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1 Introduction

The mass of the heavy quarkonium ground state has been computed to increasingly higher

order in perturbation theory over the years [1–10], presently reaching NNNLO precision, i.e.

O(mα5
s). The use of effective field theory methods [11–14] was important for reaching this

accuracy. One of the main motivations for this ongoing effort is the possibility to obtain

accurate determinations of the bottom and (may be) charm quark masses by equating these

theoretical expressions to the experimental values [4, 7, 15–21]. This possibility is reinforced

by the fact that the renormalon of the pole mass cancels with the renormalon of the static

potential [22–24] making these energies mainly perturbative objects, and, therefore, ideal

candidates for good determinations of the heavy quark masses. Taking advantage of this

fact requires the use of the so-called threshold masses (see, for instance, [17, 24–26]), which

explicitly take into account the cancellation between the pole mass and the static potential

renormalon.

One of these analysis was made in ref. [17]. In this reference the NNLO expression of

the heavy quarkonium ground state mass was used, as well as some partial NNNLO effects

(those obtained from the large-β0 approximation [27, 28], as well as the leading O(mα5
s)
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logarithms [5]) to obtain an accurate determination of the bottom mass. The charm quark

was considered to be active and its mass approximated to zero. The threshold mass used

was the so-called renormalon subtracted (RS) mass. This mass is defined such that the

leading renormalon of the pole mass is explicitly subtracted. Therefore, it requires the

knowledge of the normalization of the renormalon, which was also approximately computed

in that reference.

There is a series of developments that motivate updating such analysis. One obvious

improvement would be the incorporation of the charm quark mass effects. For the case of

the heavy quarkonium mass (versus the pole mass) it was concluded that the charm quark

decoupled and it was a good approximation to consider the theory with only three active

massless flavours [18]. In this paper we argue that one should also use this approximation

for the relation between the pole and the MS mass, producing much smaller shifts than if

working with four active flavours. Therefore, the calculation should be redone accordingly.

It is also possible to improve the determination of the normalization of the pole mass

(and the static potential) leading renormalon, Nm. On the one hand the existence of the

three-loop expression of the static potential allows the determination of Nm to one order

higher in the corresponding expansion. On the other hand, recent analysis in lattice sim-

ulations [29] suggest that the direct determination of Nm from the last known coefficients

of the perturbative series may actually produce more accurate results than previous esti-

mates, which were obtained using the Borel transform of the perturbative series as their

key quantity. Such improved value would have an immediate impact in heavy quark physics

in general, and in the determination of the heavy quark mass from the heavy quarkonium

spectrum in particular.

With respect to the latter, the complete NNNLO correction to the perturbative ex-

pression of the Υ(1S) mass is now known. By including the complete NNNLO expression

we can study this term without scheme ambiguity and assess its impact. Even more im-

portant, at this order ultrasoft effects appear for the first time. There is the worry that

physics at the ultrasoft scale can not be computed in perturbation theory. The reason is

that the natural scale associated to those degrees of freedom is of order mα2
s, which, up to

numerical factors, is a low scale. Yet, there have been some analysis where the ultrasoft

scale has been treated in perturbation theory. For instance, in ref. [30] the perturbative

expression of the static potential (which includes ultrasoft effects) was compared with lat-

tice simulations. Also in refs. [16, 18] it has been argued that the nonperturbative effects

are small for the low states of heavy quarkonium. On the other hand two existing analyses

that incorporate the NNNLO expression yield bigger values of mb [7, 21].1 In our analysis

we would like to quantify the real impact of these corrections, as it is important to know

what pure perturbation theory has to say before asking for non-perturbative corrections.

Finally, the existence of the complete NNNLO result allows to compare with the large-β0

estimate of the NNNLO correction, and see how reliable such approximation is.

In section 2 we study the corrections to the pole mass and the static potential due

to the charm quark. In section 3 we present the calculation of the normalization constant

1Ref. [7] uses an estimate for the three-loop static potential.
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(residue parameter) Nm of the leading infrared renormalon: in subsection 3.1 from the

static quark potential V (r) and in subsection 3.2 from the ratio mq/mq. In addition, in

subsection 3.3 we elaborate over these determinations and obtain an improved estimate of

Nm and the coefficients r3 and r4 of the perturbative expansion in αs of the mass ratio

mq/mq. In section 4 we extract the bottom quark mass from the energy of the quarkonium

ground state in the RS and RS’ scheme defined in ref. [17] and later in the text. In the

conclusions we summarize the results obtained.

2 Charm effects in the pole mass and static potential

In this section we present the perturbation expansions of the pole mass and static potential

with special emphasis as to how to incorporate charm quark effects.

2.1 Charm quark effects in the pole mass

In this subsection we assume that we have Nl massless quarks, one active massive quark

with mass mc, and a (non-active) heavy quark with mass mb (such that mb > mc). There-

fore, we have a total of Nf = Nl + 1 active quarks. This is the situation relevant for the

bottom quark (where Nf = 4 and Nl = 3).

The pole mass mb and the MS mass mb ≡ mb(µ = mb) of the quark b are related by

the following equality

mb = mb

[
1 +R0

(
a+(mb) + r1(Nf )a2

+(mb) + r2(Nf )a3
+(mb) + r3(Nf )a4

+(mb)
)

+O(a5
+)
]

+δm(+)
c , (2.1)

where the coefficients rn have been evaluated with Nf active massless quarks. The “+”

stands for the fact that a is also evaluated with Nf (massless) active quarks: a+(µ) =

a(µ;Nf ) ≡ αs(µ;Nf )/π. The coefficients R0, r1, and r2 were obtained in refs. [31], [32], [33,

34], respectively:

R0 =
4

3
, R0r1(Nf ) = 6.248β0−3.739 , R0r2(Nf ) = 23.497β2

0+6.248β1+1.019β0−29.94 .

(2.2)

The value of r3 is unknown (except for the N3
l [35] and N2

l [36] dependence). Therefore,

the value of r3 will be estimated, see table 2 in section 3.3. Here, β0 = (11− 2Nf/3)/4 and

β1 = (102−38Nf/3)/16 are the first two coefficients of the renormalization group equation

of a
da(Q)

d lnQ2
= −β0a

2(Q)
(
1 + c1a(Q) + c2a

2(Q) + c3a
3(Q) + · · ·

)
, (2.3)

where we use the notation cj ≡ βj/β0 for j ≥ 1. β3 was computed in refs. [37, 38]. Specific

values of the coefficients rj are: r1(Nf = 3) = 7.739 and r2(Nf = 3) = 87.224; and

r1(Nf = 4) = 6.958 and r2(Nf = 4) = 70.659.

The sum in eq. (2.1) can be reexpressed in terms of a+(µ) at an arbitrary renormal-

ization scale µ:

mb = mb (1 + S(Nf )) + δm(+)
c , (2.4a)

– 3 –
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where (r
(+)
i (µ) ≡ ri(µ;Nf ))

S(Nf ) =
4

3
a+(µ)

[
1 + r

(+)
1 (µ)a+(µ) + r

(+)
2 (µ)a2

+(µ) + r
(+)
3 (µ)a3

+(µ) +O(a4
+)
]

(2.4b)

r1(µ;Nf ) = r1(Nf ) + β0Lm(µ) , (2.4c)

r2(µ;Nf ) = r2(Nf ) +
(
2β0Lm(µ)r1 + β2

0L
2
m(µ)

)
+ β1Lm(µ) , (2.4d)

r3(µ;Nf ) = r3(Nf ) +
(
3β0Lm(µ)r2 + 3β2

0L
2
m(µ)r1 + β3

0L
3
m(µ)

)
+β1

(
2Lm(µ)r1 +

5

2
β0L

2
m(µ)

)
+ β2Lm(µ) , (2.4e)

Lm(µ) = ln(µ2/m2
b), and we maintain, for simplicity, the notation rj ≡ rj(mb).

Finite-mass charm effects are incorporated in

δm(+)
c = δm

(1)
(c,+)a

2
+(mb) + δm

(2)
(c,+)a

3
+(mb) +O(a4

+) , (2.5)

which vanishes in the mc → 0 limit. The first term of the series is known [32] and reads

δm
(1)
(c,+) =

4

3
mb∆[mc/mb], (2.6)

where (see also [18])

∆[r] =
1

4

[
ln2 r +

π2

6
−
(

ln r +
3

2

)
r2

+(1 + r)(1 + r3)

(
Li2(−r)− 1

2
ln2 r + log r log(1 + r) +

π2

6

)
+(1− r)(1− r3)

(
Li2(r)− 1

2
ln2 r + ln r ln(1− r)− π2

3

)]
. (2.7)

The exact expression of δm
(2)
(c,+) was obtained in ref. [39] and it will be considered later.

On the other hand O(a4
+) terms or higher are unknown.

It has been noticed in ref. [40] that δm
(1)
(c,+) is mainly determined by the infrared

behaviour of the loop integral, which is saturated to a large extent by virtualities of order

∼ mc. In this approximation we have

δm
(1)
(c,+) ' mc

π2

6
= 2.08907 MeV , (2.8)

for mc = 1.27 GeV (to be compared with the exact result δm
(1)
(c,+) = 1.8058 MeV with

mb = 4.2 GeV). This shows that already at this order δm
(+)
c is dominated by the infrared

behaviour of the loop integral. We expect that this will be even more so at higher loops. On

the other hand the infrared behaviour of δm
(+)
c can be related with the infrared behaviour

of the static potential. For the static potential the charm mass dependence is known

with two loop accuracy [41]. In ref. [28] this observation was used to obtain the infrared

behaviour of δm
(2)
(c,+), ie. the linear behavior of δm

(2)
(c,+):

δm
(2)
(c,+) '

mcπ
2

3

(
β0

(
ln

(
m2
b

m2
c

)
+

14

3
− 4 ln(2)

)
+

19(b1b2 + f1f2)

3π
− 59

45
− 2

3
ln(2)

)
+

2

9
mcπ

2 +O(m2
c) , (2.9)
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where b2 = 1.12; f2 = 0.47; f1 = ln(A/b2)/ ln(f2/b2); b1 = ln(A/f2)/ ln(b2/f2) and ln(A) =
13ζ(3)

19 + 161
228 − ln(2). The coefficients b2, f2 were obtained from an approximate numerical

fit to [41]. The last term in eq. (2.9) comes from the fact that we are using the MS charm

mass (otherwise it could be absorbed in eq. (2.8)). In any case it is small compared with

the rest of the coefficient. Eq. (2.9) is then approximated by

δm
(2,app)
(c,+) ' mc

(
21.277− 16.998 ln

(
mc

mb

)
+Nl

(
1.097 ln

(
mc

mb

)
− 1.039

)
+

2

9
π2

)
= 46.6725 MeV . (2.10)

The exact analytic expression of δm
(2)
(c,+) is extremely lengthy. An accurate approximated

numerical form can be found in ref. [39], which is enough for our purposes. For our values

of the bottom and charm masses (mb = 4.2 GeV and mc = 1.27 GeV) it reads

δm
(2)
(c,+) = 48.6793 MeV , (2.11)

and its linear approximation reads

δm
(2,lin)
(c,+) = mc

(
19.996− 16.998 ln

(
mc

mb

)
+Nl

(
1.097 ln

(
mc

mb

)
− 1.039

)
+

2

9
π2

)
= 45.0454 MeV . (2.12)

The difference between δm
(2,app)
(c,+) and δm

(2,lin)
(c,+) is due to the approximations involved in

obtaining eq. (2.10) (see the discussion in ref. [39]). Therefore, we take eq. (2.12) as the

exact expression for the linear approximation. We observe that the linear approximation

represents a quite good approximation of the exact result.

We can now compare the size of δm
(1)
(c,+)a

2
+(mb) = 9.3 MeV versus δm

(2)
(c,+)a

3
+(mb) =

18.1 MeV (δm
(2,lin)
(c,+) a

3
+(mb) = 16.8 MeV yields a similar number). We observe a bad con-

vergent series (this is also so if we choose different renormalization scales). The reason

for this bad behaviour is the following. In principle, it may seem natural to work with

Nf active flavours in eq. (2.1), since the natural scale is mb � mc. Nevertheless, as it

has been discussed in ref. [42], at high orders in perturbation theory the charm quark

decouples. The reason is that at order n, the natural scale of the loop integral is me−n,

which for n large enough becomes smaller than mc. Therefore, the charm mass acts as an

infrared cutoff killing the low energy contributions to the integral of the fourth flavour that

would otherwise produce the factorial behaviour. Thus, working with Nf active flavours

produces spurious contributions that deteriorate the convergence of δm
(+)
c . This problem

can be solved by decoupling the charm quark by expanding a+ in powers of a− ≡ a(µ;Nl)

(see appendix A for details). The relation between the pole and the MS mass now reads

mb = mb (1 + S(Nl)) + δmc , (2.13)

where (r
(−)
i (µ) ≡ ri(µ;Nl))

S(Nl) =
4

3
a−(µ)

[
1 + r

(−)
1 (µ)a−(µ) + r

(−)
2 (µ)a2

−(µ) + r
(−)
3 (µ)a3

−(µ) +O(a4
−)
]

(2.14)

– 5 –
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and we have absorbed the effects of the decoupling of S in δmc, which now reads

δmc =
[
δm

(1)
(c,+) + δm

(1)
(c,dec.)

]
a2
−(mb) +

[
δm

(2)
(c,+) + δm

(2)
(c,dec.)

]
a3
−(mb) +O(a4

−) , (2.15)

where δm
(i)
(c,dec.) are generated by this decoupling and read

δm
(1)
(c,dec.) =

2

9
mb

(
ln

(
m2
b

m2
c

)
− 71

32
− π2

4

)
, (2.16)

δm
(2)
(c,dec) = mb

(
−2293

243
− 809

648
π2 +

61

1944
π4 − 11

81
π2ln(2) +

2

81
π2 ln2(2) +

ln4(2)

81

+
3107

864
ln

(
m̄2
b

m̄2
c

)
+

1

27
π2ln

(
m̄2
b

m̄2
c

)
+

1

27
π2ln(2)ln

(
m̄2
b

m̄2
c

)
+

1

27
ln2

(
m̄2
b

m̄2
c

)
+

8

27
Li4

(
1

2

)
− 527

216
ζ(3)− 1

18
ζ(3)ln

(
m̄2
b

m̄2
c

))
+

1

3
ln

(
m̄2
b

m̄2
c

)
δm

(1)
(c,+) . (2.17)

If we put numbers we obtain
[
δm

(1)
(c,+) + δm

(1)
(c,dec.)

]
a2
−(mb) = −1.6 MeV and

[
δm

(2)
(c,+)

+δm
(2)
(c,dec.)

]
a3
−(mb) = −0.3 MeV. We observe that the series is now convergent, and the

strong cancellation between δm
(i)
(c,+) and δm

(i)
(c,dec.), as expected. This cancellation and con-

vergence holds for different factorization scales, as we illustrate in figure 1 by comparing

the absolute size of the LO (dashed line) and NLO (solid line) correction. This analysis

makes clear that the magnitude of the O(a2) charm effect is ∼ −2 MeV (compared with

∼ ±10 MeV for the individual terms δm
(1)
(c,+)a

2
−(mb) and δm

(1)
(c,dec.)a

2
−(mb)), and somewhat

smaller than ±1 MeV for the O(a3) charm effects (compared with ∼ ±20 MeV for the

individual terms δm
(2)
(c,+)a

3
−(mb) and δm

(2)
(c,dec.)a

3
−(mb)). After the cancellation, the O(a3)

charm-mass effect is clearly negligible compared with other uncertainties. Note also that,

even though δm
(2,lin)
(c,+) reproduces quite well the magnitude of δm

(2)
(c,+), it does not well

enough to get an accurate value of the NLO correction after the cancellation. Therefore,

the linear approximation could only be used to get the order of magnitude of the NLO ef-

fect (once the cancellation has been incorporated in the computation). We show this effect

in figure 1 by comparing the exact NLO (solid line) correction with the linear approxi-

mation of the NLO correction (dotted line). Note also that the precision required is such

that δm
(2,app)
(c,+) is not accurate enough to reproduce the linear approximation of the NLO

correction (compare the dotted and dashed-dotted lines in figure 1). Finally, in figure 2,

we give our final results for the charm-related contributions. Observe the smallness of the

correction and the scale stability of the final result, producing a shift ∼ −2 MeV.

2.2 Charm quark effects in the static potential

In this subsection we directly work with Nl massless active quarks (as motivated by the

analysis of ref. [18]). The effects of the charm quark are included as an explicit correction

to the potential.

The perturbation expansion of the QCD q-q static singlet potential is known with high

accuracy. Its O(a2) contribution was obtained in ref. [1], the O(a3) in refs. [3, 43], the

– 6 –
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Figure 1. Plot of the O(a2
−) (dashed line) and O(a3

−) (solid line) terms of δmc (cf. eq. (2.15)) as

a function of the factorization scale. We also plot the O(a3
−) term with δm

(2)
(c,+) approximated to

δm
(2,lin)
(c,+) (dotted line) and δm

(2,app)
(c,+) (dashed-dotted line).
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Figure 2. Plot of δmc (cf. eq. (2.15)) truncated at O(a2
−) (LO, dashed line) and O(a3

−) (LO+NLO,

solid line) as a function of the factorization scale.
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O(a4) logarithmic term in ref. [44], the O(a4) light-flavour finite piece in ref. [8], and the

O(a4) pure gluonic finite piece in refs. [9, 10]. In momentum space the potential reads

V (|k|) = −16π2

3

1

|k|2
a−(µ)

{
1 + a−(µ)

[
1

4
a1 + β0L

]
+ a2

−(µ)

[
1

42
a2 +

(
1

2
a1β0 + β1

)
L+ β2

0L
2

]
+a3

−(µ)

[
1

43
a3 + b3ln

(
µ2
f

|k|2

)
+

(
3

16
a2β0 +

1

2
a1β1 + β2

)
L+

(
3

4
a1β

2
0 +

5

2
β0β1

)
L2 + β2

0L
3

]

+O(a4
−)

}
, (2.18)

where L = ln(µ2/|k|2) and µ is the renormalization scale. The coefficients a1, a2 and a3

read

a1 =
31

3
− 10

9
Nl , (2.19)

a2 =
100

81
Nl

2 −
(

52ζ(3)

3
+

1229

27

)
Nl + 9

(
4343

162
+

1

4

(
16π2 − π4

)
+

22ζ(3)

3

)
, (2.20)

a3 = a
(0)
3 + a

(1)
3 Nl + a

(2)
3 N2

l + a
(3)
3 N3

l , (2.21)

where the coefficients in a3 are

a
(0)
3 = 13432.6 , a

(1)
3 = −3289.91 , a

(2)
3 =

412ζ(3)

9
+

93631

972
+

16π4

45
, a

(3)
3 = −1000

729
. (2.22)

The terms involving powers of L in eq. (2.18) cancel the µ dependence of αs(µ) in V .

Besides, at O(a4) there is a factorization scale dependence that can not be absorbed in αs.

We have singled out this contribution, it is proportional to

b3 = 27π2/24 , (2.23)

and depends on the infrared cutoff µf , which cuts out ultrasoft (us) degrees of free-

dom (|k2|1/2 ∼ mqα
2
s ∼ Eus) from the potential, which is characterized by the soft scale

(|k2|1/2 ∼ mqαs ∼ Es): Eus < µf < Es. The existence of the infrared divergent terms at

∼ a4 in the static Wilson loop was first pointed out in ref. [45].

The three-dimensional Fourier transformation of eq. (2.18) gives the perturbation ex-

pansion of the static potential in position space

V (r) = −4π

3

1

r
a−(µ)

{
1 + a−(µ)

[
1

4
a1 + 2β0l

]
+a2
−(µ)

[
1

42
a2 + (a1β0 + 2β1) l + β2

0(4l2 + π2/3)

]
+a3
−(µ)

[
1

43
a3 + 2b3ln (µfre

γE ) +

(
3

16
a2β0 +

1

2
a1β1 + β2

)
2l

+

(
3

4
a1β

2
0 +

5

2
β0β1

)
(4l2 + π2/3) + β3

0(8l3 + 2π2l + 16ζ(3))

]
+O(a4

−)

}
, (2.24)

where the notation l = ln(µr exp(γE)) is used, with γE being the Euler constant (γE =

0.5772 . . .).
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The leading charm quark correction to the potential is the following

δVc(r) = −4π

3

a−(µ)

r

(
a−(µ)

3

)∫ ∞
1

dx

√
x2 − 1

x2

(
1 +

1

2x2

)
e−2mcrx . (2.25)

Its effect will be quite tiny. Therefore, we have only incorporated eq. (2.25) in our final

evaluations and have not considered any other subdominant effects in the charm mass.

3 Leading renormalon of the pole mass and the singlet static potential

The determination of the normalization constant of the leading infrared renormalon of the

pole mass (and the singlet static potential) is an essential ingredient for the RS scheme de-

fined in ref. [17]. Therefore, in this section we want to improve over previous determinations

of this quantity.

It is clear from the discussion of section 2 that the charm quark decouples at large

orders in perturbation theory (in practice this happens at rather low orders). Therefore,

we work in the theory with Nl (Nl = 3 for the bottom case) active (masless flavours), and

all the coefficients in this section should be understood with Nf = Nl.

The leading asymptotic behaviour of the perturbation series of mb (see eq. (2.14)) is

determined by the leading infrared renormalon ambiguity of mb. This ambiguity δmb is

renormalization scale and scheme independent and is a QCD scale with the dimension of

energy; therefore, it must be proportional to the QCD scale ΛQCD: δmb = const×ΛQCD [46].

This scale, written in terms of a(µ) and of the renormalization scale µ, has the form

Λ = const×µ exp

(
− 1

2β0a(µ)

)
a−ν(µ)c−ν1

[
1 +

∞∑
k=1

(2β0)kν(ν − 1) · · · (ν − k + 1)c̃ka
k(µ)

]
,

(3.1)

where

ν =
c1

2β0
=

β1

2β2
0

, (3.2a)

c̃1 =
(c2

1 − c2)

(2β0)2ν
, c̃2 =

1

2(2β0)4ν(ν−1)

[
(c2

1 − c2)2 − 2β0(c3
1 − 2c1c2 + c3)

]
. (3.2b)

c̃3 =
1

6(2β0)6ν(ν−1)(ν−2)

[
(c2

1 − c2)3 − 6β0(c2
1 − c2)(c3

1 − 2c1c2 + c3) (3.2c)

+8β2
0(c4

1 − 3c2
1c2 + c2

2 + 2c1c3 − c4)
]
.

The renormalon ambiguities give us information on the asymptotic behaviour of the

perturbation expansion. This information is easily encoded in the Borel transform of S,

BS(u;µ) ≡ 4

3

[
1 +

r1(µ)

1! β0
u+

r2(µ)

2! β2
0

u2 +
r3(µ)

3! β3
0

u3 +O(u4)

]
. (3.3)

This function has renormalon singularities at u = 1/2, 3/2, 2, . . . ,−1,−2, . . . [25, 47, 48],

and likely also at u = +1 [49]. Except for the normalization, the leading infrared renor-

malon ambiguity of mb, δmb = const×ΛQCD, completely determines [46] the behaviour of
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the nearest singularity to the origin (at u = 1/2) of BS , since Λ = κImSBI(z = 2β0a(µ)−iε),
where κ is a µ-independent constant and ‘BI’ denotes the Borel-integrated expression for

S.2 We then have BS(u;µ)

BS(u;µ) = Nmπ
µ

mb

1

(1− 2u)1+ν

[
1 +

∞∑
k=1

c̃k(1− 2u)k

]
+B

(an.)
S (u;µ) , (3.4)

where Nm is the residue (normalization constant) parameter of the renormalon. c̃1 was

first computed in ref. [46], and c̃2 in refs. [17, 48]. We also give a value for c̃3 using the

estimate for the MS scheme coefficient c4 = β4/β0 obtained in ref. [51] by Padé-related

methods

β4 =
1

45
(A4 +B4Nf + C4N

2
f +D4N

3
f + E4N

4
f ) , (3.5)

where A4 = 7.59× 105, B4 = −2.19× 105, C4 = 2.05× 104, D4 = −49.8, and E4 = −1.84.

This results in c4 = 123.7 for Nf = 3, c4 = 97.2 for Nf = 4, and c4 = 86.2 for Nf = 5.

B
(an.)
S (u;µ) is analytic on the disk |u| < 1. Therefore, even in the vicinity of u ∼ 1/2

it can be expanded in powers of u

B
(an.)
S (u;µ) = h0(µ) +

∑
N≥1

hN (µ)

N ! βN0
uN . (3.6)

The coefficients hN (µ) of the analytic part (3.6) are exponentially suppressed in N , ∼ e−N ,

in comparison with the large coefficients rN (µ). Their relation is obtained by equating the

expansion of eq. (3.4) in powers of u with the expansion (3.3). This gives

4

3
rN (µ) = πNm

µ

mb
(2β0)N

∑
s≥0

c̃s
Γ(ν +N + 1− s)

Γ(ν + 1− s)
+ hN (µ) , (3.7)

where we recall that r0 = c̃0 = 1. The sum in eq. (3.7) introduces O(1/N) corrections to

the leading asymptotic behaviour. The numbers c̃s entering the sum in eq. (3.7), are given

by eqs. (3.2) and are known for s ≤ 3.3 Therefore, by default, we truncate the sum in (3.7)

at s = 3. This introduces an error of order O(1/N4) for the asymptotic behaviour (we

will typically take the difference between truncating the sum at s = 2 or s = 3 to check

the quality of the approximation). We also set hN = 0 since they yield (in comparison)

exponentially suppressed terms. Overall, we approximate the asymptotic behaviour of rN
by the following equality:

4

3
rasym
N (µ) ' πNm

µ

mb
(2β0)N

Γ(ν +N + 1)

Γ(ν + 1)
(3.8)

×
(

1 +
ν

N + ν
c̃1 +

ν(ν − 1)

(N + ν)(N + ν − 1)
c̃2 +

ν(ν − 1)(ν − 2)

(N + ν)(N + ν − 1)(N + ν − 2)
c̃3 +O

(
1

N4

))
.

2For an explicit expression for ImSBI(z = 2β0a(µ) − iε), see, for example, ref. [50].
3For Nf = 3: c̃1 = −0.1638, c̃2 = 0.2372, c̃3 = −0.1205; ν = 0.3951. For Nf = 4: c̃1 = −0.1054,

c̃2 = 0.2736, c̃3 = −0.1610; ν = 0.3696. For Nf = 5: c̃1 = 0.0238, c̃2 = 0.3265, c̃3 = −0.2681; ν = 0.3289.
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We can have a similar discussion for the static potential. The Borel transformation of

the dimensionless potential
(
− 3

4π

)
rV (r) in (2.24) is given by:

BV (u, µ) = 1 +
v1

1!β0
u+

v2

2!β2
0

u2 +
v3

3!β3
0

u3 + . . . , (3.9)

where vj is the coefficient at the power aj(µ) in the expansion (2.24) (v1 = a1/4+2β0l, etc.).

This function has the renormalons located at u = 1/2, 3/2, 5/2, etc., ref. [52]. It can be

written as

BV (u, µr) = −3

4
NV µr

1

(1− 2u)1+ν

[
1 +

∞∑
k=1

c̃k(1− 2u)k

]
+ (analytic term) . (3.10)

The expression in the brackets is µ-independent, and the last term is analytic for |u| < 3/2.

The asymptotic behaviour of vN is equal to the behaviour of rN except for the nor-

malization:

− 4

3
vN (µ) = NV µr(2β0)N

∑
s≥0

c̃s
Γ(ν +N + 1− s)

Γ(ν + 1− s)
+ dN (µ) . (3.11)

The coefficients dN are analogous to the coefficients hN for the pole mass. We will set

them equal to zero for the same reason, as they yield exponentially suppressed terms in

comparison. We also truncate the sum to the first known terms (s ≤ 3). Therefore, we

approximate the asymptotic behaviour of vN by the following equality:

−4

3
vasym
N (µ) ' NV µr(2β0)N

Γ(ν +N + 1)

Γ(ν + 1)
(3.12)

×
(

1 +
ν

N + ν
c̃1 +

ν(ν − 1)

(N + ν)(N + ν − 1)
c̃2 +

ν(ν − 1)(ν − 2)

(N + ν)(N + ν − 1)(N + ν − 2)
c̃3 +O

(
1

N4

))
.

3.1 Determination of NV

In this subsection we compute NV using two methods that we name A) and B).

The method A) uses the idea of ref. [53, 54] of, instead of working with eq. (3.10),

using an associated function that kills the leading singularity in the Borel plane. This

idea was first applied to the static potential (and the pole mass) in ref. [17] and also used

in [30, 55, 56]. One uses

RV (u;µr) ≡ −4

3

1

µr
(1− 2u)1+νBV (u, µr) =

∞∑
k=0

R
(k)
V uk , (3.13)

which is defined such that the leading singularity at u = 1/2 of BV is eliminated. Its

evaluation at u = 1/2 gives

NV = RV (u = 1/2;µr) '
N∑
k=0

R
(k)
V (µr)

(
1

2

)k
. (3.14)
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Figure 3. Method A): −NV /2 obtained using eq. (3.14) for Nl = 3, as a function of x ≡ µr,

truncated at N = 0, 1, 2, 3, which we name as LO (dotted), NLO (dashed-dotted), NNLO (dashed)

and NNNLO (solid) respectively.

In this paper we carefully study the case when the sum is truncated at N = 3. Truncating

the infinity sum to its first orders produces some remaining scale dependence. In particular,

from N = 3 on a dependence on the ultrasoft factorization scale µf appears, which we set

equal to µ. We plot the scale dependence of −NV /2 (the relevant quantity to be compared

with Nm) in figure 3 for N = 0, 1, 2, 3 for Nl = 3. We observe a nicely convergent pattern,

specially for the difference between the N = 2 and N = 3 computation. Note also that we

expect the results to be better for µr ∼ 1, since ln(µr) terms are not large.

The method B) determines NV by dividing the exactly known coefficients vN directly

obtained from eq. (2.24) by the large N renormalon-based expectations (cf. eq. (3.12)),

which we truncate at O(1/N3), including the ∼ 1/N3 terms. If we are reaching the

asymptotic regime we should converge to a constant and get a mild scale dependence. We

plot the results in figures 4 and 5 for Nl = 0 and Nl = 3 respectively. We observe a very

nice convergence, with a milder scale dependence as we go to higher orders. We observe

a sizable effect of the 1/N3 truncation for N = 0, 1 (actually the N = 1 result is closer to

the asymptotic result if we truncate at 1/N2 than at 1/N3 order) but negligible for N = 2

and N = 3.

If we compare method A) and B), we observe that method B) yields a more convergent

series and a milder scale dependence for N = 3 than method A). Therefore, we fix the

central value of NV (for all values of Nf ) from the result obtained from method B) for

N = 3 and x = µr = µfr = 1. We also use method B) to fix the error of this determination:

we compute the difference of our central value with the evaluations with x ∈ [1/2, 2] and

the difference between the NNLO and NNNLO result at x = 1 and take the maximum of

the two as our error estimate. To this error we add in quadrature the difference of the

NNNLO result obtained truncating the asymptotic expression at O(1/N3) or at O(1/N2).

We find this effect to be way subleading in comparison with the scale variation. Finally,
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Figure 4. Method B): −NV /2 for Nl = 0, as a function of x ≡ µr, obtained from

−(NV /2)vN/v
asym
N . vN is taken from eq. (2.24) and vasym

N from eq. (3.12) truncated at O(1/N3).

We name the different lines as LO (dotted), NLO (dashed-dotted), NNLO (dashed) and NNNLO

(thick solid) for N = 0, 1, 2, 3, respectively. The horizontal line and the central band is our final

estimate for −NV /2 and its error in eq. (3.15). We also plot the NNNLO curve without the US

term (thin solid line).

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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0.65
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N3LO

x

−NV /2

Figure 5. Same as in figure 4, but now for Nl = 3.

– 13 –



J
H
E
P
0
9
(
2
0
1
4
)
0
4
5

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LO

NLO

NNLO

x

Nm

Figure 6. Method B): Nm for Nl = 3, as a function of x ≡ µ/mb, obtained from rN/r
asym
N . rN is

taken from eq. (2.2) and rasym
N from eq. (3.8) truncated at O(1/N3). We name the different lines

as NLO (dashed-dotted), NLO (dashed) and NNLO (solid) for N = 0, 1, 2, respectively.

for Nl = 0, 3 we obtain

− NV

2

∣∣∣∣∣
Nl=0

= 0.600(29) , −NV

2

∣∣∣∣∣
Nl=3

= 0.563(26) . (3.15)

As expected, determinations with x ≡ µr ∼ 1 yield the best results, since this minimizes

possible large ln(µr) terms.

The factorization scale µf is not related with the leading infrared renormalon. Elimi-

nating this contribution altogether allows us to measure the quality of our error estimate.

We plot the determination of NV if we completely eliminate the ultrasoft term in eq. (2.24)

in figures 4 and 5. We observe that the associated shift is much smaller than the scale

variation of the NNNLO curve, specially for the Nl = 0 case.

The fact that method B) yields a more convergent (and stable) series was also clearly

observed in ref. [29], where Nm was determined from the perturbative computation of the

self-energy of a static source to O(α20
s ) (compare figure 12 with figure 14 in this reference).

3.2 Determination of Nm from the pole mass

In this subsection we obtain Nm from the perturbation expansion of the pole mass using

the methods A) and B) described in the previous section.

From method A) one obtains Nm from

Nm =
mb

µ

1

π
RS(u = 1/2;µ) '

N∑
n=0

R
(n)
S (µr)

(
1

2

)n
, (3.16)
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Nf 0 1 2 3 4 5 6

Nm = −NV /2 0.600(29) 0.588(27) 0.576(24) 0.563(26) 0.547(33) 0.527(51) 0.500(152)

Table 1. Final predictions for Nm and NV for different values of Nl.

where

RS(u;µ) ≡ (1− 2u)1+νBS(u;µ) (3.17)

Truncating the sum to N = 2, we recover the results of refs. [17, 19, 56]. Unlike in the

previous section, we can not go to one order higher since the O(a4) term of the pole-MS

mass relation is not known. Therefore, we do not dwell further on this method.

With method B) we determine Nm by dividing the exactly known coefficients rN (cf.

eq. (2.2)) by the large N renormalon-based expectations, rasym
N (cf. eq. (3.8)), which we

truncate at O(1/N3), including the ∼ 1/N3 terms. We show the result in figure 6. Again

the maximum possible accuracy is at the highest N , this time N = 2. Overall, we know

the perturbative relation between the pole and MS to one order less than in the case of the

static potential. Therefore, the predictions in this section are generically less precise.

3.3 Final determination of Nm

In the situation where 1/r � ΛQCD, one can do the matching between NRQCD and

pNRQCD in perturbation theory, and 2mq + V (r) can be understood as an observable

up to O(r2Λ3
QCD,Λ

2
QCD/m) renormalon (and/or nonperturbative) contributions (see the

discussion in ref. [17]). This implies that the leading infrared renormalon of the singlet

static potencial must cancel with the leading renormalon of twice the pole mass, so that

the following relation between Nm and NV holds:

2Nm +NV = 0 . (3.18)

Therefore, we have several alternative determinations of Nm (or NV ) from the analysis of

the previous subsections. We now study the quality of them and choose the optimal.4

In section 3.2 we have determined Nm using what we have named method A) and B).

The results from method A) are nothing but those obtained in ref. [17], where the estimated

uncertainty was of around 10%. The results from method B) are new, and summarized in

figure 6. Both methods use the perturbation expansion of the pole mass to O(a3), which

is one order less than for the static potential. Actually, these fits typically yield a stronger

scale dependence than for the case of the static potential. Therefore, we will not dwell

further with these determinations.

4One may think of other observables, the perturbation expansions of which are dominated by the pole

mass renormalon. One of those is the anomalous magnetic moment of the heavy quark. In ref. [57] it

was shown (see also ref. [58]) that, (1 + κ)/m is renormalon free. More precisely, the leading renormalon

of 1 + κ cancels with the leading renormalon of m and one can write 1+κ
m

= 1
m̄
m̄(1+κ)
m

≡ 1
m̄

(1 + Cκ),

where Cκ =
∑
n=0 C

(n)
κ αn+1

s is free of the u = 1/2 renormalon. Therefore, we are in the situation where

m̄(1 + κ) = m(1 + Cκ) has the pole mass (renormalon) but modulated by a nontrivial Wilson coefficient.

This changes the 1/N corrections of the asymptotic expression. We have studied this quantity and obtained

a number for the normalization of the renormalon compatible with ours though less precise.
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Figure 7. Nm obtained applying methods A) (dashed-dotted line) and B) (solid thick curve) to

the the static potential at NNNLO for Nl = 0 as a function of x ≡ µr. For comparison we also

include the NNLO evaluation from method A) and B) applied to the pole mass (dashed and dotted

line respectively). The horizontal central line and bands correspond to our final central value and

error.

In section 3.1, we have obtained two new determinations of NV using the perturbation

expansion of the static potential to O(a4), one order more than for the case of the pole

mass. Therefore, we expect our new determinations to yield more accurate results. We

have found this is specially so for method B of section 3.1. Since NV and Nm are related

by eq. (3.18), this gives a determination of Nm, which we take as the most precise and

display in table 1 as our final numbers. To illustrate this, in figures 7 and 8, we compare

the NNNLO evaluations using method B) (of the static potential) with method A) (of the

static potential). We also include the NNLO evaluations using methods A) and B) (of the

pole mass). Around x ∼ 1 all of them agree within one standard deviation. This signals

that alternative errors estimates would give similar numbers. We see how the NNNLO

evaluation using method B yields the more stable result under scale variations. For the

Nl = 0 case we can compare with the value obtained in ref. [59]. We agree within one

standard deviation. This is quite rewarding as these numbers have been obtained with

completely different methods.

It is also interesting to study the Nl dependence of Nm. The u = 1/2 infrared renor-

malon should disappear when Nl →∞, as the theory is not asymptotically free anymore.

We plot Nm as a function of Nl (we fix x = 1) using our preferred method (method B)

from the static potential in figure 9. We observe how Nm tends to zero in the range of

Nl ∈ (12, 23), a range of values for which one could expect a conformal window. This shows

the disappearance of u = 1/2 infrared renormalon for Nl > 12. In the range Nl ∈ (25, 40)

the evaluation of Nm with method B) is unstable because the asymptotic expression of

r3: rasym
3 (see eq. (3.8)) have a couple of zeros in this range (due to the beta coefficients,

therefore it is very sensitive to subleading corrections and the truncation), which produces
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Figure 8. Same as in figure 7, but for Nl = 3.

Nf 0 1 2 3 4 5 6

4r3/3 3562(173) 2887(133) 2291(98) 1772(82) 1324(81) 945(92) 629(191)

4r4/3× 10−4 8.76(42) 6.66(31) 4.94(21) 3.54(16) 2.44(15) 1.58(15) 0.95(29)

Table 2. Final predictions for r3 and r4 for different values of Nl.

divergences for the theoretical expression that we use to determine Nm. This is nothing

but the reflection of the fact that we are in a transition region before we reach the behavior

expected for Nl →∞. In this limit we expect, not only the disappearance of the u = 1/2

infrared renormalon, but its transformation into a ultraviolet u = −1/2 renormalon (so

that the perturbative series is sign alternating), for which the normalization can be com-

puted in the large Nl limit [47]: N
(large Nl)
m = 4

3
e

5
6

π = 0.976564. Our evaluation indeed

converges towards this value for Nl > 40.

We have also done some fit-play of the Nl dependence of Nm for small Nl using a

polynomial function: Nm(Nl) = Nm(0) + d1Nl + d2N
2
l + · · · . We observe that subsequent

coefficients dn get smaller as we increase n for small Nl, with the leading coefficient, d1, of

order ∼ −10−2 (see also table 1).

Since we have a reliable determination of Nm, we can obtain a prediction for the high

order coefficients of the perturbation expansions of the pole mass and static potential. We

explicitly show them in table 2 for the cases of r3 and r4, obtained using eq. (3.7) with

µ = mb and hN (mb) = 0. The error is fixed by combining in quadrature the error of Nm

with the error of subleading 1/N effects (adding and subtracting the last known term).

This last effect is way subleading compared with the uncertainty of Nm, which completely

dominates the error. Note that the effect of renormalons located at u = 1 or beyond would

produce exponentially suppressed corrections to the 1/N expansion.

We now compare our predictions with earlier estimates. The quality of large-β0 pre-

dictions is worse [35]. This is to be expected as they do not incorporate the right large-N
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Figure 9. Nm(x = 1) obtained using method B) from the static potential (NNNLO) as a function

of Nl.

asymptotic behaviour. Dispersion-like analyses [60] also seem to have problems to capture

the right asymptotic as they yield significantly smaller numbers than the ones obtained

here. In ref. [17] (see also ref. [55] for Nl = 0) the NNLO prediction from method B) was

used, which is around one sigma away from our new number. In appendix C of ref. [21], a

variant of this method using Padé approximant was worked out and the number obtained

was quite similar. There has also been a recent prediction of r3, made in ref. [61] by de-

manding stability of the perturbation expansion of the heavy quarkonium energy (in the

static limit) to the next order. Our numbers are bigger than his for small Nl. Note though

that for large Nl, we get similar numbers. This points to a different Nl dependence, which

in our case is more pronounced. Finally, for Nl = 0 we can also compare with eq. (13) of

ref. [59]. Their value for r3 is in agreement with ours within one standard deviation. This

is quite remarkable as that method is completely different, based on lattice simulations,

and, therefore, with different systematics.

4 Bottom mass from heavy quarkonium

The determination of the pole mass from the Υ(1S) mass is plagued by large uncertanties

due to the pole mass renormalon. These errors propagate to the determination of the

bottom MS mass m [≡ m(m)]. To avoid this problem we determine the RS bottom mass

mRS instead. m can then be obtained from its relation with the mRS mass. The use

of mRS is convenient because it has no (leading infrared) renormalon ambiguity, and the

renormalon cancellation in the quarkonium mass MΥ(1S) is implemented automatically.

4.1 Renormalon subtracted scheme

Formally, the RS mass is defined by subtracting the leading renormalon singularity to the

pole mass. For the Borel transform this means

B[mRS(νf )] ≡ B[m]−Nmπνf
1

(1− 2u)1+ν

(
1 + c̃1(1− 2u) + c̃2(1− 2u)2 + . . .

)
, (4.1)
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where m is the pole mass (mq), and we use the notations of eqs. (3.2)–(3.4). Therefore, we

have the following explicit expression for mRS:

mRS(νf ) = m− δmRS , (4.2)

where δmRS is the residual mass (we recall that c̃0 = 1):

δmRS(νf ) = Nmπνf

∞∑
N=0

(2β0)NaN+1
− (νf )

∞∑
n=0

c̃n
Γ(ν +N + 1− n)

Γ(ν + 1− n)
. (4.3)

Note that we work in the theory with three active flavours only, as the charm decouples at

large orders in perturbation theory (which is the regime δmRS deals with).

Equation (4.2) is still formal. In practice, one rewrites m in terms of m using eq. (2.1)

and reexpands the perturbation series in eq. (4.3) around the same coupling a−(µ), at fixed

but otherwise arbitrary scale µ:

mRS(νf ) = m

[
1 +

∞∑
N=0

hN (νf )aN+1
− (νf )

]
(4.4a)

⇒ mRS(νf ) = m

[
1 +

∞∑
N=0

h̃N (νf ;µ)aN+1
− (µ)

]
; (4.4b)

where hN (νf ) is determined from eq. (3.7) (with µ = νf and with the sum truncated at

s = 3) for N = 0, 1, 2. For N ≥ 3 we take hN (mb) = 0. The coefficients h̃N (νf ;µ) in

eq. (4.4b) are obtained by expanding a−(νf ) in the expansion (4.4a) in powers of a−(µ).

This procedure ensures that the renormalon behaviour is cancelled order by order in a−(µ).

Note that mRS(νf ) does not depend on µ (it will, but only marginally, when we truncate

the infinite sum in eq. (4.4)). On the other hand the coefficients hN are functions of νf , µ,

and m, and are much smaller than rN (µ).

Another possibility is to define a modified renormalon-subtracted (RS’) mass mRS′(µ),

ref. [17], where subtractions start at the level ∼ a2 [i.e., N = 1 in eq. (4.2)]

mRS′(νf ) = m−Nmπνf

∞∑
N=1

(2β0)NaN+1
− (νf )

∞∑
s=0

c̃s
Γ(ν +N + 1− s)

Γ(ν + 1− s)
, (4.5)

and this leads to a relation analogous to eqs. (4.4)

mRS′(νf ) = m

[
1 +

4

3
a−(νf ) +

∞∑
N=1

hN (νf )aN+1
− (νf )

]
(4.6a)

⇒ mRS′(νf ) = m

[
1 +

4

3
a−(µ) +

∞∑
N=1

h̃′N (νf ;µ)aN+1
− (µ)

]
, (4.6b)

where h̃′N (νf ;µ) in eq. (4.6b) are obtained by expanding a−(νf ) in eq. (4.6a) in powers of

a−(µ). The explicit relation between the two Borel transforms is

B[mRS′(νf )] ≡ B[mRS(νf )] +Nmπνf (1 + c̃1 + c̃2 + . . .) . (4.7)
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4.2 Υ(1S) mass

The perturbation expansion of the Υ(1S) mass is presently known up to O(mba
5)

M
(th)
Υ(1S) = 2mb −

4π2

9
mba

2
−(µ)

{
1 + a−(µ) [K1,0 +K1,1Lp(µ)] + a2

−(µ)

2∑
j=0

K2,jLp(µ)j

+a3
−(µ)

[
K3,0,0 +K3,0,1 ln a−(µ) +

3∑
j=1

K3,jLp(µ)j

]
+O(a4

−)

}
, (4.8)

where µ is the renormalization scale, mb is the pole mass of the bottom quark and

Lp(µ) = ln

(
µ

(4π/3)mba−(µ)

)
, (4.9)

The numerical expressions of the coefficients Ki,j(Nf ) and K3,0,j are given for reference in

appendix B.

As we have already discussed throughout the paper, it is compulsory to implement the
cancellation of the leading infrared renormalon (u = 1/2) in the above perturbation series
to get a convergent series. We do so by working in the RS scheme. In practice this means
to rewrite mb in terms of mb,RS in eq. (4.8). The resulting expression reads MΥ(1S):

M
(th)
Υ(1S)

mb,RS(νf )
= 2 +

[
2πNmbaK0 −

4π2

9
a2

]
+

[
2πNmba

2 (K1 + z1K0)− 4π2

9
a3 (K1,0 +K1,1LRS)

]

+

2πNmba
3 (K2 + 2z1K1 + z2K0)− 4π2

9

a4
2∑

j=0

K2,jL
j
RS + ba3πNmK0


+

[
2πNmba

4
(
K3 + 3z1K2 + (2z2 + z2

1)K1 + z3K0

)
−4π2

9

[
a5

(
K3,0,0 +K3,0,1 ln a+

3∑
j=1

K3,jL
j
RS

)

+ba4πNm (K1,0K0 + (LRS − 1)K1,1K0 +K1 + z1K0)

]]
, (4.10)

where we denoted

a ≡ a−(µ) = a(µ,Nf = 3) , b ≡ b(νf ) =
νf

mb,RS(νf )
, Nm = Nm(Nl = 3) , (4.11a)

LRS ≡ LRS(µ) = ln

(
µ

(4π/3)mb,RS(νf )a−(µ)

)
, KN = (2β0)N

[
1 +

3∑
s=1

c̃s
Γ(ν +N + 1− s)

Γ(ν + 1− s)

]
.

(4.11b)

In the expression (4.10) for MΥ(1S), the terms of the same order (νf/mb)a
n and an+1 were

combined in common brackets [. . .], in order to account for the renormalon cancellation.

If using the RS’ mass in our approach instead, the above expressions are valid without

changes, except that mRS 7→ mRS′ and K0 7→ 0 (and: h0(µ) 7→ 4/3).
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We note that we take Nl = 3 active flavours and that the expression above does not

incorporate yet the charm quark effects. The leading one is due to the potential eq. (2.25)

and reads (see, for instance, [62])

δMΥ(1S) =
mb4(πa−)2

9

a−
3

(
11

3
− 3

2
πρ̄+ 4ρ̄2 − 2πρ̄3 +

−4 + 2ρ̄2 + 8ρ̄4√
ρ̄2 − 1

ArcTan

(√
ρ̄− 1

ρ̄+ 1

))
,

(4.12)

where ρ̄ = 3mc/(2mbπa−). It produces a shift of order 1 MeV, completely negligible in

comparison with other uncertainties. This has also been stressed in ref. [18]. Nevertheless,

it got obscured because specific numbers were given with Nf = 4.

4.3 Bottom mass determination

mRS(νf ) is determined from the condition (see eq. (4.10))

M
(th)
Υ(1S) = M

(exp)
Υ(1S) (= 9.460 GeV) . (4.13)

We now investigate the dependence of our results on the theoretical and experimental

parameters. To estimate the errors, we vary µ, νf , αs and Nm as follows: µ = 2.5+1.5
−1 GeV,

νf = 2±1 GeV, αs(Mz) = 0.1184(7) [63] (with decoupling at 4.2 GeV and 1.27 GeV for the

bottom and charm MS masses, respectively) and Nm = 0.563(26). For the RS scheme, we

obtain the following result5,6

mb,RS(2 GeV) = 4 437−11
+43(µ)−3

+5(νf )−2
+2(αs)

−41
+41(Nm) MeV; (4.14)

mb(mb) = 4 201−10
+39(µ)−3

+5(νf )−6
+6(αs)

−17
+17(Nm) MeV. (4.15)

For the RS’ scheme, we obtain the result (with the same variation of the parameters)

mb,RS′(2 GeV) = 4 761−16
+41(µ)−3

+5(νf )+4
−3(αs)

−26
+26(Nm) MeV; (4.16)

mb(mb) = 4 206−14
+36(µ)−2

+4(νf )−5
+5(αs)

−17
+17(Nm) MeV. (4.17)

For the central values obtained in eqs. (4.14)–(4.17), we can visualize the relative size

of the different terms of the perturbative expansion of MΥ(1S) and mRS(RS′). In the RS we

obtain (for both expansions we take µ = 2.5 GeV)

MΥ(1S) = (8875 + 431 + 166 + 18− 30) MeV , (4.18)

mRS(2 GeV) = (4201 + 189 + 36 + 12− 0) MeV , (4.19)

where the -0 of the last equality is accidental for the specific scale chosen (see figure 10).

In the RS’ we obtain

MΥ(1S) = (9521− 150 + 112 + 8− 31) MeV , (4.20)

mRS′(2 GeV) = (4206 + 476 + 60 + 18 + 1) MeV . (4.21)

5Here and in the following, in the determination of mMS(mMS) ≡ m(m) ≡ m, we have used our estimate

of the four-loop relation.
6Note that the scale dependence of m is the one associated to the fit to mRS.
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1.5 2.0 2.5 3.0 3.5 4.0

8.9

9.0

9.1

9.2

9.3

9.4

9.5

Figure 10. We plot 2mb,RS(2 GeV) (dotted line), and the LO (short-dashed line), NLO (dot-

dashed line), NNLO (long-dashed line) and NNNLO (solid line) predictions for the Υ(1S) mass in

terms of µ in the RS scheme. The value of mb,RS(2 GeV) is taken from eq. (4.14). All the scales

are in GeV.

1.5 2.0 2.5 3.0 3.5 4.0

9.30

9.35

9.40

9.45

9.50

9.55

Figure 11. As in figure 10, but now with 2mb,RS′(2 GeV) and the corresponding predictions for

the Υ(1S) mass in the RS’ scheme. The value of mb,RS′(2 GeV) is taken from eq. (4.16).
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We observe a nicely convergent perturbative series in the relation between the RS(RS’)

masses and the MS mass. In the perturbative relation between the Υ(1S) mass and the

RS(RS’) masses we also observe a convergent series except when we consider the difference

between the NNLO and NNNLO results. In figures 10 and 11, we plot the scale dependence

of the LO, NLO, NNLO and NNNLO predictions for the Υ(1S) mass in the RS and RS’

scheme in order to observe the pattern of convergence for different values of µ, as well as

to show the scale dependence of our results. We observe a convergent series except when

we consider the difference between the NNLO and NNNLO results. The latter shows a

stronger scale dependence. This could be expected, as at this order the hard and ultrasoft

scales enter into play. The hard scale enters through the Wilson coefficients of the NRQCD

Lagrangian (see, for instance, section 4 in ref. [5]). Specially problematic is the appearance

of the ultrasoft scale, since it is potentially a rather small scale. Whether this scale can be

treated within perturbation theory can only be elucidated by higher order computations,

as well as by analyses using renormalization group techniques. Without such analyses

it is not possible to unambiguously set the scale of the NNNLO contribution, and any

estimate of higher order effects due to the ultrasoft contributions will suffer from some

scheme dependence. Nevertheless, we can observe some general trends. The ultrasoft

logarithmic dominated terms [5, 64] yield a positive contribution to the NNNLO term.

This contribution would be even bigger if we set the scale of one of the powers of αs at

the ultrasoft scale (as the effective field theory suggests). This would go in the direction of

making the NNNLO result (and also the value of the bottom mass) smaller and improve

convergence. Nevertheless, without a renormalization group analysis we can not make

this discussion more quantitative. Finally, without a better control of the ultrasoft effects

it would be premature to consider nonperturbative corrections, which we neglect in this

analysis. As for the large-β0 approximation we observe that they give numbers in the right

ballpark, yet one should keep in mind that this comparison will depend on the constant

term in the ultrasoft logarithm.7

To this analysis one has to add charm effects. The leading correction to the heavy

quarkonium spectrum can be found in eq. (4.12). It produces a negligible correction ∼
−0.6 MeV. Therefore, it barely changes our determination above. The corrections to the

relation between mRS and m, eqs. (2.13)–(2.15) are more important, though still quite

small (at the MeV level). The correction that we find (from the O(a2) and O(a3) terms)

is ∼ −2.4 + 0.4 ' −2 MeV (for our standard value µ = 2.5 GeV). We introduce this shift

in our final number for the bottom mass, which reads

m(m) = 4.201(43) GeV , (4.22)

where we have done the average of the RS and RS’ determination, rounding the ± variation

of each parameter to the maximum, and added the errors in quadrature. Let us also observe

that the difference between the NNLO (mRS = 4.421 GeV and m = 4.187) and NNNLO

(mRS = 4.437 GeV and m = 4.201 GeV) evaluation is inside the range of scale variation we

7We also remind that the large-β0 approximation does not have the right asymptotics. Therefore, any

eventual agreement will deteriorate at higher orders.
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consider, which gives extra confidence in our error analysis. It is also comforting that the

inclusion of the NNNLO correction (and the charm effects) do not shift much the central

value with respect the NNLO evaluation made in ref. [17] (or with mRS = 4.425 GeV and

m = 4.211 GeV, which is slightly different than the result obtained in [17], due to the

different values of the parameters), which corresponds to working with Nf = 4 active

massless quarks. If we do the NNNLO determination also with Nf = 4 we obtain mRS =

4.482 GeV and m = 4.261 GeV. To be compared with the same analysis with Nf = 3. The

Nf = 3 case shows a better convergence, as expected.

5 Conclusions

In this paper we have considered different improvements over the analysis made in ref. [17].

First, we have studied whether (or when) the charm quark decouples in the perturba-

tive relation between the pole and the MS mass. For the case of the heavy quarkonium

mass (versus the pole mass) it was seen that the charm quark decoupled and it was a

good approximation to consider the theory with only three active massless flavours [18]. In

this paper we have concluded that one should also use this approximation for the relation

between the pole and the MS mass. This leads to shifts of order of 1 MeV in both relations

making them negligible in comparison with other uncertainties.

Second, we have obtained an improved determination of the normalization of the lead-

ing pole mass (and static potential) renormalon. For Nl = 0 and Nl = 3, they read8

Nm

∣∣∣
Nl=0

= 0.600(29) , Nm

∣∣∣
Nl=3

= 0.563(26) . (5.1)

This has an immediate impact in the determination of the heavy quark mass from the heavy

quarkonium ground state mass but it is also applicable to other observables in heavy quark

physics. This improvement is twofold. On the one hand the existence of the three-loop

expression of the static potential allows us to determine the normalization to one order

higher in the corresponding expansion. On the other hand, we obtain the normalization

directly from the last known coefficient of the perturbation expansion. This leads to a

more stable result compared with previous approaches, as it has already been observed in

lattice simulations [29] for the case of the self-energy of a static quark.

Finally, we have included the complete NNNLO correction to the perturbative expres-

sion of the Υ(1S) mass and determined the bottom quark mass:

m(m) = 4.201(43) GeV , (5.2)

using the renormalon subraction scheme. In this analysis we have worked with three active

flavours, as motivated by the previous discussion. We have also used the updated value of

Nm obtained in eq. (5.1). By including the complete NNNLO expression we can study this

term without scheme ambiguity. At this order ultrasoft effects appear for the first time.

8As they suffer from different systematics, we can consider combining this result with Nm

∣∣∣
Nl=0

=

0.620(35) [59] and obtain an even more accurate value: Nm

∣∣∣
Nl=0

= 0.608(22).
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Consistent with this fact we observe that the NNNLO result is more scale dependent than

the NNLO one, and the convergence of the perturbative series deteriorates somehow. It

remains to be analyzed whether a renormalization group analysis could reduce the scale

dependence of the result and improve the convergence. Yet, the magnitude of the NNNLO

correction is small, so that the final number is quite close to the value obtained by the NNLO

analysis made in ref. [17]. On the other hand, our determination is considerably smaller

than the NNNLO determinations in refs. [7, 21]. [7] worked with Nf = 4 and an estimate for

a3 but did not implement explicitly the cancellation of the renormalon. In ref. [21] the MS

scheme and another related scheme were used, the calculation was performed at NNNLO for

the Υ(1S) mass with Nf = 3 but Nf = 4 was used in the relation for m/m, and a lower soft

renormalization scale µ ≈ 2 GeV was used; the (strong) mc effects were not under control at

NNNLO (due to the use of Nf = 4), besides producing a small mismatch in the renormalon

cancellation. Our number is somewhat in the middle between two recent determinations

from bottomonium NR sum rules [65, 66]. Both of them worked with Nf = 4 active

massless quarks, though the latter reference estimated the shift produced by the finite

mass charm quark effects. [65] performed a partial NNLL computation. The difference

with the (also partial) NNLL determination in ref. [67] stems from extra/different terms

incorporated in the analysis. [66] performs a partial NNNLO computation. Note also that

our number is similar to the number obtained from a lattice HQET determination [68], and

not very far away from the numbers obtained using low-n or finite-energy bottomonium

sum rules [69, 70], or a lattice determination using NRQCD [71]. Those have complete

different systematics. This agreement may indicate that nonperturbative corrections are

indeed small, as advocated in refs. [16, 18].
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A Relations between different couplings

The relation between a+(νf ) and a ≡ a−(µ) can be written in the form

a+(νf ) = a
[
1 + z1a+ z2a

2 + z3a
3 +O(a4)

]
, (A.1)

where the coefficients z1 account for the Nf = 4 7→ 3 quark threshold effects and the

(subsequent) renormalization group running from νf to µ. The threshold effects are taken

at the three loop level according to ref. ([72]), and the renormalization group running at

the four loop level. The resulting coefficients zj are:

z1 = x1 + y1 , z2 = x2 + 2x1y1 + y2 ,

z3 = x3 + 3x2y1 + x1y
2
1 + 2x1y2 + y3 . (A.2)
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Here, the coefficients xj reflect the three-loop quark threshold matching for Nf = 4 7→ 3

at the chosen threshold scale νf ,

x1 = −k1 , x2 = −k2 + 2k2
1 , x3 = −k3 + 5k1k2 − 5k3

1 , (A.3)

where the expressions for kj (j = 1, 2, 3) are given in ref. [72] (k1 = −`h/6, etc.), with the

logarithm there being `h = ln(ν2
f/m

2
c) and N` = 3 (see also appendix D of ref. [21]). The

coefficients yj reflect the (subsequent) renormalization group running from νf to µ (with

Nf = 3)

y1 = β0 ln

(
µ2

ν2
f

)
, y2 = y2

1 + c1y1 , y3 = y3
1 +

5

2
c1y

2
1 + c2y1 . (A.4)

Here, cj ≡ βj/β0.

B Numerical values of the coefficients of the binding energy

In this appendix we summarize, for reference, the numerical values of the coefficients

Ki,j(Nl) and K3,0,j entering the perturbation expansion of the binding energy Eqq̄, eq. (4.8).

Note that Nl = 3 for bottomonium. Recall also that, in our convention, β0 = (1/4)(11 −
2Nl/3) and β1 = (1/16)(102−38Nl/3). These expressions can be extracted from the results

obtained or given in refs. [1–10]:

K1,0(Nl) =
1

18
(291− 22Nl) = 16.1667− 1.22222Nl ,

K1,1(Nl) = 4β0 ; (B.1a)

K2,0(Nl) = 337.947− 40.9649Nl + 1.16286N2
l ,

K2,1(Nl) = 231.75− 32.1667Nl +N2
l ,

K2,2(Nl) = 12β2
0 ; (B.1b)

K3,0,0(Nl) = 8041.49− 1318.36Nl + 75.263N2
l − 1.25761N3

l ,

K3,0,1(Nl) =
865π2

18
= 474.289 , (B.1c)

K3,1(Nl) = 6727.62− 1212.76Nl + 69.1066N2
l − 1.21714N3

l ,

K3,2(Nl) = 2260.5− 456.458Nl + 28.5278N2
l − 0.555556N3

l ,

K3,3(Nl) = 32β3
0 . (B.1d)
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[56] G. Cvetič, Estimate of the three loop contribution to the QCD static potential from

renormalon cancellation, J. Phys. G 30 (2004) 863 [hep-ph/0309262] [INSPIRE].

[57] A.G. Grozin and M. Neubert, Higher order estimates of the chromomagnetic moment of a

heavy quark, Nucl. Phys. B 508 (1997) 311 [hep-ph/9707318] [INSPIRE].

[58] A. Pineda and J. Segovia, Improved determination of heavy quarkonium magnetic dipole

transitions in potential nonrelativistic QCD, Phys. Rev. D 87 (2013) 074024

[arXiv:1302.3528] [INSPIRE].

– 29 –

http://dx.doi.org/10.1016/S0370-2693(00)00595-5
http://arxiv.org/abs/hep-ph/9911461
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9911461
http://dx.doi.org/10.1103/PhysRevD.62.074019
http://arxiv.org/abs/hep-ph/0001295
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0001295
http://dx.doi.org/10.1016/0550-3213(95)00392-6
http://dx.doi.org/10.1016/0550-3213(95)00392-6
http://arxiv.org/abs/hep-ph/9502300
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9502300
http://dx.doi.org/10.1103/PhysRevLett.78.602
http://dx.doi.org/10.1103/PhysRevLett.78.602
http://arxiv.org/abs/hep-ph/9610209
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9610209
http://dx.doi.org/10.1103/PhysRevD.60.091502
http://arxiv.org/abs/hep-ph/9903355
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9903355
http://dx.doi.org/10.1103/PhysRevD.17.2074
http://inspirehep.net/search?p=find+J+Phys.Rev.,D17,2074
http://dx.doi.org/10.1016/0370-2693(94)01505-7
http://arxiv.org/abs/hep-ph/9408380
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9408380
http://dx.doi.org/10.1016/0550-3213(94)90314-X
http://arxiv.org/abs/hep-ph/9402364
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9402364
http://dx.doi.org/10.1016/S0370-1573(98)00130-6
http://arxiv.org/abs/hep-ph/9807443
http://inspirehep.net/search?p=find+J+Phys.Rept.,317,1
http://dx.doi.org/10.1016/S0370-2693(96)01600-0
http://arxiv.org/abs/hep-ph/9610471
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9610471
http://dx.doi.org/10.1103/PhysRevD.67.074022
http://dx.doi.org/10.1103/PhysRevD.67.074022
http://arxiv.org/abs/hep-ph/0211226
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0211226
http://dx.doi.org/10.1103/PhysRevD.57.2665
http://arxiv.org/abs/hep-ph/9710302
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9710302
http://dx.doi.org/10.1016/0370-2693(95)01234-2
http://arxiv.org/abs/hep-ph/9503209
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9503209
http://dx.doi.org/10.1103/PhysRevD.56.1091
http://arxiv.org/abs/hep-th/9611010
http://inspirehep.net/search?p=find+EPRINT+hep-th/9611010
http://dx.doi.org/10.1016/S0370-2693(99)00932-6
http://arxiv.org/abs/hep-ph/9908225
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9908225
http://dx.doi.org/10.1088/0954-3899/29/2/313
http://arxiv.org/abs/hep-ph/0208031
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0208031
http://dx.doi.org/10.1088/0954-3899/30/7/003
http://arxiv.org/abs/hep-ph/0309262
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0309262
http://dx.doi.org/10.1016/S0550-3213(97)00615-9
http://arxiv.org/abs/hep-ph/9707318
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9707318
http://dx.doi.org/10.1103/PhysRevD.87.074024
http://arxiv.org/abs/1302.3528
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.3528


J
H
E
P
0
9
(
2
0
1
4
)
0
4
5

[59] G.S. Bali, C. Bauer and A. Pineda, The static quark self-energy at O(α20) in perturbation

theory, arXiv:1311.0114 [INSPIRE].

[60] A.L. Kataev and V.T. Kim, Peculiar features of the relations between pole and running heavy

quark masses and estimates of the O(α4
s) contributions, Phys. Part. Nucl. 41 (2010) 946

[arXiv:1001.4207] [INSPIRE].

[61] Y. Sumino, Estimate of 4-loop Pole-MS Mass Relation from Static QCD Potential, Phys.

Lett. B 728 (2014) 73 [arXiv:1309.5436] [INSPIRE].

[62] D. Eiras and J. Soto, Light fermion finite mass effects in non-relativistic bound states, Phys.

Lett. B 491 (2000) 101 [hep-ph/0005066] [INSPIRE].

[63] Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP),

Phys. Rev. D 86 (2012) 010001 [INSPIRE].

[64] B.A. Kniehl and A.A. Penin, Ultrasoft effects in heavy quarkonium physics, Nucl. Phys. B

563 (1999) 200 [hep-ph/9907489] [INSPIRE].

[65] A. Hoang, P. Ruiz-Femenia and M. Stahlhofen, Renormalization Group Improved Bottom

Mass from Υ Sum Rules at NNLL Order, JHEP 10 (2012) 188 [arXiv:1209.0450] [INSPIRE].

[66] A.A. Penin and N. Zerf, Bottom Quark Mass from Υ Sum Rules to O(α3
s), JHEP 04 (2014)

120 [arXiv:1401.7035] [INSPIRE].

[67] A. Pineda and A. Signer, Renormalization group improved sum rule analysis for the bottom

quark mass, Phys. Rev. D 73 (2006) 111501 [hep-ph/0601185] [INSPIRE].

[68] F. Bernardoni, B. Blossier, J. Bulava, M. Della Morte, P. Fritzsch et al., The b-quark mass

from non-perturbative Nf = 2 Heavy Quark Effective Theory at O(1/mh), Phys. Lett. B 730

(2014) 171 [arXiv:1311.5498] [INSPIRE].
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