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1 Introduction

Inflation as the most exciting scenario for cosmologists, naturally solves several puzzles of

the standard big bang model [1–3]. The rapid expansion of the universe during inflation

is considered to be responsible for homogeneity and isotropy on the large scale structure

(LSS) of the universe. On the other hand, the quantum fluctuations of the scalar (inflaton)

field are generated from vacuum fluctuations during inflation, and inflation would lead to

the growth of the modes of fluctuations in the accelerating phase. By this mechanism,

the quantum fluctuations located outside the horizon, freezed and became the classical

fluctuations. After these process, the temperature fluctuations ∆T
T

indeed becomes the

observable in the cosmic microwave background (CMB) by Sachs-Wolfe effect and the

frozen fluctuations outside the horizon appear in the form of clusters of galaxies in the LSS

of the universe. Almost scale-invariant power spectrum of primordial fluctuations is the

most important prediction of inflation scenario [4–8].

The amazing development of observational cosmology opens new avenues to the very

early universe. The scalar spectral index ns, tensor-to-scalar ratio r [9, 10], the gravitational

wave, non-Gaussianity parameter fNL and the isocurvature perturbation in the CMB [11]

are among the most important observational probes. These probes will constrain the initial
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conditions of inflation model, trans-Planckian physics and alternative models to inflation,

etc. One of the most important observations of the recent CMB data from Planck combined

with the large angle polarization data from the WMAP, gives a strong constraint on scalar

spectral index: ns = 0.9603 ± 0.0073 at 95% CL [12]. Power law inflation (PLI) with

a(t) ∝ tp and p > 1 arises in the context of a canonical scalar field with an exponential

potential [13–17]. In [18] a new model of power law inflation has been proposed in which

the scalar spectral index, the tensor-to-scalar ratio and the non-Gaussianity parameter

are in excellent agreement with Planck results. However, results of our study confirm

a slow-roll PLI form of expansion for the early universe with excited-dS initial states.

Non-trivial initial states for perturbations naturally accommodates the running of the tilt

needed to explain the BICEP2 result [19]. Additionally, in [20], by the combinations of

BICEP2+WMAP 9-year data, the pLI model and the inflation model with inverse power-

law potential can fit the data nicely. These interesting data can be stimulated us to slow-roll

PLI for excited-dS space-time.1

On the other hand, recent observational data in the CMB may come from various

sources during the cosmic evolution. It is believed that if all the process and transforma-

tions during cosmic expansions are linear, thus the temperature fluctuations are Gaussian.

Meanwhile, any deviation from linearity in the expansion process or in the transformations

between various stages of expansion process, will influence the final observable data [21].

As the oldest non-linear factors influencing the CMB radiation is the nontrivial initial

states, that could be an important source to generate scale-dependent power spectrum and

non-zero bispectrum. Moreover, because we do not know anything about the physics before

inflation, a priori any excited state is as good an initial state as the vacuum state. In this

paper, we shall propose the excited-de Sitter(ED) modes instead to the Bunch-Davies (BD)

mode [22] as the nontrivial initial states [23]. We will show that this deviation from BD

mode can modify power spectrum and in particular can produce scale-dependent power

spectrum fit with recent observations.

Non-trivial initial states have been studied by many authors, including α-vacuum [21],

general multi-mode squeezed states [24–29], particle number eigen-states [30], Gaussian and

non-Gaussian initial states [31], coherent states and α-states [32, 33], thermal states [34],

homogeneous initial states [35] and calm states [36].

It is also well known that the inflation can be described in approximate dS space-

time [7, 37], thus the study of dS and quantum theory of fields in this background is well

motivated. For example, exploring the possible relations between the dS symmetries and

the bispectrum of the fluctuations are well studied in [38] in order to set constraints on

the initial fluctuations due to the dS symmetry, especially, how scale transformations and

special conformal symmetries constrain the correlation functions. The scalar field in dS

background is important because most of inflationary models are theorized using the scalar

field [39]. In this paper we will study scalar field in the dS background with ED modes.

Another motivation for considering ED modes as the initial states, arise from the

possibility of trans-Planckian effects [40–49]. As it is known, we observe the modes that

1For pure de Sitter (dS) space-time we have exponentially inflation , for excited-dS space-time we have

PLI and for almost dS space-time we have slow-roll PLI.
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have physical momenta kphys = k/a which exceed the Planck energy scaleMPl at sufficiently

far past times. The effects of trans-Planckian corrections to the modes and dynamics of

it, may actually be followed by using the modified initial states. We expect our nontrivial

initial states, i.e. ED modes give the trans-Planckian corrections of power spectrum up to

higher order of H/MPl, where H is the Hubble parameter during inflation.

The rest of this paper proceed as follows: in section 2, we first review quantum fluctu-

ations of scalar field during inflation. In this section, we remind equation of motion, field

quantization, boundary conditions for vacuum mode selection. In section 3, we propose ED

modes instead BD mode and to achieve this goal we consider asymptotic expansion of the

Hankel functions, by generalizing Mukhanov equation and mode functions. In section 4,

we provide both observational and theoretical reasons for considering ED modes. Finally,

we calculate scale-dependent power spectrum with using this ED modes in terms of index

of Hankel function and conformal time τ . Conclusions will be discussed in section 6.

2 Review of quantum fluctuations during inflation

2.1 Equation of motion for scalar field

The following metric is used to describe the very early universe during inflation:

ds2 = dt2 − a(t)2dx2 = a(τ)2(dτ2 − dx2), (2.1)

where for the conformal time τ the scale factor is defined by a(τ). There are some models

of inflation but the single-field inflation in which a minimally coupled scalar field (inflaton)

in dS background, is usually studied in the literatures. The action for single-field models

is given by:

S =
1

2

∫

d4x
√−g

[

R− (∇φ)2 − 2V (φ)
]

, (2.2)

where 8πG = ~ = 1. We use gauge-invariant variables to avoid fictitious gauge modes by

introducing comoving curvature perturbation [7],

R = Ψ+
H
˙̄φ
δφ, (2.3)

where Ψ is the spatial curvature perturbation. For this gauge-invariant variable one may

expand the action (2.2) to second order,

S =
1

2

∫

d4xa3
˙̄φ2

H2

[

Ṙ2 − a−2(∂iR)2
]

, (2.4)

by defining the Mukhanov variable u = zR with z2 = a2
˙̄φ2

H2 , and transitioning to conformal

time τ leads to the Mukhanov action,

S =
1

2

∫

d3xdτ

[

(u′)2 + (∂iu)
2 − z′′

z
u2

]

, (2.5)
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where the prime is the derivative with respect to conformal time. Also, we define the

fourier expansion of the field u:

u(x, τ) =
d3k

(2π)3

∫

k

uk(τ)e
ik·x. (2.6)

The action (2.5) leads to the Mukhanov equation (equation of motion for the mode func-

tions uk) satisfies [7, 32, 35],

u′′k + (k2 − z′′

z
)uk = 0. (2.7)

2.2 Field quantization and boundary conditions for vacuum selection

For quantization of the field, we promote u to quantum operator û,

u → û =

∫

dk3

(2π)3

(

âkuk(τ)e
ik·x + â†

k
u∗k(τ)e

−ik·x
)

, (2.8)

and the Fourier components uk are expressed via the following decomposition,

uk → ûk =
1√
2
(âkuk(τ) + â†−k

u∗−k(τ)). (2.9)

The canonical commutation relations for creation and annihilation operators given by:

[âk, â
†
k
′ ] = (2π)3δ3(k− k′), [â†

k
, â†

k
′ ] = [âk, âk′ ] = 0. (2.10)

The normalization condition for the quantum mode functions is can establish if and only

if we have,

u∗ku
′

k − u∗
′

k uk = −i. (2.11)

Equation (2.11) provides one of the boundary conditions on the solutions of (2.7) but this

doesn’t fix the mode functions completely. The second boundary condition comes from

vacuum selection. Real vacuum state for any fluctuations given by [7, 32],

âk
∣

∣0
〉

= 0. (2.12)

First, we consider the standard choice, i.e. the Minkowski vacuum in the very early universe,

τ → −∞ or |kτ | ≫ 1. In this limit, we define the vacuum state by matching solutions to

the Minkowski vacuum mode in the ultraviolet limit, i.e. on small scales when the mode is

deep inside the horizon. This constrain fixes the mode functions completely. In this limit,

we have z′′

z
→ 0 and equation (2.7) change to special form as,

u′′k + k2uk = 0. (2.13)

For this case, we have a unique solution as,

uk =
e−ikτ

√
k

. (2.14)

After imposing these two boundary conditions (2.11) and (2.14), the suitable mode com-

pletely qualified on the all scales [7].
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3 Excited-de Sitter modes instead Bunch-Davies mode

In this section, by the asymptotic expansion of the Hankel function up to the higher

order of 1/kτ , we obtain the general solutions of Mukhanov equation. We nominate this

nontrivial solution as the fundamental mode functions during inflation. Then in section

5, we calculate power spectrum with these nontrivial modes and obtain modified form of

scale-dependent power spectrum.

The general solutions of mode equation (2.7) can be written as [2, 3, 7, 8]:

uk =

√
πτ

2

(

AkH
(1)
ν (|kτ |) +BkH

(2)
ν (|kτ |)

)

, (3.1)

where H
(1,2)
ν are the Hankel functions of the first and second kind, respectively [2, 8]. But

since the function z in mode equation (2.7) is a time-dependent parameter and depends

on the dynamics of the background space-time, thus finding the exact solutions of the

equation (2.7)is difficult and the numerical and approximate methods are actually needed.

3.1 Asymptotic expansion of the Hankel functions

In the far past |kτ | ≫ 1 in the very early universe, we are authorized to use asymptotic

expansions of the Hankel function up to the higher order of 1
|kτ | as follows [7, 50–52],

H(1,2)
ν (|kτ |) →

√

2

π|kτ |

[

1± i
4ν2 − 1

8|kτ | − (4ν2 − 1)(4ν2 − 9)

2!(8|kτ |)2 ± . . .

]

× exp

[

± i

(

|kτ | −
(

ν +
1

2

))

π

2

]

, (3.2)

Note that, this asymptotic solution, only for ν = 3
2 reduce to the exact dS mode, which

consists the first (linear) order of 1
|kτ | and for another value of ν, the modes can contain

other non-linear terms of order 1
|kτ | .

3.2 Mukhanov equation and excited-de Sitter modes

For the dynamical inflationary background, we have z′′

z
6= 0 in equation (2.7) and it is a

time-dependent value in terms of conformal time τ as following [53],

z′′

z
=

2α

τ2
. (3.3)

Also in addition to the variable τ , the value of z′′

z
is depended to the Hankel function index

ν. Therefore, the equation (2.7) turns to the general form

u′′k + (k2 − 2α

τ2
)uk = 0. (3.4)

Variable α in (3.3 and 3.4) is given by [7, 53],

α = α(ν) =
4ν2 − 1

8
. (3.5)

– 5 –



J
H
E
P
0
9
(
2
0
1
4
)
0
2
0

Consequently, according to the general equation of motion (3.4) and the asymptotic ex-

pansion (3.2), the general form of mode functions becomes,

ugenk (τ, ν) = Ak
e−ikτ

√
k

(

1− i
α

kτ
− β

k2τ2
− . . .

)

+Bk
eikτ√
k

(

1 + i
α

kτ
− β

k2τ2
+ . . .

)

, (3.6)

where β = α(α− 1)/2. Note that, we consider |τ | = −τ for far past. Also, the general

mode (3.6) is a function of both variables τ and ν. After making use of two boundary

conditions (2.11), (2.14) and mode function (3.6) up to order of 1
k2τ2

, the positive frequency

solutions of the mode equation (3.4) becomes,

uEDk =
e−ikτ

√
k

(

1− i
α

kτ
− β

k2τ2
− . . .

)

. (3.7)

We call this solutions as excited-de Sitter(ED) modes. In addition to the above motivations,

the following items can be considered as the related issues with ED modes:

• Corrections obtained from previous conventional methods for power spectrum is typ-

ically of the order of 1, 2 [40- 49]. So it is useful for us to extend the modes up to

non-linear order of its parameters. This non-linearity of our ED modes appears in

the both variables of it, i.e. variable ν and conformal time variable τ (In this paper

we discuss this topic).

• Primordial Non-Gaussianity in the CMBmay be come from various non-linear sources

during the cosmic evolution. Any non-linear effect in the expansion process or in

the initial conditions (vacuum states) may leave non-linear traces in the observable

parameters of CMB [21, 54–56]. So, non-linear terms of ED modes can be considered

as a non-linear effect in the initial states (This issue will studied in future works).

• In the context of general initial states and non-Bunch-Davies mode considering the

backreaction and the tadpole are important issues. We demand of the backreaction,

constraint for energy density and the vanished tadpole of fluctuations about the cor-

rect zero mode trajectory [30, 32, 34]. So, some related issues such as the backreaction

effects associated with our excited-dS modes should be discussed in detail (In this pa-

per we bring short discussion of this issue and we will discuss in detail in preparation

work [57]).

• Also, compared with previous BD mode, these ED modes could be more complete

solution of the general wave equations (3.4) for the general curved space-time (spe-

cially excited-dS space-time), whereas BD mode is a specific solution for a specific

curved space-time (i.e. dS space-time).

3.3 Some of exact and approximate solutions

The ED modes (3.7) are leading to the exact solutions for the ν = ±1
2 ,±3

2 ,±5
2 , . . . and

are leading to the approximate solutions for another values of ν. For the our cosmological

proposes, we investigate ν = 1
2 ,

3
2 , ν ≃ 3

2 + ǫ with ǫ < 1 and ν = 5
2 .

– 6 –
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• For the ν = 1
2 , we have from equation (3.3), z′′

z
= 0. So, the mode function (3.7)

leads to exact Minkowski mode (2.14).

• In the case of ν = 3
2 , we obtain from equation (3.3), z′′

z
= 2

τ2
, and the general form

of the mode functions (3.7) leads to the exact BD mode:

uBD
k =

1√
2k

(

1− i

kτ

)

e−ikτ . (3.8)

For this special case, we have exponentially inflation, a(t) = eHt or a(τ) = − 1
Hτ

with

H = constant for very early universe.

• Also, considering ν = 5
2 , we obtain from equation (3.3), z′′

z
= 6

τ2
. So, we have an

exact excited-dS solution as,

uED1
k =

1√
k

(

1− 3i

kτ
− 3

k2τ2

)

e−ikτ , (3.9)

note that this last mode is the exact solution of Mukhanov equation (3.4) and it is a

non-linear solution of order 1
k2τ2

.

Inflation starts in approximate dS space-time and basically in the very early universe with

varying H, finding a proper mode is difficult. So, we offer the general form of excited-dS

solution (3.7) as the fundamental modes during inflation that asymptotically approaches

to flat background in τ → −∞ . For these fundamental modes, we will show in the next

section, the best values of ν which are confirmed with the latest observational data, is

ν = 3
2 +ǫ, where 0 < ǫ < 1. For this range of ν, we have power law inflation (PLI) a(t) ∝ tp

with p > 1 or a(τ) ∝ |τ | 12−ν with ν > 3/2. But for ǫ ≪ 1 we have slow-roll PLI [18].

It is important to note that if we consider mode functions depending on the Hankel

function index ν, BD mode is exclusively suitable only for exponentially inflation in pure

de Sitter phase with ν = 3/2. But for slow-roll PLI in the excited-dS space-time, it is

better and more logical that we make use general ED modes (3.7) instead BD mode (3.8).

4 Some motivations for excited-de Sitter modes

4.1 Constraint on spectral index from Planck and WMAP

In this section we present Planck(2013) results for spectral index of inflation [12] as ob-

servational motivation for ED modes. The solution of equation (3.3) for this case (i.e.

ν > 3/2) leads to PLI, corresponds to

a(t) ∝ tp or a(τ) ∝ |τ | 12−ν . (4.1)

For this case, the Hubble parameter is time-dependent variable and easy to see that

from (4.1), we obtain

H(t) =
p

t
. (4.2)

– 7 –
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In terms of variable ν, we obtain p as follows,

p =
(1/2− ν)

(3/2− ν)
, (4.3)

and the slow-roll parameter for PLI given by

ǫ =
1

p
=

(3/2− ν)

(1/2− ν)
. (4.4)

Slow-roll PLI corresponds to ǫ ≪ 1 and ν = 3/2 + ǫ/(1− ǫ) ≃ 3/2 + ǫ [53]. For this limit

one finds,

ns − 1 ≃ −2

p
=

2(3− 2ν)

2ν − 1
. (4.5)

Note that if we consider PLI without slow-roll assumption, one gets

ns − 1 =
2

1− p
= 3− 2ν. (4.6)

On the other hand, Planck results in combination with the large angle polarization data

from WMAP requires the value of the scalar spectral index ns to lie in the range 0.945 ≤
ns ≤ 0.98 [12]. This restricts p in the PLI to the range,

38 . p . 101, (4.7)

and equivalently we obtain for ν and ǫ,

1.51 ≤ ν ≤ 1.53, (4.8)

0.01 . ǫ . 0.03. (4.9)

Since the BD mode is used just for pure dS space-time, this above range of ν based on

the most recent observations, motivate us to deviations from BD mode. Consequently, the

ED modes (3.7) proposed in this paper could be a good candidate for modifying of the

standard BD mode.

4.2 Constraint on back-reaction

An excited initial state can in principle affect the background inflationary dynam-

ics (through the back-reaction of the perturbations) as well as the CMB temperature

anisotropy. To this end we recall some results of cosmological perturbation theory as-

sociated with our ED modes, whose details will be presented in [57].

Since, we have considered the higher non-linear order terms of 1/kτ for ED modes to

obtain corrected spectra, therefore needed that the study of back-reaction effects appear in

the high-order terms associated with these excited modes. As a result, it is expected that

the back-reaction effects are negligible during the near exponential expansion for BD mode

i.e. ν = 3/2, and these effects might be important for the subsequent cosmic inflation,

specially for the PLI with ν > 3/2. However, vacuum energy density accumulated during

PLI can be important at later stages, since it increases like 1/k2τ2, which is bigger than

the 1/kτ at late time, |kτ | ≪ 1.

– 8 –
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The expectation value of the EMT for inflaton field φ given by

Tγδ = φ;γφ;δ −
1

2
gγδg

ρσφ;ρφ;σ. (4.10)

For the general ED modes (3.6), with definition φk = uk

a(τ) , the T 0
0 component (the energy

or pressure density) carried by the perturbations is [58],

δρED ∼ 1

2a(τ)2

∫

d3k

(2π)3

×
[

(Aku
′
k +Bku

′∗
k )(A

∗
ku

′∗
k +B∗

ku
′
k) + k2(Akuk +Bku

∗
k)(Akuk +Bku

∗
k)
]

. (4.11)

For calculation of the above energy density, we consider the initial modes as follows

uk =
e−ikτ

√
k

(

1− iα

kτ
− β

k2τ2

)

, (4.12)

and τ in term of Hankle index ν and slow roll parameter ǫ as [53],

τ =
−1

aH

(

1

1− ǫ

)

=
−1

aH

(

ν − 1

2

)

. (4.13)

If we ignore the terms higher order than 1/(kτ)2, we obtain [57],

δρED ∼ 1

a4(τ)

∫

d3k

(2π)3
× k

[

|Ak|2 + |Bk|2 +AkB
∗
k

(

2α2

k2τ2
+

2iα

kτ
− 1

)

e−2ikτ

+BkA
∗
k

(

2α2

k2τ2
− 2iα

kτ
− 1

)

e+2ikτ

]

.

If we consider the correction terms in (4.14), these terms are of orderH/MPl and (H/MPl)
2,

that are very small for consideration [57].

In the far past time limit τ → −∞, we have dS mode with ν = 3/2 and we obtain

from (4.14) the following result

δρED ∼ 1

a4(τ)

∫

d3k

(2π)3

[

|Ak|2 + |Bk|2 −AkB
∗
ke

−2ikτ −BkA
∗
ke

+2ikτ
]

k, (4.14)

this result complectly is similar to result [58]. As is known well, this expression is divergent

for any choice of Ak and Bk. The finite vacuum energy density can be given by [58, 59]

(δρED)ren ∼ 1

a4(τ)

∫

d3k

(2π)3
k|Bk|2. (4.15)

To make sure that the back-reaction is small, Bk should be satisfied the following observa-

tional condition [59],
∫

d3k

(2π)3
k|Bk|2 ≪ ǫηH2M2

Pl, (4.16)

where ǫ and η are the slow-roll parameters.
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5 Calculation of power spectrum

5.1 Power spectrum with Bunch-Davies mode

To calculate the power spectrum, we need to compute the following quantity [7, 32],

〈ûk(τ)ûk′(τ)〉 = 〈0|ûk(τ)ûk′(τ)|0〉 =
1

2
(2π)3)δ3(k + k′)|uk(τ)|2, (5.1)

where we use (2.9). Next, we should introduce some standard quantities in terms of

curvature perturbation Rk(τ),

〈R̂k(τ)R̂k′(τ)〉 = (2π)3δ3(k + k′)PR, (5.2)

∆2
R =

k3

2π2
PR, (5.3)

where

Rk(τ) =
uk(τ)

z
=

uk(τ)

a

(

H
˙̄φ

)

. (5.4)

PR is the power spectrum and ∆2
R is the dimensionless power spectrum [32].

As we know, the scale dependence of the spectra follows from the time dependence of

the Hubble parameter2 and is quantified by tilt [7],

ns − 1 =
d ln∆2

R

d ln k
. (5.5)

By using equations (5.2)–(5.5), in the super-horizon limit (kτ ≪ 1), we have scale-invariant

power spectrum for BD mode as,

ns = 1, ∆2
R =

H2

(2π)2

(

H2

˙̄φ2

)

. (5.6)

where H is the Hubble constant for this scale-invariant power spectrum (i.e. ns = 1)

during exponential inflation in pure dS phase. But observations of CMB and LSS tell

us conclusively that the power spectrum of the fluctuations produced during inflation is

almost scale-invariant (i.e. ns ≈ 1) [11, 12]. Therefore, we believe that the geometry of the

very early universe is almost dS (or excited-dS) with time-dependent Hubble parameter.

In the next section, we replace nontrivial ED modes instead BD mode to obtain deviation

from scale invariance in terms of ν and slow-roll parameter ǫ.

5.2 Power spectrum with excited-de Sitter modes

For ED modes (3.7), we have

PR =
1

2a2

(

H2

˙̄φ2

)

|uEDk (τ)|2. (5.7)

2As it is argued in this paper, the excited-dS modes is applicable for the time-dependent Hubble param-

eter, so it is certainly expected scale dependence of the spectrum resulting from these nontrivial modes.
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For super-horizon limit kτ ≪ 1, we obtain modified power spectrum in the following

general form:

∆2
R =

H2

(2π)2

(

H2

˙̄φ2

)

(1− ǫ)2
[

α+
β2

k2τ2

]

(5.8)

=
H2

(2π)2

(

H2

˙̄φ2

)(

2

2ν − 1

)2 [

α+
β2

k2τ2

]

.

For the last equation we use the (4.13).

Here, to obtain the above relation, we assume the slow-roll parameter ǫ is a con-

stant [53]. For special cases of ν, we obtain as follows:

• For the ν = 1
2 , we have α = 0. So, the power spectrum for this case is vanish.

• In the pure dS phase or ν = 3
2 , we obtain

α = 1, ǫ =
−Ḣ

H2
= 0. (5.9)

So, we have BD mode and (5.8) reduced to the standard scale-invariant power spec-

trum (5.6) for this particular case.

• Also, if we consider ν = 3
2 +

1
p−1 [53], we have PLI with power p = 1

ǫ
with ǫ < 1 and

we consider for this case,

α 6= 1, ǫ = Constant. (5.10)

So, for ED modes (3.7) up to second order of 1/kτ , the modified power spectrum (5.8)

change to the following result in terms of ν,

∆2
R =

H2

(2π)2

(

H2

˙̄φ2

)[

2ν + 1

2(2ν − 1)
+ (2ν + 1)2

(4ν2 − 9)2

64k2τ2

]

, (5.11)

by considering the trans-Planckian effect that appears as a fixed scale τ = τ0 [49]

and equations (5.8), the equation (5.11) change to,

∆2
R =

H2

(2π)2

(

H2

˙̄φ2

)

[

2ν + 1

2(2ν − 1)
+

(

2ν + 1

2ν − 1

)2(4ν2 − 9

4

)2( H

MPl

)2
]

. (5.12)

Note that for a given k a finite τ0 is chosen in which the physical momentum cor-

responding to k is given by some fixed scale MPl, where τ0 = −MPl

Hk
has a finite

value. The trans-Planckian corrections in (5.12) are of order ( H
MPl

)2. In [48] by us-

ing of effective field theory the similar correction has been obtained. Also, for the

careful analysis of the different order of trans-Planckian corrections can be checked

paper [60, 61].

Equations (5.11) and (5.12) indicate that whatever the value of ν is closer to 3/2

(or ǫ → 0), we have slow-roll PLI instead PLI and the deviation from scale-invariant

spectrum becomes less and less. However in general, our excited-dS modes (3.7)

build a scale-dependent power spectrum during PLI. As well as because of obtained

second order trans-Planckian correction in (5.12), it is possible that ED modes create

non-Gaussian effects in CMB similar to effective field theory method [63]. We will

investigate this issue in detail in the future works.
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6 Conclusions

Resent data from Planck andWMAPmotivated us to deviation from BDmode and consider

some nontrivial modes instead of BD mode. Based in this fact, we have studied the ED

modes instead BD mode as the nontrivial initial states for primordial fluctuations. We

have obtained ED modes by using asymptotic expansion of the Hankel functions in the

general solution of the equation of motion for the field in the curved space-time.

Also, we have presented constraints of scalar spectral index of power spectrum and

confirmed slow-roll PLI and ED modes are consistent with these observations. Then, we

have showed the corrections in back-reaction associated with the non-linear terms of ED

modes are very small for consideration. Finally, by making use of this nontrivial modes

we have calculate the power spectrum for primordial scalar field fluctuations. Our result

for power spectrum is scale-dependent and the corrections are up to the higher order of

H/MPl, consistent with the other recent works in this issue and for the dS space-time limit

leaded to the standard scale-invariant power spectrum. In the future work, we will study

the constraints on the general ED modes, primordial non-Gaussianity in the CMB and

particle creation resulting from these non-trivial and non-linear initial states.
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