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1 Introduction

In this work we consider the field theory describing the vicinity of the critical point of the

three-state Potts quantum spin chain. The model is defined on the Hilbert space

Hchain =
⊗
i

(
C3
)
i

(1.1)

where i labels the sites of the chain, and the quantum space C3 at site i has the basis |α〉,
α = 0, 1, 2, corresponding to the spin degrees of freedom. The dynamics is defined by the

Hamiltonian invariant under S3 permutation symmetry

Hchain = −J
∑
i

2∑
α=0

Pαi P
α
i+1 − Jg

∑
i

P̃i (1.2)

where

Pα = |α〉〈α| − 1

3
(1.3)

P̃ =
1

3

2∑
α,α′=0

(1− δαα′) |α〉〈α′|.

The spin chain has a critical point at g = 1 corresponding to a phase transition between

a paramagnetic g > 1 and ferromagnetic g < 1 case. The critical point can be described

with a conformal field theory (CFT) with central charge c = 4/5. The scaling limit of

the off-critical theory corresponds to a uniquely defined perturbation of the fixed point

CFT. This quantum field theory (QFT), called the scaling Potts model is known to be

integrable [1], and its spectrum and scattering matrix was determined exactly [1–3]. In

section 2 we summarize the necessary facts about perturbed CFT and its application to the

– 1 –
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scaling Potts model; this also serves to specify our conventions and summarize the most

important known facts that are used later.

In the main part of the paper we develop two methods to describe the finite volume

spectrum of the scaling QFT. The first of them is a renormalized version of the truncated

conformal space approach (TCSA). The TCSA was introduced by Yurov and Zamolod-

chikov [4], and has been applied to numerous problems since then; among them we mention

a recent study of non-integrable perturbations of the Potts conformal field theory [5].

Recently, a renormalization group approach was proposed to treat the cut-off depen-

dence of TCSA, both for the case of boundary [6, 7] and bulk flows [8, 9]. In the present

paper we mainly build on the results in the unpublished work by Giokas and Watts [9],

and work out the general theory of counter terms in TCSA in section 3 together with its

application to the scaling Potts model. We present and explain the method in sufficient

detail not only for the reproduction of the results in this paper, but also to facilitate fur-

ther applications. A new aspect of our results is the construction of counter terms for

descendant states and the treatment of degenerate perturbation theory.

On the other hand, in section 4 we propose TBA equations for the exact finite vol-

ume spectrum, in both the ferromagnetic and paramagnetic phases of the Potts model.

These are obtained by starting from the ground state thermodynamical Bethe Ansatz

(TBA) equations [10–12] and using simple arguments based on the analytical continuation

approach by Dorey and Tateo [13, 14]. The resulting excited TBA equations are first ana-

lyzed in the large volume (infrared, IR) asymptotic regime, where they are demonstrated

to match with the exact S matrices of the scaling Potts model. In the small volume (ul-

traviolet, UV) asymptotic regime, they are shown to agree with the spectrum of conformal

weights predicted by the fixed point CFT.

In section 5, the renormalized TCSA method is applied to obtain an accurate numerical

finite volume spectrum of the scaling Potts model. We compare the results to the predic-

tions of the TBA system and show that they match accurately and in detail. This provides

both a demonstration of the efficiency of the renormalized TCSA, and also a detailed check

of the correctness of the proposed excited TBA equations.

Finally, in section 6 we draw our conclusions. The paper also contains three appendices:

appendix A specifies the CFT structures which are used for the calculations in the main

text, appendix B contains the general derivation of the UV limit of the excited TBA

equations, while appendix C contains numerical tables for the comparison between TBA

and TCSA.

2 Scaling Potts model as perturbed conformal field theory

2.1 The formalism of perturbed conformal field theory

The idea of obtaining massive field theories as relevant perturbations of their ultraviolet

fixed points goes back to Zamolodchikov [15]. Here we summarize the necessary notations

to set up the stage for our calculations. Let us consider a theory defined on a Euclidean

– 2 –
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space-time cylinder with spatial circumference R:

S = SCFT + µ

∫ ∞
−∞

dτ

∫ R

0
dxΦ (τ, x) (2.1)

where SCFT is the action of a conformal field theory and the perturbing operator Φ is a

primary field with conformal dimensions h = h̄. Using complex coordinates ζ = τ + ix

S = SCFT + µ

∫
d2ζΦ

(
ζ, ζ̄
)

(2.2)

and the corresponding Hamiltonian can be written as

H = HCFT + µ

∫ R

0
dxΦ (0, x) . (2.3)

Under the exponential mapping to the conformal plane

z = e
2π
R
ζ (2.4)

the Hamiltonian can be expressed as

H = HCFT + δH (2.5)

where HCFT can be written in terms of Virasoro generators L0 and L̄0 and the central

charge c of the CFT:

HCFT =
2π

R

(
L0 + L̄0 −

c

12

)
(2.6)

and the perturbing term is

δH =
2π

R
µ
R2−2h

(2π)1−2h
Φ (1, 1) . (2.7)

Introducing a mass scale m one can write µ = κm2−2h where κ is a dimensionless constant,

and define the dimensionless volume r = mR to obtain

δS = κ
r2−2h

(2π)2−2h

∫
d2z (zz̄)h−1 Φ (z, z̄) . (2.8)

The dimensionless Hamiltonian is defined as

h (r) =
H(R)

m
=

2π

r
e (r)

e (r) = L0 + L̄0 −
c

12
+ λΦ (z, z̄) |z=z̄=1

λ = µ
R2−2h

(2π)1−2h
= κ

r2−2h

(2π)1−2h
(2.9)

where e (r) is the so-called scaling function. In the same units, the perturbing action takes

the form

δS =
λ

2π

∫
d2z (zz̄)h−1 Φ (z, z̄) . (2.10)

– 3 –
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For the scaling function of the vacuum, the perturbative expansion is the following [10]

e0(λ)=− c

12
−
∞∑
n=1

1

n!

(
− λ

2π

)n
2π

{
n−1∏
i=1

∫
d2zi (ziz̄i)

h−1

}
〈Ψ0|Φ (1, 1)

n−1∏
i=1

Φ(zi, z̄i)|Ψ0〉conn

=− c

12
+λ〈Ψ0|Φ (1, 1) |Ψ0〉−

λ2

2π

∫
|z|<1

d2z(zz̄)h−1〈Ψ0|Φ (1, 1) Φ(z, z̄)|Ψ0〉conn+O(λ3)

(2.11)

where the matrix elements are taken in the unperturbed CFT (λ = 0), the subscript

conn denotes the connected piece of the matrix element, and radial ordering was taken

into account by restricting |z| < 1 and incorporating a factor of 2 for the two identical

contributions.

Simple power counting in the integrals shows that for h < 1/2 the results are ultraviolet

convergent, while for h ≥ 1/2 there are ultraviolet divergences which are manifested in poles

of gamma functions resulting from the integration. However, due to the meromorphic

dependence of the perturbative coefficients on h, a finite result can be defined by analytic

continuation in h. In section 3.2 we point out that the renormalization scheme defined by

this procedure is the preferred one when comparing to exact results from integrability.

2.2 Scaling Potts model as a perturbed conformal field theory

The scaling limit of Potts model at the critical point is a minimal conformal field theory

with central charge

c =
4

5
(2.12)

[16, 17]. The spectrum of allowed primary conformal weights is given by the Kac table

{hr,s} =



0 1
8

2
3

13
8 3

2
5

1
40

1
15

21
40

7
5

7
5

21
40

1
15

1
40

2
5

3 13
8

2
3

1
8 0


r = 1, . . . , 4

s = 1, . . . , 5
. (2.13)

The sectors of the Hilbert space are products of the irreducible representations of the left

and right moving Virasoro algebras which can be specified by giving their left and right

conformal weights as

Sh,h̄ = Vh ⊗ Vh̄. (2.14)

There are two possible conformal field theory partition functions for this value of the central

charge [18]. The one describing the Potts model is the D4 modular invariant, for which

the complete Hilbert space is

H = S0,0 ⊕ S 2
5
, 2
5
⊕ S 7

5
, 7
5
⊕ S3,3

⊕S+
1
15
, 1
15

⊕ S−1
15
, 1
15

⊕ S+
2
3
, 2
3

⊕ S−2
3
, 2
3

⊕S 2
5
, 7
5
⊕ S 7

5
, 2
5
⊕ S0,3 ⊕ S3,0. (2.15)
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The D4 conformal field theory is invariant under the permutation group S3 generated by

two elements Z and C with the relations

Z3 = 1 C2 = 1 CZC = Z−1 (2.16)

which have the signatures

sign Z = +1 sign C = −1. (2.17)

The sectors on the first line of (2.15) are invariant under the action of the permutation

group S3, the two pairs on the second line each form the two-dimensional irreducible

representation, which is characterized by the following action of the generators:

C|±〉 = |∓〉
Z|±〉 = e±

2πi
3 |±〉 (2.18)

while the ones on the third line form the one-dimensional signature representation where

each element is represented by its signature. These sectors are in one-to-one correspon-

dence with the families of conformal fields, and the primary field (the one with the lowest

conformal weight) in the family corresponding to Sh,h̄ has left and right conformal weights

h and h̄; they are denoted Φh,h̄ with an optional upper ± index for fields forming a doublet

of S3. In a family all other fields have conformal weights that differ from those of the

primary by natural numbers. The conformal spin s = h − h̄ gives the behaviour under

spatial translations; translational invariant fields must be spinless i.e. h = h̄.

The only S3-invariant spinless relevant field is

Φ 2
5
, 2
5

(2.19)

which means that the Hamiltonian of the scaling limit of the off-critical Potts model is

uniquely determined [17]

H = HCFT + µ

∫
dxΦ 2

5
, 2
5

(2.20)

where the dimensionful coupling µ is a scaled version of the distance g−1 from the critical

point of the spin chain (1.2). The sign of the coupling constant corresponds to the two

phases: µ > 0 is the paramagnetic, while µ < 0 is the ferromagnetic phase.

In the paramagnetic phase, the vacuum is non-degenerate and the spectrum consists

of a pair of particles A and Ā of mass m which form a doublet under S3 [19]:

C|A(θ)〉 = |Ā(θ)〉 Z|A(θ)〉 = e
2πi
3 |A(θ)〉

C|Ā(θ)〉 = |A(θ)〉 Z|Ā(θ)〉 = e−
2πi
3 |Ā(θ)〉. (2.21)

The mass m is expressed with the coupling µ via the relation [20]

µ = κm6/5

κ =
Γ
(

3
10

) [
Γ
(

2
3

)
Γ
(

5
6

)]6/5
4× 21/5π8/5Γ

(
7
10

) √
Γ
(
−1

5

)
Γ
(

7
5

)
Γ
(
−2

5

)
Γ
(

6
5

) = 0.1643033 . . . (2.22)
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The generator C is identical to charge conjugation (Ā is the antiparticle of A). Choosing

units in which ~ = c = 1, two-dimensional Lorentz invariance implies that the energy and

momentum of the particles can be parametrized by the rapidity θ:

E = m cosh θ p = m sinh θ. (2.23)

The two-particle scattering amplitudes are

SAA(θ12) = SĀĀ(θ12) =
sinh

(
θ12
2 + πi

3

)
sinh

(
θ12
2 −

πi
3

)
SAĀ(θ12) = SĀA(θ12) = −

sinh
(
θ12
2 + πi

6

)
sinh

(
θ12
2 −

πi
6

) (2.24)

where θ12 = θ1 − θ2 is the rapidity difference of the incoming particles. This S matrix

was confirmed by thermodynamic Bethe Ansatz [10]. We remark that the pole in the

SAA = SĀĀ amplitudes at

θ12 =
2πi

3
(2.25)

corresponds to the interpretation of particle Ā as a bound state of two particles A and

similarly A as a bound state of two Ās, under the bootstrap principle (a.k.a. “nuclear

democracy”). Accordingly, the above amplitudes satisfy the bootstrap relations

SAĀ(θ) = SAA(θ + πi/3)SAA(θ − πi/3)

SAA(θ) = SAĀ(θ + πi/3)SAĀ(θ − πi/3). (2.26)

The pole in SAĀ = SĀA amplitudes at

θ12 =
πi

3
(2.27)

has the same interpretation, but in the crossed channel.

The excitations in the ferromagnetic phase are topologically charged [3]. The vacuum

is three-fold degenerate

|0〉a a = −1, 0, 1 (2.28)

where the action of S3 is

Z|0〉a = |0〉a+1 mod 3 C|0〉a = |0〉−a (2.29)

and the excitations are kinks of mass m interpolating between adjacent vacua. The kink

of rapidity θ, interpolating from a to b is denoted by

Kab(θ) a− b = ±1 mod 3 (2.30)

and can be interpreted as a spin flip up/down (depending on the sign). The scattering

processes of the kinks are of the form

Kab(θ1) +Kbc(θ2)→ Kad(θ1) +Kdc(θ2) (2.31)

– 6 –
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with the scattering amplitudes equal to

S

(
a
d

b
c

)
(θ12) =

{
SAA(θ12) if b = d

SAĀ(θ12) if a = c
. (2.32)

This essentially means that apart from the restriction of kink succession dictated by the

vacuum indices (adjacency rules) the following identifications can be made

Kab(θ) ≡ A(θ) a− b = +1 mod 3

Kab(θ) ≡ Ā(θ) a− b = −1 mod 3 (2.33)

in all other relevant physical aspects (such as the bound state interpretation given above).

By looking at the conformal fusion rules implied by the three-point couplings [21–23],

it turns out that the perturbing operator acts separately in the following four sectors:

H0 = S0,0 ⊕ S 2
5
, 2
5
⊕ S 7

5
, 7
5
⊕ S3,3

H± = S±1
15
, 1
15

⊕ S±2
3
, 2
3

H1 = S 2
5
, 7
5
⊕ S 7

5
, 2
5
⊕ S0,3 ⊕ S3,0 (2.34)

so the Hamiltonian can be diagonalized separately in each of them. It is also the case

that the Hamiltonian is exactly identical in the sectors H+ and H−. The reason for this

is that the charge conjugation symmetry C acts on the sectors H+ and H− by swapping

them. The subspaces H0 and H1 contain neutral states (i.e. invariant under Z), which are

even/odd under the action of C, respectively.

The spectrum is invariant under µ→ −µ in sectors H0 and H1. The latter fact is the

consequence of a Z2 symmetry in these sectors under which the parities in H0 are

even: S0,0 S 7
5
, 7
5

odd: S 2
5
, 2
5

S3,3 (2.35)

and so the perturbing operator Φ 2
5
, 2
5

is odd. In H1 this Z2 acts by swapping

S0,3 ↔ S3,0 S 2
5
, 7
5
↔ S 7

5
, 2
5
. (2.36)

This symmetry leaves the fixed point Hamiltonian H∗ and the conformal operator prod-

uct expansion (OPE)1 in these sectors invariant;2 away from the critical point, it can be

interpreted as the realization of the well-known low/high-temperature (Kramers-Wannier)

duality at the level of the scaling field theory.

3 Renormalization in TCSA

3.1 General theory of cut-off dependence

First we recall the derivation of (2.11) using standard time-independent perturbation the-

ory. Taking a Hamiltonian of the form

H = H0 + λV (3.1)

1Cf. appendix A.2.
2The conformal fusion rules do not allow the extension of this symmetry to the H±.

– 7 –
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where H0 has the following spectrum

H0|n〉 = E(0)
n |n〉 (3.2)

and supposing that the ground state is non-degenerate, the ground state energy in the

perturbed model can be written as

E0(λ) = E
(0)
0 + λ〈0|V |0〉+ λ2

∑
k 6=0

〈0|V |k〉〈k|V |0〉
E

(0)
0 − E(0)

k

+O(λ3). (3.3)

Using the Schwinger representation for the energy denominators, the second order can be

written as∑
k 6=0

〈0|V |k〉〈k|V |0〉
E

(0)
0 − E(0)

k

= −
∑
k 6=0

〈0|V |k〉
∫ ∞

0
dτe−(E

(0)
k −E

(0)
0 )τ 〈k|V |0〉

= −
∫ ∞

0
dτ
∑
k 6=0

〈0|eτH0V e−τH0 |k〉〈k|V |0〉

= −
∫ ∞

0
dτ〈0|V (τ)V (0)|0〉conn = −1

2

∫ ∞
−∞

dτ〈0|T V (τ)V (0)|0〉conn

(3.4)

where the integral representation is valid due to E
(0)
k > E

(0)
0 ; this is where the restriction

to ground state appears. We obtain

E0(λ) = E
(0)
0 + λ〈0|V |0〉 − λ2

2

∫ ∞
−∞

dτ〈0|T V (τ)V (0)|0〉conn +O(λ3) (3.5)

We note that the all order expansion is

E0 = E
(0)
0 −

∞∑
n=1

(−λ)n

n!

∫
dτ1 . . .

∫
dτn−1〈0|T V (τ1) . . . V (τn−1)V (0)|0〉conn (3.6)

which can be proven by writing the ground state energy as the limit [24]

E0 = E
(0)
0 + lim

T→∞

{
− 1

T
log〈0|T exp

(
−λ
∫ T/2

−T/2
dτV (τ)

)
|0〉

}
(3.7)

which is a standard trick using that asymptotically long Euclidean time evolution projects

onto the exact ground state, this time employed in the interaction picture where the Hamil-

tonian is V (τ). Expanding the exponential in terms of time-ordered multi-point functions,

the logarithm replaces them by their connected parts, and finally one of the time inte-

grals cancels with the prefactor 1/T due to time translation invariance, resulting in (3.6).

Substituting

λV (τ) = µ

∫ R

0
dxΦ(τ, x) (3.8)

and using space translation invariance leads to (2.11).

– 8 –
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Let us now introduce a projection operator PΛ, which projects to states with unper-

turbed energy E
(0)
n ≤ Λ. We can split the Hamiltonian into a low and a high energy part

writing

H = HΛ + λ∆V

HΛ = H0 + λPΛV PΛ

∆V = V − PΛV PΛ = PΛV P̄Λ + P̄ΛV PΛ + P̄ΛV P̄Λ (3.9)

where P̄Λ = 1−PΛ is the projector to states above the cut-off. Now suppose E
(0)
n < Λ and

write

En = E(0)
n + λVnn + λ2

∑
k 6=n

VnkVkn

E
(0)
n − E(0)

k

+O(λ3). (3.10)

Summing up all terms in the perturbation series with intermediate states below Λ produces

the eigenvalue En(Λ) of HΛ. For the contribution of higher order states we keep only the

second order corrections:

En = En(Λ) + λ2
∑

E
(0)
k >Λ

VnkVkn

E
(0)
n − E(0)

k

+O(λ3). (3.11)

Since E
(0)
n ≤ Λ < E

(0)
k , we can use the Schwinger proper time representation to obtain

En = En(Λ)− λ2

∫ ∞
0

dτ
∑

E
(0)
k >Λ

〈n|V (τ)|k〉〈k|V (0)|n〉+O(λ3)

= En(Λ)− λ2

∫ ∞
0

dτ〈n|V (τ)P̄ΛV (0)|n〉+O(λ3) (3.12)

which describes the cut-off dependence to second order in λ. It is obvious that this deriva-

tion can be systematically extended to higher orders as well. It is also possible to write

down the difference between the energy levels computed with cut-offs Λ and Λ + ∆Λ in

the form

En(Λ + ∆Λ)− En(Λ) = −λ2

∫ ∞
0

dτ〈n|V (τ)P̃Λ,∆ΛV (0)|n〉+O(λ3) (3.13)

where

P̃Λ,∆Λ = P̄Λ − P̄Λ+∆Λ = PΛ+∆Λ − PΛ (3.14)

is the projector to states with

Λ < E(0)
n < Λ + ∆Λ. (3.15)

3.2 Cut-off dependence in TCSA

3.2.1 The truncated conformal space approach

In conformal field theory with periodic boundary conditions the Hilbert space can be

written as

H =
⊕
k

Vhk ⊗ Vh̄k (3.16)

– 9 –
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where the Vh are irreducible representations of the Virasoro algebra. The basis of a con-

formal module Vhk ⊗ Vh̄k is spanned by vectors |k, {n, n̄}, α〉 which satisfy

L0 |k, {n, n̄}, α〉 = (hk + n) |k, {n, n̄}, α〉
L̄0 |k, {n, n̄}, α〉 = (h̄k + n̄) |k, {n, n̄}, α〉

so that n and n̄ denote the left and right descendant numbers, and α indexes the indepen-

dent vectors at the same level (n, n̄). The momentum operator is

P =
2π

R
(L0 − L̄0) (3.17)

and the eigenvalue of L0 − L̄0 is the conformal spin.

The basic idea behind TCSA is to truncate the conformal Hilbert space at some level

n, which plays the role of the ultraviolet cut-off parameter Λ. Using the machinery of con-

formal field theory one then computes explicitly the matrix elements of the dimensionless

Hamiltonian (2.9) restricted to the truncated conformal space:

hn(r) =
2π

r
en(r)

en(r) = L0 + L̄0 −
c

12
+ λPnVPn (3.18)

and compute its spectrum by numerical diagonalization. The eigenvalue eΨ,n(r) of the

operator en(r) corresponding to a given energy level Ψ is the scaling function of the corre-

sponding state with truncation n, and the truncation is represented explicitly by Pn, which

is the projector to the subspace with states having descendant level less or equal than n.

To obtain the interaction matrix V, it is necessary to take into account that the natural

bases of conformal modules are not orthonormal. Denoting the metric on the conformal

Hilbert space by

Gij = 〈i|j〉 (3.19)

the interaction matrix elements are

Vij =
∑
k

(
G−1

)
ik
Bkj (3.20)

Bij = 〈i|Φ(z, z̄)|j〉|z=z̄=1δsisj

where si,j are the conformal spins of the states |i〉 and |j〉, the selection rule resulting

from the integration of the perturbing field over the volume. The matrix elements of B

between primary states are given in (A.16), (A.17), (A.18); for descendant states they can

be constructed from the primary ones by a recursive application of the conformal Ward

identities (A.9). To describe the dependence on the cut-off, we implement the procedure

introduced in subsection 3.1. The method we follow is the eventual basis of the TCSA

renormalization group method introduced in [6] (see also [8]), which was applied to theories

on the cylinder by Giokas and Watts [9] for the case when the operator product expansion

of Φ(z)Φ(0) contains only the identity and Φ together with their descendants. Since the

scaling Potts model is not in this class, and also for the sake of later applications, we give

a review of the formalism below.

– 10 –
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3.2.2 General theory of counter terms in TCSA

The TCSA provides a non-perturbative tool to handle perturbed conformal field theories,

and the aim of the TCSA renormalization procedure is to speed up the convergence of the

method and also to deal with ultraviolet divergences when necessary. Since the perturbation

is supposed to be relevant, the running coupling flows to zero at high energies. As a result,

the influence of the high energy degrees of freedom can be treated perturbatively. Suppose

we consider a quantity Q, for which TCSA with a cut-off at level n gives QTCSA (n) and

let us write the exact value as follows:

Q = QTCSA (n) + δQ (n) (3.21)

where δQ (n) is a counter term which can either go to zero (in the convergent case) or even

be divergent when n increases. The counter term can be constructed by computing the

contribution Ql of the lth level

Q = QTCSA (n) +

∞∑
l=n+1

Ql

= QTCSA (n) +

∞∑
l=1

Ql −
n∑
l=1

Ql (3.22)

therefore the counter term can be written as

δQ (n) =
∞∑
l=1

Ql −
n∑
l=1

Ql. (3.23)

Depending on the weight h of the perturbation, the first sum on the second line can be

either convergent or divergent. In the divergent case it is necessary to use an appropriate

regularization method and renormalization scheme. For example, in integrable field theories

we usually compare our results to predictions of the exact S matrix or form factors resulting

from the bootstrap, or to scaling functions predicted by the thermodynamic Bethe Ansatz.

In many cases, the model we investigate is just a member of a family of perturbed CFTs,

where h varies across the range of possible theories, and the exact predictions depend

analytically on h. Therefore the relevant scheme is provided by analytically continuation

from the range of parameter space where the theory is ultraviolet finite (h < 1/2).

3.2.3 Counter terms for scaling functions

If we choose our quantity Q as a finite volume energy level EΨ,n(R) and substitute

λV (τ) = µ

∫ R

0
dxΦ(τ, x) (3.24)

we obtain

EΨ,n(R)− EΨ,n−1(R) = −µ2

∫ R

0
dx

∫ R

0
dx′
∫ ∞

0
dτ〈Ψ|Φ(τ, x)P̃nΦ(0, x′)|Ψ〉CFT +O(µ3)

= −µ2R

∫ R

0
dx

∫ ∞
0

dτ〈Ψ|Φ(τ, x)P̃n(Ψ)Φ(0, 0)|Ψ〉CFT +O(µ3)

(3.25)
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where P̃n is the projector on states at level n, and we used translation invariance to

eliminate one spatial integral, which in turn restricts the intermediate states to ones which

have the same Lorentz momentum (or conformal spin) as Ψ; the corresponding restricted

projector is denoted by P̃n(Ψ). Passing to the scaling function we obtain

eΨ,n(r)− eΨ,n−1(r) = −µ
2

2π

∫ R

0
dx

∫ ∞
0

dτ〈Ψ|Φ(τ, x)P̃n(Ψ)Φ(0, 0)|Ψ〉CFT +O(µ3). (3.26)

Mapping this expression on the conformal plane we finally obtain

eΨ,n(r)− eΨ,n−1(r) = −λ
2

2π

∫
|z|<1

d2z (zz̄)h−1 〈Ψ|Φ(1, 1)P̃n(Ψ)Φ(z, z̄)|Ψ〉CFT +O
(
λ3
)
.

(3.27)

It is clear that in order to evaluate the counter term it is necessary to construct the

contribution of a given level n to the conformal correlators.

3.2.4 Evaluating the level contributions

As pointed out in [25], the most systematic way to obtain it is by considering the Kallen-

Lehmann spectral representation. In general the unperturbed state |Ψ〉 can be written as

a linear combination of conformal states; this is necessary to allow for degenerate pertur-

bation theory, which is relevant due to the high degeneracy in the conformal Hilbert space.

Therefore we consider the two-point function of the perturbation between two conformal

states |i, {ni, n̄i}, αi〉 and |j, {nj , n̄j}, αj〉, which are from conformal modules with confor-

mal weights (hi, h̄i) and (hj , h̄j) and have descendant levels (ni, n̄i) and (nj , n̄j); the αi,j
index a basis in the conformal modules at the given level. Inserting a complete set of states

we obtain

〈i, {ni, n̄i}, αi|Φ (0, 0) Φ (τ, x) |j, {nj , n̄j}, αj〉 (3.28)

=
∑
k,n,α

〈i, {ni, n̄i}, αi|Φ (0, 0) |k, {n, n̄}, α〉〈k, {n, n̄}, α|Φ (τ, x) |j, {nj , n̄j}, αj〉

where the states |k, {n, n̄}, α〉 form an orthonormal basis of the conformal module with

conformal weight
(
hk, h̄k

)
at descendant level (n, n̄). Note that translational invariance

(via the spatial integrals) enforces

hi − h̄i + ni − n̄i = hk − h̄k + n− n̄ = hj − h̄j + nj − n̄j (3.29)

in the matrix elements that contribute to (3.27). Using the space-time translation operator

e−Hτ−iPx we can write:

〈i, {ni, n̄i}, αi|Φ (0, 0) Φ (τ, x) |j, {nj , n̄j}, αj〉

=
∑
k,n,α

〈i, {ni, n̄i}, αi|Φ (0, 0) |k, {n, n̄}, α〉〈k, {n, n̄}, α|eHτ+iPxΦ (0, 0) e−Hτ−iPx|j, {nj , n̄j}, αj〉.

(3.30)

– 12 –
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Mapping to the complex plane using z = e
2π
R

(τ+ix) one obtains(
2π

R

)2h

(zz̄)h Φ (z, z̄) =

(
2π

R

)2h

e
2π
R (L0+L̄0− c

12)τ+i 2π
R (L0−L̄0)x

×Φ (1, 1) e−
2π
R (L0+L̄0− c

12)τ−i 2π
R (L0−L̄0)x (3.31)

which gives

Φ (z, z̄) = (zz̄)−h zL0 z̄L̄0Φ (1, 1) z−L0 z̄−L̄0 . (3.32)

Inserting this expression into (3.28) we obtain

〈i, {ni, n̄i}, αi|Φ (1, 1) Φ (z, z̄) |j, {nj , n̄j}, αj〉

=
∑
k,n,α

〈i, {ni, n̄i}, αi|Φ (1, 1) |k, {n, n̄}, α〉〈k, {n, n̄}, α|Φ (1, 1) |j, {nj , n̄j}, αj〉

×zhk+n−hj−nj−hz̄h̄k+n̄−h̄j−n̄j−h (3.33)

so the contribution of level (n, n̄) from a given primary field with conformal dimensions

hk, h̄k can be found by first splitting the matrix element into conformal blocks

〈i, {ni, n̄i}, αi|Φ (1, 1) Φ (z, z̄) |j, {nj , n̄j}, αj〉

=
∑
k

〈i, {ni, n̄i}, αi|Φ (1, 1)PkΦ (z, z̄) |j, {nj , n̄j}, αj〉 (3.34)

with Pk being the projector onto the conformal module Vhk ⊗ Vh̄k , and then considering

the coefficient of the term znz̄n̄ in the Taylor expansion of the function

z−(hk−hj−nj−h)z̄−(h̄k−h̄j−n̄j−h)〈i, {ni, n̄i}, αi|Φ (1, 1)PkΦ (z, z̄) |j, {nj , n̄j}, αj〉. (3.35)

3.3 Constructing counter-terms to scaling functions

3.3.1 The ground state scaling function

For the ground state, the computations are simpler, since from (equation (2.11)) one can

write an explicit formula for the contributions up to level n in the form

e0,n (λ) = − c

12
− λ2

2π

∫
|z|<1

d2z (zz̄)h−1 〈0|Φ (1, 1)PnΦ (z, z̄) |0〉+O
(
λ3
)
. (3.36)

Expanding the conformal two-point function into a binomial series one obtains

〈0|Φ (1, 1) Φ (z, z̄) |0〉= 1

(1−z)2h (1−z̄)2h̄
=

∞∑
m=0

∞∑
m̄=0

Γ (2h+m)

Γ (2h) Γ (m+1)

Γ (2h+m̄)

Γ (2h) Γ (m̄+1)
zmz̄m̄.

(3.37)

Performing the angular integral selects the terms with m = m̄ and in addition gives a

factor of 2π. Now using the spectral expansion argument with hi = h̄i = hj = h̄j = 0,
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hk = h̄k = h and ni = n̄i = nj = n̄j = 0, the second order TCSA contribution to the

ground state scaling function coming from the m-th level is the following

ẽ0,m = −
∫ 1

0
dr r2h−1+2m

(
Γ (2h+m)

Γ (2h) Γ (m+ 1)

)2

= − 1

2 (h+m)

(
Γ (2h+m)

Γ (2h) Γ (m+ 1)

)2

. (3.38)

With this the scaling function from TCSA truncated to level n is given by

e0,n (λ) = − c

12
−

n∑
m=1

ẽ0,mλ
2 +O

(
λ3
)
. (3.39)

The level m contribution (3.38) will be tested against TCSA in subsection 5.1.

3.3.2 Determining the counter term

For large m one can expand

ẽ0,m = − 1

2 (h+m)

(
Γ (2h+m)

Γ (2h) Γ (m+ 1)

)2

= − 1

2Γ(2h)2
m4h−3 − 4h2 − 3h

2Γ(2h)2
m4h−4 − 24h4 − 44h3 + 21h2 − h

6Γ(2h)2
m4h−5

−32h6 − 104h5 + 116h4 − 49h3 + 5h2

6Γ(2h)2
m4h−6 +O

(
m4h−7

)
. (3.40)

The summation up to the TCSA cut-off level n can be performed using

n∑
m=1

mγ = Hn,−γ (3.41)

where Hn,−γ is the so-called generalized harmonic number. For large n it has the expansion

Hn,−γ = ζ (−γ) +
nγ+1

γ + 1
+
nγ

2
+
γnγ−1

12
+

(
−γ3 + 3γ2 − 2γ

)
nγ−3

720
+ . . . (3.42)

Now considering the construction of the counter term as described in (3.23), the first term

ζ (−γ) cancels with the corresponding infinite sum term. So the counter term for the

ground state scaling function at level n is given by

e0(r) = e0,n (r) + δe0,n (r) +O
(
λ3
)

(3.43)

δe0,n (r) = λ2n4h−2 1

4 (2h− 1) Γ (2h)2 + λ2n4h−3

(
1 + 2h

4Γ (2h)2

)
+λ2n4h−4

(
24h3 + 4h2 − 13h− 4

24Γ(2h)2

)
+ . . .

If the perturbing operator has dimension h > 1/2 the first correction to the counter term

is divergent; more terms (involving also ones which are of higher order in λ) become

divergent as the weight of the perturbation increases. In this case the above formula gives

a prescription to renormalize the divergent TCSA result.
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3.4 Excited states

3.4.1 Construction of counter terms in general

The construction of the counter term to the scaling function of excited states requires the

level contributions of the correlator 〈i |Φ (1, 1) Φ (z, z̄)| i〉. For simplicity let us first suppose

that the state |i〉 is a highest weight vector; then the correlator can be written in terms of

left and right chiral conformal blocks:

〈i|Φ (1, 1) Φ (z, z̄) |i〉 =
∑
j

(
CjiΦ

)2
Fφφii (j|z) F̄ φ̄φ̄ii (j|z̄) (3.44)

where

Fφφii (j|z) F̄φφii (j|z̄) =
∑

|k〉∈Vhj⊗Vh̄j

〈i|Φ (1, 1) |k〉〈k|Φ (z, z̄) |i〉 (3.45)

the small φ refers to the chiral component (the perturbation has the same left and right

moving weight, therefore they are identical), and

CjiΦ = 〈j|Φ (1, 1) |i〉 (3.46)

is the CFT structure constant. From 3.2.4, the contribution of level (n, n̄) comes from the

coefficient of

zhj+n−hi−ni−hz̄h̄j+n̄−h̄i−n̄i−h. (3.47)

In principle, this coefficient can be evaluated using the Virasoro symmetry for FΦΦ
ii (j|z):

the lowest order coefficient is by convention normalized to one, and coefficients of sub-

sequent powers can be computed using the conformal Ward identities (A.9) to evaluate

descendant matrix elements in terms of primary ones. However, this gives a recursive

method from which it is very hard to extract the large n behaviour of the coefficients,

which is necessary for the explicit construction of the counter terms.

An alternative method that leads to a systematic large n expansion of the required

coefficients is the following [9]. First we expand the conformal blocks in the dual channel

(i.e. in terms of 1− z) using the duality relations

Fklij (p|z) =
∑
q

Fpq

[
k l

i j

]
Fklij (q|1− z) (3.48)

where the F are the so-called fusion coefficients. With the following pictorial notation

Fklij (p|z) =

i j

k l

p Fklij (q|1− z) =

i j

k l

q

(3.49)

one can write

i i

φ φ

j =
∑
k

Fjk

[
φ φ

i i

]
i i

φ φ

k .

(3.50)
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The chiral conformal blocks in the dual channel can be expanded as

i j

k l

p = (1− z)−hk−hl+hp
∞∑
r=0

Br

[
k l

i j
p

]
(1− z)r (3.51)

with B0

[
k l

i j
p

]
= 1, and the rest of the coefficients Br determined by Virasoro symme-

try via the Ward identities (A.9). Introducing the shorthands Fjk(i) = Fjk

[
φ φ

i i

]
and

Br(i, k) = Br

[
φ φ

i i
k

]
we can write

〈i |Φ (1, 1) Φ (z, z̄)| i〉=
∑
j

(
CjiΦ

)2


i i

φ φ

j



ī ī

φ φ

j̄



=
∑
j

(
CjiΦ

)2∑
k

Fjk(i)


i i

φ φ

k

∑
k′

Fj̄k′ (̄i)


ī ī

φ φ

k′


=
∑
j,k,k′

(
CjiΦ

)2

Fjk(i)Fj̄k′ (̄i)
∞∑

r,r̄=0

Br(i, k)Br̄ (̄i, k
′)(1−z)−2h+hk+r

(1−z̄)−2h̄+h̄k′+r̄.

(3.52)

Reading off the coefficient of a required power of the form zn+γ , where n is the descendant

level we are interested in, is then possible using the following consideration.3 Suppose we

have a function f(z) that has singular points at 0, 1 and ∞, and the following expansions

around z = 0 and z = 1:

f(z) =

∞∑
n=0

Cnz
n+γ =

∞∑
i=0

Ai(1− z)−αi (3.53)

where the exponents αi decrease with i. Note that these properties are satisfied by the

conformal blocks appearing in (3.52). Then

Cn =

∮
C0

dz

2πi
z−n−γ−1f(z) =

∮
C1

dz

2πi
z−n−γ−1

∞∑
i=0

Ai(1− z)−αi (3.54)

where we deformed the contour C0 encircling z = 0 to C1 enclosing the real line segment

between z = 1 to z = ∞. Exchanging the sum with the integration and substituting the

discontinuity of the (1− z)−αi terms gives

Cn =
∞∑
i=0

Ai
sinπαi
π

∫ ∞
1

dt t−n−γ−1 (t− 1)−αi =
∞∑
i=0

Γ (αi + n+ γ)

Γ (αi) Γ (1 + n+ γ)
Ai (3.55)

3We are very grateful to G. Watts for the idea underlying this consideration.
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which provides the required coefficient as a series summed over i. However, given that we

aim at constructing the counter term to finite order in 1/n, and in view of the behaviour

Γ (α+ n+ γ)

Γ (α) Γ (1 + n+ γ)
=

1

Γ(α)

(
1

n+ γ

)−α+1(
1 +

α(α− 1)

2(n+ γ)
+O

(
1

(n+ γ)2

))
(3.56)

we only need to keep a finite number of terms from the i sum. The subsequent steps are

the same as in subsection 3.3.1. Once the level n contribution to the matrix element has

been extracted, the level n contribution to the scaling function of state i is given by

ei,n(r)− ei,n−1(r) = −λ
2

2π
ẽi,n +O

(
λ3
)

(3.57)

ẽi,n =

∫
|z|<1

d2z (zz̄)h−1 〈i|Φ (1, 1) P̃nΦ (z, z̄) |i〉

where the integral can be performed the same way as in (3.38).

We remark that the step of exchanging the sum with the integral is only valid for terms

in which n + γ + αi > 0. Since the αi in general decrease without lower bound, for any

finite n this only holds for finitely many terms in the sum. As a result, the 1/n expansion

gives an asymptotic series, as discussed later in subsection 5.1.2.

To construct the counter term for the scaling function of descendant states, some

modifications are needed. First of all, the descendant level of the state shifts the exponent

of the wanted power of z and z̄, resulting in a shift in the dependence on the truncation

level, as observed previously in [9]. In addition, the conformal blocks for the descendant

states must be constructed from the primary ones, which can be accomplished using the

Ward identities (A.9). We now proceed to present two examples, the first of which is a

simple application of the method, while the second demonstrates both the treatment of

degeneracies in the conformal Hilbert space and the procedure for descendant states.

3.4.2 The first AĀ two-particle state in the Potts model

In the scaling three-state Potts model the first excited state in sector H0 a two-particle

state which in the scattering picture consists of two stationary particles, one of which is of

species A and the other is Ā. The UV limit of this excited state level corresponds to the

highest weight vector in the conformal module

S 2
5
, 2
5

(3.58)

this can be seen either from TCSA or using the excited TBA equation introduced later.

Therefore the excited state scaling function has the limiting value (A.12)

e1(0) = − 1

12
· 4

5
+ 2 · 2

5
=

11

15
. (3.59)

All fields that occur in the calculation below have identical left and right conformal weights,

so it is useful to introduce the shorter notation

Φr,s = Φhr,s,hr,s . (3.60)
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The conformal state is created by the primary field Φ2,1:

|Φ2,1〉 = |2/5, 2/5〉 = Φ2,1(0, 0)|0〉. (3.61)

Using the conformal fusion rules

Φ2,1 × Φ2,1 = I + Φ3,1 (3.62)

the relevant two-point function can be expanded into conformal blocks as follows:

〈Φ2,1 |Φ2,1 (1, 1) Φ2,1 (z, z̄)|Φ2,1〉

=
(
CI

Φ2,1Φ2,1

)2

∣∣∣∣∣∣∣∣
φ2,1 φ2,1

φ2,1 φ2,1

φ1,1

∣∣∣∣∣∣∣∣
2

+
(
C

Φ3,1

Φ2,1Φ2,1

)2

∣∣∣∣∣∣∣∣
φ2,1 φ2,1

φ2,1 φ2,1

φ3,1

∣∣∣∣∣∣∣∣
2

(3.63)

where the operation of taking the modulus squared corresponds to the product of holo-

morphic (z-dependent) and antiholomorphic (z̄-dependent) factors.

The level n contribution can be constructed from the coefficients of (zz̄)n−2h2,1 in the

first term and of (zz̄)h3,1+n−2h2,1 in the second term of the correlator, respectively. Using

the duality relations (3.50) we can rewrite the two terms as

φ2,1 φ2,1

φ2,1 φ2,1

φ1,1 = FII[φ2,1]

φ2,1 φ2,1

φ2,1 φ2,1

φ1,1 + FIφ3,1 [φ2,1]

φ2,1 φ2,1

φ2,1 φ2,1

φ3,1

φ2,1 φ2,1

φ2,1 φ2,1

φ3,1 = Fφ3,1I[φ2,1]

φ2,1 φ2,1

φ2,1 φ2,1

φ1,1 + Fφ3,1φ3,1 [φ2,1]

φ2,1 φ2,1

φ2,1 φ2,1

φ3,1 .

(3.64)

From (A.12), the series expansions of the dual channel conformal blocks are the following

φ2,1 φ2,1

φ2,1 φ2,1

φ1,1 = (1− z)−2h2,1

(
1 +

2h2
2,1

c
(1− z)2 +O

(
(1− z)3

))

φ2,1 φ2,1

φ2,1 φ2,1

φ3,1 = (1− z)−2h2,1+h3,1

(
1 +

h3,1

2
(1− z) +O

(
(1− z)2

))
.

(3.65)
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Keeping only the leading terms and applying (3.55), we can rewrite the conformal blocks

in (3.63) in the following way:

φ2,1 φ2,1

φ2,1 φ2,1

φ1,1 =
∞∑
n=0

{
FII[φ2,1]

(
Γ (n)

Γ (2h2,1) Γ (n+ 1− 2h2,1)
+ . . .

)

+ FIφ3,1 [φ2,1]

(
Γ (n− h3,1)

Γ (2h2,1 − h3,1) Γ (n+ 1− 2h2,1)
+ . . .

)}
zn−2h2,1

(3.66)

φ2,1 φ2,1

φ2,1 φ2,1

φ3,1 =

∞∑
n=0

{
Fφ3,1I[φ2,1]

(
Γ (n+ h3,1)

Γ(2h2,1)Γ(n+ 1 + h3,1 − 2h2,1)+. . .

)

+Fφ3,1φ3,1 [φ2,1]

(
Γ (n)

Γ (2h2,1−h3,1)Γ(n+1+h3,1−2h2,1)
+. . .

)}
zh3,1+n−2h2,1

(3.67)

where the ellipsis indicate terms which are subleading for large n, resulting from the sub-

leading terms in (3.65). Putting together the left and right moving parts, and performing

the integral (3.57), the level n contribution to the coefficient of λ2 can be expressed as

ẽ1,n = −

(
CI

Φ2,1Φ2,1

)2

2h2,1 + 2 (n− 2h2,1)

(
FII[φ2,1]

Γ (n)

Γ (2h2,1) Γ (n+ 1− 2h2,1)
+ . . .

+FIφ3,1 [φ2,1]
Γ (n− h3,1)

Γ (2h2,1 − h3,1) Γ (n+ 1− 2h2,1)
+ . . .

)2

−

(
C

Φ3,1

Φ2,1Φ2,1

)2

2h2,1 + 2 (n− 2h2,1 + h3,1)

(
Fφ3,1I[φ2,1]

Γ (n+ h3,1)

Γ (2h2,1) Γ (n+ 1− 2h2,1 + h3,1)
+ . . .

+Fφ3,1φ3,1 [φ2,1]
Γ (n)

Γ (2h2,1 − h3,1) Γ (n+ 1− 2h2,1 + h3,1)
+ . . .

)2

. (3.68)

From this expression one can construct the large n counter term as for the ground state

case in 3.3.1. The leading behaviour of the counter term is

δe1,n (r) = λ2n4h−2 1

4 (2h− 1) Γ (2h)2 + . . . (3.69)

(h = h2,1) which is the same as for the ground state. The reason is that this comes from

the identity operator in the operator product expansion of the perturbing operator with

itself, and the matrix elements of this term are independent of the state considered, so this

term is universal.
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3.4.3 The second AĀ two-particle state and the first AAA three-particle state

Both from TCSA and excited states TBA, the ultraviolet limit of the scaling function of

the second AĀ state is

e2(0) = − 1

12

4

5
+ 2 · 2

5
+ 2 =

41

15
. (3.70)

The zero-momentum part of the Hilbert space of the M5,6 minimal model at this level is

doubly degenerate: it is spanned by L−1L̄−1

∣∣2
5 ,

2
5

〉
and

∣∣7
5 ,

7
5

〉
. So one has to use degenerate

perturbation theory and diagonalize the perturbing operator in this subspace, which leads

to the two eigenstates

|±〉 =
1√
2

(∣∣∣∣75 , 7

5

〉
± 1

2h2,1
L−1L̄−1

∣∣∣∣25 , 2

5

〉)
. (3.71)

From TCSA one can see that |+〉 corresponds to the first AAA three-particle state and |−〉
to the second AĀ two-particle state. For the evaluation of the counter term we therefore

need to consider the following conformal four-point functions:

• 〈Φ3,1|Φ2,1 (1, 1) Φ2,1 (z, z̄) |Φ3,1〉;

• 〈Φ2,1|L1L̄1Φ2,1 (1, 1) Φ2,1 (z, z̄)L−1L̄−1|Φ2,1〉 = D〈Φ2,1|Φ2,1 (1, 1) Φ2,1 (z, z̄) |Φ2,1〉,
where D is some differential operator constructing the descendant matrix element;

• 〈Φ2,1|L1L̄1Φ2,1Φ2,1|Φ3,1〉;

• 〈Φ3,1|Φ2,1 (1, 1) Φ2,1 (z, z̄)L−1L̄−1|Φ2,1〉.

Due to the fusion rules, the last two are eventually zero. Therefore to order λ2, the counter

term for both the two-particle state and the three-particle state is

δe2,n(r) = δe3,n(r) =
1

2

(
δe| 75 , 75〉,n(r) +

1

4h2
2,1

δeL−1L̄−1| 25 , 25〉,n(r)

)
(3.72)

where the indices indicate the contributing matrix element.

The first contribution can be calculated following the procedure in subsection 3.4.2:

it is necessary to compute the level contributions for 〈Φ3,1 |Φ2,1 (1, 1) Φ2,1 (z, z̄)|Φ3,1〉. To

obtain it one needs the following OPEs:

Φ2,1 × Φ2,1 = I + Φ3,1

Φ2,1 × Φ3,1 = Φ2,1 + Φ4,1

Φ3,1 × Φ3,1 = I + Φ3,1 (3.73)

which lead to

〈Φ3,1|Φ2,1 (1, 1) Φ2,1 (z, z̄) |Φ3,1〉

=
(
C

Φ2,1

Φ2,1Φ3,1

)2

∣∣∣∣∣∣∣∣
φ3,1 φ3,1

φ2,1 φ2,1

φ2,1

∣∣∣∣∣∣∣∣
2

+
(
C

Φ4,1

Φ2,1Φ3,1

)2

∣∣∣∣∣∣∣∣
φ3,1 φ3,1

φ2,1 φ2,1

φ4,1

∣∣∣∣∣∣∣∣
2

.

(3.74)
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For the level n contribution one needs the coefficient of zn−h3,1 in the first term and

zh4,1+n−h2,1−h3,1 in the second term. Rewriting the conformal blocks in the dual channel

φ3,1 φ3,1

φ2,1 φ2,1

φ2,1 = Fφ2,1I[φ3,1]

φ3,1 φ3,1

φ2,1 φ2,1

φ1,1 + Fφ2,1φ3,1 [φ3,1]

φ3,1 φ3,1

φ2,1 φ2,1

φ3,1

φ3,1 φ3,1

φ2,1 φ2,1

φ4,1 = Fφ4,1I[φ3,1]

φ3,1 φ3,1

φ2,1 φ2,1

φ1,1 + Fφ4,1φ3,1 [φ3,1]

φ3,1 φ3,1

φ2,1 φ2,1

φ3,1

(3.75)

and using the expansions

φ3,1 φ3,1

φ2,1 φ2,1

φ1,1 = (1− z)−2h2,1

(
1 +

2h2,1h3,1

c
(1− z)2 +O

(
(1− z)3

))

φ3,1 φ3,1

φ2,1 φ2,1

φ3,1 = (1− z)−2h2,1+h3,1

(
1 +

h3,1

2
(1− z) +O

(
(1− z)2

))
(3.76)

one can determine the necessary coefficients. Keeping only the leading terms in the (1− z)
expansion and using (3.55) yields:

φ3,1 φ3,1

φ2,1 φ2,1

φ2,1 =
∞∑
n=0

{
Fφ2,1I[φ3,1]

(
Γ (n+ 2h2,1 − h3,1)

Γ (2h2,1) Γ (n+ 1− h3,1)
+ . . .

)

+ Fφ2,1φ3,1 [φ3,1]

(
Γ (n+ 2h2,1 − 2h3,1)

Γ (2h2,1 − h3,1) Γ (n+ 1− h3,1)
+ . . .

)}
zn−h3,1

(3.77)

φ3,1 φ3,1

φ2,1 φ2,1

φ4,1 =

∞∑
n=0

{
Fφ4,1I[φ3,1]

(
Γ (n+ h2,1 + h4,1 − h3,1)

Γ (2h2,1) Γ (n+ 1 + h4,1 − h2,1 − h3,1)
+ . . .

)

+ Fφ4,1φ3,1 [φ3,1]

(
Γ (n+h2,1−h3,1+h4,1)

Γ (2h2,1−h3,1) Γ (n+1+h4,1−h2,1−h3,1)
+. . .

)}
×zh4,1+n−h2,1−h3,1 (3.78)
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where the ellipsis indicate terms which are subleading for large n, resulting from the sub-

leading terms in (3.76). Putting together the left and right moving parts, and performing

the integral (3.57), the level contribution from this channel is then

ẽ| 75 , 75〉,n =−

(
C

Φ2,1

Φ2,1Φ3,1

)2

2h2,1 + 2 (n− h3,1)

(
Fφ2,1I[φ3,1]

Γ (n+ 2h2,1 − h3,1)

Γ (2h2,1) Γ (n+ 1− h3,1)
+ . . .

+Fφ2,1φ3,1 [φ3,1]
Γ (n+ 2h2,1 − 2h3,1)

Γ (2h2,1 − h3,1) Γ (n+ 1− h3,1)
+ . . .

)2

−

(
C

Φ4,1

Φ2,1Φ3,1

)2

2h2,1+2 (n+h4,1−h2,1−h3,1)

(
Fφ4,1I[φ3,1]

Γ (n+h2,1+h4,1−h3,1)

Γ (2h2,1) Γ (n+1+h4,1−h2,1−h3,1)

+ · · ·+ Fφ4,1φ3,1 [φ3,1]
Γ (n+ h2,1 − h3,1 + h4,1)

Γ (2h2,1 − h3,1) Γ (n+ 1 + h4,1 − h2,1 − h3,1)
+ . . .

)2

.

(3.79)

These can be used to determine the counter term δe| 75 , 75〉,n(r) following the steps in 3.3.2;

we omit the explicit form as it is quite long and not really illuminating.

For the second term one needs to repeat the computation in subsection 3.4.2, but re-

placing all objects with those pertaining to the descendant conformal block given in (A.13), (A.14), (A.15).

3.5 Power counting

As discussed above, the leading large n behaviour is the same for all cases: ∼ n4h−2 with

h = h2,1. We remark that this can be extracted from a simple power counting argument.

The second order cut-off dependence is determined by the short-distance contribution to

the integrated correlator ∫
d2~x〈Ψ|Φ(~x)Φ(0, 0)|Ψ〉CFT (3.80)

where ~x = (τ, x). In the scaling Potts model Φ = Φ2,1 which has the short-distance

expansion

Φ2,1(~x)Φ2,1(0, 0) ∼ A
(

1

r4h2,1
+ descendants

)
+B

(
Φ3,1(0, 0)

r4h2,1−2h3,1
+ descendants

)
(3.81)

where r =
√
τ2 + x2 and A and B are conformal OPE coefficients. The most singular term

is the one coming from the identity (descendants always contribute terms that are less

singular), and putting a short-distance cut-off r > 1/Λ gives a leading dependence Λ4h2,1−2

by simple power counting. Since the TCSA cut-off for large n is

Λ =
4πn

L
+O(1) (3.82)

the expected dependence is exactly n4h2,1−2.
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4 Excited state TBA

4.1 The excited state TBA equations in the paramagnetic phase

Since the Potts S matrices in the high-temperature (paramagnetic) phase (2.24) are diag-

onal, the ground state TBA can be written down in a straightforward manner [10]:

ε1(θ) = mR cosh θ − φ1 ? L1(θ)− φ2 ? L2(θ)

ε2(θ) = mR cosh θ − φ1 ? L2(θ)− φ2 ? L1(θ) (4.1)

where the kernels are given by the derivatives of the phase-shift

φ1(θ) = −i d
dθ

logS1(θ) = −
√

3

1 + 2 cosh θ
φ2(θ) = −i d

dθ
logS2(θ) =

√
3

1− 2 cosh θ
(4.2)

and we introduced the notations

Li(θ) = log(1 + e−εi(θ)) A ? B(θ) =

∫
dλ

2π
A(θ − λ)B(λ). (4.3)

The ground state energy can be obtained as

E0(R) = −
∫

dθ

2π
m cosh θ L1(θ)−

∫
dθ

2π
m cosh θ L2(θ). (4.4)

The two pseudo-energy functions ε1,2(θ) correspond to the two particles A and Ā. Since

the ground state is charge neutral, one has ε1(θ) = ε2(θ) = ε(θ) and the equation for ε(θ)

turns out to be identical to the TBA for the scaling Lee-Yang model, with the ground state

energy differing by a factor of 2 [10].

Following the argument of analytic continuation as described in [13, 14] leads to the

following general form of the excited TBA equations:

ε1(θ) = mR cosh θ +
∑
k

log
S1(θ − θ+

k )

S2(θ − θ̄+
k )

+
∑
l

log
S2(θ − θ−l )

S1(θ − θ̄−l )
− φ1 ? L1(θ)− φ2 ? L2(θ)

ε2(θ) = mR cosh θ +
∑
k

log
S2(θ − θ+

k )

S1(θ − θ̄+
k )

+
∑
l

log
S1(θ − θ−l )

S2(θ − θ̄−l )
− φ1 ? L2(θ)− φ2 ? L1(θ)

eε1(θ+
k ) = eε1(θ̄−k ) = −1

eε2(θ−k ) = eε2(θ̄+
k ) = −1 (4.5)

with the energy expressed as

E(R) = −im
∑
k

(
sinh θ+

k −sinh θ̄+
k

)
−im

∑
l

(
sinh θ−l −sinh θ̄−l

)
−
∫
dθ

2π
m cosh θ (L1(θ)+L2(θ))

(4.6)

where θ±k and θ̄±k are positions of singularities picked up during the continuation. Reality

of the finite volume energy E(R) requires that ε2(θ) = ε1(θ)∗ for real θ, which in turn

suggests

θ̄±k =
(
θ±k
)∗
. (4.7)
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Then the independent relations for the singularity positions can be written as

ε1(θ+
k ) = πi(2n+

k + 1) ε2(θ−k ) = πi(2n−k + 1). (4.8)

Indeed, the analysis of the infrared limit below shows that this is the correct choice. How-

ever, when continuing to small volumes, some branching transitions may occur for specific

levels, just as observed for the scaling Lee-Yang model in [13, 26].

4.2 The infrared limit of the excited state TBA

In the infrared limit, the convolution terms can be neglected in (4.5). Writing

θ+
k = λ+

k + iρ+
k θ̄+

k = λ+
k − iρ

+
k

θ−k = λ−k + iρ−k θ−k = λ−k − iρ
−
k

the real part of the relations (4.8) read

0 = mR coshλ+
r cos ρ+

r +
∑
k

Re log
S1(λ+

r − λ+
k + i(ρ+

r − ρ+
k ))

S2(λ+
r − λ+

k + i(ρ+
r + ρ+

k ))

+
∑
k

Re log
S2(λ+

r − λ−k + i(ρ+
r − ρ−k ))

S1(λ+
r − λ−k + i(ρ+

r + ρ−k ))

0 = mR coshλ−r cos ρ−r +
∑
k

Re log
S1(λ−r − λ−k + i(ρ−r − ρ−k ))

S2(λ−r − λ−k + i(ρ−r + ρ−k ))

+
∑
k

Re log
S2(λ−r − λ+

k + i(ρ−r − ρ+
k ))

S1(λ−r − λ+
k + i(ρ−r + ρ+

k ))
. (4.9)

For large R the first term grows arbitrarily large, therefore one of the S matrix terms

must approach a pole. Now the singularity positions with upper index + (corresponding

to particle species A) are expected to be pairwise different, and similarly for upper index

− (particle species Ā) due to the effective exclusion statistics of the particles resulting

from S1(0) = −1. In addition, the singularity positions of the two species must vary

independently, as they describe the momenta of different particles. Therefore in both

equations the singularity of the S matrix closest to the real axis comes from the S2 in the

k = r term of the first sums. This forces the asymptotic behaviour

ρ±k →
π

6
for mR→∞. (4.10)

Now we can put

ρ+
k =

π

6
+ δ+

k

ρ−k =
π

6
+ δ−k (4.11)

and keeping only the dominant terms gives

0 =

√
3

2
mR coshλ+

r + Re log

(
−S2

(
iπ

3
+ 2iδ+

r

))
+ . . .

0 =

√
3

2
mR coshλ−r + Re log

(
−S2

(
iπ

3
+ 2iδ−r

))
+ . . . (4.12)

– 24 –



J
H
E
P
0
9
(
2
0
1
4
)
0
5
2

Using

S2

(
iπ

3
+ 2iδ±r

)
= −

√
3

2δ±r
+O(1) (4.13)

we get the leading behavior

∣∣δ±r ∣∣ ∼ C exp

(
−
√

3

2
mR coshλ±r

)
(4.14)

where the constant C depends on the λ±k with k 6= r.

Turning now to the imaginary part of relations (4.8), the δ±k can be safely put to zero:

π(2n+
r + 1) =

1

2
mR sinhλ+

r + σ+
r +

∑
k 6=r

Im log
S1(λ+

r − λ+
k )

S2(λ+
r − λ+

k + iπ3 )

+
∑
l

Im log
S2(λ+

r − λ−l )

S1(λ+
r − λ−l + iπ3 )

π(2n−r + 1) =
1

2
mR sinhλ−r + σ−r +

∑
k

Im log
S2(λ−r − λ+

k )

S1(λ−r − λ+
k + iπ3 )

+
∑
l 6=r

Im log
S1(λ−r − λ−l )

S2(λ−r − λ−l + iπ3 )
(4.15)

where

σ±r = Im log

(
−S2

(
iπ

3
+ 2iδ±r

))
=

{
0 δ±r > 0

π δ±r < 0
. (4.16)

Now for real λ

Im log
S1(λ)

S2(λ+ iπ3 )
= − i

2
logS1(λ)− πsign(λ)

Im log
S2(λ)

S1(λ+ iπ3 )
= − i

2
logS2(λ) + πsign(λ) (4.17)

which leads to

2πI+
r = mR sinhλ+

r +
∑
k 6=r
−i logS1(λ+

r − λ+
k ) +

∑
l

−i logS2(λ+
r − λ−l )

2πI−r = mR sinhλ−r +
∑
k

−i logS2(λ−r − λ+
k ) +

∑
l 6=r
−i logS1(λ−r − λ−l ) (4.18)

where the quantum numbers are

I±r = 4n±r + 2− σ±r − 2(π terms from eq. (4.17)). (4.19)

Equations (4.18) describe the correct asymptotic quantization conditions for particle ra-

pidities in the paramagnetic phase of the scaling Potts model, and the asymptotic form of

the energy of the state (4.6) also turns out to be the correct one:

E(R) = m
∑
k

coshλ+
k +m

∑
l

coshλ−l . (4.20)
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4.3 Relation to the excited state TBA of the scaling Lee-Yang model

For special states where the number and rapidities of the A and Ā particles are identical

{θ+
k } = {θ−k } (4.21)

the two pseudo-energy functions are identical ε1(θ) = ε2(θ) =: ε(θ), and the TBA equa-

tions (4.5), (4.6) reduce to

ε(θ) = mR cosh θ +
∑
k

log
SLY(θ − θk)
SLY(θ − θ̄k)

− φLY ? L(θ)

eε(θk) = −1 (4.22)

E(R) = 2

{
−im

∑
k

(
sinh θk − sinh θ̄k

)
−
∫

dθ

2π
m cosh θ L(θ)

}

where

θk = θ+
k = θ−k θ̄k = θ̄+

k = θ̄−k

φLY(θ) = −i d
dθ

logSLY(θ) (4.23)

and

SLY(θ) =
sinh θ + i sin 2π

3

sinh θ − i sin 2π
3

(4.24)

is the well-known S matrix of the scaling Lee-Yang model [27]. The system (4.22) is just the

excited TBA of the scaling Lee-Yang model [13, 26], with the energy expression multiplied

by a factor of two. This correspondence is a generalization of the relation between the

ground state TBAs, which was originally noted by Zamolodchikov [10].

4.4 The excited state TBA equations in the ferromagnetic phase

Due to the invariance of sector H0 under Kramers-Wannier duality µ → −µ, the ground

state TBA in the ferromagnetic phase is the same as in the paramagnetic one. However,

there appear two additional vacuum states in the H± sectors, which are obtained by in-

serting a twist operator Z±1 in the partition function, where Z is the cyclic permutation

in S3 introduced in 2.2. The general vacuum TBA can be written as [11, 12]

ε1(θ) = iω +mR cosh θ − φ1 ? L1(θ)− φ2 ? L2(θ)

ε2(θ) = −iω +mR cosh θ − φ1 ? L2(θ)− φ2 ? L1(θ) (4.25)

where the vacuum states in H0 and H± correspond to ω = 0 and ω = ±2π/3, respectively.

The excited state TBAs can be found by the same argument as in the other phase, with
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the result

ε1(θ) = iω +mR cosh θ +

N+∑
k=1

log
S1(θ − θ+

k )

S2(θ − θ̄+
k )

+

N−∑
l=1

log
S2(θ − θ−l )

S1(θ − θ̄−l )
− φ1 ? L1(θ)− φ2 ? L2(θ)

ε2(θ) = −iω +mR cosh θ +

N+∑
k=1

log
S2(θ − θ+

k )

S1(θ − θ̄+
k )

+

N−∑
l=1

log
S1(θ − θ−l )

S2(θ − θ̄−l )
− φ1 ? L2(θ)− φ2 ? L1(θ)

eε1(θ+k ) = eε1(θ̄−k ) = −1

eε2(θ−k ) = eε2(θ̄+k ) = −1

E(R) = −im
∑
k

(
sinh θ+

k −sinh θ̄+
k

)
−im

∑
l

(
sinh θ−l −sinh θ̄−l

)
−
∫
dθ

2π
m cosh θ (L1(θ)+L2(θ)) .

(4.26)

Another difference from the paramagnetic phase is that the excitations are now kinks

mediating between neighboring vacua. Due to periodic boundary conditions the total

number of kink steps must be divisible by three, so there is the constraint

N+ = N− mod 3. (4.27)

In general, sectors H± contain states with twists ±2π/3, while sectors H0/H1 contain

untwisted states that are C-even/odd. As discussed in 2.2, the kink stepping in forward

direction will be identified with A, while the one stepping in reverse direction with Ā, as

they can be considered to be in one-to-one correspondence with the particle species in the

paramagnetic phase.

In the ferromagnetic case, the infrared limiting quantization conditions (4.18) are also

modified by the presence of the twist

2πI+
r = ω +mR sinhλ+

r +
∑
k 6=r
−i logS1(λ+

r − λ+
k ) +

∑
l

−i logS2(λ+
r − λ−l )

2πI−r = −ω +mR sinhλ−r +
∑
k

−i logS2(λ−r − λ+
k ) +

∑
l 6=r
−i logS1(λ−r − λ−l ). (4.28)

4.5 The UV limit of the TBA equations

The derivation of the UV limit is very technical, and is relegated to appendix B. Here we

summarize the results for the states considered in the numerical analysis; all the identifi-

cations below are indeed in accordance with the TCSA as discussed in section 5.

4.5.1 Vacuum states

For the vacuum state in H0 one obtains [10]

cR = cL =
2

5
. (4.29)

In the ferromagnetic phase, the vacuum states in H±, corresponding to ω = ±2π/3 sat-

isfy [11, 12]

cR = cL = −2

5
. (4.30)
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The corresponding conformal weights can be computed from

cR,L = c− 24∆R,L (4.31)

and give ∆R,L = 1/15.

4.5.2 One-particle states

In the paramagnetic state, the lowest energy levels in a given momentum sector of H± are

expected to correspond to one-particle states. Considering a one-particle A state with a

singularity located at θ+such that

ε1(θ+) = iπ(2n+ + 1)

Imθ+ =
π

6
+ δ+ (4.32)

the following result is obtained for n+ > 0

cR = −2

5
− 12

(
2n+ − σ+

)
σ+ =

{
0 δ+ > 0

1 δ+ < 0

cL = −2

5
(4.33)

which corresponds to a right descendant of Φ+
1
15
, 1
15

with momentum quantum number 2n+−
σ+; for n+ < 0, the result is similar, but it is a left descendant instead.

For a stationary particle, a numerical analysis of the TBA equation in the infrared

shows that the relevant quantum numbers are n+ = 0 and δ+ > 0; in such a case θ+ is

purely imaginary. When decreasing the volume, the position of the singularity at a critical

value mR = rc reaches the line

δ+ =
π

3
. (4.34)

Similarly to the Lee-Yang case, for mR < rc the equation requires analytic continuation.

We do not go into the details here; the relevant methods can be found in [13, 26]. The

UV limit can be computed simply by noticing that because the singularity is stuck in the

middle, the two kink systems become identical to the twisted ground system (with opposite

values of twists on the two sides), therefore

cR = cL = −2

5
(4.35)

corresponding to the primary state create by Φ+
1
15
, 1
15

.

4.5.3 Untwisted two-particle states AĀ

Supposing that one of the particles is right moving (θ+ > 0), while the other one is left-

moving (θ− < 0) with

ε1(θ+) = iπ(2n+ + 1) Imθ+ =
π

6
+ δ+

ε2(θ−) = −iπ(2n− + 1) Imθ− =
π

6
+ δ− (4.36)
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the result is

cR =
2

5
− 12

(
2

5
+ 2n+ − σ+

)
cL =

2

5
− 12

(
2

5
+ 2n− − σ−

)

σ± =

{
0 δ± > 0

1 δ± < 0
(4.37)

corresponding to descendants of either Φ 2
5
, 2
5

/
Φ 7

5
, 7
5

(in H0), or either of Φ 2
5
, 7
5

/
Φ 7

5
, 2
5

(in H1).

In fact there are in general two degenerate states, because charge conjugation leaves

the TBA result invariant:

1√
2

(
|A(λ+)Ā(λ−)〉+ |A(λ−)Ā(λ+)〉

)
∈ H0

1√
2

(
|A(λ+)Ā(λ−)〉 − |A(λ−)Ā(λ+)〉

)
∈ H1 (4.38)

with λ± = Reθ±. These two states are completely degenerate, which is indeed valid in

TCSA up to the numerical precision that can be attained.

The only exception is when the state is composed of two zero momentum particles

|A(0)Ā(0)〉 (4.39)

with

θ+ = θ− = i
(π

6
+ δ
)

δ > 0. (4.40)

This state is non-degenerate and in H0; its scaling function is just twice the stationary

one-particle scaling function in the Lee-Yang model, as discussed in 4.3.

4.5.4 Twisted AĀ states and AA/ĀĀ states

In the ferromagnetic phase, the lowest excited states in H± are AĀ states with non-zero

twists

ω = ±2π

3
. (4.41)

Using the results in appendix B, it turns out that these states correspond to descendants

of Φ 2
3
, 2
3
. In the paramagnetic phase, the same levels are described in TBA as two-particle

AA/ĀĀ states for H−/H+, respectively.

5 Numerical comparison

The evaluation of the TCSA spectrum consists of several steps:

1. First the numerical “raw” TCSA spectrum is determined by diagonalizing the TCSA

Hamiltonian (3.18). We used cutoffs n = 6, 7, 8, 9, 10, 11, 12 (the highest ones corre-

sponding to several thousand states kept in each sector), and restricted our analysis

to states with total momentum zero.
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2. Next for any given energy level, the level contributions are constructed analytically.

For the vacuum we know the n-dependence of order λ2 contributions in a closed

form. For more general excited states, the procedure in subsection 3.4.1 gives the

level contributions as a series in inverse powers of n. Given these level contributions,

one can check whether the TCSA results are reproduced to a sufficient precision.

3. Finally, constructing the counter terms one eliminates the cut-off dependence of the

TCSA to order λ2. A useful check on this method is to evaluate the residual order

λ2 cut-off dependence of the renormalized TCSA results, which must be sufficiently

close to zero. Note that this does not eliminate all the cut-off dependence, as it may

also come from higher order in λ.

4. Finally, one can compare the renormalized TCSA data to the TBA results.

5.1 Level contributions and accuracy of counter terms

For the first and second steps listed above, we can look at the level contributions to scaling

functions e(r) before and after subtraction. We have done this analysis for all the energy

levels that are considered for the comparison to TBA in subsection 5.2. Below we show

and comment on the examples of

• the ground state in H0, for which the exact level contributions are known;

• the first excited state in H0, which illustrates the use of the expansion in the dual

channel for a primary state;

• the second and third excited states in H0, which include two novelties: the contribu-

tion of a descendant state, and degenerate perturbation theory.

For the other states, the picture is the same; we omit the detailed results as they would

add nothing substantial to the demonstration of the method.

5.1.1 Ground state

For the ground state which is the lowest level in sector H0, the O(λ2) level contributions

are known exactly for any n and are given in (3.38). From the TCSA data, the difference

between two subsequent values of the cut-off n can be fitted with a function a+ bλ2 + cλ4

and the coefficient b extracted. This was performed in the volume range 0 ≤ r ≤ 1 which

under (2.9) corresponds to 0 ≤ λ . 0.113765. To see whether the counter term (3.43)

really removes the cut-of dependence, one can repeat the same procedure for the subtracted

TCSA data. The results, shown in table 1 demonstrate how efficient the renormalization

procedure is.

5.1.2 Stationary AĀ pair

For the first excited state in H0 which is contains a pair of particles, both with zero

momentum, one can use the counter term constructed in subsection 3.4.2. In contrast to

the ground state, the exact n-dependence of the level contributions is not available, and
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n Exact TCSA Subtracted TCSA

9 −0.0160116158 −0.0160116106 7.36449 · 10−8

10 −0.0138989447 −0.0138989498 2.83545 · 10−8

11 −0.0122228492 −0.0122228377 2.91101 · 10−8

12 −0.0108656858 −0.0108656810 1.46659 · 10−8

Table 1. Level contribution of the coefficient of λ2 in the perturbative series for the ground state

scaling function.

n TCSA B1 B2 B3 B4 B5 B6

9 −0.0159516 −0.0159007 −0.0159229 −0.0159573 −0.0159517 −0.0159470 −0.0159695

10 −0.0138470 −0.0138127 −0.0138255 −0.0138513 −0.0138462 −0.0138462 −0.0138501

11 −0.0121777 −0.0121536 −0.0121615 −0.0121809 −0.0121769 −0.0121777 −0.0121783

12 −0.0108263 −0.0108087 −0.0108138 −0.0108286 −0.0108257 −0.0108264 −0.0108264

Table 2. Level contributions for the lowest AĀ level.

n B5 B6

9 −4.55659 · 10−6 1.54134 · 10−5

10 −7.53545 · 10−7 2.90049 · 10−6

11 −2.94012 · 10−6 5.70248 · 10−7

12 1.07722 · 10−6 9.84199 · 10−8

Table 3. O(λ2) level contributions for the lowest AĀ level after subtraction, where the approxi-

mations B5 and B6 were used.

we use the approximation constructed from the expansion (A.8) of the conformal block in

the dual channel, to obtain an approximation in powers of 1/n, the leading term of which

is presented in (3.69). Although the expansion (A.8) is convergent, the 1/n expansion of

the level contribution resulting after the application of the integral formula (3.55) is only

asymptotic. This means that for any n, including more terms from the conformal block in

the dual channel at first improves the result, but then the error starts to grow. On the other

hand, for higher n (and therefore lower 1/n) the series starts to diverge at higher order.

This can be manifestly seen in table 2, where contributions resulting from the inclusion of

the conformal block expansion to order n is labeled Bn. It turns out that for n = 12 the

B5 and B6 approximations give essentially exact results, so they can be used to construct

the counter term. The effect of this counter term is demonstrated in table 3, which again

shows that to order λ2 the truncation dependence is almost totally eliminated.

5.1.3 Second AĀ and first AAA levels

The second excited level is degenerate at the fixed point with the third one. This is the

pair of states described in subsection 3.4.3. The level contributions for these states are

shown in table 4, while table 5 shows the residuals after subtraction. The perturbative

results are somewhat less accurate for these states; however these states are higher up on

the spectrum and therefore are more affected by higher-order terms in the cut-off and λ.
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n AĀ AAA B1 B2 B3 B4 B5 B6

9 −0.0180702 −0.0180669 −0.0178814 −0.0179488 −0.0181169 −0.0181083 −0.0180053 −0.0186437

10 −0.0154775 −0.0154748 −0.0153561 −0.0153936 −0.0155160 −0.0154957 −0.0154819 −0.0155671

11 −0.0134662 −0.0134641 −0.0133835 −0.0134058 −0.0134953 −0.0134780 −0.0134791 −0.0134937

12 −0.0118654 −0.0118636 −0.0118077 −0.0118217 −0.0118881 −0.0118752 −0.0118782 −0.0118805

Table 4. O(λ2) level contributions for the second AĀ and the first AAA state.

n B5 AĀ B5 AAA B6 AĀ B6 AAA

9 −5.63362 · 10−5 −5.30678 · 10−5 3.32776 · 10−4 3.36045 · 10−4

10 5.13623 · 10−6 7.80905 · 10−6 7.29807 · 10−5 7.56536 · 10−5

11 1.30180 · 10−5 1.50275 · 10−5 2.58255 · 10−5 2.78350 · 10−5

12 1.29015 · 10−5 1.46115 · 10−5 1.48606 · 10−5 1.65706 · 10−5

Table 5. O(λ2) level contributions for second AĀ and the first AAA state after subtraction.

Still, as we demonstrate later these counter terms result in a spectacular improvement in

the agreement between TCSA and the TBA predictions.

5.2 Comparing the renormalized TCSA to the TBA results

The third step listed in the beginning of section 5 is the actual construction of counter

terms. This was described in section 3 and is straightforward given the level contributions

tested above.

The last step is to compare the renormalized TCSA data to the TBA predictions. We

must take into account that the TBA and the perturbed conformal field theory (TCSA)

energy levels differ by the so-called universal bulk energy term [10]

ETBA(R) = ETCSA(R)− BR (5.1)

where

B = − 1

2
√

3
m2. (5.2)

Therefore following (5.1) we compare the TBA data to TCSA data with the predicted bulk

energy contribution subtracted (with the exception of figure 1). Some numbers are given

in tables in appendix C; here we only show a few plots for illustration. Some numbers are

given in tables 6–13 in appendix C; here we only show a few plots for illustration

5.2.1 Energy levels

Figure 1 shows the comparison for the ground state, comparing raw TCSA data for several

values of the cut-off, the renormalized TCSA and the TBA data. The renormalization is so

efficient in removing the cut-off dependence that we only show the renormalized TCSA data

for the highest cut-off, as the others would not be discernible on the plot. The comparison

for excited states is shown in figure 2; it has essentially the same features.
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Figure 1. Comparing TCSA and TBA for the ground state. The slow convergence of the TCSA is

apparent from the raw data; renormalized data are only presented for level 12, as the others would

not be discernible on the plot. This plot does not have the bulk energy subtracted to show that

the renormalization also gives back the right value for the universal bulk energy term.

5.2.2 Two-particle phase shifts

A more sensitive test is provided by examining the phase-shift extracted from the various

two-particle states. Using the Bethe-Yang equations (4.18), (4.28) one can extract phase-

shift data from the TCSA spectrum to compare with theoretical predictions. Because the

effect of the phase-shift is subleading compared to the momentum quantum number, it is

much more sensitive to the accuracy of the numerics. From (2.24), we define the following

phase-shift functions

δAA(θ) = −i logSAA(θ)

δAĀ(θ) = −i logSAĀ(θ). (5.3)

Note that the identification of the ferromagnetic phase kink states with the paramagnetic

phase particles defined in (2.33) makes these definitions applicable in the ferromagnetic

phase as well.

The phase shifts are extracted from two-particle states with zero total-momentum,

consisting with a pair of particles with opposite rapidities θ and −θ. The “experimental”

value for the rapidity is determined from

EΨ(R)− E0(R) = 2m cosh θ (5.4)

where EΨ(R) and E0(R) are the two-particle and vacuum levels, while the value of the phase

shift at 2θ is determined from the quantization conditions (4.18), (4.28) which reduce to a
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Figure 2. Comparing TCSA and TBA for excited states. PM stands for paramagnetic, FM for

ferromagnetic phase, GS means ground state (twisted in the ferromagnetic phase). The paramag-

netic AA and twisted ferromagnetic AĀ are so close numerically that they eventually overlap at

this resolution.

single equation

2πI = ω +mR sinh θ + δ(2θ) (5.5)

where the twist ω is always zero in the paramagnetic phase which contains both neutral

(AĀ) and charged (AA,ĀĀ) two-particle levels. In the ferromagnetic phase it can take the

values ω = 0,±2π/3; however, in this case there are only AĀ levels.

The phase shifts extracted from the TCSA data can be compared to the predictions

of the infinite volume scattering amplitudes (2.24), (2.32). For large volumes, correspond-

ing to small θ we expect truncation effects to dominate. For small volumes the finite

size corrections decaying exponentially in the volume make up most of the deviation. To

demonstrate that, we also compare the TCSA phase shift to a “effective finite volume phase

shift” obtained by substituting the exact TBA energy levels into (5.4), (5.5). In contrast

with the true infinite volume scattering amplitudes, the effective finite volume phase shift

is state-dependent. These comparisons are presented for δAĀ in figures 3, 4 and for δAA in

figure 5.

Note that the deviation of the TCSA phase-shift in the high energy (small volume)

regime is fully explained by TBA, which is not very surprising in view of the excellent

agreement between TCSA and TBA demonstrated in appendix C. For low energies (large

volumes) the agreement is very much improved by the renormalization procedure. We also

demonstrate that the residual cut-off dependence is practically nonexistent except for very
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Figure 3. Comparing δAĀ(θ) extracted from the third excited TCSA level in sector H0 (lowest

lying moving AĀ state) to the scattering theory predictions (4.18), (4.28) and to TBA.

low energies; the remaining deviation in that regime is expected to be due to O(λ3) cut-off

effects, the elimination of which would necessitate the extension of the renormalization

procedure to higher order.

6 Discussion and outlook

In this paper we provided a description of the finite volume spectrum of the scaling Potts

model combining two approaches: the renormalized TCSA, the idea of which goes back to

the recent papers [6, 8, 9], and an excited TBA system which was first proposed in the

present work. We have developed the general theory of cut-off dependence and counter

terms for energy levels in TCSA, and applied it to the scaling Potts field theory. Using

comparison with the TBA predictions we have shown that this gives a very precise tool to

study the finite size spectrum of perturbed conformal field theory.

There are several potential applications of the results presented here. TCSA has recent

been extended to asymptotically free field theories [25], but this line of development is still

in its infancy. In fact, a systematic understanding of the construction of counter terms

should prove very useful in this context. Another possible application is given the appli-

cation of the truncation approach to study non-equilibrium physics in condensed matter

theory [28]. In addition, integrability, finite size effects and the ideas of perturbed confor-

mal field theory have also appeared in the AdS/CFT correspondence (cf. [29] and references

therein). We expect that the methods developed here can be useful for these applications

both by improving numerical reliability and providing a detailed understanding of scale

dependence.

There is also an interesting implication of the present results for the study of the quan-

tum Potts spin chain. In [30] perturbative calculations supplemented with renormalization
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Figure 4. Comparing δAĀ(θ) extracted from the first excited TCSA level in sectors H± in the

ferromagnetic phase (lowest lying twisted AĀ state) to the scattering theory predictions (4.28) and

to TBA.
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Figure 5. Comparing δAA(θ) extracted from the first excited TCSA level in sectors H± in the

paramagnetic phase (lowest lying AA/ĀĀ state) to the scattering theory predictions (4.18) and

to TBA.

group arguments cast some doubt on the applicability of the factorized scattering ampli-

tudes in long-distance limit of the spin chain. A detailed DMRG analysis has shown that

the observed discrepancy between the factorized S matrix and the low-energy scattering of

quasi-particles in the discrete spin chain persists even non-perturbatively [31], and it was

speculated that this was due to the presence of an irrelevant operator that has a large effect
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on the low-energy limit of the scattering amplitudes away from the scaling limit. In this

connection, first of all we note that the raw TCSA phase-shifts in figures 3, 4 and 5 show

a characteristic deviation from the field theory predictions at low energies which is very

similar to that observed in the DMRG results of [31]. In contrast to the DMRG study, in

this paper we are in a position to identify the source of this deviation: it originates from

the cut-off dependence introduced by the operators that appear in the OPE

Φ2,1(z, z̄)Φ2,1(0, 0) =
1

(zz̄)4/5

(
I + h2

2.1 (zz̄)2(T T̄ )(0, 0) + . . .
)

+ C
Φ3,1

Φ2,1Φ2,1
(zz̄)3/5 (Φ3,1(0, 0) + . . . ) .

The counter term from the identity I is the universal contribution shown explicitly in (3.69),

which only renormalizes the bulk energy density and thus makes no contribution to the

extracted phase-shifts. Therefore the dominant part of the cut-off dependence comes from

the irrelevant operators: the leading one is Φ3,1 , while the first subleading one is T T̄ .

Once the counter-terms are added, all cut-off dependence is eliminated to order λ2 and the

phase-shifts indeed show a much better agreement with the field theoretical predictions.

In TCSA it is therefore clear that the cut-off dependence comes from irrelevant operators,

which makes it very plausible that the very similar effect noticed in the DMRG data is

also a result of the contribution of the same irrelevant operators. Note also that the cut-

off dependence still remains for lower energies, which correspond to larger values of the

volume and therefore larger λ. Therefore it is clear that these effects can only be removed

by considering the counter terms at higher order, which is out of the scope of this paper. To

sum up, our results for the cut-off dependence in the TCSA approach strongly supports that

the similar effect in the spin chain is caused by the same irrelevant operators. A detailed

matching of the phenomenology of the spin chain with the perturbed CFT extended with

irrelevant operators, however, needs better quality data for the spin chain than presently

available, in addition to evaluating the counter terms for the perturbed CFT Hamiltonian

extended with the irrelevant fields.

Another interesting line of development is to extend the theory of counter terms to a

full renormalization group description along the lines in [6, 7, 9]. The perturbing operator

considered in these works had an OPE of the form

ΦΦ ∼ I + Φ

leading to a running coupling at order λ2. We note that at the next order the perturbing

operator Φ2,1 appears in the triple product of itself, which leads to a running coupling

at order λ3. However, even at second order there appear running couplings in the Potts

field theory when other perturbing operators are added, such as in the work [5]. We are

planning to return to these issues in the near future.
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A CFT data

A.1 Conformal blocks

The conformal blocks needed in this work are known in a closed form for the Potts

model [17]. Below we summarize the necessary data for the renormalization computa-

tions. Considering the following correlators

〈Φr,s|Φ2,1(1)Φ2,1(z)|Φr,s〉 (A.1)

the conformal blocks forming a basis for their chiral part around z = 0 are4

φr,s(∞) φr,s(0)

φ2,1(1) φ2,1(z)
φr−1,s = (1− z)3/5z(−1−6r+5s)/10

2F1

(
6

5
(1− r) + s,

6

5
; 1− 6

5
r + s

∣∣∣z)

φr,s(∞) φr,s(0)

φ2,1(1) φ2,1(z)
φr+1,s = (1− z)3/5z(−1+6r−5s)/10

2F1

(
6

5
,
6

5
(1 + r)− s; 1 +

6

5
r − s

∣∣∣z)
(A.2)

where the small φs refer to the chiral components, and

2F1

(
α, β; γ

∣∣z) (A.3)

denotes the standard hypergeometric function. The basis for the conformal blocks around

z = 1 is given by

φr,s(∞) φr,s(0)

φ2,1(1) φ2,1(z)

φ1,1 = (1− z)−4/5z(−1+6r−5s)/10
2F1

(
1 +

6

5
(−1 + r) + s,−1

5
;−2

5

∣∣∣1− z)

φr,s(∞) φr,s(0)

φ2,1(1) φ2,1(z)

φ3,1 = (1− z)3/5z(−1+6r−5s)/10
2F1

(
6

5
,
6

5
(1 + r)− s; 12

5

∣∣∣1− z) .
(A.4)

For clarity of conventions, the insertion points of the fields were displayed above; in the

following considerations they are suppressed. Denoting Φ = Φ2,1 and its chiral part by

φ = φ2,1, the two bases are related by the following duality relations

i i

φ φ

j =
∑
k

Fjk[i]

i i

φ φ

k

(A.5)

4The paper [17] gives the correlator in a different basis, and so their conformal blocks must be transformed

by an appropriate conformal mapping to obtain the ones used here. One can also obtain the blocks in our

basis directly from the results of section 8.3.3 in the monograph [32].
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where

Fjk[i] = Fjk

[
φ φ

i i

]
(A.6)

are the so-called fusion coefficients. These can be easily obtained using the transformation

formulas obeyed by the hypergeometric functions. The ones relevant for our calculations are

Fφr−1,sI[φr,s] = −
2
√

2
5+
√

5
πΓ
(
−6r

5 + s+ 1
)

Γ
(
−2

5

)
Γ
(

6
5

)
Γ
(
−6r

5 + s+ 6
5

)
Fφr−1,sφ3,1 [φr,s] =

2
√

2
5+
√

5
πΓ
(
−6r

5 + s+ 1
)

Γ
(
−1

5

)
Γ
(

12
5

)
Γ
(
−6r

5 + s− 1
5

)
Fφr+1,sI[φr,s] = −

2
√

2
5+
√

5
πΓ
(

6r
5 − s+ 1

)
Γ
(
−2

5

)
Γ
(

6
5

)
Γ
(

6r
5 − s+ 6

5

)
Fφr+1,sφ3,1 [φr,s] =

2
√

2
5+
√

5
πΓ
(

6r
5 − s+ 1

)
Γ
(
−1

5

)
Γ
(

12
5

)
Γ
(

6r
5 − s−

1
5

) . (A.7)

Another necessary ingredient is the expansion of the blocks (A.4) around z = 1. One way

this can be calculated is computing the series expansion of the conformal blocks using the

Taylor series of the hypergeometric function and the binomial series.

On the other hand, a model independent way to obtain the expansion is provided by

Virasoro symmetry. Recalling the notations in (3.51)

i i

j j

k = (1− z)−2hj+hk

∞∑
r=0

Br

[
j j

i i
k

]
(1− z)r

(A.8)

the first few coefficients can be easily obtained using the conformal Ward identities, which

give the following commutation relations between the Virasoro generators and the primary

fields:

[Ln (z) ,Φ (w, w̄)] = h (n+ 1) (w − z)n Φ (w, w̄) + (w − z)n+1 ∂wΦ (w, w̄)[
L̄n (z̄) ,Φ (w, w̄)

]
= h̄ (n+ 1) (w̄ − z̄)n Φ (w, w̄) + (w̄ − z̄)n+1 ∂w̄Φ (w, w̄) (A.9)

where

Ln(z) =

∮
z

dζ

2πi
(ζ − z)n+1 T (ζ) L̄n(z̄) =

∮
z̄

dζ̄

2πi

(
ζ̄ − z̄

)n+1
T̄ (ζ̄) (A.10)

are the modes of the conformal energy momentum tensor located at (z, z̄); the modes

located at z =∞ are given by

Ln(∞) = −
∮
∞

dζ

2πi
ζ−n+1T (ζ) = L−n(0) L̄n(∞) = −

∮
∞

dζ̄

2πi
ζ̄−n+1T̄ (ζ̄) = L̄−n(0).

(A.11)
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We computed the block coefficients up to r = 5, but for the sake of brevity we only give

the first three cases:

B0

[
j j

i i
k

]
= 1 (A.12)

B1

[
j j

i i
k

]
=
hk
2

B2

[
j j

i i
k

]
=
hk
[
(c+8)h2

k+2(c−4)hk+c+4hj(hk−1)+8h3
k

]
+4hi [hj(4hk+2) + (hk−1)hk]

4
(
2(c−5)hk+c+16h2

k

)
where hi,hj and hk are the conformal weights of the respective fields.

For descendant state calculations we consider the first level only, as this is all we need

in the main text. The duality relations have the same fusion coefficients

L−1i L−1i

φ φ

j =
∑
k

Fjk[i]

L−1i L−1i

φ φ

k

(A.13)

and the conformal blocks in the dual channel can be expanded as

L−1i L−1i

j j

k = (1− z)−2hj+hk

∞∑
r=0

Br

[
j j

L−1i L−1i
k

]
(1− z)r

(A.14)

where we computed the coefficients up to r = 5. The first three of them are

B0

[
j j

L−1i L−1i
k

]
= 2hi + h2

k − hk (A.15)

B1

[
j j

L−1i L−1i
k

]
=

1

2
hk
(
2hi + h2

k − hk
)

B2

[
j j

L−1i L−1i
k

]
=
hk
(
h2
k−1

)(
hk
(
chk+c+8h2

k−4
)
+4hj (hk+2)

)
+8h2

i (hj (4hk+2)+(hk−1)hk)

4 (2(c−5)hk+c+16h2
k)

+
hi
(
hk
(
(c+12)h2

k+2(c−5)hk+c+10h3
k−4

)
+8hj

(
h3
k+4h2

k+3hk+1
))

2 (2(c− 5)hk+c+16h2
k)

.

A.2 Structure constants

For reference, here we list the matrix elements of the field Φ 2
5
, 2
5

between the primary

states of the Hilbert space (2.15). These can be arranged by the four sectors (2.34), as

matrix elements between different sectors vanish. The full set of structure constants can

be obtained from [33]; here we present them in a basis of states which is orthonormal.
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In the sector H0 = S0,0 ⊕ S 2
5
, 2
5
⊕ S 7

5
, 7
5
⊕ S3,3, the matrix of Φ 2

5
, 2
5
(1, 1) on the basis of

primary states (ordered the same way as the modules) is
0 1 0 0

1 0 0.9363044884 0

0 0.9363044884 0 0.8076923077

0 0 0.8076923077 0

 . (A.16)

In both sectors H± = S±1
15
, 1
15

⊕ S±2
3
, 2
3

one has

(
0.5461776182 2/3

2/3 0

)
(A.17)

while in H1 = S 2
5
, 7
5
⊕ S 7

5
, 2
5
⊕ S0,3 ⊕ S3,0 the matrix elements are


0 0.9363044884 0.8987170343 0

0.9363044884 0 0 0.8987170343

0.8987170343 0 0 0

0 0.8987170343 0 0

 . (A.18)

The above structure constants are in one-to-one correspondence with the operator product

coefficients involving the field Φ = Φ 2
5
, 2
5
. Writing the operator product expansion in

the form

Φ 2
5
, 2
5
(z, z)A(0, 0) =

∑
B

CBΦA
B(0, 0)

zhA+2/5−hB z̄h̄A+2/5−h̄B
(A.19)

the OPE coefficients are

CBΦA = 〈B|Φ 2
5
, 2
5
(1, 1)|A〉. (A.20)

For primary states, these coefficients are given above in (A.16), (A.17), (A.18); for descen-

dant states they be constructed from the primary ones by a recursive application of the

conformal Ward identities (A.9).

B Derivation of the UV limit of the excited Potts TBA

Let us introduce a short-hand notation for the source terms

g(θ|θ+, θ−) =
N+∑
k=1

log
S1(θ − θ+

k )

S2(θ − θ̄+
k )

+

N−∑
l=1

log
S2(θ − θ−l )

S1(θ − θ̄−l )

ḡ(θ|θ+, θ−) =

N+∑
k=1

log
S2(θ − θ+

k )

S1(θ − θ̄+
k )

+

N−∑
l=1

log
S1(θ − θ−l )

S2(θ − θ̄−l )
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so that we can write the TBA equations in the form

ε1(θ) = iω +mR cosh θ + g(θ|θ+, θ−)− φ1 ? L1(θ)− φ2 ? L2(θ)

ε2(θ) = −iω +mR cosh θ + ḡ(θ|θ+, θ−)− φ1 ? L2(θ)− φ2 ? L1(θ)

eε1(θ+k ) = eε1(θ̄−k ) = −1

eε2(θ−k ) = eε2(θ̄+k ) = −1

E(R) = −im
∑
k

(
sinh θ+

k −sinh θ̄+
k

)
−im

∑
l

(
sinh θ−l −sinh θ̄−l

)
−
∫
dθ

2π
m cosh θ (L1(θ)+L2(θ))

where the twist parameter can take the values where

ω =
2π

3
nω nω = −1, 0,+1. (B.1)

We only derive the right-moving conformal behaviour; the left-moving part can be obtained

in a similar way. For mR� 1 the right kink limit of the TBA is obtained by redefining

θ → θ − log
1

mR
(B.2)

and similarly for the positions of the sources

θ±k → θ±k − log
1

mR
θ̄±k → θ̄±k − log

1

mR
. (B.3)

Those sources whose positions remain finite in the limit are called right movers. To obtain

the limit of the source terms, one can compute

lim
θ→+∞

log
S1(θ − θ+

k )

S2(θ − θ̄+
k )

= −2π

3
i lim

θ→−∞
log

S1(θ − θ−k )

S2(θ − θ̄−k )
=

2π

3
i

lim
θ→+∞

log
S2(θ − θ+

k )

S1(θ − θ̄+
k )

=
2π

3
i lim

θ→−∞
log

S2(θ − θ+
k )

S1(θ − θ̄+
k )

= −2π

3
i. (B.4)

Taking the limit mR→ 0 we get that the right kink limiting functions

εRi (θ) = lim
R→0

εi(θ − logmR) (B.5)

satisfy the equations

εR1 (θ) =
1

2
eθ + iωR + gR(θ|θ+, θ−)− φ1 ? L1(θ)− φ2 ? L2(θ)

εR2 (θ) =
1

2
eθ − iωR + ḡR(θ|θ+, θ−)− φ1 ? L2(θ)− φ2 ? L1(θ)

εR1 (θ+
k ) = iπ

(
2n+

k + 1
)

εR2 (θ−l ) = iπ
(
2n+

l + 1
)

(B.6)

where

gR(θ|θ+, θ−) =

N+
R∑

k=1

log
S1(θ − θ+

k )

S2(θ − θ̄+
k )

+

N−R∑
l=1

log
S2(θ − θ−l )

S1(θ − θ̄−l )

ḡR(θ|θ+, θ−) =

N+
R∑

k=1

log
S2(θ − θ+

k )

S1(θ − θ̄+
k )

+

N−R∑
l=1

log
S1(θ − θ−l )

S2(θ − θ̄−l )
(B.7)
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with sums only over the right-movers, and the effective right twist is

ωR = ω +
2π

3

[(
N− −N−R

)
−
(
N+ −N+

R

)]
. (B.8)

The right handed component of the effective central charge can be written as

cR =
6

2π
i

N+
R∑

k=1

(
eθ

+
k − eθ̄

+
k

)
+

6

2π
i

N−R∑
l=1

(
eθ
−
l − eθ̄

−
l

)
+

3

π2

∫
dθ
eθ

2
(L1(θ) + L2(θ)) . (B.9)

We can rewrite these equations in the following form

εR1 (θ) =
1

2
eθ + iωR − 2iπmR + gR(θ|θ+, θ−)− φ1 ? L1(θ)− φ2 ? L2(θ)

εR2 (θ) =
1

2
eθ − iωR + 2iπmR + ḡR(θ|θ+, θ−)− φ1 ? L2(θ)− φ2 ? L1(θ)

εR1 (θ+
k ) = iπ

(
2n+

k − 2mR + 1
)

εR2 (θ−l ) = iπ
(
2n+

l − 2mR + 1
)

(B.10)

where mR is defined from

iωR + lim
θ→−∞

gR
(
θ|θ+, θ−

)
= i

2π

3

[
nω +

(
N− −N−R

)
−
(
N+ −N+

R

)
−N−R +N+

R

]
= i

2π

3
(3mR + ñω) (B.11)

where mR is an integer and ñω = 0 or ±1 is the remainder. One can the use the standard

dilogarithm trick [10, 13] to write

1

2
eθ = εR1 (θ)− iωR + 2iπmR − gR(θ|θ+, θ−) + φ1 ? L1(θ) + φ2 ? L2(θ)

1

2
eθ = εR2 (θ) + iωR − 2iπmR − ḡR(θ|θ+, θ−) + φ1 ? L2(θ) + φ2 ? L1(θ). (B.12)

Differentiating the two sides

1

2
eθ =

d

dθ

{
εR1 (θ)− gR(θ|θ+, θ−) + φ1 ? L1(θ) + φ2 ? L2(θ)

}
1

2
eθ =

d

dθ

{
εR2 (θ)− ḡR(θ|θ+, θ−) + φ1 ? L2(θ) + φ2 ? L1(θ)

}
(B.13)

and substituting into the expression (B.9) we obtain

cR =
6

2π
i

N+
R∑

k=1

(
eθ

+
k − eθ̄

+
k

)
+

6

2π
i

N−R∑
l=1

(
eθ
−
l − eθ̄

−
l

)
+

3

π2

∫
dθ

d

dθ

{
εR1 (θ)− gR(θ|θ+, θ−) + φ1 ? L1(θ) + φ2 ? L2(θ)

}
L1(θ)

+
3

π2

∫
dθ

d

dθ

{
εR2 (θ)− ḡR(θ|θ+, θ−) + φ1 ? L2(θ) + φ2 ? L1(θ)

}
L2(θ)
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=
6

2π
i

N+
R∑

k=1

(
eθ

+
k − eθ̄

+
k

)
+

6

2π
i

N−R∑
l=1

(
eθ
−
l − eθ̄

−
l

)
+

3

π2

∫ +∞

εR1 (−∞)
dε log(1 + e−ε) +

6

π2

∫ +∞

εR2 (−∞)
dε log(1 + e−ε)

+
3

π2

∫
dθ

d

dθ

{
−gR(θ|θ+, θ−) + φ1 ? L1(θ) + φ2 ? L2(θ)

}
L1(θ)

+
3

π2

∫
dθ

d

dθ

{
−ḡR(θ|θ+, θ−) + φ1 ? L2(θ) + φ2 ? L1(θ)

}
L2(θ) (B.14)

where the integrals over ε must be taken over an appropriate contour in the ε plane which

is analytically equivalent the curves εRi (θ) as θ runs over the real line.

In the next step, we can treat the θ integrals using partial integration:∫
dθ

d

dθ

{
−gR(θ|θ+, θ−) + φ1 ? L1(θ) + φ2 ? L2(θ)

}
L1(θ)

+

∫
dθ

d

dθ

{
−ḡR(θ|θ+, θ−) + φ1 ? L2(θ) + φ2 ? L1(θ)

}
L2(θ)

=

∫
dθ
{
−g′R(θ|θ+, θ−)L1(θ)− ḡ′R(θ|θ+, θ−)L2(θ)

}
−
∫
dθ {φ1 ? L1(θ) + φ2 ? L2(θ)} L′1(θ)

−
∫
dθ {φ1 ? L2(θ) + φ2 ? L1(θ)} L′2(θ)

+ [{φ1 ? L1(θ) + φ2 ? L2(θ)} L1(θ)]∞−∞

+ [{φ1 ? L2(θ) + φ2 ? L1(θ)} L2(θ)]∞−∞ (B.15)

and the fact that L1,2(∞) = 0 to obtain

cR =
6

2π
i

N+
R∑

k=1

(
eθ

+
k − eθ̄

+
k

)
+

6

2π
i

N−R∑
l=1

(
eθ
−
l − eθ̄

−
l

)
+

3

π2

∫ +∞

εR1 (−∞)
dε log(1 + e−ε) +

3

π2

∫ +∞

εR2 (−∞)
dε log(1 + e−ε)

+
3

π2

∫
dθ
{
−g′R(θ|θ+, θ−)L1(θ)− ḡ′R(θ|θ+, θ−)L2(θ)

}
− 3

π2

1

2
[φ1 ? L1(−∞) + φ2 ? L2(−∞)] L1(−∞)

− 3

π2

1

2
[φ1 ? L2(−∞) + φ2 ? L2(−∞)] L2(−∞). (B.16)

The remaining integrals can be expressed using the kink TBA equations for θ → −∞:

φ1 ? L1(−∞) + φ2 ? L2(−∞) = −εR1 (−∞) + iωR − 2iπmR + gR(−∞|θ+, θ−)

φ1 ? L2(−∞) + φ2 ? L1(−∞) = −εR2 (−∞)− iωR + 2iπmR + ḡR(−∞|θ+, θ−). (B.17)
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Using the definition of mR leads to

φ1 ? L1(−∞) + φ2 ? L2(−∞) = −εR1 (−∞) + i
2π

3
ñω

φ1 ? L2(−∞) + φ2 ? L1(−∞) = −εR2 (−∞)− i2π
3
ñω. (B.18)

For the terms involving g′R and ḡ′R we can write

g′R(θ|θ+, θ−) =

N+
R∑

k=1

iφ1(θ − θ+
k )− iφ2(θ − θ̄+

k ) +

N−R∑
l=1

iφ2(θ − θ−l )− iφ1(θ − θ̄−l )

ḡ′R(θ|θ+, θ−) =

N+
R∑

k=1

iφ2(θ − θ+
k )− iφ1(θ − θ̄+

k ) +

N−R∑
l=1

iφ1(θ − θ−l )− iφ2(θ − θ̄−l ) (B.19)

and so∫
dθ
{
−g′R(θ|θ+, θ−)L1(θ)− ḡ′R(θ|θ+, θ−)L2(θ)

}
= −2πi

N+
R∑

k=1

{
φ1 ? L1(θ+

k ) + φ2 ? L2(θ+
k )− φ2 ? L1(θ̄+

k )− φ1 ? L2(θ̄+
k )
}

−2πi

N−R∑
l=1

{
−φ1 ? L1(θ̄−l )− φ2 ? L2(θ̄−l ) + φ2 ? L1(θ−l ) + φ1 ? L2(θ−l )

}
. (B.20)

Now we can eliminate the convolution terms using the equations determining the singularity

positions

iπ
(
2n+

k + 1
)

=
1

2
eθ

+
k + iωR + gR(θ+

k |θ
+, θ−)− φ1 ? L1(θ+

k )− φ2 ? L2(θ+
k )

−iπ
(
2n+

k + 1
)

=
1

2
eθ̄

+
k − iωR + ḡR(θ̄+

k |θ
+, θ−)− φ1 ? L2(θ̄+

k )− φ2 ? L1(θ̄+
k ) (B.21)

−iπ
(
2n−l + 1

)
=

1

2
eθ̄
−
l + iωR + gR(θ̄−l |θ

+, θ−)− φ1 ? L1(θ̄−l )− φ2 ? L2(θ̄−l )

iπ
(
2n−l + 1

)
=

1

2
eθ
−
l − iωR + ḡR(θ−l |θ

+, θ−)− φ1 ? L2(θ−l )− φ2 ? L1(θ−l ). (B.22)

The end result is

cR =
3

π2

{∫ +∞

εR1 (−∞)
dε log(1 + e−ε)

}
+

3

π2

{∫ +∞

εR2 (−∞)
dε log(1 + e−ε)

}

−12

N+
R∑

k=1

(
2n+

k + 1
)
− 12

N−R∑
l=1

(
2n−l + 1

)
+

12

π
ωR
(
N+
R −N

−
R

)

− 6

π
i

N+
R∑

k=1

{
gR(θ+

k |θ
+, θ−)−ḡR(θ̄+

k |θ
+, θ−)

}
− 6

π
i

N−R∑
l=1

{
ḡR(θ̄−l |θ

+, θ−)−gR(θ−l |θ
+, θ−)

}
− 3

π2

1

2

[
− log Y1 + i

2π

3
ñω

]
log
(
1 + Y −1

1

)
− 3

π2

1

2

[
− log Y2 − i

2π

3
ñω

]
log
(
1 + Y −1

2

)
(B.23)
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where Yi = εi (−∞) are solutions of the plateau equation

log Y1 = i
2π

3
ñω +

1

3
log
(
1 + Y −1

1

)
+

2

3
log
(
1 + Y −1

2

)
log Y2 = −i2π

3
ñω +

2

3
log
(
1 + Y −1

1

)
+

1

3
log
(
1 + Y −1

2

)
. (B.24)

From [11, 12], the solutions of these equations are known, together with the values of the

dilogarithm integrals:

3

π2

{∫ +∞

εR1 (−∞)
dε log(1 + e−ε)

}
+

3

π2

{∫ +∞

εR2 (−∞)
dε log(1 + e−ε)

}

− 3

π2

1

2

[
− log Y1 + i

2π

3
ñω

]
log
(
1 + Y −1

1

)
− 3

π2

1

2

[
− log Y2 − i

2π

3
ñω

]
log
(
1 + Y −1

2

)
=

{
2
5 ñω = 0

−2
5 ñω = ±1

. (B.25)

Using standard identities for the logarithm of products, the contributions containing the

sums of gR and ḡR terms in (B.23) naively evaluate to zero. However, this result is changed

by taking care of the branch cuts of the logarithms. Using the notations of subsection 4.5,

the contribution depends on the signs of δ±r of the corresponding singularities and can

quickly be evaluated individually for every state considered.

C Tables for the comparison between renormalized TCSA numerics and

TBA predictions

r = 0.1 r = 1 r = 3 r = 5 r = 7

TBA −4.1958706705 −0.595088 −0.8907 −1.446 −2.021

raw TCSA level 12 −4.1947973491 −0.568125 −0.7649 −1.188 −1.603

renormalized TCSA level 8 −4.1958706700 −0.595083 −0.8903 −1.443 −2.011

renormalized TCSA level 12 −4.1958706700 −0.595085 −0.8905 −1.444 −2.014

Table 6. Ground state in H0 sector.

r = 0.1 (LYTCSA) r = 1(LYTCSA) r = 3(LYTCSA) r = 5 r = 7

TBA 46.1055595046 4.8947517 2.32864 2.05871 2.008

raw TCSA level 12 46.1066313406 4.9216798 2.45431 2.317 2.429

renormalized TCSA level 8 46.1055594445 4.8947579 2.32914 2.062 2.022

renormalized TCSA level 12 46.1055595057 4.8947566 2.32897 2.061 2.018

Table 7. First excited state in H0 sector: stationary AĀ.
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r = 0.3 r = 1 r = 3 r = 5 r = 7

TBA 57.0847781 17.09738 5.9176 3.856 3.064

raw TCSA level 12 57.0898932 17.12499 6.0467 4.122 3.494

renormalized TCSA level 8 57.0847809 17.09742 5.9188 3.862 3.079

renormalized TCSA level 12 57.0847788 17.09740 5.9183 3.859 3.073

Table 8. Second excited state in H0 sector: moving AĀ.

r = 1.6 r = 2 r = 3 r = 5 r = 7

TBA 11.4023947 9.340653 6.66642 4.681 3.939

raw TCSA level 12 11.4556586 9.413463 6.79502 4.946 4.367

renormalized TCSA level 8 11.4023746 9.340648 6.66667 4.685 3.951

renormalized TCSA level 12 11.4023751 9.340640 6.66655 4.683 3.947

Table 9. Third excited state in H0 sector: AAA three-particle state.

r = 1.2 r = 2 r = 3 r = 5 r = 7

TBA 0.951783 0.930075 0.95363 0.989 0.997

raw TCSA level 12 0.986768 1.00174 1.08041 1.249 1.422

renormalized TCSA level 8 0.951786 0.930273 0.95457 0.993 1.015

renormalized TCSA level 12 0.951776 0.930195 0.95420 0.991 1.009

Table 10. Stationary one particle state (ground state in H± in the paramagnetic phase).

r = 0.1 r = 1 r = 3 r = 5 r = 7

TBA 3.9667856906 0.204269 0.01284 0.00128 0.000145

raw TCSA level 12 3.9678649202 0.231387 0.1395 0.2621 0.4221

renormalized TCSA level 8 3.9667857008 0.204285 0.0137 0.0064 0.0157

renormalized TCSA level 12 3.9667857002 0.204278 0.0133 0.0042 0.0088

Table 11. Twisted vacuum (ground state in H± in the ferromagnetic phase).

r = 0.1 r = 1 r = 3 r = 5 r = 7

TBA 79.613697179 8.1928567 3.26417 2.4947 2.252

raw TCSA level 12 79.614806090 8.2207133 3.39399 2.7611 2.682

renormalized TCSA level 8 79.613697095 8.1928575 3.26436 2.4966 2.260

renormalized TCSA level 12 79.613697169 8.1928585 3.26431 2.4959 2.257

Table 12. First AA two-particle state (first excited state in H± in the paramagnetic phase).
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r = 0.1 r = 1 r = 3 r = 5 r = 7

TBA 79.613694779 8.191921 3.25131 2.4657 2.216

raw TCSA level 12 79.614803694 8.219778 3.38117 2.7324 2.647

renormalized TCSA level 8 79.613694699 8.191922 3.25158 2.4680 2.226

renormalized TCSA level 12 79.613694773 8.191923 3.25149 2.4673 2.223

Table 13. First twisted AĀ two-particle state (first excited state inH± in the ferromagnetic phase).

In the above data for small volumes, instead of analytically continuing the TBA we

simply used the correspondence with the scaling Lee-Yang model, as the Lee-Yang TCSA

is much easier to implement and numerically precise enough for the present comparison.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[30] Á. Rapp and G. Zaránd, Dynamical correlations and quantum phase transition in the

quantum potts model, Phys. Rev. B 74 (2006) 014433 [cond-mat/0507390].
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