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1 Introduction

Ever since the discovery of ‘hidden’ exceptional symmetries in maximal N = 8 supergrav-
ity [1] a recurring theme has been the question of whether these symmetries are specifically
tied to dimensional reduction on tori, or whether they reflect more general properties of
the underlying uncompactified maximal theories, possibly even providing clues towards a
better understanding of M-theory. Starting from D = 11 supergravity [2] clear evidence
for the existence of hidden structures beyond those of standard differential geometry was
already given in the early work of refs. [3, 4], a line of development which was continued
in [5] and taken up again in [6-8]. Somewhat independently of these developments, an
important insight has been the emergence of generalized geometric concepts in string and
M-theory, which enable a duality-covariant formulation of the low-energy effective space-
time theories, as manifested in double field theory [9-13], and in the recently constructed



‘exceptional field theory’ (EFT) [14, 15]. See also refs. [16-19] for a generalized geometric
approach in the sense of refs. [20, 21]. The purpose of this paper, then, is to bring to-
gether these strands of development: first we complete the construction of the Er¢) EFT
by giving the fully supersymmetric extension by fermions; second, we relate the resulting
theory to the formulation of [3, 6-8]. As one of our main results we will demonstrate the
compatibility of these two formulations, and explain the subtleties involved in making a
detailed comparison.

The approach of [3], which has been extended and completed in [7, 8] to also take into
account aspects of the E7(7)-based exceptional geometry, takes D = 11 supergravity as the
starting point and reformulates it in order to make a local SO(1,3) x SU(8) tangent space
symmetry manifest. To this end the fields and coordinates are decomposed in a (4 4 7)
splitting, as in Kaluza-Klein compactifications, but keeping the full coordinate dependence
of all fields (however, unlike in EFT, no extra coordinates beyond those of the original
theory are introduced). The fermions transform under the local SU(8) subgroup, and
their supersymmetry transformations, already given in [3], are manifestly SU(8) covariant.
Moreover, those parts of the bosonic sector which lead to scalar and vector fields in the
dimensionally reduced maximal supergravity can then be assembled into E;7) objects,
namely a 56-bein encoding the internal field components and a 56-plet of vectors combining
the 28 electric and 28 magnetic vectors of N = 8 supergravity; their supersymmetry
transformations can be shown to take the precise form of the four-dimensional maximal
gauged supergravity. While in this approach the fermions are included from the beginning
(with the supersymmetry variations constituting the starting point of the analysis) and
the on-shell equivalence with D = 11 supergravity is thus guaranteed at each step of the
construction, a proper understanding of the role of E7 (7 in eleven dimensions (as well as of
the Ey(7)-covariant dynamics of the bosonic sector) was lacking in the original work of [3],
and has only emerged with the recent advances. Nevertheless it is remarkable that the
combinations of SU(8) connections in the supersymmetry variations of the fermions found
‘empirically’ in ref. [3] are precisely the ones required by E7(7)-covariance as identified here.

The results of ref. [5] suggest that a formulation that is properly covariant under the
exceptional groups should include extended coordinates transforming under this group, an
idea that also appears in the proposal of ref. [22]. Such an extended spacetime has later
been implemented for E7(7) in a particular truncation of D = 11 supergravity that retains
only the internal coordinates and field components of the (4 + 7) splitting [23]. More
recently, similar reformulations of D = 11 supergravity have been given for the analogous
truncations, casting the theory and their residual gauge transformations into a covariant
form [18, 19, 24]. In contrast to the original approach of ref. [3], however, these formulations
are not immediately applicable to the untruncated D = 11 supergravity. By contrast, the
construction of refs. [7, 8], the recent construction of complete EFTs in refs. [14, 15] and
finally, the present work extend the formulation of ref. [3] to a fully E;(7)-covariant theory.

The E7(7) EFT, which is a natural extension of double field theory, is based on a 4+56-
dimensional generalized spacetime, with fields in E7(7) representations initially depending
on all coordinates z# and Y™ (with fundamental indices M = 1,...,56). The theory is

given by an action along with non-abelian twisted self-duality equations for the 56 vector



fields. The fields transform appropriately under E;(7)-generalized diffeomorphisms. Cru-
cially, the theory is subject to an E;(7)-covariant section condition [18] that implies that
the fields depend only on a subset of coordinates. In order to compare with the usual
D = 11 supergravity, and thus with the results of refs. [3, 7], one has to pick a partic-
ular solution of this constraint, which reduces the spacetime to 4+7 dimensions. After
solving the section constraint, the various components of the generalized diffeomorphisms
can be interpreted as conventional diffeomorphisms and tensor gauge transformations. In
addition, and in analogy to type II double field theory [25, 26], the section constraint has
two inequivalent solutions: D = 11 supergravity and type IIB supergravity. After solv-
ing the section constraint, the E;;) EFT also encodes, as 7 components among the 56
gauge vectors, dual gravity degrees of freedom. This description is consistent by virtue of
a covariantly constrained compensating two-form gauge field B, [15, 27]. The status
of this field may appear somewhat mysterious, but its appearance is already implied by
consistency of the EFT gauge symmetries. In this paper we will give further credibility to
this field by showing that it has consistent supersymmetry variations.

In this paper we introduce the fermions of the E77) EFT and give the supersymme-
try variations of all fields in a manifestly E;(7) x SU(8)-covariant form, showing that they
close, in particular, into the external and internal generalized diffeomorphisms. This is
in analogy with the supersymmetrization of DFT [28-30]. Importantly, we find that the
supersymmetry transformations of all fields can be written solely in terms of the fields of
EFT, in particular the 56-bein, without recourse to the D = 11 fields that can be thought
of as parametrising these structures in a GL(7) decomposition. Furthermore, we determine
the fermionic field equations and verify supersymmetric on-shell invariance. To this end we
have to further develop the generalized exceptional geometry underlying the E7 7y covariant
formulation by introducing connections and invariant curvatures generalizing the geome-
try of double field theory [9, 31-34]. For the internal, 56-dimensional sub-sector, such a
geometry is to a large extent already contained in the literature [18, 19, 35, 36]. In partic-
ular, refs. [18, 19] give the full dynamics and supersymmetry transformation rules for the
truncated theory, where the fields and parameters are independent of the four-dimensional
external coordinates, in terms of such geometrical objects. We use the opportunity to
give a complete and self-contained presentation of this geometry. We give compact and
E7(7)-covariant expressions for the internal connections in terms of the 56-bein and other
covariant objects. One of the main results of this paper then is the formulation including
external and internal connection components Q, and Qs for the local SU(8), respec-
tively, and similarly external and internal connection components w,, and wy; for the local
SO(1,3), with all geometric objects being also covariant under E;(7)-generalized diffeomor-
phisms. The various connection components are summarized in the following scheme

=0 D, VP = PABCL Vyop
(1.1)
Dyre,® = my*eus Tanlo1z =0



Here we also indicate the corresponding covariant torsion-type constraints satisfied by the
connections. The precise definitions of the various tensors and our conventions will be given
in the main text. The formulation is manifestly covariant under all gauge symmetries except
for the external diffeomorphisms of 2 that depend also on the ‘internal’ E(7) coordinates.
The structure of the various diagonal and off-diagonal connection components in (1.1)
hints at a larger geometrical framework in which they would emerge from a single ‘master
connection’, whose introduction would finally render all gauge symmetries manifest.

A distinctive feature of generalized geometries is that, in contrast to conventional
geometry, the connections are not completely determined by imposing covariant constraints,
necessarily featuring undetermined connections that are not given in terms of the physical
fields, as first discussed in the geometry of double field theory [9, 28, 31-33] and later
extended to exceptional groups [18, 35, 36]. As in double field theory, however, this is
consistent with the final form of the (two-derivative) theory depending only on the physical
fields, as the undetermined connections drop out of the action and all (supersymmetry)
variations, as shown in [19] for the truncated theory. We also clarify the relation of these
geometrical structures to the formulation of [3, 7, 8], in which connections carry ‘non-
metricities’ that can be absorbed, as we will show, into SU(8) connections once we include
components along the E7)-extended directions.

One obvious question concerns the precise significance of the term ‘symmetry’ in the
present context. The Er(7) identified here is analogous to the GL(D) that appears in general
relativity, and is ‘spontaneously broken’ when one picks a particular non-trivial solution to
the section constraint (ta)M Now ® Oy = 0.1 However, the new structures exhibited here
do not imply that D = 11 supergravity or IIB supergravity have any new local symmetries
beyond the ones already known.? Nevertheless it is remarkable and significant that the
internal diffeomorphisms can be combined with the tensor gauge transformations of the
form fields and their duals in an Eg(7)-covariant form. Evidently, the true advantage of
the reformulation would only become fully apparent if solutions of the section constraint,
besides those corresponding to D = 11 or IIB supergravity, exist. Such solutions would give
genuinely new theories (but see below). Although such solutions are somewhat unlikely to
exist for the case at hand, the situation may become more interesting when one considers
infinite dimensional extensions of the E-series.

A second question concerns the utility of the supersymmetric EFT constructed here
in a more general perspective. Here we see two main possible applications and extensions.
The first application concerns the non-linear consistency of Kaluza-Klein compactifications
other than torus compactifications. These can be investigated along the lines of [40-42],
exploiting the present formalism and the fact that it casts the higher-dimensional theory
in a form adapted to (gauged) lower dimensional supergravity. Indeed, the full non-linear
Kaluza-Klein ansétze for those higher-dimensional fields (including dual fields) yielding

Tt is an old idea to interpret the graviton as a Goldstone boson of spontaneously broken GL(4) symme-
try [37-39], but the present scheme should not be viewed as a realization of this idea.

2The only new local symmetry would be the one associated with the seven ‘dual’ internal diffeomor-
phisms, but the corresponding transformation parameters ‘miraculously’ drop out in all relevant formulae,
as shown in ref. [8]. In the formulation of ref. [15] this fact is explained by the ‘Stiickelberg-like’ gauge
invariance associated with the two-form field B, ar.



scalar or vector fields in the compactification have already been obtained in this way for
the AdS4 x S” compactification [6, 42-44], as well as for general Scherk-Schwarz compactifi-
cations with fluxes [45].3 Apart from the non-linear ansitze for higher rank tensors, which
can now also be deduced in a straightforward fashion, and beyond the extension to other
non-trivial compactifications of D = 11 supergravity, the main outstanding problem here is
to extend these results to the compactification of IIB supergravity on AdSs x S°, for which
either the supersymmetric extension of Egg) EFT [47] or the present version with the IIB
solution of the section constraint might be employed. Indeed, a study of the ambiguities
inherent in defining generalized connections and how the supersymmetry transformations
(and hence the theory) remain invariant under such redefinitions in this paper has lead to
an understanding of the hook-type ambiguities observed in the D = 11 theory in ref. [41].

Secondly, the fact that the supersymmetric EFT has a structure very similar to four-
dimensional maximal gauged supergravity [48] may lead to a higher-dimensional under-
standing of the new SO(8) gauged supergravities of ref. [49], obtained by performing an
electromagnetic U(1) rotation of the 56 electric and magnetic vectors, which is not in Eq ().
Partial evidence presented in refs. [6, 44], as well as a more explicit argument based on
the higher-dimensional embedding tensor in ref. [8], show that these gaugings cannot orig-
inate from the D = 11 supergravity of ref. [2]. Specifically, the deformed theories can be
obtained from the standard SO(8) gauged supergravity by ‘twisting’ the 56-bein relative
to the vectors [6], that is, by making the replacement

—sinw cosw

V() = V(z;w) = ( cosw Sin‘”) V(z) (1.2)

in all formulae, where each element of the U(1) rotation matrix acts on a 28x28 subblock
of the 56 x56 matrix V), in precise analogy with the deformation of the four-dimensional
theory [49].# The present reformulation naturally suggests that a higher-dimensional an-
cestor of the deformed SO(8) gauged supergravities might thus be obtained by performing
an analogous ‘twist’ of the 56-bein of EFT (see also ref. [45]), V(z,Y) — V(z,Y;w), rel-
ative to all vectors and tensors, where the 56-bein is now taken to also depend on the 56
extra coordinates YM. Because of the inequivalence of the corresponding gauged SO(8)
supergravities in four dimensions, it is clear that such a theory would no longer be on-
shell equivalent to the D = 11 supergravity of ref. [2], and hence would correspond to
a non-trivial deformation of that theory. In fact, this would be the first example of a
genuinely new maximal supergravity in the maximal space-time dimension D = 11 since
the discovery of ref. [2] in 1978, and it would be a remarkable vindication of the present
scheme if such a theory could be shown to exist. Equally important, there would be no
way to reconcile this deformed theory with D = 11 diffeomorphism and Lorentz invariance;
in other words, the four-dimensional w-deformation of ref. [49] would lift to an analogous
deformation of D = 11 supergravity that is encoded in a suitably generalized geometric
framework transcending conventional supergravity.

3See also ref. [46], where uplift ansitze for sphere reductions of the D = 11 and type IIB theories are
conjectured using similar ideas.

“In fact, in the context of four-dimensional maximal gauged theories, the U(1) rotation above is to be
understood as part of a more general SL(2,R) symplectic deformation [50].



The outline of the paper is as follows. In section 2 we review the bosonic E7(7)-covariant
exceptional field theory, of refs. [14, 15]; in section 3 we construct its supersymmetric com-
pletion upon introducing the proper fermion connections and working out the supersymme-
try algebra. In section 4, we discuss how this theory relates to the reformulation [3, 7, 8]
of the full (untruncated) D = 11 supergravity after an explicit solution of the section
constraint is chosen.

We refer the reader to appendix A for a summary of index notations and conventions.

2 Bosonic E(7) exceptional field theory

In this section we give a brief review of the bosonic sector of the Ey(7)-covariant exceptional
field theory, constructed in refs. [14, 15] (to which we refer for details) and translate it into
the variables appropriate for the coupling to fermions, in particular the 56-bein parametriz-
ing the coset space E(7)/SU(8) . To begin with, all fields in this theory depend on the four
external variables z#, ;1 = 0,1,...,3, and the 56 internal variables YM M = 1,...,56,
transforming in the fundamental representation of E;(7), however the latter dependence is
strongly restricted by the section condition

(ta)"™MoponA=0,  (ta)"MouAonB=0, QMNoyAoNB=0, (2.1

for any fields or gauge parameters A, B. Here, QMY is the symplectic invariant matrix
which we use for lowering and raising of fundamental indices according to XM = QMN X .,
Xy = XMQun. The tensor (ta)MN is the representation matrix of E7(7y in the funda-
mental representation. These constraints admit (at least) two inequivalent solutions, in
which the fields depend on a subset of seven or six of the internal variables, respectively,
according to the decompositions

56 — +21 421+ 7y, (2.2a)
56 — | (6,1)42|+ (6',2)11 + (20,1)0 + (6,2)_1 + (6',1) 2, (2.2b)

of the fundamental representation of Er(7) with respect to the maximal subgroups GL(7)
and GL(6) x SL(2), respectively. The resulting theories are the full D = 11 supergravity
and the type IIB theory, respectively. The bosonic field content of the E;(7)-covariant
exceptional field theory is given by

{e ., Vv, AM, Buo, Buwul (2.3)

@ is the vierbein, from which the external

which we describe in the following. The field e,
(four-dimensional) metric is obtained as g, = e,%€,. Its analogue in the internal sector

is the complex 56-bein
Vi = (Vu*P Viras} (2.4)

satisfying
VB = vy 1B Varas = (Vu?)" (2.5)



with SU(8) indices A, B,--- =1,...,8, in the fundamental 8 representation and collective
index N labelling the 28 + 28.5 The fact that the 56-bein is an E7(7) group-valued matrix
is most efficiently encoded in the structure of its infinitesimal variation,

5VMAB = —5(]0[‘4 VMB]C + (5pABCD Vvep (2.6)
with 1
5C_IAB _ —5C]BA , 5pABCD — ﬂ 6ABCDEFG]{ 5PEFGH ) (27)

This is equivalent to

2
Varap VNP QYN = 2504 Vg sV MY

Vuas 0Vnep QMY = Vigjap Vyep @YY,
1

VMAB 5VNCD QMN _ o EABCDEFGH Vi EF (SV]V GH QMN ) (28)

A particular consequence of the group property is

AB AB _ .
V" VNap —VmapVN"" =iQun,
MN~, AB . <AB
Q Vu VNcD :15CD,

QMN VMAB VNCD =0. (2.9)

The analogue of the external metric g, in the internal sector is the positive definite sym-
metric real matrix
Mun = Vi apVnP + Vv apVu?? (2.10)

in terms of which the bosonic sector in ref. [15] has been constructed.
The 56 gauge fields AMM in (2.3) are subject to the first order duality equations
given by®
_ 1 1
]-"WABE ifMVAB—ZeEWW}"”"AB:O. (2.11)

Here, the 56 non-abelian field strengths are defined as

'F:U,I/AB = JruuM VM AB (212)
1
Fu =20, A4, —2 A, Non A M — 5 (24 (ta) N (t*) k1 — N QL) ALK On A"

1
— 12 (ta)MN aNB;wa - 5 QMN BuuN ) (2.13)

®While the SU(8) indices were taken to be i, j, k, ... in ref. [15], we here revert to the notation of ref. [3],
also employed in refs. [7, 8], where SU(8) indices are denoted by the letters A, B, C,.... The reason is that,
when considering non-trivial compactifications, one must distinguish between the SU(8) indices A, B, ... in
eleven dimensions, and the SU(8) indices 4, 7, . . . in the four-dimensional compactified theory. These are only
the same for the torus compactification. Any other compactification involves Killing spinors as ‘conversion
matrices’ (hence the distinction between ‘curved’ and ‘flat’ SU(8) indices in ref. [40]). However, in accord
with previous conventions, fundamental SU(8) indices are raised and lowered by complex conjugation.

“We use the space-time conventions of ref. [48], such that our tensor density &, is related to the one

employed in ref. [15] by 55522'2101] = i553;§'4542].



with the 2-forms B, o, By v from (2.3), transforming in the adjoint and the fundamental
representation of E;(7), respectively. The latter form is a covariantly constrained tensor
field, i.e. it is constrained by algebraic equations analogous to (2.1)

(ta)MN BBy =0, (ta) N B OnA =0, (ta) N 0y By =0,

2.14
QMN By By =0, OMN By oNA=0. (2:14)

Its presence is necessary for consistency of the hierarchy of non-abelian gauge transfor-
mations and can be inferred directly from the properties of the Jacobiator of generalized
diffeomorphisms [15]. In turn, after solving the section constraint it ensures the correct
and duality covariant description of those degrees of freedom that are on-shell dual to the
11-dimensional gravitational degrees of freedom.

Using (2.9) and (2.10), equations (2.11) take the form of the twisted self-duality

equations’

1
Fu M= 3 j € wpo VN My FPOE (2.15)

The bosonic exceptional field theory is invariant under generalized diffeomorphisms in
the internal coordinates, acting via [18, 51]

LAUM = Ao UM — 12PM K o ALUN + NU) 0pAT UM | (2.16)

on a fundamental vector UM of weight A(U). The projector on the adjoint representation

1 1 1
PKMLN = (ta)MK(ta)NL = ﬂ 51\1515]LV+E 5]%45{\?—1—(75@)]\/[]\[(250‘)](['—% QMNQKL, (2.17)

ensures that the action (2.16) is compatible with the E7(7) group structure. The generalized
diffeomorphisms also give rise to the definition of covariant derivatives

Dy =0, —La,, (2.18)

whose commutator precisely closes into the field strength (2.13). The full bosonic theory
is invariant under the vector and tensor gauge symmetries
one,” =Lpe,”,
SaVu P = Lavu??
1

onzAM = DAY + 12 (41N ONE, o + 3 QMN = v,

5A,EB;LV04 =2 D[MEy]a + (ta)KL AKf,LLI/L - (ta)KL A[NK 5-/41/]L )

onzBuwm =2 D[“E,,]M + 48 (ta)LK (8K8M.ALLLL) E,,]a

+ Qpr (A O AL" — O AL A = Fu M O AF + 00 Fu S AY) L (2.19)

with parameters AM Euas Eu M, the latter constrained according to (2.14). The A-weights
of the various bosonic fields and parameters are collected in table 1, where we have also

"See footnote 6.



field | e, VMAB -AuM7 AM B,uzxou Eua B,uz/Ma E,uM XABC @Z}A et

0

=

1 1 1
1 2 1 1

NO[—=
D=

Table 1. A-weights for the bosonic and fermionic fields and parameters.

included the A-weights of the fermionic fields to be introduced later. Note that B, o and
B, v appear in the field strength (2.13) only via the combination/projection

1
—12(t)MN ONBuy o — 5 OMEB LK (2.20)

As a result, we observe the following additional gauge transformations that leave the field
strengths invariant

598/,“/& = aMQ,uZ/]Ma + (ta)MNQ,ul/NM )

6QB;UJM = _aMQuVNN - 28NQ;M/MN s (221)
where QWMa is a parameter living in the 912 of E;(7), i.e.
()KL, My =0, (2.22)

and €, ~M is a parameter constrained in the index n just as the N index in partial
derivatives dp, see equations (2.1), and the two-form By, v, see equations (2.14). The shift
transformations (2.21) should be understood as the tensor gauge transformations of the
three-form gauge potentials of the theory (which we have not explicitly introduced) that
also act on the two-forms due to the Stiickelberg couplings of their field strengths. They
precisely drop out in the projection (2.20) which is the one appearing in the vector field
strengths.

Other than the first-order duality equations (2.11), the remaining equations of motion

of the bosonic theory are most compactly described by a Lagrangian®

-1 1
Lrrr = e R+ ) e g" Dy MMYN DMy — 3 e My FM F, N
+ ﬁtop —€ V(MMN7guu> . (2.23)

Let us present the different terms. The modified Einstein Hilbert term carries the Ricci
scalar R obtained from contracting the modified Riemann tensor

R = R, Plw] + FuMe*Poye,’ (2.24)

with the spin connection w,ﬂﬁ obtained from the covariantized vanishing torsion condition

@ «a @ 1 «a «
0= D[Hey} = 8[He,,] - A[“KﬁKey] - 5 8KA[HK €] + Wi A €v)B - (2.25)

8Due to the self-duality (2.15) of the vector fields, this is understood as a “pseudo-Lagrangian” in the
sense of a democratic action [52] such that the duality equations (2.15) are to be imposed after varying the
Lagrangian.



The scalar kinetic term can be equivalently expressed as
% D*MELD, Mycr, = —é P! aBcD PMABCD ; (2.26)

where we have introduced the coset currents PMABCD as follows
D;LVMAB — D”VMAB + QuC[A Vi BIC = zP#ABCD Vuen (2.27)

according to the decomposition (2.6) and where D, refers to the covariant derivative defined
in equation (2.18). This moreover defines the composite SU(8) connection

2i
Quaf = 3 VNBCD Vneca, (2.28)

indicating that the 56-bein transforms under local SU(8) transformations. Thus, we will in
the following use D, = D,, + Q,, to denote the resulting SU(8)-covariant derivatives. The
vector kinetic term in (2.23)

1 1
3 eMuyn f”VM./T#VN = 1 ef#yAB}—“VAB , (2.29)

simply contracts the non-abelian field strengths (2.13) with the internal metric (2.10),
while the topological term is most compactly given as the boundary contribution of a
five-dimensional bulk integral

/ &'z / &Y Lyop = 214 / & / 4V e F M D, Forar - (2.30)
0Xs s

Finally, the last term in (2.23) is given by
1 1
V(M gw) = =15 MMN G MEE N M1, + §MMN8MMKL3LMNK (2.31)

1 1 _ _ 1
— 39 Yong On MM — EMMNQ Yormgg 18NQ_ZMMN6M9MV8NQ;W7

in terms of the internal and external metric. For later use, we note that in terms of the
56-bein and modulo a total derivative e 10y (e K M) "the potential takes the form

1
VOO, guw) = VM4V oy <3MPNABCD — 5 M B pNEBCD>
1
+ 5 MMN o ABEP Y apep +4VM 4gVN Oy ABEE - cpER
1 _ _ 1
- ZMMNQ Yong g Ong — ZMMNaMgwaNgW ; (2.32)

expressed via the standard decomposition of the Cartan form V~'9,,V along the compact
and non-compact parts of the E;(7) Lie algebra

2i .
ana®” = S VNEC O Vvoa, putPOY =iV AT 0y Nl (2.33)

Written in the form of (2.32), it is easy to observe that the first two lines of the potential
reproduce the corresponding terms in equation (7.5) of ref. [3].

,10,



All five terms in (2.23) are separately gauge invariant under generalized diffeomor-
phisms (2.19) in the internal coordinates. In addition, the full set of equations of motion
is invariant under generalized diffeomorphisms in the external coordinates acting as

5§eua = gyDueua + Dugyeua ) (2'34)
deMuyn =& DyMpyn
(SgAHM = gy ]:yMM + MMN 9uv aNEV )

(555’””(1 =¢&P Huvpa — (ta)KL A[uK 5§AV}L ,

SeBouy a1 = € Hyp 11 — 21 €pupog”” DP (gT,\GMfA) — (A K 0n0e Ay i — 001 AL e A -
When 0y = 0, this reduces to the action of standard four-dimensional diffeomorphisms.
Remarkably, the invariance of the theory under (2.34) fixes all relative coefficients in (2.23)
and thus uniquely determines all equations of motion.

Variation of (2.23) gives the field equations for the scalar fields parametrizing My
and the Einstein field equations for g,,. Variation with respect to the two-forms B, o

and By, v yields projections of the first-order vector field equations (2.15). Finally, the
variation of the action with respect to the vector fields leads to second order field equations

D, (e Mgy FN) = e (T + ") (2.35)

after combining with the derivative of (2.15), and where the gravitational and matter
currents are defined by the respective contributions from the Einstein-Hilbert and the
scalar kinetic term
j“M = —2e,'ep” (8Mwya6 -D, (ep[aaMepB])) ,

1
Ty =2ie oy (6 P ABCDVNABVMCD — C.C.) ~ 21 D“MKLGMMKL . (2.36)

Equation (2.35) may be compared to the second order field equations obtained from com-
bining the derivative of (2.15) with the Bianchi identities

1
3D, Fyy™ = —12(t) "N onHuvpa — 5 QMY U N (2.37)

where H,,pa and H,,, v denote the non-abelian field strengths of the two-forms

H,ul/pa = SD[/,LBVp} a—3 (ta)KL ‘A[MKaVAP]L .
Hywprr = 3DyBypiar — 3 (A[uNaMaVAp]N - aM*A[uNavAp]N) T (2.38)

Combining (2.15), (2.35), and (2.37) gives rise to the first-order duality equations describing
the dynamics of the two-forms

~ 1 1
iJ ar + 3 DHYNAB 91 Yy ap = 3 e e Hypo Mt
(ta) ™ (PHAPCPVN s pVaiop — P apepVV PV “P) = e e Hypra . (2.39)

Strictly speaking, the second equation only holds under projection with (t*)%%9r. The
first-order equations (2.39) show that the two-form fields do not bring in additional degrees
of freedom to the theory.
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3 SU(8) x Er(7) exceptional geometry

3.1 Connections

In this section we set up the Ey(7)-covariant geometrical formalism for defining derivatives
that are simultaneously covariant with respect to generalized internal diffeomorphisms, lo-
cal SU(8), and SO(1, 3) Lorentz transformations. This will allow us to couple the bosonic
E7(7)-covariant exceptional field theory to fermions and to establish the link with the
‘ground up’ approach to be described in the next section. From the representation content
of maximal N = 8 supergravity, or equivalently from an appropriate decomposition of the
D = 11 gravitino, it follows that the fermionic fields of the theory are SO(1, 3) spinors, and
transform in the 8 (the gravitini wf) and in the 56 (the matter fermions y4B¢) of SU(8),
respectively.” The main new feature is that, like the bosonic fields (2.3), the fermions are
here taken to depend on 4 + 56 coordinates modulo the section condition (2.1). Under ‘in-
ternal’” generalized diffeomorphisms (2.16) they transform as scalar densities with weights
as given in table 1.

For the external derivatives, the relevant connections have been introduced in the
previous section. On a spinorial object in the fundamental representation of E(7) x SU(8),
the covariant derivative is defined as

DuXan = DuXoan + {0, asXan + 5 Qs X (3.1)
with the Er(7)-covariant derivative D), from (2.18), and the spin- and SU(8)-connections
defined by (2.25) and (2.28), respectively. By construction, these connections ensure covari-
ance of D, X 4 y. As usual, for covariant derivatives on four-dimensional space-time tensors
we may also introduce the covariant derivative V,, which in addition to (3.1) carries the
Christoffel connection defined by the standard (though covariantized) vierbein postulate

Dye,* =T, e,*=0. (3.2)

For the internal sector, we similarly define a covariant derivative in the internal vari-
ables Y. The most general such derivative (denoted by Vjs) acts on Lorentz indices,
SU(8) indices and Er(7) indices, and has the form

1
VuXan =0uXan + ZWMaﬂ%ﬂXAN

1 2
+ §QMABXBN ~Tun™ Xar — 3 MX)Trm™Xan, (3.3)

if X is a generalized tensor of weight A\(X) under generalized diffeomorphisms (2.16).
Likewise, we use

1 1 B
DuXan =0uXan + Wit YapXan + 59ma"XpN (3.4)
9We use spinor conventions from ref. [48], i.e. in particular 7***7 = e~ '¢#"*? 4% and y’ea = —ea.
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for the derivative without the Christoffel connection I'y;n®. The required transforma-
tion rules for the connections are determined by covariance. Under generalized diffeomor-
phisms (2.16), the non-covariant variation of the first term in (3.3) is given by

AN (OmXan) = 12PF NP o 00m0pA° Xak (3.5)

where we recall that the covariant terms carry a weight of —% [15]. Thus, Tyn? also
carries a weight of —% and has the inhomogeneous transformation

(5AFMKN = LAFMKN + 12 PNKPQ 8M6PAQ . (3.6)

This implies in particular,

3
5AFMKM = ]LAFMKM + iaKapAP s (3.7)
explaining the factor % in the last term of (3.3). In the following, we will discuss the
definition of the internal spin- and SU(8) connection.
The internal spin connection wy;*? is defined by analogy with (2.27) by demanding that

Dyre,* = T’ €us (3.8)
with % = m3,(*%) living on the coset GL(4)/SO(1,3). As a consequence,
wy®? = e“[O‘GMe#ﬁ] , (3.9)

and
e“[aDMe#B] =0=eqDmey” - (3.10)

Later, it will turn out to be convenient to also introduce a modified spin connection @;“?

o = wy®? — %MMN Fu N eteer (3.11)
including the non-abelian field strengths ]-"WN in a fashion reminiscent of Kaluza-Klein
theory, whereby we view fields e, VB, and AMM as parts of a single big vielbein. We
will denote the corresponding covariant derivatives by D and %, respectively.

In order to discuss the remaining connections in (3.3), let us first require that the in-
ternal SU(8) connection and the Christoffel connection are related by a generalized vielbein
postulate (or ‘GVP’, for short)

0=VuVn? = ouVn? + Qu VNP — D VB | (3.12)

which is the analogue of (3.2) for the internal sector. In analogy with standard differential
geometry one would now like to solve this relation for both the SU(8) connection Qs 4”
and the generalized affine connection I'y;n* in terms of the 56-bein V and its derivatives
OnV. While in ordinary differential geometry, a unique such answer can be obtained
by imposing vanishing torsion, here there remain further ambiguities. In addition one
would like the resulting expressions to satisfy all requisite covariance properties, to wit:

,13,



Qs AP should transform as a proper connection under local SU(8) and as a generalized
vector under generalized diffeomorphisms, while I'y;n* should transform as a generalized
affine connection under generalized diffeomorphisms and as a singlet under local SU(S).
However, parallel to DFT it is not possible to express a connection satisfying these combined
covariance requirements as a function of only V and 9j/) in a covariant way, as we will
also confirm in terms of a simplified example in appendix D, and in terms of an explicit
calculation for the SU(8) connection in appendix E.

The first step in reducing the ambiguities is to constrain the connections by requiring
the generalized torsion to vanish; this amounts to the constraint [18]

TV, WM = TM (VW E =2 LYWM — Ly wM =0 (3.13)

for vectors V, W of weight % where LV denotes the generalized Lie derivative with all partial
derivatives replaced by covariant derivatives. Explicit evaluation of this condition yields

Tnr™ = TN —12PM P Tpn@ 4+ 4PM P Top? | (3.14)

with P the adjoint projector defined in equation (2.17). Indeed, it is a straightforward
computation to show that this combination transforms covariantly under generalized dif-
feomorphisms. From (3.6) and using the cubic identity (A.3) of ref. [15]

ARC (FPMN —12 PNMKL FKPL) =—6 (ta)pR(ta)MNﬁRﬁKAK

= —4PN B p AT kRS, (3.15)

where we have used equation (3.7) and the fact that all other terms in (A.3) vanish by
the section constraint. The last term is of the form of the non-covariant variation of the
final term in (3.14), with the opposite sign. Hence, the generalized torsion transforms as a
generalized tensor. The fact that the generalized torsion is gauge covariant means that it
can be set consistently to zero.

From equation (3.12), the last two indices in the generalized Christoffel connection
(Tar) v take values in the adjoint of E7(7). Hence, the generalized connection lives in the
E7(7) representations

56 ® 133 = 56 + 912 + 6480 . (3.16)

Using the explicit form of the corresponding projectors given in ref. [53], one can verify
that the vanishing torsion constraint (3.13) translates into [18, 35, 36]

Tun™| =0. (3.17)
912

In addition, requiring density compatibility of the internal derivatives according to
Vue=0, (3.18)

fixes

3
1 e_18Me = FKMK = —QMNQPQFPQN , (3.19)

where the second equality is obtained from contraction of (3.17). As we will explain below,
this trace must drop out in all relevant expressions involving the fermions.
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Next, we work out the most general SU(8) connection compatible with vanishing gen-
eralized torsion. Using equation (3.12), the condition (3.17) is equivalent to the following
conditions on the internal SU(8) connection Qs:

1
YEAB DL, CD _ g K [AB (DKVPCD]> -4 (ABCDEFGH K (DxVp r)

1
_ QI"QKQ (VK [ABVPCD] ~ 5 (ABCDEFGH K ), GH> . (3.20)

VE 40 DpVPY =6 (VX a0 D VPPC + VP DiVpac)

3
- 68 (VEcp DV + VECP DiVpep)

1
— 2T k¥ (VKAC VpPC 4 VEEYp o — 2 0f MPK> : (3.21)

which constitute the analogue of (2.25) in the internal sector. Unlike in the external sector
and standard geometry, the vanishing torsion conditions (3.20), (3.21) are not sufficient
to fully determine the internal SU(8) connection [18, 36], but rather constrain it to the
following form
Quma®” = qura” + Ryra® + Unra” + Wara” (3.22)
Here 9
g A’ = = VNBC 90 Vvoa, putBCP = ipNAB g, 1 CD (3.23)

are obtained in the standard way from the decomposition of the Cartan form V~19,,V
along the compact and non-compact parts of the E7) Lie algebra. We note that g 4B
transforms properly as a connection while pyABCP transforms covariantly under local
SU(8), but neither transforms as a vector under generalized diffeomorphisms. The remain-
ing pieces in (3.22) are given by

41
Ry 4" = 3 (WNBYPE pyacoe + VN acVipe py
n 2012
27
ﬁ
27
81

1
Wara? = 57 (VMACVNBC + VBV 40 — 3 o5 MMKQNK> I'rv®, (3.24)

BCDE)

(WNPEY\BC pnacoe + VN peVarac pnPCPF)

58 WNPYLEE pyeper + VN oV pr pnOPEY)

)

and by
Una? =VarepuP By —Vy“Pucp a? (3.25)

where the SU(8) tensor ucp 4® satisfies
ul€PBly =0, uCABr =0, (3.26)

and thus belongs to the 1280 of SU(8). It is now straightforward to check that ucp, 4B
drops out of the vanishing torsion conditions (3.20), (3.21) and thus remains undetermined.
An explicit form of Qpr4? in terms of the GL(7) components of V4% has been given in
ref. [18]. With Qys4? given by (3.22), it is now straightforward to solve (3.12) for the
affine connection

Tan® (V, 0, Q) = i (VAP D (QV ap — V7 asDar (Qn**) (3.27)
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using (2.9). This, then, is the most general expression for a torsion-free affine connection,
where the part Uy 47 of the connection (3.22) corresponding to the 1280 representation of
SU(8) represents the irremovable ambiguity that remains even after imposition of the zero
torsion constraint [18, 36]. In appendix E we will derive the unique expression for Uy, 4B
in terms of only V and 0p/V that makes Qy; 4P a generalized vector, but the resulting
connection will no longer transform as a proper SU(8) connection, and as a consequence
the affine connection would no longer be an SU(8) singlet.!?

In view of these subtleties it is therefore all the more remarkable how the supersym-
metric theory manages to sidestep these difficulties and ambiguities. Namely, in all relevant
expressions the internal covariant derivatives D), appear only in combinations in which the
undetermined part Ups4® of the connection is projected out and for which the covariance
under generalized diffeomorphisms is manifest. We illustrate this with a number of explicit
expressions that will be useful in the following. Using the explicit expression for Qp 4%,
equation (3.22), in equation (3.4), we have, for example!!

- - 1 - 1 -
VMAB DM‘:'B _ VMAB aM‘:'B + 5 vMAB QMBC o+ 5 VMCD pMABCD =5

+ 1 FKMK VMAB =5
2 =B >
_ a1 2 _
VM[AB DM.:.C] _ VM[AB aM:C] o 5 VM[AB qMDC]:'D o g VMED pMABCD :E
1 1
+ 5 VMDEpMDE[AB EC} + 6 I-\KMK VM[AB EC] , (328)

where the piece involving the trace of the affine connection comes from Wy 42 (we have
ignored the possible appearance of the internal spin connection wMO‘B). Indeed, Upsa®
does not survive in any of these combinations, as can be explicitly verified using equa-
tions (3.25). In other words, despite the non-covariance of the Cartan form, and thus
of gas and pjs, under generalized diffeomorphisms, the above combinations are covariant
under generalized diffeomorphisms because under generalized diffeomorphisms all terms
with second derivatives of AM cancel out. Modulo density contributions resulting from
the non-vanishing weights of the fermions (see below), the particular contractions (3.28)
of covariant derivatives with the 56-bein turn out to be precisely those appearing in the
supersymmetry transformation rules and fermionic field equations. More specifically, now
also allowing for a non-trivial weight A, and with fully covariant derivatives, we have

_ 1 1 _
VMAB VM:*B — VMAB 0M~:'B + 5 VMAB QMBC = + 5 VMC’D pMABCD =5

1 2. _ —
+ <2 — 3>\(:,)> Trcar™ YyMAB ZB,

- - 1 - 2 -
YMUB g, =C1 _ pMIAB g =C] _ 5 YPMIAB qMDC]:D -3 VM o paABCD 2B
+ %VMDEpMDE[AB =4 4 <(15 - 2/\(3)> Ty VMIAB=CT - (3.29)

0By contrast, the connections to be derived directly from D = 11 supergravity in the following section
do satisfy the required covariance properties, but the corresponding Upr4Z can then no longer be expressed
in a covariant way in terms of V and 9V alone.

"Such projections onto the 8 and 56 of SU(8) were shown to be insensitive to the ambiguity Upra® in
ref. [18].
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As we will see in the following section, and as originally shown in ref. [3], there is no term
proportional to e 1dyse (cf. (3.19)) in the supersymmetry variations of the fermions. Con-
sequently, the density terms proportional to I'x % must cancel. This fixes the weight of
the corresponding spinors in (3.29) uniquely, and in agreement with the weight assignments
given in the table. In summary, the above expressions are indeed fully covariant under both
local SU(8) and generalized diffeomorphisms. We will furthermore show in the following
section that these expressions do agree with the ones already obtained in ref. [3], upon
imposition of the section constraint.

Similar ‘miracles’ occur in the bosonic sector. For instance, in the bosonic field equa-
tions, we find after some computation that the scalar contribution to the vector field

equations from (2.36) can be expressed as

1
TPy = o1 D“MKLﬁMMKL + 2t On (e pH ABCDVNABVMCD — C.C.)

= 2i VB VNED T (¢"P, aop) + coc. (3.30)

with the undetermined connection Uj;4? again dropping out from this contraction of
covariant derivatives.

We summarize the structure and definitions of the various components (external and
internal, SO(1,3) and SU(8)) of the full spin connection as follows

Ty =0 D VuAE = PABCP Vyyep
(3.31)
Dye,® = mu®Peus TunElo12=0

The various components of its generalized curvature contain the building blocks for the
bosonic field equations (2.15), (2.23) as we shall discuss in section 3.3 below.

3.2 The supersymmetry algebra

A nice illustration of the properties of the full spin connection (3.31) is the algebra of
supersymmetry transformations. In particular, the closure of the algebra on the 56-bein
hinges on the vanishing of the generalized torsion (3.13) in the very same way as the closure
on the vierbein requires the vanishing of the external torsion (2.25). The supersymmetry
transformations of the bosonic fields (2.3) take the same structural form as in the four-
dimensional theory

dee,® = e Pua + eay Pt
5V = 2v2 Varen (E[AXBCD] + i ABCDEFGH €EXFGH> :
S AM = —i20MNyAB <6£ Yu XABC +2V2E4 wug) + c.c.
OBy o = —g\@ (ta)"? (VPABVQ op @9, XBOPN 4 2v2 Vp Vo€ Ea Vi ” + c.c.)
— (ta)mn Ay ALY (3.32)
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The supersymmetry variation of the constrained two-form B, »s which is invisible in
the four-dimensional theory can be deduced from closure of the supersymmetry algebra

and yields
16 4v/2
0By v = 3 VEAB Dy Vi po € yibya — 5 VP 45DV op e v x PP
— 81 (gA V[MDMQJJV}A — DMgA Vi le]A) + 2i e€pppo 9°" Dy (EA’prT A) + c.c.
+ Qpep (A OnbeA) " — O AL 6 ALY, (3.33)

as we show explicitly in appendix C. Note, that all SU(8) connections cancel in the vari-
ation (3.33), such that the external index is carried by dj; and this variation is indeed
compatible with the constraint (2.14) on B, ys. In particular, the variation (3.33) consis-
tently vanishes when 0y = 0.

In terms of the full spin connection (3.11), (3.31), introduced in the previous section,
the fermionic supersymmetry transformation rules take a very compact form given by

it = 2D, et — i VAP (uep) |
0xPC = —2V2 P ABCP Aty — 12120 YMIAB e (3.34)

It is then straightforward to verify closure of the supersymmetry algebra. The algebra
takes the same structural form as in the four-dimensional theory,

[5(51)7 5(62)} = fﬂpu + OLorentz (Qaﬁ> + 5susy(€3) + 5SU(8) (AAB) + 5gauge (AM)
+ 5gauge(Eya ) ENM) + 5gauge (Q,uyMa ) Q,uZ/MN) . (335)

The first term refers to a covariantized general coordinate transformation with diffeomor-
phism parameter
= 2&% Y e 4 + 26 a7 a0 . (3.36)

The last three terms refer to generalized diffeomorphisms and gauge transformations (2.19),
(2.21), with parameters

AN = —g QNP (VPABQ A€1B — Vp ABé?elB) = VﬁlNAB AAB + VﬁlNAB AaB,

8 _ _
Spa =g (ta)"2Vp acVoPC (&1 + Epyuer?) | (3.37)

again, as specified by the four-dimensional theory [48]. The remaining (constrained) gauge
parameters =, y/, QWM as uY are not present in the four-dimensional theory and will
be specified below.

Closure of the supersymmetry algebra on the vierbein e, is confirmed by a standard
calculation:

[6c,+ 8ey] €% = (2 & A7 Dyt — 4i VM ABey 4y Vs (vue1n) + c.c.) (142
= QDH (EQ A"}/aﬁf) — 43 @M (VMABEQA €1 B) €ua — 8 VMAB€2A€1B 6]\/[6#&
—die,p yMAB <€2A'yaﬂ §M613 — %MEQ a7 Pe B) + c.c.

1 -
=D, (&%e,%) + AM dpre,* + 3 ouAM e, + Q% e, 5, (3.38)
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with parameters from (3.36) and (3.37), and Lorentz transformation given by
Q% = —giVMABe, 4BV 61 g + cc. . (3.39)

The AM terms in (3.38) reproduce the transformation of e,® under generalized diffeomor-
phisms as scalar densities of weight %, cf. table 1. Furthermore, the first term in (3.38) can
be rewritten in the standard way

Dy (€7¢,%) = e, D€’ + €'Dye,™ + 26 Dpye ) (3.40)

into a sum of (covariantized) diffeomorphism and additional Lorentz transformation, upon
making use of the vanishing torsion condition (2.25) in the four-dimensional geometry.

An analogous calculation shows closure of the supersymmetry algebra on the 56-bein.
We concentrate on the projection of the algebra-valued variation V~"'6) onto the 70 of
SU(8), since the remaining part will entirely be absorbed into a local SU(8) transformation.
Using transformations (3.34), we obtain

V—IMAB [561 ’ 562] VMCD _ gu PMABC’D_‘_Gi VN [ABVNACD] _i 6ABCDEFGHVN

1 eFrVNAgH -

While the first term is the action of the covariantized diffeomorphism, the remaining terms
can be rewritten in complete analogy to (3.40) with the vanishing torsion condition in (3.40)
replaced by the corresponding condition (3.20) in the internal space. Specifically,

V—lMAB [551,552] VMCD — f“ /PMABCD +12 VP[ABV—lCD] Q PPQNLVN (VKLAK)
_gp fPuABCD 4 12VpABY-ICDIMpP N 5 AK
L AK (vKVM[AB> y-10DI M

where we have used (3.20) in the second equality. The second line of (3.20) has been
absorbed by the weight term associated with the non-trivial E77) weight % of AK .

Closure of the supersymmetry algebra on the vector and two-form fields can be verified
by similar but more lengthy computations, which we relegate to appendix C. Remarkably
(and necessarily for consistency), closure on the two-forms By, ar reproduces not only the
action of generalized diffeomorphisms (2.19) but also the shift transformation (2.21) with
parameter {2, 3" and finally their rather unconventional transformation behaviour (2.34)
under external diffeomorphisms. Consistency of the algebra thus confirms the above su-
persymmetry transformation rules and determines the remaining gauge parameters on the
right hand side of (3.35):

- e _ 16
Zum = 8i (6‘24 YuDner A + Dyréaavu ef) - — VKBC DMVKAB egfyuelA + c.c.,

3
32 . _(C
QWMC, =—3 z(ta)PQVpABVQCBVMAD eg ’ywef)) +c.c., (3.42)
32i
QHVMN =-32 VNABEE% V[MVM (’yy]eﬁ) e VNACVP ABDMVPBD Egc ’7/“,6?) +c.c..
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As required for consistency, the parameter QWMQ lives in the 912, i.e. satisfies (2.22).
Moreover, the parameters =, y; and €, mY satisfy the required algebraic constraints anal-
ogous to those given in (2.14): one can verify that all SU(8) connection terms above (which
would obstruct these constraints) mutually cancel.

3.3 Supersymmetric field equations

In this section we employ the formalism set up in the previous sections to spell out the
fermionic field equations and sketch how under supersymmetry they transform into the
bosonic field equations of the E77) EFT (2.15), (2.23). The Rarita-Schwinger equation is
of the form
_ V2
0=(Ep)a=—e P77, Dpthy 4 — ?’YV’Y“XBCD PuBCcDA
—2je tervro M o ’yyﬁM (’ypwf) — /2 YN BC %N (Y"xaBc), (3.43)

where the first two terms can be read off from the dimensionally reduced theory and the
second line captures the dependence on the internal variables and can be derived from
verifying the supersymmetry transformation of (3.43). It is straightforward to check that
the contractions of covariant derivatives in (3.43) are such that the undetermined part
from the internal SU(8) connection Qs precisely drops out, cf. (3.28) and [19]. Hence,
equation (3.43) is fully defined via (3.1) and (3.24).

Under supersymmetry (3.34), and upon using the first order duality equation (2.15), a
somewhat lengthy computation confirms that the Rarita-Schwinger equation (3.43) trans-
forms as

de (gw)uA = (gEinstein)uV V€A — 2 (gvector)'uAB EB s (344)

into the Einstein and the second order vector field equations of motion obtained from
varying the action (2.15). It is instructive to give a few details of this computation as it
illustrates the embedding of the bosonic equations of motion into the components of the cur-
vature associated to the various blocks of the internal and external spin connections (3.31).

Let us first collect all terms in the variation (3.44) that contain an even number of
y-matrices acting on €, which should combine into the second-order vector field equation.
These are the terms that carry precisely one internal derivative v M- After some calculation,
using in particular (2.11) and (3.10), we find

6e(Eyp)ta oven 4 die et P VM 4 g [Var, Dy (vo€?) + 4i VMEP A1 Py apepe®
ven #y
+ 4 VMOPE T Ph o + 2Py apop F P P (3.45)
The commutator of covariant derivatives can be evaluated as

1 1 .
VMAB g, DX = -3 VP, ABPEYM b p X € 4 i VMABR B y0s XC 1 (3.46)

where the first term describes the mixed SU(8) curvature, and the second term refers to
the ‘mixed’ curvature of the spin connections

RMpo‘ﬁ = Oy w,*? — Dlw], o’ . (3.47)
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Evaluating this curvature in particular gives rise to the components
~ 1 N
Ratty po] = 7 P (Foo] ™ Mwvna)

~ 1 ~ 1
Ry M = —5 JP o+ Z eaueﬁypy (MMNfaﬁN) , (3.48)

with the current JH,; from (2.36). Putting everything together, we find for the
variation (3.45)

Se(Ep) A b 2D, (F*"* ap) P — 2P, apop FH~ P B 4 2i Juy VM 4 P
even 7ty

+4i VPV (9" Py aBep) € = =2 (Evector)* aB €7 (3.49)

reproducing the second-order vector field equation obtained from varying the action (2.23),
cf. (3.30).

It remains to collect the remaining terms with odd number of «-matrices in the vari-
ation (3.44) which should combine into the Einstein field equations. Many of these terms
arrange precisely as in the dimensionally reduced theory. Here we just focus on the addi-
tional terms carrying internal derivatives Vj; and combining into

‘56(5”)“‘vv = 16 VMBOYPN 4 £ Vs (7Y yee) + 8 VMBOYN 10 V1 (19V wea)
—8e temrr M YN BC o T (7,V N (Te€c)) - (3.50)
Collecting all V;V yea terms in this variation gives rise to
2 (8 Y™, YNICB 4 mMN(sE) Y [Var, V] es
+4 (16V<MACVN)CB+MMN5§> IV YV NeR | (3.51)

showing that all double derivatives dy;One€4 vanish due to the section condition (B.5). We
evaluate the full expression (3.51) using the fact that the following combination of covariant
derivatives [19]

(6 YM , YNCB L g PN . YyMCB L yMCD N 55 ) VuVyen

1 1
= <16R(5£ _ 4VMAchC’B,YVngTVMgVUngpT) s, (3.52)

gives rise to the definition of the curvature R

1
= MMN p, ABCD

6 PN ABCD

1
R= -4V ep) <3MPNABCD 3 B” pNEBCD> -

3 3
— 4 VM N CD g ABEE p cppR — 3 MMN =19 0ne + 1 MMN =29, e Dye
—6 VY sV op e e pn PP (3.53)

which is invariant under generalized internal diffeomorphisms. Comparing the explicit
expression for the curvature to the scalar potential V' (2.32), we see that they are related by

1
eV=-eR-7 e MMNN 316"V N g, + total derivative (3.54)
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in a form analogous to the O(d,d) DFT case discussed in ref. [54]. The operator on the
left hand side of (3.52) is such that the double derivatives dy;Oneq as well as the single
derivatives Ojre4 disappear by virtue of the section constraint, and also all ambiguities
drop out [19].

The remaining terms in expression (3.50) can be written as

416V 4 VNI B 4 MMV SR ) Ty e — 8VM4oVN OB 1, W e

+ 16 VM 4o VN CBAT N e (3.55)

showing that 0jre terms are also absent in these terms. These terms, which are independent
of the ambiguities, can be further evaluated to give

1 1
-5 O g ONMMN e 4 — 16_16M€ OINMMN ey 12V 4 VN CBARP 67T 01 60 ON gpre
1

+ 3 MMN 1 (8Mgpa ONGpo — 2 e Loy dne + e 20ye ONe) €A

1 _
+3 MMN g1 gUP (D01 ON Gpo — G ON1GprONGoy + € Or€ ONGpo) Yvea - (3.56)

Together, using equation (3.52) and the expression above, the variation (3.50) reduces to
1 i 1 N2 MN 1 —1 MN _ 1
§R*y €4 — §8Mg ONMT Ny eq — 1€ Opre ONMY ke y (3.57)
1
+ 3 MMN’)/M (QMng 8ngo -2 e‘lﬁMaNe + 6_26M€ 81\76) €A

1 — v
+ ) MMNQ#UQVP (aManga —g 8Mg,o‘raN.gan +e laMe aN.g,ocr) Yea =TH yea,

and gives part of the scalar matter contributions to the Einstein field equations, cf. (3.44).
Indeed, ignoring the first term in the expression above, the remaining terms in 7H* precisely
come from a variation of

1
i e MMNN7 116" N N G (3.58)

with respect to the metric g,,. Together with (3.54), and noting that the variation
3
e0R = =2 Ou (e MMY Oy (e7"de))

is a total derivative, we find that the variation of the potential (2.32) with respect to the
external metric is given by

1
d(—eV)=Roe+ 0 (e MMNN 01 g" N ngw) = T gy (3.59)

and precisely coincides with (3.57). In summary, the supersymmetry variation of the
gravitino equation (3.43) correctly reproduces the full Einstein equations from (2.23).
Finally, a similar discussion can be repeated for the field equation of the spin-1/2

ABC

fermions x , which under supersymmetry transforms into vector and scalar field equa-

tions from (2.23). Rather than going through the details of this computation, we present
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the final result in the compact form of the full fermionic completion of the bosonic La-
grangian (2.23), given by

v " L 1 V. v
Liorm = —"P7 0,29, Dpiby 4 — ¢ X*BOVD X aBC — gﬁexABC’Y YL Py asop

— 207 VM g iy, Var (WB) — 2v/2i ey 4B oS Vv (Y"xaBc)

i - .
— E e GABCDEFGHVMAB XCDE VMXFGH + c.c., (3.60)

up to terms quartic in the fermions. The latter can be directly lifted from the dimen-
sionally reduced theory [55], for dimensional reasons they are insensitive to Vj; correc-
tions. We have thus obtained the complete supersymmetric extension of the bosonic E7(7)
EFT (2.15), (2.23). In the rest of this paper, we shall discuss in detail how this theory after
the explicit solution (2.2a) of the section constraint relates to the reformulation [3, 7, 8] of
the full (untruncated) D = 11 supergravity.

4 Exceptional geometry from D = 11 supergravity

Independently of the construction of a field theory based on a particular duality group in
ref. [15] and other references alluded to earlier, and described in detail in the two fore-
going sections, there is the reciprocal (‘ground up’) approach of reformulating the higher-
dimensional theory in such a way that makes the role of duality groups directly manifest in
higher dimensions. This approach goes back to the early work of refs. [3, 4], and has been
taken up again recently in a series of papers [6-8], which have succeeded in providing an
on-shell equivalent generalized geometric reformulation of the D = 11 theory in which the
bosonic degrees of freedom are assembled into E;(7) objects and where the supersymmetry
transformations of the bosons assume a manifestly E;7yx SU(8) covariant form.'2 This
reformulation is achieved by starting from the known supersymmetry variations of D = 11
supergravity, and then rewriting the theory in such a way that the E(7) and SU(8) struc-
tures become manifest (following the work of Cremmer and Julia [1], where this strategy
was applied first in the restricted context of the dimensionally reduced theory). One main
advantage of this procedure is that the on-shell equivalence of the reformulation with the
original D = 11 supergravity is guaranteed at each step of the construction; the detailed
comparison between the E;(7)-covariant expressions and those originating from D = 11
supergravity is also an essential prerequisite for deriving non-linear Kaluza-Klein ansatze
for all fields.!® In this section, we briefly review these developments, and show how they
tie up with the results of the two foregoing sections, eventually establishing the equivalence
of the two approaches. As we will see, the full identification is subtle, not only because it
involves various redefinitions, but also because the ambiguities exhibited in the foregoing
sections play a key role in establishing the precise relation.

12There exist partial results along similar lines for the case of the Eg(sy duality group [4, 5, 7]; the full
bosonic Eg(sy-covariant EFT is constructed in ref. [56].

13While the section constraint does admit a solution corresponding to IIB theory (with only six internal
dimensions), the full consistency of the AdSs x S® reduction remains to be established; this would in fact
require a detailed analysis of supersymmetric Eg(g) theory similar to the one presented in this section.
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4.1 56-bein and GVP from eleven dimensions

The first step is to identify an Ey(7) 56-bein Vasap 14 4n eleven dimensions with the bosonic
degrees of freedom that reduce to scalars under a reduction of the D = 11 theory to
four dimensions; this 56-bein will be eventually identified with the one introduced in the
previous sections. Decomposing the 56 of E7 ;) under its SL(8) and GL(7) subgroups

56— 28 ®28 — 7T®213217, (4.1)
we have the following decomposition of the 56-bein

VM AB = <VmAB, Vinn ABs anAByvaB>» (4.2)

where we will often employ the simplifying notation V" 45 = V"™ 45 = —V¥" 45, when con-
sidering the embedding of GL(7) into SL(8). The main task is then to directly express this
56-bein in terms of components of eleven-dimensional fields along the seven-dimensional
directions, viz.

VM AB = VM AB (ema7 Amnp7 Amnpqrs)7 (43)

where e, is the siebenbein, A,,,, are the internal components of the three-form field, and
Apnpgrs the internal components of the dual six-form field. In other words, the 56-bein
whose existence in eleven dimensions was postulated on the basis of symmetry considera-
tions in the previous section is here given concretely in terms of certain components of the
D =11 fields and their duals. The calculation [7] yields the explicit formulae

1

V™ ap = gA—Wrg@B, (4.4)
Vomas = g8 (Dnas + 634001 ) | (4.5)
Vg = 4%! pmpPs AT 1/2 [rpl,..mAB + 60V 2 A, paps Tpaps AB

—61V2 (qu1~-~p5 - qupmAmpm) r‘;‘B], (4.6)

Vi ap = 7 '17! P PTATY 2 (e D) A + 12672 Avpypo Dpgepr A (4.7)

V2
+3V2x 7! (Amp1~~-p5 + TAmmpzApsmm LpepraB

9! V2
+ 5 (Amm"'m +§Ammm Ap3p4p5> APGP?QFqAB] )

where A is the determinant of the siebenbein e,,%. In particular, it can be explicitly verified
that the 56-bein defined by the components above satisfies the identities (2.9), and thus is

YThe notations and conventions used here are slightly different to those used in [3, 7].
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indeed an element of the most general duality group Sp(56,R). To show that that it is more
specifically an E7(7y-valued matrix one either verifies (2.6) directly, or invokes egs. (14), (17)
and (18) of ref. [8] where it is shown that ) transforms as a generalized E7(7) covector. From
the point of view of refs. [3, 7], this matrix corresponds to an element of the coset space
E7(7/SU(8) in a specific gauge (where the local SU(8) is taken to act in the obvious way
on the indices A, B,...), such that after a local SU(8) rotation the direct identification as
given above is lost. Note also the appearance of components of the six-form potential in the
expressions, as a consequence of whose presence the identification of the EFT formulated
in the previous section and the D = 11 supergravity can only be achieved at the level of the
equations of motion (which, of course, does not preclude the existence of suitable actions
for either formulation).

In the same manner, one identifies a 56-plet of E7(7) vector fields AuM that incorpo-
rate the degrees of freedom corresponding to vectors under a reduction to four dimensions,
combining the 28 electric and the 28 magnetic vectors of maximal supergravity into a single
representation that now live in eleven dimensions. As before, the components in a GL(7) de-
composition of the 56 of Er(7) can be explicitly written in terms of eleven-dimensional fields

1
A, =-B,™, Apmn = 3V2 (Apmn — B Apn) (4.8)

T2
A, = 64/2 e (A B A — Y2 (A — Bl Ay, ) A )
M - n Hp1--P5 1 qp1--Ps 4 Hp1p2 1 qp1p2 P3pP4aps )

A,um =36 nm..jﬂ (A/‘m...nmm + (36 - 1) (Almlmns - B,prAlmln-%) A”6”7m

V2

+ EAnlmnfi (Alm?m - B#pAImﬂn) + E

(Almlm - BHpAImlm) An3n4n5 An6n7m> :

The components of the six-form potential appear again in the expression above. However,
in the A, ,, component, there appears a new field A, n.,m (as well as an undetermined
constant ¢), related to the dual graviphoton.

These E7(7) objects are found by analysing the D = 11 supersymmetry transformations,
which in the SU(8) invariant reformulation were found to take the precise form [3, 6-§]

56“04 = EA’Yaqu + EA'Yad]uA )

1
SV = 22 Visen (g[AXBCD] + o ABCDEFGH EDXEFG) :

5AHM = — \/§QMNVNAB (EC Yu XABC + 2\/§ €A 1/)#B> +c.c., (4.9)

where a compensating SU(8) rotation has been discarded in the variation V42, as ex-
plained in refs. [3, 7]. Strictly speaking, the supersymmetry transformations of the last
seven components of the vectors cannot be derived from D = 11 supergravity, due to
the absence of a non-linear formulation of dual gravity, but are here obtained by ‘E7(7)-
covariantization’. The supersymmetry transformations of the last seven components of the
vector field instead determine the supersymmetry transformation of the new field A, .. n;.m
as discussed in ref. [7]. While A, . n,m, which is introduced to complete the 56 of E7(7)
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for the vectors, is clearly related to dual gravity degrees of freedom from a four-dimensional
tensor hierarchy point of view, its direct relation to the eleven-dimensional fields cannot
be determined. This is in stark contrast to the six-form potential that is related to the
three-form potential via an explicit duality relation. Nevertheless, our ignorance regarding
this field is compensated by the fact that it does not appear in the GVPs (see below).

While the agreement in the supersymmetry variations of the boson fields as derived
above and the exceptional field theory approach of the foregoing sections is thus manifest,
the agreement in the fermionic variations is much more subtle. This is because the latter
depend on the connections, and a detailed comparison would thus require an analysis of the
connection (3.22) in terms of the D = 11 fields. Of course, ignoring the ambiguity (3.25)
for the moment, we could simply try to work out the expressions (3.23) and (3.24) by
substituting the explicit formulae (4.4)—(4.7). However, this would lead to extremely cum-
bersome expressions (but see appendix D for a simplified calculation), whose relation with
the ones given below would be far from obvious. We will therefore proceed differently by
starting ‘from the other end’. The supersymmetry transformations of the fermions were
already derived in [3], viz.

1 1
57#;? =2 <8N — Bum({)m — 48mBMm> €+ 2&)’“ /Bf}/aﬁﬁ + QMA B
1
+ QQaﬁAB’)’aﬁ'}’u €B — Ze el/ ﬁamepﬁfyyp’ylteB
1 1
+ emABam (”YIJ,EB) 4= 5 mABQmB Yueo — 56 CDP/ ABCD’}’uEBa

3
5XABC _ _2\[273HABCD,W6D + Gﬁg;B[ABLyaBG\C] _ 2\/§euﬁamey,8€m[AB,y,uVEC]
3v/2 3v/2
+ 3\/§€m[ABam€C] _ \[em[ABQ;nDC]GD _ \{emDEP;nDE[ABeC]
— 2V2eM pp P! ABCDE (4.10)

where
" ap = ™ = iATAT, (4.11)
is just part of the 56-bein VM 45 given above in (4.4), and

i , V2. o
gaﬁAB = _§A1/2e[aue,8] (a,u - Bumam)BunFnAB + 3721A 1/2Faﬁmn Eg (4'12)

comprises the contribution from the spin one degrees of freedom. The link of the particular
expressions involving the Kaluza-Klein vectors B,™ with those of the previous two sections
is easily seen by noting that

Oy — By 0m = 0, — AMowm (4.13)

upon taking the canonical solution of the section constraint. Furthermore, the direct
comparison with the fermion transformations of D = 11 supergravity yields the expressions

1 V2 V2
Q/mAB - 2 dm ab I\AB + — 48 Fmabc F%bé +— 14 - 6! mabcdef Filbjg’defv (414)
3 V2 V2
P,mABC'D = _meab F([IABF%D] + 372 Frnabe [ABFCD] 56 - 5!Fmabcdef F[ABFlggojfa
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where
Amab = e[anahnen\b} y  DPmab = e(ana|m€n|b) (415)

are the components of the GL(7) Cartan form, with analogous notation as in the previous
section. These objects transform properly under local SU(8): @’ 7 is the SU(8) con-
nection, while P! -~ transforms covariantly in the complex self-dual 35 representation
of SU(8). However, as written, these connections are not fully covariant under internal
diffeomorphisms, because ¢, o» and p., p do not transform as proper vectors under inter-
nal diffeomorphisms. For this reason we will switch to a slightly different choice below,
see (4.17) and (4.18), which satisfies all covariance requirements.

The other important feature of the reformulation [3, 7, 8] is the so-called generalized
vielbein postulate (GVP). When evaluated on the different components of VM 45 this con-
sists of certain differential equations satisfied by the 56-bein which are analogous to the
usual vielbein postulate in differential geometry. The GVPs are equations satisfied by the
56-bein and in the approach of [3, 7, 8] they can be checked explicitly on a component
by component basis, while they appear as genuine postulates in the approach of the pre-
vious section. Moreover, the direct comparison with D = 11 supergravity allows for a
direct understanding of four-dimensional maximal gauged theories and the embedding ten-
sor [8, 42, 45] that defines them from a higher-dimensional perspective as well as providing
generalized geometric structures that can be interpreted as generalized connections and
used to construct a generalized curvature tensor.

The external GVP, which gives the dependence of the 56-bein on the four-dimensional
coordinates is given by equation (2.27) (see refs. [7, 8]), where the explicit expressions for
Q,, and P, in terms of the D = 11 fields were already given in ref. [3]. Here we concentrate
on the internal part of the GVP which was given in [7, 8] in the form

OmVa aB — Tmnt " Vv as + Qo aVar sjc = PmasepVu® (4.16)
where!?
1 V2 V2
Qm AB - 5 Wm ab F?leB + 478 Fmabc F?leé + mFmabcdef szlcgdef, (417)
V2 V2
Pm ABCD — 5 Fmabc ([IAB lgl)} - mFmabcdef FFABFlg?)e]f' (418)

Notice that Q',, 4 and P’,, spcp defined in equations (4.14) and Q,, 4® and P,, acp
defined above, (4.18), differ in their components relating to the siebenbein since we have
replaced ¢, qp by the spin connection wy, qp and py, q» by zero. As explained in ref. [8] this
change is required if the connections are to satisfy all the requisite covariance properties, as
is indeed the case for (4.17) and (4.18). However, there appears to be no way to reproduce
these covariant expressions in terms of the 56-bein V and its internal derivatives 0,V
without ‘breaking up’ the matrix V, and this is one of the main difficulties in establishing
agreement between the above expressions and the ones obtained in the previous section.

5Note that in this paper our conventions are such that Cartan’s first structure equation takes the form
T = de® + w®, A e’.

— 27 —



Fortunately, the apparent discrepancy turns out to reside in the 1280 part of the SU(8)
connection (see (3.25)) and the hook ambiguity described in section 4.3 and will thus drop
out in all relevant expressions.

The internal GVP as given in (3.12) and (4.16) (and also (4.24), see below) differ in
two respects. First of all, and prior to imposing the section constraint, (3.12) involves
all 56 components, whereas (4.16) involves only the seven internal dimensions with index
M = m. The second distinctive feature is the appearance of a non-zero term proportional
to P, on the right-hand side of the GVP. As we will explain in more detail below, this
term corresponds to a generalized non-metricity.'® We will show below how to absorb
this non-metricity, and thereby bring the GVP into the same form as (3.12). Finally,
the connection coefficients I';,, can appear in the supersymmetry transformations of the
fermions only via their traces, because the fermions, while transforming as densities, are
otherwise only sensitive to the local SU(8).

Given the coefficients @, 4? and P,AB¢P we can solve for the affine connection
coefficients T3/ in terms of the fields of D = 11 supergravity; we use boldface letters
here to indicate that these coefficients are different from the ones identified in (3.27) of the
previous section. With (4.17) and (4.18), Ty, takes values in the Lie algebra of E7 (7

The comparison with D = 11 supergravity allows to solve for the components of I',,,*
directly in terms of D = 11 fields; the non-vanishing components are

1 3
(T )P = ~Th,, + 08T, (C)s® = = T
T n _ \/5 np1pe = T, \mna — 1 n1--N4P1P2P3 = 4.20
(Ti)s™ = v2n =m|p1--pe? (') = ﬁn =m|p1p2ps> (4.20)
where I'},,,P is the usual Christoffel symbol, and where
— 1
Zplmng = DpAmnq - EFpmnq, (4.21)

V2

Splmymg = DpAml'"mG + Fp[m1m2m3 mamsme)
48

V2 1 1
Ty (DPA[m1mzm3 - 4!Fp[m1m2m3) Am4m5ms} - ﬁFpmlmme" (4.22)

One notices that these objects, like the usual Christoffel symbol, indeed transform with
second derivatives of the tensor gauge parameters, as would be expected for a generalized
affine connection (see ref. [8] for details). Another noteworthy feature is that they vanish

under full antisymmetrization:

Efplmng] = 0, Elpmy...mg] = 0- (4.23)

Therefore, they correspond to hook-type Young tableaux diagrams, and thus encapsulate
the non-gauge invariant part of the derivatives of the three-form and the six-form fields.

1We would like to thank Malcolm Perry for pointing this out to us.
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In terms of SL(7) these =’s correspond to the 210 and 48 representations, respectively;
when further decomposed into SO(7) representations, these will become the 21 @ 189 and
21 @ 27 of SO(7), all of which appear in the 1280 of SU(8). We will also see below
that the irreducibility property (4.23) is crucial for the absence of torsion in the sense of
generalized geometry.

As given above, the connection coefficients Qum 42, P,,AB¢P and T,,x" have all the
desired transformation properties with respect to local SU(8) and generalized diffeomor-
phisms, as can be verified explicitly from their definitions (see ref. [8]). That is, Q. 4”
transforms as an SU(8) connection (as is obvious from the way the local SU(8) has been
introduced in ref. [3] as a Stiickelberg-type symmetry), while P,,4B¢P transforms covari-
antly under SU(8) transformations. Both Q,, a” and P,,AP¢P transform as generalized
vectors under generalized diffeomorphisms (for the natural truncation of generalized Lie
derivatives to vectors with only seven vector indices). Furthermore, the generalized affine
connection I' is invariant under SU(8) transformations, and transforms as a generalized
connection (with a second derivative of the gauge parameters).

A distinctive feature of the internal GVP as given here, to be contrasted with the one
given in (3.12), is that, at this point, the connections have non-zero components only along
the seven internal dimensions, but vanish otherwise — just like the partial derivative dps
after imposition of the section constraint. Nevertheless, we can formally write the internal

GVP as

OV aB — Tun"Veas + Q51aVy 5o = Py ascpVn©” (4.24)

by trivially promoting the GL(7) index m to part of a 56 of E7(;). Hence, taking

Om if M =ms8,
Ot = ' " (4.25)
0 otherwise

and identifying the m components of the connection coefficients with those that appear
in equation (4.16), with all other components vanishing, gives back (4.16). In this form
the internal GVP can be compared to equation (3.12), with the proviso that the section
constraint also applies to the connections. However, in view of the derivation given in the
foregoing section, a natural question that arises at this point is why all other components
of the connection coefficients should vanish. Would it not be more “natural” from a gen-
eralized geometric point of view if the connection coefficients had non-trivial components
in the other directions of the 56 representation, as has been assumed in section 3 and,
for example, ref. [18]7 Indeed, we will see below that the introduction of non-vanishing
connection components along the other directions will actually be required if we want to
recast the supersymmetry variations of the fermions in order to achieve full agreement with
the formalism of the preceding section.

We now proceed to reformulate these structures in order to exhibit their precise rela-
tionship to those constructed in section 3. However, given that vanishing torsion is taken
to be an important ingredient for defining generalized connections in section 3, we will first
consider the generalized torsion associated to the generalized affine connection T'.
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4.2 Generalized torsion

In ref. [8], the generalized torsion Tyn' is defined as follows
[Var, Vn]S = Tyunt opsS (4.26)

for some scalar S and where V), is defined using the connection I'y;n?. The generalized
torsion as defined above vanishes [8]. An alternative (and a priori independent) definition
of the torsion is given in equation (3.13) of section 3, which leads to the formula (3.14).
While the above definition of torsion and that defined in (3.13) are equivalent in usual
differential geometry, this is not the case in generalized geometry. Here we will evaluate
the generalized torsion (3.14) explicitly in terms of the connection coefficients T, x* given
in ref. [8] and above. A simple component-wise calculation using the components of ',y
identified above now shows that the generalized torsion does indeed vanish. For example,
consider

Trngns?® = Tingng?® — 48 PP2, 38 g T g ms™ + 16 PP8 5%, oT808, (4.27)
Using the fact that
1
PPt = oo (20567 + 070) (4.28)

the above equation reduces to

2
Tm8n8p8 = 2F[mn]p e X [mrép (429)

3 nl”
However, the right hand side of the above equation vanishes by substituting the relevant
components of I' from (4.20). Hence,

Trmsns™ = 0. (4.30)
Next consider, for example,
TmSqu‘S = FmSquS - 24qur88tusru8 mS st - (4.31)
Using the fact that
1
tu8 _ ¢
Ppgrs™ ™" = §5qu7 (4.32)
the above equation reduces to
TmeqTB = 4]--‘['rn]z)qr] . (433)
However,
Limpgr) ~ Efmlpgr] = 0 (4.34)

by equation (4.23). Finally, consider the following components

Tm8 nqu = FmS nqu - 24qun8r85tr7‘8 m85t~ (435)
Using the fact that
1
PP s = =15 00.07 (4.36)
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we obtain

P4 T Pq 4 oT rlp 54l
77718 n8 — L m8n& + r8ms8 n
_ pati...ts (= = =
- 3\/577 (‘—‘m|nt1...t5 — —n|mti...t5 + 5'~t1|mnt2...t5)

= 21\/inpqtl".t55[m|nt1...t5] =0, (437)

where we have used the expression for I'),8,87 in the second equality and equation (4.23)
in the final equality. All other components of the generalized torsion can be similarly shown
to be zero. It should be emphasized that the fact that the full antisymmetrization of the
= quantities is zero, equation (4.23), is crucial for this argument.

In summary, the generalized torsion, as defined by equation (3.14) is zero

Tun® =0. (4.38)

Let us emphasize again the remarkable feature that the vanishing of the generalized torsion,
as originally defined on the basis of very different considerations based on generalized
geometry, here follows from the direct comparison with D = 11 supergravity.

4.3 Hook ambiguity

As we have already mentioned, the supersymmetry transformations are insensitive to the
generalized affine connection, modulo density contributions involving the trace of the affine
connection, because the fermions transform only under the chiral SU(8). With the connec-
tions as originally given in ref. [3], or equivalently from equations (4.10), the supersymmetry
variations of the eight gravitini and the 56 dilatini contain the following combinations of
Q,, and P,

5%? ...+ (emACQ/mCB _ emCDP/mABCD),YNEB7
AP o+ (3 e"MBQ, p +3emppP , PTABST 1 4 P’mABCEemED)eD. (4.39)
An important property of the expressions appearing here on the right hand side, is that they
are actually insensitive to certain modifications of the connections. We first recognize that
these are exactly the same combinations that appear in the two first equations of (3.28).

Secondly, the expressions on the right hand side of (4.39) admit a non-trivial kernel which
is found by looking for solutions of

0= I 0Q' " — T 6P, 7,
0=3T"1B Q" ) — 3T, 6P, FFABST _ g 5P/, ABCE R (4.40)
Let us proceed with the following ansétze

6Q/mAB _ X(3) Filébe +X(4) F?Zlbj% +X»,(n7) 11abcalef7

m|ab m|abe |abedef ~ AB
ABCD _ +,(3) b (4) (@ be] (7) la bedef]
5P,m - Ym\ab ([IABFC’D} + Ym\abc F[ABFCD] + Ym|abcdef F[ABFC’D} ) (441)

where the slash | simply indicates that no a priori symmetry conditions are imposed on the
X’s and Y’s other than the obvious ones (to wit, anti-symmetry in [ab], [abc] and [abedef],
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respectively). For the form field contributions it was already shown in ref. [41] that the
GVP remains valid if

@ _3 5@ ) 3@

Ym\abc - 5 Xm|abc ) Ym|abcdef 9 Xm|abcdef (442)
with no further restrictions on the X’s and Y’s. Notice that both X*) and X(7) have two
irreducible parts: besides the fully antisymmetric pieces appearing in (4.14) there are the
hook diagram contributions. Furthermore, it was shown in ref. [41] that X®) Y and
X@ Y are in the kernel of the supersymmetry variations (4.40) provided that

=0, X\

(4)
X [m|abcde f]

[m|abc]

=0. (4.43)

That is, the fully antisymmetric parts (the four-form and seven-form field strengths) are
determined, but the hook diagram contributions can be chosen freely, as they drop out in
the supersymmetry variations of the fermions in (4.39). Note that Z,,,,p, and Z,,j,pgrst
that appear in the generalized affine connection in (4.21) and (4.22) are precisely of the
hook-type, hence providing a geometrical explanation for the ambiguities found in [41].

As for the remaining SO(7) part X ( |) »» Which was not considered in ref. [41], the first
expression in equations (4.40) reduces to

albe

abc 3 3) 1ha
X®) pabe | ( x5+ 3Y;|a)b) My — VT4 =0. (4.44)

Whence we read off the condition

AR —§ x®) (4.45)

mlab mlab*

With this identification the second line in (4.40) becomes
3) [a 1ble ®3)
Xalbe <2F[ABFC]D [ABFC]D) Xl fasdcip = 0. (4.46)

We now see that all terms in (4.44) and (4.46) except the last ones involving X (|b)b cancel,
provided we demand that

®3)
X[a\b]c

=0. (4.47)

To interpret the remaining term let us check the difference between the expressions for
the connection coefficients given in ref. [3], equation (4.14), and in ref. [8], equations (4.17)
and (4.18). These connections are fully covariant under internal diffeomorphisms. The

difference is thus

1

3 (4.48)

e aepr‘mn ,

1
Xr(r?|)ab = 9 (enbamena + wmab)

where we have used the usual vielbein postulate satisfied by the siebenbein and I'h,, is the
usual Christoffel symbol. Hence (4.47) is indeed satisfied for a torsion-free affine connection.
The only extra term in the supersymmetry variations then comes from the ‘leftover’ term
in (4.46) which is just a density term proportional to I'y,,*, which is required here because
the supersymmetry parameter is a density. This is the same term that was obtained
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above with the connections (4.14) just from @’ . and P/ . alone. We thus see that the
switch from (4.14) to (4.17) and (4.18) reintroduces the density term proportional to I'g,,”
that was absent in ref. [3]. In other words, even the density term which is there with the
correct weight if the GVP is formulated with the usual affine connection as in ref. [8] can be
absorbed into a redefinition of Q,, A” and P,,ABP as they were originally given in ref. [3].
In fact we are free to also choose any interpolating solution where the coefficient of the
density term changes, as part of it is absorbed into Q,, 4Z, while the other into P,,AB¢P.

Let us also point out how the apparent discrepancy between (3.19), where Tim® o
e '0ne (with e the usual vierbein determinant), and the above result, where I'y,,* o
A719,,A, is resolved: while in (3.29) the contribution proportional to I'g /™ cancels with
the weight assignments given there, the contribution proportional to I'y,,* here can be

eliminated by shifting back to the non-covariant connections @), and P/, and only then

m
the two pictures can be made to agree. Otherwise the two sets of connections (both of
which are consistent) simply reflect the unavoidable ambiguities identified in section 3.1.

Let us emphasize once again that the connections given in equations (4.17) and (4.18)
satisfy all required covariance properties of generalized or exceptional geometry provided we
break up V by choosing the specific ‘frame’ as derived from D=11 supergravity. First of all,
the covariance under local SU(8) follows by the same arguments as in ref. [3]: as given, these
expressions correspond to objects in a special SU(8) gauge (namely the one that accords
with the D=11 theory), such that Q,, 4 transforms as a proper SU(8) connection (for
the SO(7) subgroup this is anyhow obvious). Secondly, P,,AB¢P transforms covariantly
when we apply an SU(8) rotation that moves us out of the given gauge. Furthermore,
these objects are also covariant under generalized diffeomorphisms: for the 7-dimensional
internal diffeomorphisms this is manifestly true, while the fact that they do not transform
at all under the remaining generalized diffeomorphisms with parameters &, , ™" and
&m is consistent with the formulae (17) and (18) of ref. [8] because Qyr = Py = 0 for
M # m. Of course, these statements apply only to the specific ‘frame’ as derived from
D = 11 supergravity, that we have adopted here, where the connections have non-vanishing
coefficients only along the seven internal dimensions. However, it is straightforward to see
that the manipulations we are now going to perform on these specific connections to bring
them in line with the constructions described in the two foregoing sections are themselves
fully covariant and therefore preserve these covariance properties.

Let us point out once more that the existence of covariant connections is possible here
because we have given the connections explicitly in terms of D = 11 fields. It is not possible
to achieve if all quantities are to be expressed only in terms of the generalized vielbein V
and its derivatives in an E;(7)-covariant manner, as we already saw in the foregoing section
(and will explain again for a simplified example in appendix D).

4.4 Non-metricity and redefinition of the generalized connection

In order to understand how the appearance of Py; on the right-hand side of the GVP (4.24)
can be reconciled with the absence in the corresponding relation given previously in
equation (3.12), it is useful to recall that similar ambiguities arise in standard differen-
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tial geometry. While the vielbein postulate is usually quoted as
Omen® + wmpen’ — I’ e =0 (4.49)
with I'h,, the Christoffel symbols, there is a more general expression
Omen® + wmpen’ — P ep” = Tmnlep® + P enb, (4.50)

where I'},;, is no longer given by the Christoffel symbols, T},,,? = T; imn)” is referred to as the
torsion and Py, qp = P, (ap) 1S Teferred to as the non-metricity, as it ‘measures’ the failure of
the metric to be covariantly constant (see for example ref. [57]). Notice that there is quite
a lot of freedom in the definition of the various objects in the equation above. For example,
the antisymmetric part of the affine connection Ffmn] can be absorbed into a redefinition of
TP, so that I'Y,, = Ff’mn). Similarly, the non-metricity can be absorbed into a redefinition
of the affine connection and the torsion:

FZTorm — Flgrm - P(mc\d\ en)depc>
Tmnp — Tmnp — P[mc‘d‘ en]depc . (4.51)

Furthermore, the fully anti-symmetric part of the torsion can be absorbed into a redefinition
of the spin connection
Wmab = Wmab — Tmnp ena epb . (452)

Hence, in differential geometry there is a great deal of freedom in how one defines various
structures such as non-metricity, torsion and the affine and spin connections.

In complete analogy with this discussion, connection coefficient Pj; can be absorbed
into a redefinition of I'js in the internal GVP, equation (4.24):

Tynt — Tyun? =Tun? + i<VNABPM ApcpVF P — VNABPMABCDVPCD> (4.53)
so that the internal GVP becomes
OmVN ag —Tun"Vpas +QuaVnpc =0. (4.54)

We note that this shift only changes the affine connection, but does not affect the SU(8)
connection Qur a®. The GVP is now of the form of (3.12) in section 3, but the connections
are still different. In particular, the Q42 and Tyt are still non-zero only for the first
seven components given by equations (4.17). However, by removing the non-metricity in
the affine connection we have reintroduced torsion in I' where there was none before, in
analogy to ordinary differential geometry. Therefore, in order to recover a torsion-free
affine connection we follow the same procedure as in section 3.1, and accordingly redefine
the affine connection once more, as follows:

Qua? — Onra® = Qua® + Qura”, (4.55)

Tyn? — Tyun? =Tyun’ + i(VPABQMACVNBC —VPABQy, ACVNBC>7 (4.56)
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where, modulo the remaining ambiguity Ups 47, the modification Qs is now chosen to
obtain precisely the connection Q in section 3, namely

9
Qura® =Ry AP+ Unr 4P + Wiy A8 + gl TyuntVpacVN . (4.57)

With the redefinitions (4.56), we have now brought the GVP into the standard form
VN ap — Tun"Vpag + QiaVn e =0, (4.58)

with the following properties:

e the affine connection T mnT is torsion-free, an SU(8) singlet and transforms properly
under generalized diffeomorphisms.

e The SU(8) connection Qs 4® transforms as a connection under SU(8), and as a
generalized vector under generalized diffeomorphisms.

e The connections have non-vanishing components for all 56 components, and this is
necessary for the supersymmetry variations of the fermions to be expressible in terms
of the SU(8) connection Qys 4? alone (see the previous section).

e The remaining differences between the above connections and the ones obtained in
the previous section are all contained in the hook-type ambiguity.

Modulo the ambiguity, these connections are now equivalent to the connections defined
in section 3, namely T =~ T. We should point out that, with the formulae at hand, we could
in principle proceed to work out explicit expressions for Qp 4Z and T'y;n? in terms of the
D =11 fields. However, after the redefinitions these expressions will be very complicated,
and by themselves not very illuminating.

The trace of the affine connection I' is given by the determinant of the siebenbein [§],

3
FKMK = §8MlogA. (4.59)

The connection used to construct the exceptional geometry in section 3 is required to be
compatible with the vierbein density, (3.18), which implies equation (3.19). This con-
dition can be satisfied by the torsion-free connection by choosing W in equation (4.57)
appropriately. In particular the trace of T' drops out of I'jp/%:

Trn™ = Tra™ + i(VKABQKACVMBC — VEABQg ACVMBC>

=1 (VKABWKACVMBC —VEABW Sy BC) -

The W given in equation (3.24) ensures that the affine connection I' satisfies the
condition (3.19). Note that the part of the fermion supersymmetry transformations given
by the internal connection are independent of the vierbein determinant. This remains so
despite the contribution from W, which is cancelled by the density contributions in the
covariant derivative Vj; of weighted tensors in the supersymmetry transformations.
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4.5 Connections and fermion supersymmetry transformations

In section 3.2, we give the fermion supersymmetry transformations (3.34) in terms of the
torsion-free connection constructed in section 3.1. Solving the section condition to obtain
the D = 11 supergravity, the fermion supersymmetry transformation should yield those
of the SU(8) invariant reformulation [3], (4.10). Using the definition of the covariant
derivative (3.3) and equations (3.11) and (3.22), transformations (3.34) become

1___ . .
561,&;? =2 DHeA + Z}'WABVPUWEB +1 eygaMepBVM AB'y"p’y“eB — 4 YMABy, (Yu€B)

_ 9, yMAB B

c M ABCD
qM B Yu€c — 21 V" cppm VuE€B

3v2
5EXABC — _2\[2,PMABCD7H€D + \/> F- [AB,Y'LLIJEC] + SﬁieﬂgﬁMeyﬂVM [AB,Y;J,Z/GC]

4 "M
—12v2i VMIAB g€l 4 6v/20 VMIAB gy P — 820 VM ppppABCPEE
V24 VMDEpMDE[ABEC] . (4.60)

In this form, the supersymmetry transformations (3.34) reduce to the following expressions
upon use of the canonical solution of the section condition

1 1
51/);‘ =2 <8u — B, 0 — 48mBMm) A+ iwuaﬂ%‘ge/‘ + QMABEB

1___ 1
+ —F AB’YafB’YueB - zem ABBV Bamepﬁfyyp’YueB

4”7 aB
+e" B0, (vuep) + %emAquBC’mEC - %emcz) P PPy e,
5xABC = _2y/2P, ABCD e, 3)4/5]_-(I—ﬁ[ABva5€|0} B %ieuﬁameyﬁem[ABv,LVEC]
4 3v2emiABy (Ol _ ?’\fem[AquDC}eD - 3\2@emDE pyy DEIABC]
— 2V2e" pp i ABOPEE (4.61)

Comparing the supersymmetry transformations above that come from the supersymmetric
EFT with the canonical solution of the section condition with those of the D = 11 theory
as written in ref. [3], transformation (4.10), we find that they are identical upon identifying
%]—'a/gAB with Go1P and Q', P’ with ¢, p, respectively.

First, let us consider the relation between faﬁAB and gaﬁAB . Note that fagAB satisfies
a twisted self-duality condition, which means that on-shell

J—_‘;BAB _ faﬂAB-

The QQBAB , however, does not satisfy a twisted self-duality condition and in order to modify
it so that it does, we need to add to it the Hodge dual of the field strengths, viz.

i 5 O
GaBAB = —Eﬁl/%[a“eﬁ] (Op — B, 0m)B,"Tpap + azA V2E s DR

V2 o .
+ mA 1/26a676F76m1mm5]-—‘m1,..m5 AB + ZAI/QGO(BMSXWS'TLFHAB’ (462)
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where Xz, would correspond to the field strength of the field dual to B,™. However,
since the first term in the expression above is not exact, B,™ cannot be dualized in the
usual way. This is why the new field B, s is necessary in the definition of ]-"u,,M , (2.13),
schematically “eating up” the non-exact terms to allow dualization.

Regarding the relation between Q’, P’ and ¢, p: as explained in section 4.3, the ' and
P’ are related to Q and P by the usual Christoffel symbol associated with the siebenbein.
Moreover, the () and P are related to ¢ and p by the generalized affine connection T,

21
QmAB = QmAB - g FmNPVPACVNCBa
PmaBcp = pmascp + i Ty’ VpapVY op. (4.63)

In both cases, the redefinitions correspond to hook-type redefinitions to which the super-
symmetry transformations are insensitive, as explained in section 4.3. Therefore, at the
level of the supersymmetry transformations, the two sets of connection coefficients are
equivalent.

The fermion supersymmetry transformations of a truncation of the D = 11 theory
have been studied in ref. [19], where they are also given in terms of a generalized SU(8)
connection constructed in ref. [18]. In this paper, we use a connection that allows us to
express the fermion supersymmetry transformations covariantly in terms of the 56-bein,
rather than its components. This is done by using some of the components in the 1280
representation, to which supersymmetry transformations are insensitive to [18] (see also
section 3). Therefore, the connection Q — U still contains terms, not expressible in terms
of the 56-bein and its derivatives, that are in the 1280 representation. These terms are
precisely the difference between the Q@ — U and the unambiguous part of the connection of
ref. [18]. In practice, an explicit expression of this difference is rather complicated.
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A Notations and conventions

The index notation used in this paper is as follows:
e ,v,...and «a, 3,... denote D = 4 spacetime and tangent space indices, respectively.
e m,n,...and a,b,...denote D = 7 spacetime and tangent space indices, respectively.
e M,N,...label the fundamental (56) of Er(7).
e « labels the adjoint (133) of E7 (7).
e A B,... denote SU(8) indices.

Furthermore, the following notations are used for covariant derivatives:
e D, =0, — Ly, denotes the Ez-covariant derivative.

e D,=D,+w,“s+ QMA B denotes the Er(7y-covariant derivative that is also covariant
with respect to the local SO(1,3) and SU(8) symmetries.

e V, =D, +1IY%, is the fully covariant derivative.
Analogously,

o Dy = 0n +wns + O 5 denotes derivative that is also covariant with respect to
the local SO(1,3) and SU(8) symmetries.

e Vi =Dy + Fﬂ ~ is the fully covariant derivative,

and ﬁM and V m are defined with the modified spin connection @py.

B Useful identities

In this appendix we collect a handful of useful relations and identities in order to deal
with the E7(7) projectors (2.17) and the section constraint (2.1) upon contractions with the
56-bein. Let us first note the projector identity

1 1

PY "o Vean yeer = 3 VNE[A YMEIC 5B]D] + 3 VME[A Yy EC 5B]D}
1

~ 5 (

As a consistency check, we may calculate the trace of this relation

Vnpr VMEE L M VNEF) 525 . (B.1)

1 1
PM NP o Vpap VOB = 3 Vnap VMO 4 3 VM g VNP

1
16 (VNEF YMEE LM VNEF) 64¢ , (B.2)

confirming that PM 7 @ acts as an identity on the right hand side. Similarly, one finds that

1 1
PM NP VpapVicp = 5 VNB Vep) - r eapcpprauVnTE VMIEH (B.3)
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The section constraint (2.1) states that
(P14133) @™ O ®@ Oy =0, (B.4)

where 133 and 1 are in the symmetric and antisymmetric tensor product, respectively.
Contracting this equation with the 56-bein, we obtain explicitly

1
V(MACVN)BC’ Oy ® Oy = 5 552 V(MCDVN)C’D Oy © O

1
VYV op) Om © Oy = o4 CABCDEFGH YMEFYNGH ), & d) . (B.5)

C The supersymmetry algebra

In this appendix, we show that the commutator of supersymmetry transformations (3.32)—
(3.34) closes into the supersymmetry algebra (3.35). For the commutator on the external
and internal vielbeine e, and VA8 we have seen in section 3.2 above that closure of
the algebra is a direct consequence of the vanishing torsion conditions (2.25) and (3.13),
respectively. Here, we complete the algebra on the vectors .AuM and two-forms By, o
and By, v -

We start with the vector fields, for which the commutator of two supersymmetry
transformations yields

[(561,562] AMM = —& DM (VMAB€2 A€1 B) + 16 VNAB VMAB £ om %Nelc
+ 32 VNCA YyMAB é’W Vel + 32 VMABVKBC €A @K (%e?) + c.c.
= DMAM + 4gW/VlMN8N (6’24 e A) + 8 MMN (6‘24 Yol A) €up e”[aﬁNeym

+ 81 QMN (E’; yuﬁNelA — @NE‘; Vu €1 A)
1
+ 32 <VMABVKBC+VMBCVKAB+8 54 MMK> Vi (&u€14) . (C.1)
In the first line, we recognize the action of a gauge transformation together with the non-

covariant contribution g, MMN9NE” of the diffeomorphism action (2.34). The third term
can be reduced using (3.10). Let us rewrite the last term of (C.1) as

32V { (VMABVKBC + VM popEAB % o4 MMK> (5 yuer A)}
= 320k { (vMABVKBC + VM po VAl 4 é 5é MMK> (& e A)}
_39 <VKBCDKVMAB 4+ YKABp YM ééé (trace)) (&5 €1 a)
+8 (e 'rce) (VKBCVMAB + VEABYM by % 5 MMK> (&5 vue1 4)

— 8
=12 (ta)MN 8N:,m 3 QMN (VK BC DNVKAB + pEAB DNVKBC’) (gg’yuel A) ,
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reproducing the parameter =, from (3.37), and where we have used (3.19) in the first
equality and the vanishing torsion condition (3.21) in the second. Together, we obtain

1 —
[0crs0e) AM = DAM 4 g, MMN e — 3 ' Fu™M — 12N ONE, o
+ & QMN (E? 'yuﬁNel A— ZSN€§4 Y €1 A)

8
-3 QMN (VKBC DNVKAB + pKAB DNVKBC) (gg’yuel A) . (C.2)

We observe, that we can simultaneously drop the SU(8) connection part in the last two lines
since they mutually cancel. The spin connection &y;*? in the second line yields additional
contributions which explicitly carry the field strength ]:WM and can be simplified using
the twisted self-duality equation (2.15):

1
- iQMN Euvpo E124 7V €14 MNK -FpUK = _5 gl/fle . (C?’)
In total, the commutator (C.2) then takes the expected form
[Oers 0] A = & Fu™ + g MMN OnE” + DAY + 12 (1%)MN ONE o

1 -
+ §QMN N (C.4)

with the last term corresponding to the action of a tensor gauge transformation (2.19) with
parameter =, ys from (3.42).

Next, let us check the commutator of supersymmetry transformations on the two-forms
B, «- First, we note that to lowest order in the fermions the terms descending from varia-
tion of the (to) N A[MM (5€A,,}N contribution in (3.32) simply reproduce the corresponding
terms of type (to)mn AULM [01, 52]AV]N in the action of gauge transformations (2.19) and
diffeomorphisms (2.34), by virtue of the closure of the algebra (C.2) on the vector fields.
We can thus in the following ignore all terms that carry explicit gauge fields AMM . With
some calculation the various remaining terms organize into

8
[01,02] Buv o = 3 (ta)"? ( —VpapVgcp g[gA Vv PpPEPIEAPe (C.5)
+2VppcVo“ éa Viu Dy e
~6VpaBVacn & Y VP Viare)

—4iVp pcVo ¢ & AV[MVMBD §M(’7y]61 D)+ c.c.) —(1+2)

_ 1
= 2D[uiu]a + g (ta)PQ VPABVQ CD PJABCD €€ vpo gp + (ta)MN AMf,LLI/N
32
3
4

g(ta)PQ( — 12Vpcp &Y dgel + 4iVpacVN “PogVn pp & vuel

(ta)PQ oM (Z'VPACVQBCVMBDE’;’YHVG? + C.C.)

+3VpcDgpe ngw’”ef) + cc. — (1« 2)>
= 2D[/LEV]0£ + gp Hp;wa + (ta)MN AM-FMVN + 8MQMVMOt + (ta)MNQ;wNM )
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with the gauge parameters AM and E,4 defined in (3.37) above, and the shift pa-
rameters QWM o QWNM given in (3.42). Finally, we have used the first-order duality
equations (2.39) for the last equality in (C.5) in order to reproduce on-shell the transfor-
mation (2.34) under external diffeomorphisms. Together, we confirm the supersymmetry
algebra (3.35) on the two-forms By, «.

Closure of the supersymmetry algebra on the vector fields and two-forms B, o thus
has not only determined the supersymmetry transformation rules but also uniquely fixed
all the gauge parameters appearing on the right hand side of (3.35). The remaining com-
mutator for the constrained two-forms B, y; thus becomes a consistency check of the entire
construction with no more free or adjustable parameters to be determined. Indeed, clo-
sure of two supersymmetry transformations on By, ys into (3.35) can be shown by a rather
lengthy calculation of which we will give only a few essential ingredients here.

As for B,,, o, we can consistently ignore all terms that carry explicit gauge fields .A#M
which separately organize into the correct contributions due to closure (C.2) on the vector
fields. After some calculation, we then find for the remaining commutator

[551 s (562] B;WM =2 ’D[“EV]M — 43 fp eguypo' RMTUT

. o 2 o
— 2 €€ pvp Dr (ga)\aMgk) - g €€ wpo PPABCD VPABDMVP cpé

+ ?1 EéA’mﬁL(%]
— 64i €5 € e, Ve, ;o VEAPYN 15Dy Ve + c.c.
+64VEcop e ’Y[uﬁMﬁK(%}} er)) +c.c.

— 64Dye5 Vi VKCD§K(%]E?) + c.c.

— 16 QN fp[uNeg fypﬁK(fy,,}e{))Vch + c.c.

—16ecu,” Vir (Eg’ypVNCD§N(’706?)> +c.c.. (C.6)

6{3))DMVKCAVLBDVKCD + c.c.

Here the curvature in the second term refers to the curvature of the corresponding spin
connections

Ry = eneg’ (8M wpaﬁ —DIA, w]pro‘5>
=ey’eg’ (8wao‘ﬁ -D, (67[0‘8]\4675])) . (C.7)
In the calculation of (C.6), we have made use of
21 .
DuVEap = 3 VECPDy Vi cipVEap — VEPYE cpDyVias . (C8)
21 )
= VipTup" = 3 VROV oV o T ™+ iVECPVE cpVpap Tuk”
as well as

8i €€ ,” O (E‘ffprgel A) +c.c. = 8iegu,” OV, (6’247%1 A) (C.9)
= 8i eepp” VoOur (€577 €1 4) + 20 egpp” OnTor €T

= —2iecy,,” D° (gg,\aM§>‘> + 2i e pvor Rarp”" E°
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and
32i <E§4 ’Y[M[Dy]vﬁM]spin €14 — c.c.) = —2iegqg[upé” EM‘,,]QB + c.c.
= —diecap))pf” RMIV]QB — 2QunE” D[HFV}pN
= —diec;rpE” Ry’ — 2ieeunor&” Ry,
— 2Qun& D F," - (C.10)
Let us start by considering the first five terms of (C.6). After some further calculation

and upon using the first-order duality equation (2.39), they reduce to

— 2D[MEIJ]M — 43 fp €€MWURM7—UT

) 2
— 24 eg,uupa Dp <go')\8M§)\> - g €€ uvpo prABC’D VPABDMVP CD 50’

- . ~ 1
= 2DE ) m + 2i° e pvo (JMJ t3 PIABCD pys ABCD>
— 2iegy,,” DP (gaABMﬁ’\)

= 2DE s + € Hypar — 2 200" D (90 O0EY) (C.11)

This exactly reproduces the expected transformation of B, p; under external diffeomor-
phisms (2.34). Next, we collect all 7 terms on the right hand side of (C.6). This yields

8 _
61, 2] B mr £=3 VNV P DV pa &0 e Fpo™
—4VP 45D VP op € 1w 17 e EVNOP FoolY
— 4i & v, D (V7 nye1” Foo™ Vv an)
+ 4i Dy vV e’ Foo™ Vv as
. o —A_p AT B N
+iecuw,” Du (62’7 YV ve€17 Far VNAB> +c.c.. (C.12)

After some further calculation, these terms may be brought into the form

32 _ _
= —EVKCDDMVKAD Fucpéya® +16VE cpDy Vi apFu P &'e?

+ 8i FuwapDu (€' ?) — 8i VEABY ke cp Dy (Fuvap)és e ”
= SVEOPE L opDy (Vi apéser?) + 8VE cpFu, P Dy (Vic apés el B)
+ 8Dy (VEPF,, cp) Vi apéiel® — 8Dy (VE cpF ) Vi apés e
= Fu OuA g — AxOnF™ (C.13)
and precisely reproduce the gauge transformation (2.19) of the two-form By, ar .
It remains to show that all the remaining terms in (C.6) combine into the € transfor-
mations of (2.21) with parameter €, »/"¥ from (3.42). This can be verified by a lengthy

but direct computation. In the course of this computation, it is useful to explicitly develop
the curvature

RMNaﬁ = 23[MwN}aﬂ +2w[Ma7wN]76

1 1
= e”vep[aﬁ[Mel,ﬂ]aN]ep“’ ~3 g“”(?[Me,,aaN}euB ~3 e”ae“ﬂa[Meﬂ@N]euv , (C.14)
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from which one obtains

RMN;U/ = RMNO{B €ualup

1 1 .
= D) gkna[Mgu)\aN}gun = 9 g)\ V[Mg,u)\vN]glm . (C.15)

We conclude that the supersymmetry algebra consistently closes also on the field B, .

D Non-exceptional gravity

In this appendix we will illustrate in terms of a simple example (taken from standard
differential geometry) how the difficulties encountered in constructing a fully covariant
connection can be understood and resolved in our framework. The main point will be that
fully covariant expressions can be obtained in terms of the D = 11 connections, but that
these cannot be written just in terms of the generalized vielbein and its ordinary derivatives
— unlike in ordinary differential geometry.

In standard differential geometry and in the absence of torsion, the spin connection is
defined as

1
Wmab = _iemc(gabc = Qpca — Qea b)
with coefficients of anholonomy
Qabc = eapebqapeqc - 6bp6aq3peqc .

Now define the Cartan form

Smab = 6anamenba

which is the analogue of V=19V in (3.23), and decompose this into a symmetric and an
antisymmetric part

Imab = Sm [ab] 5 Pmab = Sm (ab) -
These are the same as the ¢, 45 and py, qp in (4.14). Now a quick calculation shows that
Wmab = mab — (eapemcppbc - ebpemcppac) = Gdmab — 2p[a blm -
Under an arbitrary diffeomorphism, the non-covariant contributions are

Anc‘]mab = e[areq|b]am8’/‘£q ) Ancpm ab — e(areq\b)amargq

and these two contributions cancel in the variation of w,,q, as expected. So the spin
connection is indeed a covariant object under diffeomorphisms, and we also know that it
is the only such object that can be built from the vielbein and its derivative. Under local
SO(1,3) we have

5Qm ab — 8mAab + AaCQm e T AbCQm ac 6pm ab — Aacpm eb T Abcpm ac

SO Gmab and hence wy, 4 transform non-covariantly as SO(1,3) gauge fields, while p,, qp is
covariant under local SO(1,3).
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Next we repeat this calculation in the E;(7) formalism, replacing the siebenbein by the
56-bein VM 45 of exceptional geometry. To simplify things we set A®) = A®) = 0, and
this will suffice to make clear our main point. Then the E;(7) 56-bein (whose components
are explicitly given in (4.4)—(4.7)) simplifies to

1 1
Vg = gA_mF?XB s VinaB = gA_l/QanAB,
7 7
V™ ap = ZAUQFTL . Vmsap = _ZAl/QFmAB- (D.1)

Note that V™8 45 and V™" 4 are imaginary, while Vusap and Vimnap are real (this is true
only in this particular SU(8) gauge). By direct computation we find
B_ 2

1
dmA = 3 VN BcamvNC'A - §Qmabr?4bBa

. 3
Pmascp = =iV ApOnVNcp = _meabr([lABF%D}- (D.2)

As a check on the coefficients we compute (this is the combination appearing in the variation
of the gravitino)

1 1
emACquB - 6mCD pmABCD - _éwmab(rmrab)AB - §Pmaa ZLBa (D?’)

which is indeed the correct result. The last term proportional to —%AflamA is just
the density contribution proportional to I'},, that is required because the supersymmetry
parameter € is a density, showing again how the density contribution was absorbed into
the connections given in ref. [3].

With this information we can now compute

43
Ry AP = 3 (VN B PEpn acpe + VN acVur DEPNBCDE>
201
+ 57 (VN PEVyBCpN acpe + VN pEVM ACPNBCDE>
7
- ?529 (VNCDVMEFPN cper +VNepVur EFPNCDEF>- (D.4)
This gives
1 5 1
R, AB = _6pa bmFZbB + 574pa abl'bmaB + 277}711 ol 'maaB,
43 ) T
B ~1 —1
quA = _EA paa[prq]AB - gA p[pq]aF%B + ﬁp[paarq]AB7
1 b 5 1
RP,P = gpab[prﬁ% + = Pa abF?f]?,» - ﬁpabbripgg,
R™4P =o0. (D.5)

The last component drops out because for this term the first two lines in (D.4) give some-
thing proportional to 55 , and hence are cancelled by the third term in the definition of
Ry 4B, This shows very explicitly, that no matter how we combine expressions depend-
ing only on V and its derivative, there is no way of getting rid of p,,. and replacing
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Qmab — Wmab by such manipulations, without ‘breaking up’ the 56-bein V. In other words,
full covariance cannot be achieved in this way, but requires the explicit introduction ‘by
hand’ of the spin connection.

In principle we could extend the above calculation to non-vanishing form fields; but
this will be far more tedious than the calculation just presented (and the resulting expres-
sions will not be any prettier). Perhaps the only interesting aspect here is that, again,
there appears to be no combination of V’s and 9V’s that would produce the fully anti-
symmetrized (exterior) derivatives on the 3-form and the 6-form field, and this is the
reason why the hook-like contributions in the affine connection are needed. It is therefore
very remarkable that the supersymmetric theory avoids this problem by picking precisely
the combinations (3.28) where these terms drop out.

E Covariant SU(8) connection

In this appendix we provide yet more evidence that an SU(8) connection satisfying all
desired covariance properties cannot be constructed in terms of only V and its derivative 0).
Namely, we will show by explicit computation how the SU(8) connection of section 3 can be
made to transform as a generalized vector under generalized diffeomorphisms, which implies
a unique expression for Up; 4® in terms of V and its derivatives. However, the modifications
required to achieve this come at the price of destroying the covariance under SU(8).

Let the SU(8) connection be

Ona? = qura®? + Rua? + Upra? + Wara®? | (E.1)

with gara®, Rara®, and Wyr4® given by (3.23) and (3.24), and we make the following
choice for the undetermined part Uy 4B

Una® = —% ama® + % (VarepVNECana® = VPV acanp®)
- % (Var ac VNPanp? = VBV cpan a®)
- % (Var ap VY2 qne®? = VPP VN ac anp®)
- % 68 Vmep VVECan P — Vi “P VY pean p®) (E.2)

These are indeed all the objects that one can construct in terms of V and its derivative
V. However, while the first term qar 4Z, Rara®, and Wi 4P have indeed the required
covariance properties of an SU(8) connection, the expression (E.2) for Uy, 4B does not, and
will therefore violate SU(8) covariance if general covariance requires such a contribution.

To see that the full connection can be made to transform covariantly under generalized
diffeomorphisms, consider the non-covariant contributions in the transformation of g 42
and prprABCD

A g 4B = 8iVVBOPE (S 1 91,05 AR Vi o, (E.3)
AncpMABCD — 19 VNAB PKNSR 8M85’AR VKCD, (E4)
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where we have used
1
PM NP = i (200N + 03 05 — Qn@QMP) + (ta) o (E*)MP (E.5)

and the section condition. Note that the covariant part of the transformations of ¢;; and
pyp contain a weight term. So in fact they transform as generalized tensor densities of
weight —1/2.
Furthermore,
A™Ryr 4B = Varen (—8 VAGVRIBEIVSICD] 4 10 6lEIYNICDIYSIEFly, o (E.6)

40 40

14 14
+§5§V§[FVR[EF‘VS|CD} - gdng[EFIVSCD]VREF> aNasAR + c.c.,

where we have used equations (E.4), (A.3) and

1
VM VN cpomon- = ﬂEABCDEFGHVM EEYNGH 90N

which can be proved using identity (A.3) and the section condition. Now using,

1
YMACYN Ordn- = gag YMEPYN ondn-, (E.7)

which holds by identity (A.2) and the section condition, equation (E.6) can be simplified to:

ARR, AP =
_éVMCD (4VNCD Ve apVSBE LS p BE _ 3176 58 (4Vk ppVS FF £ 7VS ppVpF)
L 8VNBC [P VSO 4 YS YD) 4 %52VNEFVSEFVRBD
_ g(ggVN DEVSBFy, %5§VN BD [V ppVSEF — 5V ppypPr
+é SEVN EFVSEFVRCD+§ SBYNECYS FDVREF> OnOsAT+c.c.. (E.8)

Similarly, using identities (A.2) and (E.7)

AR, 4B =
_%VMCD <8 pNCD [VRAEVSBE VS g VRBE %52 (VaprVS BF 1 VS ppyptF)
_ YN BC [P g VS PE LS,y D] %52VNEFVSEFVRBD
n gégVNDEVSBFVREF B S(SgVNBD VeV 4 VS ppVptr]
—é A EFVSEFVRCD—g gRYNECYS FDVREF) OnOsAf+cc.. (B.9)
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It is straightforward to verify that

A" (R a®” +Una®) =
1

_ 4VM oD (VNCD |:VRAEVSBE+VSAEVRBE_36 55 (4VREFVSEF+5VSEFVREF):|

1
_§ 5SVN BD [VREFVS EF VSEFVREF]) 8N85AR +ec.c.,
=8 (Vu cpVN P — VMCDVNCD) PP % R VpapV9BE Onos AR

43 1
-3 {VMACVNBC + VYN po — géf (VimepVNOP + VMCDVNCD)} N

— _AncquB o AnchAB‘ (ElO)

Therefore, Qur 47 defined in equation (E.1) is a generalized tensor density of weight —1/2.
However, as the term Ups 47 itself depends on gys o” in a definite manner, the total SU(8)
connection no longer transforms properly under SU(8). As we explained, this conclusion
can only be evaded if one drops the assumption that all parts of Qj; should be expressible
in terms of V and 9/ V.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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