e. we have chosen Q0 = ie−γE/τ = iτ0/τ in (2.17), and

Z(u) ≡ exp

(∑
k=2

ζk
k
uk

)
= τu0 Γ(1− u) . (2.26)

Now
1

u

[
eλuZ(u)− 1

]
=
Z(u)

u

[
eλu − 1

]
+

1

u
[Z(u)− 1] (2.27)

and the second term involves no logarithms, so again we drop it from the resummation.

We show in appendix A that the first term implies that

Fg(αS, λ) ≡ 2

∫ Q

0

dq

q

[
2Ag(αS(q)) ln

Q

q
+Bg(αS(q))

] (
1− eiqτ

)
= −Z

(
d

dλ

)
Gg(αS, 2λ) ,

(2.28)

where Gg was defined in eq. (2.14). Now

Z

(
d

dλ

)
= 1 +

ζ2

2

d2

dλ2
+
ζ3

3

d3

dλ3
+ . . . (2.29)

where ζ2 = π2/6, so

Fg(αS, λ) = −2λg1(y)− g2(y)− aRg̃3(y) + . . . (2.30)

where

g̃3(y) = g3(y) +
π2

12aR

d2

dλ2
[2λg1(y)]

= g3(y)− π2

3

A
(1)
g

(1− y)2
. (2.31)

The other terms from (2.29) contribute logarithms only at the level of g4 and beyond, so

we do not consider them.

Following ref. [11], we can now enforce the ‘unitarity’ condition, Fg → 0 as τ → 0, by

a shift of argument of the logarithm:

λ→ λ̃ = ln

(
1 +

Qτ

iτ0

)
=

1

2
ln

(
1 +

Q2τ2

τ2
0

)
− i arctan

(
Qτ

τ0

)
, (2.32)
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so that now y = 2β0αS(µ2
R)λ̃/π. We must apply a corresponding shift in the factoriza-

tion scale of the parton distributions and coefficient functions (given explicitly below in

eqs. (3.6)). They are now evaluated at a scale of

µ̃F =
Q√

1 +Q2τ2/τ2
0

(2.33)

instead of µF = τ0/τ , and one must also replace αS(µF )/2 in the coefficient of R
(I)
g by

αS(µ̃F )

π
arctan

(
Qτ

τ0

)
. (2.34)

We show in appendix B that the vanishing of the transverse-energy distribution for

ET < 0 implies a dispersion relation between the real and imaginary parts of its Fourier

transform. This allows (2.11) to be written in the simpler equivalent form[
dσH

dQ2 dET

]
res.

=
2

πs

∫ ∞
0

dτ e−F
(R)
g (Q,τ) cos(τET )

[
R(R)
g (s;Q, τ) cos{F (I)

g (Q, τ)}

−R(I)
g (s;Q, τ) sin{F (I)

g (Q, τ)}
]
σHgg(Q,αS(Q)) (2.35)

and implies that ∫ ∞
0

dET

[
dσH

dQ2 dET

]
res.

=
1

s
R(R)
g (s;Q, 0)σHgg(Q,αS(Q)) , (2.36)

where, on account of (2.33), the parton distributions in R
(R)
g (s;Q, 0) are evaluated at

scale Q.

3 Matching to fixed order

We now match the resummed expression derived above to the NLO perturbative expansion

of the transverse energy distribution, taking care to avoid double counting of the terms

already contained in the resummation.

3.1 Expansion of the resummed prediction

Performing the expansion of eq. (2.30) in powers of aR ≡ αS(µ2
R)/π, we find

−2λg1 = 2A(1)
g λ2aR +

8

3
β0A

(1)
g λ3a2

R +O(a3
R)

−g2 = 2B(1)
g λaR + 2

[
A(2)
g + β0B

(1)
g − β0A

(1)
g ln

(
Q2

µ2
R

)]
λ2a2

R +O(a3
R)

−aRg̃3 =
π2

3
A(1)
g aR + 2

[
B(2)
g +

2

3
π2β0A

(1)
g − β0B

(1)
g ln

(
Q2

µ2
R

)]
λa2

R +O(a3
R) , (3.1)

so that to NLO

Fg(αS, λ) = aRF1 + a2
RF2 (3.2)

– 8 –
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where, following the shift λ→ λ̃ according to eq. (2.32)

F1 = 2A(1)
g

(
λ̃2 +

π2

6

)
+ 2B(1)

g λ̃

F2 =
8

3
β0A

(1)
g λ̃3 + 2

[
A(2)
g + β0B

(1)
g − β0A

(1)
g ln

(
Q2

µ2
R

)]
λ̃2

+2

[
B(2)
g +

2

3
π2β0A

(1)
g − β0B

(1)
g ln

(
Q2

µ2
R

)]
λ̃ . (3.3)

Similarly, evaluating all PDFs at scale µ = Q, we can write to NLO

Rg(τ) = R0 + aR

(
R1 + λ̃R′1

)
+ a2

R

(
R2 + λ̃R′2 + λ̃2R′′2

)
(3.4)

so that

SgRg = R0 + aRR1 + a2
RR2 + aR

(
λ̃R′1 − F1R0

)
+ a2

R

[
λ̃R′2 + λ̃2R′′2 −

(
F2 −

1

2
F 2

1

)
R0 − F1(R1 + λ̃R′1)

]
(3.5)

where

R0 =

∫ 1

ξ

dx1

x1
fg(x1)fg

(
ξ

x1

)
R1 =

∫ 1

ξ

dx1

x1

{
2c(1)
g fg(x1)fg

(
ξ

x1

)
+ CF

∫ 1

ξ/x1

dz fs(x1)fg

(
ξ

zx1

)}

R′1 = −
∫ 1

ξ

dx1

x1

{
2fg(x1)fg

(
ξ

x1

)[
2CA ln

(
1− ξ

x1

)
+

1

6
(11CA − 2nf )

]

+

∫ 1

ξ/x1

dz

z

[
4CAfg(x1)

{
fg

(
ξ

zx1

)[
z

1− z
+

1− z
z

+ z(1− z)
]
− fg

(
ξ

x1

)
z

1− z

}

+ 2CF fs(x1)fg

(
ξ

zx1

)
1 + (1− z)2

z

]}
. (3.6)

Performing the Fourier transformation (2.1), we find terms involving the integrals

Ip(ET , Q) =
1

2π

∫ +∞

−∞
dτ e−iτET lnp

(
1 +

Qτ

iτ0

)
(3.7)

with p = 1, 2, 3, 4, which may be evaluated from

Ip(ET , Q) =
dp

dup
I(ET , Q;u)|u=0 (3.8)

with generating function

I(ET , Q;u) =
1

2π

∫ +∞

−∞
dτ e−iτET

(
1 +

Qτ

iτ0

)u
. (3.9)
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Writing

1 +
Qτ

iτ0
=

zQ

τ0ET
(3.10)

we have

I(ET , Q;u) = − i

2πET

(
Q

ET τ0

)u ∫ +i∞

−i∞
dz zu ez−τ0ET /Q . (3.11)

We can safely deform the integration contour around the branch cut along the negative

real axis to obtain

I(ET , Q;u) = − u

ET

(
Q

ET

)u exp(uγE − τ0ET /Q)

Γ(1− u)

= − u

ET

(
Q

ET

)u
exp

(
−τ0ET

Q
−
∞∑
k=2

ζk
k
uk

)
. (3.12)

This gives

I1(ET , Q) = − 1

ET
e−τ0ET /Q

I2(ET , Q) = − 2

ET
ln

(
Q

ET

)
e−τ0ET /Q

I3(ET , Q) = − 3

ET

[
ln2

(
Q

ET

)
− π2

6

]
e−τ0ET /Q

I4(ET , Q) = − 4

ET

[
ln3

(
Q

ET

)
− π2

2
ln

(
Q

ET

)
− 2ζ3

]
e−τ0ET /Q . (3.13)

Therefore the NLO expansion of the resummed expression is[
ET

σH0

dσH
dET

]
resum,NLO

=
[
aR(G0R0 +G′1R

′
1) + a2

R(H0R0 +H1R1

+H ′1R
′
1 +H ′2R

′
2 +H ′′2R

′′
2)
]
e−τ0ET /Q (3.14)

where, writing L = ln(Q/ET ),

G0 = H1 = 4A(1)
g L+ 2B(1)

g , G′1 = −1 ,

H0 = 4L

[
A(2)
g + β0B

(1)
g − β0A

(1)
g ln

(
Q2

µ2
R

)]
+ 8β0A

(1)
g

(
L2 − π2

6

)
+ 2

[
B(2)
g +

2

3
π2β0A

(1)
g − β0B

(1)
g ln

(
Q2

µ2
R

)]
− 8(A(1)

g )2

(
L3 − π2

3
L− 2ζ3

)
− 12A(1)

g B(1)
g

(
L2 − π2

9

)
− 4(B(1)

g )2L ,

H ′1 = 6A(1)
g

(
L2 − π2

9

)
+ 4B(1)

g L , H ′2 = −1 , H ′′2 = −2L . (3.15)

We evaluate the coefficients R0, R1, R
′
1 explicitly from eqs. (3.6), and then obtain the

higher-order coefficients R′2, R
′′
2 from a fit to the Higgs transverse-momentum distribution,

– 10 –
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Figure 1. Upper panels: fits to the logarithmic terms of the transverse-momentum (qT ) distribution

in Higgs boson production at the LHC at 8 and 14 TeV. Black: NLO data from HNNLO. Red: fit

to data at −5.5 < L < −3.3. Lower panels: difference between the NLO data and the fits.

as explained in appendix C. These coefficients depend only on the parton distribution

functions and the NLO coefficient functions C
(1)
ga , which are the same for the ET and qT

spectra. Using the MSTW 2008 NLO parton distributions [27], we find the values indicated

in figure 1, where the resulting fits are also shown.

3.2 Matching to NLO

The NLO prediction for the transverse-energy distribution is conveniently obtained from

the known NLO transverse-momentum distribution by adding the difference between the

two distributions, obtained from Higgs plus two-jet production at leading order. Given

the value of B
(2)
g for the transverse-energy distribution, the NLO prediction (C.8) for the

difference at small ET is independent of the fitted parametersR′2, R
′′
2 . From HNNLO [28, 29]

data on this quantity at 8 and 14 TeV, shown in figure 2, we find consistent best-fit B
(2)
g

values of −4.5± 2.1 and −6.0± 2.6, respectively, with weighted average B
(2)
g = −5.1± 1.6.

This is significantly different from the value of B
(2)
g = 26.8 given by eqs. (2.9) for the

transverse-momentum distribution. We will use B
(2)
g = −5.1 from now on.

Away from the small-ET region, the NLO data are then well described by a parame-

trization of the form[
dσH
dET

− dσH
dqT

∣∣∣∣
qT =ET

]
NLO

= Logarithmic terms +
a1ET

mH(mH + a2ET ) + a3E2
T

, (3.16)

as shown by the red curves in figure 2, with the parameter values shown.

To match the resummed and NLO ET distributions, we have to subtract the NLO

logarithmic terms (3.14), which are already included in the resummation, and replace

them by the full NLO result:

dσH
dET

=

[
dσH
dET

]
resum

−
[
dσH
dET

]
resum,NLO

+

[
dσH
dET

]
NLO

. (3.17)
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Figure 2. Upper panels: fits to the difference between the transverse-energy (ET ) and transverse-

momentum (qT ) distribution in Higgs boson production at the LHC at 8 and 14 TeV. Points: NLO

data from HNNLO. Red: fit to data. Black: logarithmic terms only. Lower panels: difference

between the NLO data and the fits.

3.3 Results

In the following we present numerical results for our resummed calculation of the ET
distribution at the LHC. Our resummed results are obtained by using eq. (3.17): the

resummed component is evaluated by including the coefficients C
(1)
ga in eq. (2.9), and the

functions g1, g2 and g3 of eqs. (2.19). The required coefficients A
(1)
g , A

(2)
g and B

(1)
g are given

in eq. (2.9). For the coefficient B
(2)
g we use the numerical value extracted in section 3.2.

The unknown coefficient A
(3)
g is neglected. We will comment later on the numerical impact

of the missing A
(3)
g and C

(2)
ga coefficients.

The resulting resummed and matched ET distributions at the LHC at 8 and 14 TeV

are shown in figure 3. For all these predictions we use the best-fit value B
(2)
g = −5.1 found

from the NLO data. The distribution peaks at around ET = 35 GeV at both centre-of-

mass energies, considerably above the peak in the Higgs transverse-momentum distribution,

around qT = 12 GeV [11]. Thus in the peak region of ET the resummed logarithms are not

so dominant as in the corresponding region of qT . On the other hand, the fixed-order NLO

prediction is rising rapidly and unphysically towards smaller values of ET .3

The purely resummed distribution becomes slightly negative at small and large ET ,

which is also unphysical. The effect of matching is to raise the distribution to positive

values, close to the fixed-order prediction at high ET . The matched prediction is still

somewhat unstable at small ET , owing to the delicate cancellation of diverging logarithmic

terms. The behaviour at large ET has been significantly improved compared to the results

of ref. [3] where matching was only performed to leading order. The renormalization scale

dependence is comparable to that of the NLO result above and around the peak of the

distribution, but changes sign at lower ET , with smaller scales giving a lower cross section

there and a peak that is higher and shifted to slightly larger ET .

3At very small ET it turns over and tends to −∞, as seen in figure 1.
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Figure 3. Transverse-energy distribution in Higgs boson production at the LHC at 8 and 14 TeV.

Blue: resummed only. Red: resummed and matched to NLO. Green: NLO only. The solid curves

correspond to renormalization scale mH , the dashed to 2mH and mH/2.

Figure 4. Transverse-energy distribution in Higgs boson production at the LHC at 8 and 14 TeV.

Blue: resummed only. Red: resummed and matched to NLO. The solid curves correspond to

A
(3)
g = 0, the dashed to A

(3)
g = ±30.

As a result of the unitarity condition (2.36) and the matching to fixed order, the cross

section integrated over all ET should be equal to the NNLO inclusive Higgs cross section,

within the uncertainties due to the unknown coefficients. Integrating up to ET = 760 GeV,

we obtain resummed matched cross sections of 18.4 pb and 47.8 pb at 8 and 14 TeV,

respectively, which compare well with the NNLO inclusive values of 18.22 pb and 47.28 pb,

computed with the same NLO PDFs and two-loop αS.

As mentioned above, the leading terms that are neglected in our analysis correspond

to the coefficient A
(3)
g in eq. (2.6) and the coefficient functions C

(2)
ga (z) in (2.8). In figure 4

we show the sensitivity of the prediction to A
(3)
g , assuming a value similar in magnitude

to that used for the qT distribution in ref. [11]. As was found there, the effect of including

this coefficient is small.

The NNLO coefficient functions C
(2)
ga (z) were computed for the Higgs transverse-

momentum distribution in ref. [30], where it was found that their dominant effect could be

approximated as

C
(2)
ga (z) ≈ C(2)

g δag δ(1− z) (3.18)

– 13 –
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Figure 5. Transverse-energy distribution in Higgs boson production at the LHC at 8 and 14 TeV.

Blue: resummed only. Red: resummed and matched to NLO. The solid curves correspond to

C
(2)
g = 0, the dashed to C

(2)
g = ±115.5 (see text).

where C
(2)
g = 115.5. In figure 5 we show the effects of assuming the same form and magni-

tude for the corresponding coefficient in ET resummation. We see that the effect is larger

than that of A
(3)
g and of renormalization scale variation. Thus in this case uncertainties in

the higher-order coefficient functions provide a more conservative error estimate that the

usual range of scale variation.

4 Monte Carlo studies

Up to this point we have only considered the perturbative contributions to the ET dis-

tribution that arise due to initial state radiation (ISR). However, there are important

contributions to the ET originating from non-perturbative effects such as hadronization

and the underlying event (UE). Moreover, the distributions can be altered further because

of cuts imposed either due to the detector geometry, or to accommodate the experimen-

tal analyses.

All of the aforementioned effects on the ET distribution are challenging to predict

analytically. Therefore, we make the assumption that the kinematics of the process, apart

from the UE, is governed predominantly by the shape of the ET distribution. Under this

assumption, one can reweight the parton-level ET of a Monte Carlo event generator (i.e.

with the UE and hadronization turned off), to the one calculated analytically, and use the

phenomenogical models of the Monte Carlo to estimate the features of the effects.

Taking into account the non-perturbative and detector geometry effects, one may con-

struct a quantity that is, at least in principle, close to what can be measured experimentally:

ET =
∑
|ηi|<ηc
|pTi|>pcT

|pT i| , (4.1)

where the sum is taken over the hadrons in the event, with pcT and ηc their minimum

transverse momentum and maximum pseudorapidity respectively. The effect of these cuts

will be investigated below.4

4The ET distribution may also be constructed using jets. It is not feasible, however, to reconstruct the

parton- or hadron-level distributions from the jet-level distributions.
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Figure 6. Parton-level transverse-energy distribution in Higgs boson production at the LHC at 8

and 14 TeV. Red: resummed and matched to NLO. Green: Herwig++ with Matrix Element cor-

rection, no reweighting. Black: aMC@NLO+Herwig++ before reweighting. Blue: aMC@NLO+Herwig++

after reweighting.

4.1 ET at parton level

Here we employ the Herwig++ general-purpose event generator (version 2.6.3) [31–34] in

conjunction with events generated using aMC@NLO [35, 36]. For purposes of comparison with

alternative descriptions of the parton shower, hadronization and the underlying event, we

additionally verify the Herwig++ results using the Pythia8 event generator [37, 38]. The

distributions found using Pythia8 are very similar to those obtained with Herwig++ and

thus we defer them to appendix D.

Use of aMC@NLO ensures correct treatment of the NLO inclusive cross section matched

to parton showers without double counting. We assign a new weight to each event so as

to reproduce the analytic resummed and matched distributions shown in figure 3. For

completeness, we show in figure 6 the resulting ET distributions before and after the

reweighting, at parton level, demonstrating that this procedure reproduces the analytic re-

sult. Higgs boson production using the internal Herwig++ implementation, which includes

Matrix Element (ME) corrections,5 is also shown on the figure. The ME-corrected ET
distribution has a lower peak and consequently falls off more slowly at higher ET than the

MC@NLO case. In figure 7 we show the Higgs boson transverse-momentum distribution,

qT , before and after applying the reweighting procedure, compared to the equivalent distri-

bution obtained by the HQT program [11, 39]. Evidently, the MC@NLO distribution agrees

already quite well with the HQT prediction before reweighting. The reweighting procedure

improves agreement in the peak region but makes the distribution fall off faster at high

qT , which is consistent with the change in shape observed in figure 6. Figure 8 shows

the rapidity distribution of the Higgs boson, yH , before and after the reweighting, clearly

showing that the effect on this distribution is negligible, thus verifying that the reweighting

does not alter physics in the forward direction.

5The ME corrections include the higher-order tree-level contributions gg → hg, qg → hq, gq̄ → hq̄ and

qq̄ → hg.
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Figure 7. Higgs boson transverse-momentum distribution at the LHC at 8 and 14 TeV. Red:

HQT calculation. Black: aMC@NLO+Herwig++ before reweighting. Blue: aMC@NLO+Herwig++ after

reweighting.

Figure 8. Higgs boson rapidity distribution at the LHC at 8 and 14 TeV. Black:

aMC@NLO+Herwig++ before reweighting. Blue: aMC@NLO+Herwig++ after reweighting.

4.2 ET at hadron level

The effects of hadronization can be studied by enabling the cluster hadronization model in

the Herwig++ event generator in conjunction with the reweighting. The default parameters

of the hadronization model available in Herwig++ version 2.6.3 were used. The effect is

to shift the peak of the distribution to higher ET , by about 15 GeV at both 8 TeV and

14 TeV, as shown in figure 9. The effect of hadronization on the ET distribution can be

compensated almost completely in this range of values by imposing a pseudorapidity cut

on the hadrons contributing to the ET , allowing only hadrons within |η| < 5 to enter. The

resulting distributions after this cut are also shown in figure 9. We note that including the

restriction on hadrons of |η| < 5 approximately corresponds to the experimental detector

coverage of the ATLAS and CMS detectors.

4.3 Inclusion of the underlying event

The underlying event (UE) is thought to arise due to secondary multiple interactions

between the colliding hadrons. The model present in Herwig++ is based on the eikonal

– 16 –
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Figure 9. Hadron-level transverse-energy distribution in Higgs boson production at the LHC at 8

and 14 TeV. Red: resummed and matched to NLO. Blue: aMC@NLO+Herwig++ after reweighting.

Black dashes: aMC@NLO+Herwig++ after reweighting, particles restricted to lie within pseudorapidi-

ty |η| < 5.

model formulated in refs. [40–42]. The underlying event activity is treated as additional

semi-hard and soft partonic scatters. In this version, a model of colour reconnection has

been added to HERWIG++, based on the idea of colour preconfinement, which provides an

improved description of underlying event data at the LHC [43].

The effect of the UE on the ET distributions is severe, making them much broader and

moving the peak to much higher values of ET . This was investigated in ref. [3] at parton

level, where it was shown that in the Herwig++ model the ET distribution for the partons

originating from the UE is approximately independent of the nature of the hard process.

This distribution was fitted with a Fermi distribution and was shown to reproduce the total

distribution after convolution with the perturbative result.6

We present results using the default parameters present in Herwig++ version 2.6.3 for

the underlying event model. We note that these were tuned to a variety of experimental

data using the MRST LO** PDF set [44] instead of the MSTW2008 NLO set [27] used here

for the hard process generated using aMC@NLO.7 In figure 10 we show the ET distribution

including the UE, with hadrons of a maximum pseudorapidity ηc = 5, compared against the

analytical result, which we have shown matches well the hadron-level ηc = 5 distribution

without UE (figure 9). In practice, particles cannot be detected at transverse momenta

down to zero, and therefore we show the effect of applying transverse-momentum cuts on

the hadrons: pcT = 1.0, 1.5, 2.0 GeV. When pcT = 1.5 GeV the peak in ET is moved back

to approximately the value of the parton-level prediction, but the distribution itself is still

somewhat broader.

We have also investigated the impact of the underlying event using different PDFs

and different, reasonable, model parameters. We found that, with reasonably-tuned values

for the underlying event model parameters, the change of PDF sets does not induce any

significant changes to the distributions.

6This approach, however, predicts distributions only at parton-level.
7MRST LO**, the default PDF set for LO processes in Herwig++, is called ‘MRSTMCal’, with set

number 20651 in the LHAPDF database [45].
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Figure 10. Hadron-level transverse-energy distribution in Higgs boson production at the LHC at 8

and 14 TeV, including the effect of the underlying event. Red: resummed and matched to NLO, for

comparison. Reweighted aMC@NLO+Herwig++ events with hadron maximum pseudorapidity ηc = 5:

Black: pcT = 0 GeV, Blue: pcT = 1.0 GeV, Magenta: pcT = 1.5 GeV, Cyan: pcT = 2.0 GeV.

To conclude, one can reproduce the ET distribution with the effect of the UE and

detector geometry effects by reweighting the parton-level Monte Carlo events to match the

analytical prediction of the ET due to ISR and subsequently enabling the hadronization

and underlying event models of the generator. The description of the underlying event is

robust against changes of tune parameters as well as PDF sets. However, in the presence

of the underlying event the ET distribution is highly sensitive to the minimum hadron

transverse momentum, pcT .

5 Conclusions

We have presented the first detailed predictions of the transverse-energy distribution in

Higgs boson production at the LHC (
√
s = 8 and 14 TeV) for mH = 126 GeV. Our

calculation includes the resummation of the large logarithmic terms at small ET up to

(almost) NNLL accuracy, matched to the fixed-order NLO result in a way that limits the

impact of the resummation in the intermediate and large-ET regions.

Our main result for the resummation is eq. (2.35), with component expressions (2.13),

(2.19) and (2.30). For the matching we have eq. (3.17) with (3.6), (3.14) and (3.15). The

resulting predictions are shown in figure 3. The effect of resummation, compared to the

pure NLO result, is large over the whole range of ET . The purely resummed distribution

peaks at around 35 GeV and falls to unphysical negative values at small and large ET .

This behaviour is rectified by matching, which also provides the NNLO normalization,

without shifting the peak significantly. The uncertainty in the prediction, as assessed by

the customary factor-of-two variation of the renormalization scale, is of the order of ±10%.

However, the sensitivity to unknown terms beyond NLO, in particular the NNLO coefficient

function C
(2)
g , is considerable, suggesting a larger uncertainty. The possible impacts of C

(2)
g

and the neglected NNLL coefficient A
(3)
g were illustrated in figures 5 and 4 respectively.

The resummed and matched predictions refer only to the perturbative hard-scattering

component of Higgs production. In real events there are the non-perturbative effects of
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hadronization and the underlying event. We made a Monte Carlo study of these effects

using aMC@NLO interfaced to Herwig++ or Pythia8, which provide a state-of-the-art simu-

lation of complete LHC final states. The simulated events were reweighted at the parton

level to reproduce the analytically resummed and matched ET distribution. The effect

of hadronization was to shift the peak of the distribution upwards, to around 50 GeV, if

all produced hadrons were included. However, this effect was practically eliminated by a

pseudorapidity cut |ηhad| < 5. The effect of the underlying event was much greater, even

in the presence of the pseudorapidity cut, the ET distribution becoming much broader, as

was found in ref. [3]. This effect is due to soft hadrons in the underlying event; a cut on

hadron transverse momenta pThad > 1.5 GeV restored the ET peak to around 30-40 GeV,

although with a distribution still somewhat broader than the parton-level prediction.

Measurements of differential distributions of the Higgs boson at the LHC are starting

to appear [46]. We look forward to measurement of the transverse-energy distribution and

to comparisons with our theoretical predictions.
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A Proof of an identity

To prove eq. (2.28), we will show in general that

f

(
d

du

)
Z(u)

u

[
eλu − 1

]∣∣∣∣
u=0

= Z

(
d

dλ

)
f

(
d

du

)
1

u

[
eλu − 1

]∣∣∣∣
u=0

, (A.1)

where f and Z have power series expansions,

f(x) =
∑
`

f` x
` , Z(u) =

∑
m

Zm u
m , (A.2)

which holds for the functions in eq. (2.28). Now, beginning with the left-hand side,

1

u

[
eλu − 1

]
=
∞∑
n=0

λn+1

(n+ 1)!
un , (A.3)
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so we can write

f

(
d

du

)
Z(u)

u

[
eλu − 1

]∣∣∣∣
u=0

=
∑
`mn

f` Zm
d`

du`
λn+1

(n+ 1)!
um+n

∣∣∣∣
u=0

=
∑
`mn

f` Zmλ
n+1 (m+ n)!

(n+ 1)!
δ`−m−n

=
∑
`m

f` Zmλ
`−m+1 `!

(`−m+ 1)!
(A.4)

=
∑
`m

f` Zm
dm

dλm
λ`+1

(`+ 1)

= Z

(
d

dλ

)
f

(
d

du

)
1

u

[
eλu − 1

]∣∣∣∣
u=0

.

B Dispersion relations

The fact that dσ/dET ≡ F (ET ) has to vanish for ET < 0 implies that its Fourier transform

G(τ) must satisfy dispersion relations analogous to those in the frequency domain that

follow from causality. Note first that if we write

F (ET ) = Θ(ET )f(ET ) , (B.1)

where Θ is the Heaviside step-function, then f(ET ) can be chosen to be either an odd or

an even function. We choose f even, and then its Fourier transform g(τ) is purely real.

Now the Fourier transform of a product is a convolution, so

G(τ) =
1

2π

∫ +∞

−∞
dτ ′ h(τ − τ ′)g(τ ′) (B.2)

where h is the Fourier transform of Θ:

h(τ) = π δ(τ) + P
i

τ
, (B.3)

P indicating the principal value. Thus

G(τ) =
1

2
g(τ) +

i

2π
P

∫ +∞

−∞
dτ ′

g(τ ′)

τ − τ ′
. (B.4)

Now writing G = GR + iGI , recalling that g(τ) is real and equating real parts we see that

g(τ) = 2GR(τ) . (B.5)

Furthermore GI is not an independent function: it must satisfy the dispersion relation

GI(τ) =
1

π
P

∫ +∞

−∞
dτ ′

GR(τ ′)

τ − τ ′
. (B.6)
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Notice that it follows that GR(τ) must be an even function while GI(τ) must be odd, i.e.

G(−τ) = G∗(τ). Altogether, we have

G(τ) = GR(τ) +
i

π
P

∫ +∞

−∞
dτ ′

GR(τ ′)

τ − τ ′
. (B.7)

Thus

F (ET ) =
1

2π

∫ +∞

−∞
dτ e−iET τ

[
GR(τ) +

i

π
P

∫ +∞

−∞
dτ ′

GR(τ ′)

τ − τ ′

]
. (B.8)

Assuming that the order of integration can be exchanged, the second term involves

I(τ ′) ≡ i

π
P

∫ +∞

−∞
dτ

e−iET τ

τ − τ ′
. (B.9)

The principal value implies the average of integrations along contours above and below the

pole at τ = τ ′. The contour can be closed in the lower half-plane, where the exponential

vanishes at infinity since ET > 0. Thus

I(τ ′) = e−iET τ
′

(B.10)

and, relabelling τ ′ as τ in the second term, we see that the two terms are equal and

F (ET ) =
1

π

∫ +∞

−∞
dτ e−iET τGR(τ) . (B.11)

Thus we can simply replace the full Fourier transform G by twice its real part. Furthermore,

since GR is an even function, it then follows immediately that∫ ∞
0

F (ET ) dET = GR(0) . (B.12)

In the notation of eq. (2.35), we have

GR(τ) = e−F
(R)
g (Q,τ)

[
R(R)
g (s;Q, τ) cos{F (I)

g (Q, τ)}

−R(I)
g (s;Q, τ) sin{F (I)

g (Q, τ)}
]
σHgg(Q,αS(Q)) (B.13)

and, by virtue of the shift (2.32), F
(R)
g (Q, 0) = F

(I)
g (Q, 0) = 0, so we obtain eq. (2.36).

C Comparison with transverse-momentum resummation

For the Higgs transverse momentum qT , instead of integrals of the form (3.7) we have8

Ip(qT , Q) = qT

∫ ∞
0

db bJ0(bqT ) lnp
(
bQ

b0

)
, (C.1)

where b0 = 2 exp(−γE). These integrals may be evaluated from

Ip(qT , Q) =
dp

dup
I(qT , Q;u)|u=0 (C.2)

8Here we ignore the shift in the argument of the logarithm, which gives only power corrections.
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where

I(qT , Q) = qT

∫ ∞
0

db bJ0(bqT )

(
bQ

b0

)u
= −2euγE

πqT

(
Q

qT

)u
sin
(πu

2

)
Γ2
(

1 +
u

2

)
, (C.3)

which can be written as

I(qT , Q) = −ueuγE

qT

(
Q

qT

)u Γ(1 + u/2)

Γ(1− u/2)

= − u

qT

(
Q

qT

)u
exp

[
−2

∞∑
k=1

ζ2k+1

2k + 1

(u
2

)2k+1
]
. (C.4)

This gives instead of eq. (3.13)

I1(qT , Q) = − 1

qT
, I2(qT , Q) = − 2

qT
ln

(
Q

qT

)
I3(qT , Q) = − 3

qT
ln2

(
Q

qT

)
I4(qT , Q) = − 4

qT

[
ln3

(
Q

qT

)
− 1

2
ζ3

]
. (C.5)

Therefore at small qT > 0 we expect[
qT

σH0

dσH
dqT

]
NLO

∼aR(G0R0 +G
′
1R
′
1) + a2

R(H0R0 +H1R1 +H
′
1R
′
1 +H

′
2R
′
2 +H

′′
2R
′′
2) (C.6)

where, writing L = ln(Q/qT ),

G0 = H1 = 4A(1)
g L+ 2B(1)

g , G
′
1 = −1 ,

H0 = 4L

[
A(2)
g + β0B

(1)
g − β0A

(1)
g ln

(
Q2

µ2
R

)]
+ 8β0A

(1)
g L2

+ 2

[
B

(2)
g − β0B

(1)
g ln

(
Q2

µ2
R

)]
− 8(A(1)

g )2

(
L3 − 1

2
ζ3

)
− 12A(1)

g B(1)
g L2 − 4(B(1)

g )2L ,

H
′
1 = 6A(1)

g L2 + 4B(1)
g L ,

H
′
2 = −1 , H

′′
2 = −2L . (C.7)

Here we have allowed for the possibility that the coefficient B
(2)
g for qT may be different

from B
(2)
g for ET . Comparing with eqs. (3.14) and (3.15), we see that the NLO ET and qT

distributions at the point qT = ET differ by

dσH
dET

− dσH
dqT

∣∣∣∣
qT =ET

∼ a2
R

σHB
ET

[
H0 −H0 + (H ′1 −H

′
1)
R′1
R0

]
(C.8)

where σHB = σH0 R0 is the Born cross section and

H0 −H0 =
4

3
π2A(1)

g

(
2A(1)

g L+B(1)
g

)
+ 2

(
B(2)
g −B

(2)
g

)
+ 12ζ3

(
A(1)
g

)2
,

H ′1 −H
′
1 = −2

3
π2A(1)

g . (C.9)
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Figure 11. Parton-level transverse-energy distribution in Higgs boson production at the LHC at 8

and 14 TeV. Red: resummed and matched to NLO. Black: aMC@NLO+Pythia8 before reweighting.

Blue: aMC@NLO+Pythia8 after reweighting.

Figure 12. Hadron-level transverse-energy distribution in Higgs boson production at the LHC at

8 and 14 TeV. Red: resummed and matched to NLO. Blue: aMC@NLO+Pythia8. Black dashes:

aMC@NLO+Pythia8 particles restricted to lie within pseudorapidity |η| < 5.

D Alternative Monte Carlo results

For purposes of comparison with alternative descriptions of the parton shower, hadroniza-

tion and the underlying event, we provide here results equivalent to those obtained using

Herwig++ in section 4, using the Pythia8 event generator [37, 38]. We use the default pa-

rameters appearing in Pythia8 version 8.185, with the Higgs boson mass set to 126 GeV.

Figure 11 is equivalent to figure 6 for Herwig++ and demonstrates that the reweighting

procedure reproduces the analytical resummed and matched result.

In figure 12 we show the effect of hadronization on the parton-level ET distribution.

Comparing to figure 9, it can be observed that the effect is of similar magnitude and the

compensation obtained by applying a cut of |η| < 5 persists in Pythia8.

The effect of the underlying event model present in Pythia8 is shown in figure 13.

Evidently, the effect is qualitatively similar to what was shown in figure 10 for Herwig++.

Moreover, the effect of imposing a minimum transverse momentum on the contributing

hadrons is also identical to that observed in Herwig++.
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Figure 13. Hadron-level transverse-energy distribution in Higgs boson production at the LHC at

8 and 14 TeV, including the effect of the underlying event. Red: resummed and matched to NLO.

aMC@NLO+Pythia8 events with hadron maximum pseudorapidity ηc = 5: Black: pcT = 0 GeV, Blue:

pcT = 1.0 GeV, Magenta: pcT = 1.5 GeV, Cyan: pcT = 2.0 GeV.
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