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1 Introduction

A central problem in quantum field theory is to understand the phases of interacting gauge

theories. While results on nonsupersymmetric theories are mostly numerical, theories with

N = 1 supersymmetry (four supercharges) have holomorphic quantities which, in some

cases, can be used to determine the vacuum structure. During the last decades, enormous

progress on N = 1 theories has been made following the work of Seiberg [1–3]. Seiberg

duality has now become a key tool for analyzing strongly coupled effects.

Chiral gauge theories exhibit many fascinating phenomena, and have important the-

oretical and phenomenological applications. Starting from the pioneering works of [4, 5],

dynamical supersymmetry breaking was found in chiral theories, providing one of the main

motivations for their subsequent study. For reviews and references see [6–8]. Further-

more, intriguing dualities and nonperturbative effects have been found in these theories,

like chiral-nonchiral dualities [9–13], mixed phases [14], and new phase transitions between

conformal and confining theories (as we shall also find in this work). Various other examples

have been studied for instance in [15, 16].

However, a general understanding of the infrared (IR) dynamics of chiral theories is still

lacking, as is a systematic procedure to obtain dual theories. Progress in obtaining dual the-

ories was made by Berkooz [17], who proposed to ‘deconfine’ fields transforming in 2-index

representations. The deconfinement method will also play an important part in this paper.

In this work, we present new dualities and dynamical effects in chiral gauge theories

with an SU(N) gauge group and matter in the antisymmetric and (anti) fundamental

representations. Related work on this class of models appears in [14, 17–19]. Cancellation

of gauge anomalies restricts the matter content to

SU(N) SU(F ) SU(N + F − 4)

Q 1

Q̃ 1

A 1 1

(1.1)

We will focus on the case F ≤ N + 3 and add a cubic superpotential W ⊃ Q̃AQ̃ for some

of the quarks, described in section 2. The first part of the work (sections 2–4) analyzes the

dynamics for F = N +3, while the phase structure when F < N +3 is studied in section 5.

The case F > N + 3 will be studied in [20].

First, in section 2 we argue that for N odd and F = N + 3 this theory has a dual

magnetic description in terms of an SU(N) gauge theory that includes additional mesons,

baryons and cubic interactions. This reveals that this theory, which features a nonzero

superpotential, is self-dual (i.e. the electric and magnetic descriptions have the same gauge

group). This extends the results of [21, 22] on self-dual theories.

In section 3 we propose that the above electric theory with F = N + 3 (now with N

arbitrary) admits an infinite family of magnetic duals with gauge groups SU(N + K − 1)

and with matter charged under an additional classical SU(K) global symmetry, where K

runs over all the integers with the same parity as N . This duality is quite striking in

two respects. First, for fixed electric gauge group (fixed N), the dual theories have an

– 2 –
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arbitrarily large gauge group but all flow to the same fixed point in the IR. This signals a

dramatic reduction in the number of degrees of freedom due to renormalization group (RG)

effects, which will be understood using a-maximization [23]. Furthermore, the magnetic

theories have additional global symmetries in the ultraviolet (UV). For the duality to hold,

these symmetries have to be truncated quantum-mechanically. This is also a general puzzle

found in works on deconfinement (first noticed in [24]), that will be addressed here.

We will explain in section 3.3 how global symmetries can be reduced by nonperturba-

tive effects. This happens because all the fields that transform nontrivially under SU(K)

are truncated from the chiral ring at the quantum level. Nonzero vacuum expectation val-

ues (vev’s) for these fields produce nonperturbative superpotentials that cause the theory

to develop runaway instabilities that remove all supersymmetric vacua. The nonperturba-

tive truncation of the classical chiral ring is a familiar effect that occurs also in vector-like

supersymmetric QCD (SQCD) (reviewed in section 2.3). However, we believe that the

reduction of global symmetries in the IR is a novel phenomenon, inherently related to the

chiral nature of these theories.1

The low energy dynamics of the electric and magnetic descriptions with F = N + 3

are analyzed in section 4. At the origin of moduli space these theories all flow to the

same superconformal fixed point. The exact anomalous dimensions are calculated using

a-maximization, and a precise agreement between the electric and magnetic results is ob-

tained. Furthermore, we find that the coefficient amag of the a-anomaly in the family of

magnetic theories is independent of K, and agrees with ael. Since the central charge a

can be viewed as a measure of the number of degrees of freedom at the fixed point, this

strongly suggests that the fields associated to the gauge group SU(N + K − 1) in the high

energy theory are reduced by RG effects.

The phase structure of the theory with F ≤ N+2 flavors turns out to be extremely rich,

and this is the subject of section 5. Depending on the mass deformation in the F = N + 3

theory, the flow to F = N + 2 results in either a self-dual conformal fixed point or an

s-confining theory. Next, starting from either of these theories and adding one more mass

term, we find that the theory with F = N + 1 confines with chiral symmetry breaking.

When F ≤ N the theory develops a runaway instability caused by nonperturbative effects.

A product gauge theory that interpolates between the electic and magnetic theories with

F = N + 2 is discussed in appendix A.

Generalizations and applications of the previous results are contained in section 6. We

present an infinite family of electric theories with gauge group SU(N +K−1) and a global

symmetry group containing SU(K) that are dual to an infinite family of magnetic theories

with gauge group SU(N + K ′ − 1) and a global symmetry factor SU(K ′). A particular

version of this gives a nonchiral dual to a chiral theory with antisymmetrics.

Finally, section 7 summarizes our results and suggests some future directions.

1The opposite effect, where the global symmetry group is accidentally enhanced at the IR fixed point,

has been observed before [25, 26].
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2 A self-dual chiral theory

In this section we describe the simplest duality in the chiral theory with F = N + 3,

exhibiting a self-dual magnetic description.

2.1 The electric theory

Let us describe the electric theory in detail. The matter content is given by

SU(N) Sp(2N − 2) SU(N + 3)

Q 1

Q̃ 1

P̃ 1 1

A 1 1

(2.1)

and the superpotential is

Wel = Q̃AQ̃ . (2.2)

The gauge symmetry is SU(N) and the nonabelian global symmetries are Sp(2N − 2) ×
SU(N + 3).2 Eq. (2.2) is the most general renormalizable superpotential compatible with

the symmetries. This superpotential plays a crucial role in the dynamics of the theory.

This section deals with odd N , while the case of even N will be discussed in section 3.

Comparing with (1.1), we have set F = N + 3, and 2N − 2 quarks Q̃ have been cou-

pled to the antisymmetric through (2.2). We have not found a simple magnetic dual if the

number of quarks Q̃ interacting with A is different than 2N − 2; in such cases the dual

description has a product gauge group. These cases — and the model with an arbitrary

number of total flavors — will be studied in [20].

The gauge invariant operators are the mesons

QQ̃ , QP̃ , Q̃AQ̃ , Q̃AP̃ , (2.3)

and baryons

Q̃N , Q̃N−1P̃ , QkA(N−k)/2 , k = 1, 3, . . . , N . (2.4)

The invariants Q̃AQ̃, Q̃AP̃ , Q̃N and Q̃N−1P̃ are lifted by the superpotential (2.2).

2.2 The magnetic dual theory

In order to understand the possible magnetic duals of this theory, we first discuss the case

N = 3, for which the antisymmetric becomes an antifundamental. The electric theory is

SU(3) with 6 flavors Q and Q̄ = (Q̃, P̃ , A), deformed by a baryon operator Wel = B̄, where

B̄ = Q̃AQ̃. We have combined all the antifundamentals into a single vector of quarks Q̄,

and recall that the baryons are

B̄i1i2i3 = ǫα1α2α3Q̄α1i1Q̄α2i2Q̄α3i3 . (2.5)

2Our convention is Sp(2) ∼ SU(2).
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The Seiberg dual is an SU(3) theory with magnetic quarks q and q̄ = (q̃, p̃, a) and extra

mesons and interactions,

Wmag = b̄ + q(QQ̃)q̃ + q(QP̃ )p̃ + q(QA)a , (2.6)

where (φiφj) denotes the composite meson associated to the electric fields φiφj, and b̄ is

the magnetic baryon that maps to B̄ according to [3]

b̄i1i2i3 =
1

3!

√

Λ3

µ3
ǫi1...i6ǫ

α1α2α3 q̄i4
α1

q̄i5
α2

q̄i5
α3

, (2.7)

where Λ is the dynamical scale of the electic theory and µ is needed to match dimensionful

quantities between the magnetic and electric theories. Further details of Seiberg duality in

the presence of baryon deformations may be found in [25].

Guided by this, we propose that the electric theory (2.1) with general odd N has a

dual description given by

SU(N) Sp(2N − 2) SU(N + 3)

q 1

q̃ 1

p̃ 1 1

a 1 1

M1 1

M2 1 1

s 1 1

(2.8)

with superpotential interactions3

Wmag = qM1q̃ + q̃aq̃ + qsp̃ + qa(N−1)/2M2 . (2.9)

The magnetic superpotential contains a term qa(N−1)/2M2 that is nonrenormalizable at

high energies. This term is needed for the consistency of the duality. The analysis in

section 4 of the IR fixed point will show that this operator can be irrelevant or dangerously

irrelevant depending on the value of N .

We will provide various tests for this proposal shortly, and argue that both theories

flow to the same superconformal fixed point. The appearance of the baryonic superpoten-

tial deformation and other aspects of this duality will be explained using the deconfinement

method, which we will explain in section 3.1.

The magnetic theory has the same gauge group as the electric theory, thus providing

a self-dual description. Notice that the contribution of matter to the beta function is also

equivalent to the SQCD self-dual point Nf = 2N , although in our case there are addi-

tional singlets and interactions. Self-dual chiral theories have been studied for instance

in [21, 22], in electric theories without a superpotential. Our model provides an example

3In this work, we will set the superpotential coefficients to one by field redefinitions.
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of a self-dual theory based on a marginal superpotential (2.2). We will also present other

self-dual theories in sections 5.2 and 6.

The gauge invariants of the magnetic theory can be constructed as in (2.3) and (2.4).

The F-term conditions lift many of these combinations, and we are left with the singlets

M1, M2 and s, and the baryons

qj+3a(N−j−3)/2 , j ≤ N − 3 , j ∈ 2Z≥0 . (2.10)

The superpotential (2.9) also introduces additional constraints along the different branches

of moduli space.

2.3 Consistency checks of the duality

We now present various consistency tests on the proposed dual pairs (2.1) and (2.8).

Let us start by matching the global symmetries and chiral rings of both theories. The

anomaly free abelian symmetries of the electric theory with superpotential (2.2) can be

parametrized by4

U(1) U(1)R

Q QQ RQ

Q̃ QQ̃ RQ̃

P̃ −(N + 3)QQ − 2QQ̃ 4 − (N + 3)RQ − 2RQ̃

A −2QQ̃ 2 − 2RQ̃

(2.11)

where QQ, QQ̃, RQ and RQ̃ represent arbitrary charge assignments. Note that the R-

symmetry is not unique. In the magnetic theory of section 2.2 the corresponding charges

read

U(1) U(1)R

q 1
N

(

3QQ − (N − 3)QQ̃

)

1
N

(

3RQ + (N − 3)(1 − RQ̃)
)

q̃ − 1
N

(

(N + 3)QQ + 3QQ̃

)

1
N

(

(N + 3)(1 − RQ) − 3RQ̃

)

p̃ 1
N

(

−(N + 3)QQ + (N2 − 3)QQ̃

)

−(N+1)(N−3)−(N+3)RQ+(N2−3)RQ̃

N

a 2
N

(

(N + 3)QQ + 3QQ̃

)

2
N

(

(N + 3)RQ + 3RQ̃ − 3
)

M1 QQ + QQ̃ RQ + RQ̃

M2 −(N + 2)QQ − 2QQ̃ 4 − (N + 2)RQ − 2RQ̃

s QQ − (N − 1)QQ̃ RQ + (N − 1)(1 − RQ̃)

(2.12)

The ’t Hooft anomaly matching conditions are satisfied for these symmetries.

Taking into account the anomaly-free global symmetries, the mapping of the chiral

rings of the electric and magnetic theories is

QQ̃ ↔ M1

QP̃ ↔ M2

4The vanishing of the U(1)SU(N)2 and U(1)RSU(N)2 anomalies requires T (G)+
P

i T (ri)(Ri−1) = 0 and
P

i T (ri)Qi = 0, where T (r) is defined via tr(tar t
b
r ) = T(r)δab. Here T (GSU(N)) = N , T ( ) = T ( ) = 1

2

and T ( ) = N−2
2

. We also require that the superpotential terms have R-charge 2 and vanishing charge Q.
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QN−jAj/2 ↔ qj+3a(N−j−3)/2 , j ≤ N − 3 , j ∈ 2Z≥0

QA(N−1)/2 ↔ s . (2.13)

Notice that the elementary singlet s in the magnetic description maps to a baryon of the

electric theory.

In this correspondence, the agreement of ranks in the electric and magnetic descrip-

tions needs to be explained. For instance, while QQ̃ has rank N , the elementary meson

M1 has classical rank min(2N − 2, N + 3). It is useful to recall that in SU(Nc) SQCD

with Nf quarks (Q, Q̃), a similar situation arises in the mapping QQ̃ ↔ M , where M

consists of the N2
f singlets in the magnetic theory and has classical rank ≤ Nf instead

of ≤ Nc, which is the rank of QQ̃. The resolution in that case involves nonperturbative

effects (e.g. [3]), which enforce the constraint rank(M) ≤ Nc. Due to the superpotential

Wmag = qMq̃ (where q and q̃ are the magnetic quarks), a nonzero vev for M of rank(M)

gives mass to rank(M) flavors, but leaves Nf − rank(M) massless flavors. Since the dual

gauge group is SU(Nf − Nc), the theory develops an Affleck-Dine-Seiberg (ADS) runaway

for Nf − rank(M) < Nf − Nc, i.e. rank(M) > Nc, which destroys the vacuum. Therefore,

these extra components in M are dynamically truncated from the chiral ring.

In our case, turning on M1 with rank larger than N also leads to an ADS-like super-

potential with no supersymmetric vacua. For instance, if M1 has rank N +1 and assuming

N ≥ 5, the low energy theory has Nf = 2 vector-like massless flavors (two q’s and two q̃’s)

with a dynamical superpotential [27]

Wdyn =
Λ2N+1

L

(qq̃)(qa
N−1

2 )(q̃aq̃)
N−3

2

. (2.14)

Here the low energy scale ΛL is related to the dynamical scale of the magnetic dual by

Λ2N+1
L ∼ 〈MN+1

1 〉ΛN
mag. There are no supersymmetric vacua for (2.9) plus (2.14), so a

meson M1 of rank larger than N is blocked from the chiral ring. (For the case N = 3

discussed in section 2.2, the resolution is the same as in the previous paragraph.)

Below we will present two additional tests for the duality. In section 3.1 (setting K = 1

there) we exhibit a product gauge group theory SU(N)×Sp(N−3) that flows to the electric

description if ΛSp(N−3) ≫ ΛSU(N), while for ΛSU(N) ≫ ΛSp(N−3) the IR fixed point corre-

sponds to the magnetic theory. We can then interpolate between the electric and magnetic

descriptions by varying the holomorphic ratio ΛSU(N)/ΛSp(N−3), which should not lead to

any phase transitions. This provides further strong evidence that both theories have the

same phase structure and dynamics in the IR.

Furthermore, in section 4 we analyze the IR fixed point using a-maximization and find

a precise agreement between the electric and magnetic predictions. This includes the exact

anomalous dimensions and values for the superconformal a-function.

3 An infinite family of dual theories

In the previous section we studied the chiral gauge theory (2.1) for N odd and argued that

this theory is self-dual, with a magnetic description given by (2.8). Now we consider the

– 7 –
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same theory for arbitrary N and propose a new set of dualities. We will establish that there

exists an infinite family of chiral theories with different gauge group rank and perturbative

global symmetries, all of which flow to the same fixed point.

We will argue that the electric theory (2.1),

SU(N) Sp(2N − 2) SU(N + 3)

Q 1

Q̃ 1

P̃ 1 1

A 1 1

(3.1)

with superpotential

Wel = Q̃AQ̃ , (3.2)

has an infinite family of dual descriptions with matter content

SU(N + K − 1) SU(K) Sp(2N − 2) SU(N + 3)

q 1 1

q̃ 1 1

p̃ 1 1

a 1 1 1

M1 1 1

M2 1 1 1

s1 1 1

s2 1 1 1

(3.3)

and superpotential

Wmag = q̃aq̃ + qM1q̃ + qs1p̃ + p̃ap̃ s2 + qa(N+K−2)/2M2 . (3.4)

Here N is fixed by the gauge group rank of the electric theory, while K is an arbitrary

integer with the same parity as N . The family of magnetic theories is obtained by varying

K over all integers of the prescribed parity.

The salient features in this duality are: i) the arbitrarily large magnetic gauge group

SU(N + K − 1), even for fixed electric gauge group (fixed N), ii) the appearance of a UV

SU(K) global symmetry factor that is absent in the electric theory, and iii) the presence of

a classically irrelevant superpotential interaction. Let us comment more on these points.

One of the lessons of gauge duality has been that the gauge group does not in general

define the theory, because the same fixed point can have dual descriptions with different

gauge groups. In our dual descriptions we see an extreme version of this, with an infinite

set of gauge groups all describing the same infrared dynamics! While in known examples

of duality a given electric theory is related to a magnetic theory of fixed gauge group, here

we find that an infinite family of theories all describe the same fixed point. In the UV

these theories have very different propagating degrees of freedom. For instance, a gauge

group SU(N +K−1) has (N +K−1)2−1 gauginos, so increasing K increases the number

– 8 –
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of degrees of freedom. However, the duality implies that the IR fixed point is actually

independent of K, so RG effects are responsible for a dramatic reduction in the number of

propagating fields, in a way that will be shown explicitly in section 4 with a-maximization.

On the other hand, global symmetries are believed to be physical and they should

match in the electric and magnetic descriptions. However, this need not occur at a per-

turbative level. Here we will find a novel effect: a global symmetry present classically is

removed quantum-mechanically. It will be argued that all the gauge invariants that are

charged under the classical SU(K) symmetry of (3.3) are eliminated from the chiral ring

due to nonperturbative superpotentials. Therefore, the SU(K) symmetry does not exist

at the quantum level, and the global symmetries of (3.1) and (3.3) will then match in the

chiral ring.

Finally, the magnetic duals include superpotential terms that are perturbatively irrel-

evant, and it is assumed that the model can be UV-completed by a renormalizable theory.

A similar situation was encountered in section 2. We will find in section 4 that the quartic

operator is dangerously irrelevant, driving the theory to a fixed point where it becomes

marginal. On the other hand, the baryonic deformation will be found to be either dan-

gerously irrelevant or irrelevant, depending on N . Notice that the electric theory does not

have irrelevant superpotential interactions.

Before proceeding, we point out that K = 1 recovers the duality of section 2. Also,

K = 2 has some special features that are discussed below. The general case corresponds

to K ≥ 3.

3.1 Duality from product gauge groups

Before analyzing the dynamics of (3.3), we explain some aspects of the correspondence

using Seiberg duality. The basic idea is to construct a product gauge group theory that

interpolates between the electric and magnetic descriptions in different limits of the ratio

of holomorphic dynamical scales. This will be used to deduce that both theories have

the same phase structure, because no phase transitions are expected when a holomorphic

coupling is varied.

In the context of theories with 2-index representations, this approach was first used by

Berkooz [17] for an antisymmetric tensor, and then generalized in [14, 18, 19, 24]. The pro-

cess of going from the electric theory to the product gauge group is known as deconfinement.

Let us summarize this approach in the case relevant for us. Starting from the theory (3.1),

a new gauge group Sp(N + K − 4) is introduced, together with a field X, which is a bifun-

damental of SU(N)× Sp(N + K − 4). Additional fields and interactions are also included,

so that the Sp group s-confines and anomalies are canceled. The antisymmetric tensor A

is then identified with a meson of the confining Sp(N + K − 4), Aαβ ∼ Xαα′

Xββ′

Jα′β′ ,

where α, β (α′, β′) are SU(N) (Sp(N +K− 4)) indices and Jα′β′ is the Sp invariant tensor.

– 9 –
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Explicitly, the product gauge group theory has matter content

SU(N) Sp(N + K − 4) SU(K) Sp(2N − 2) SU(N + 3)

Q 1 1 1

Q̃ 1 1 1

P̃ 1 1 1 1

X 1 1 1

U 1 1 1

V 1 1 1

T 1 1 1 1

(3.5)

The gauge group is SU(N) × Sp(N + K − 4), while the nonabelian flavor symmetries are

SU(K)×Sp(2N −2)×SU(N +3), where N and K are both either even or odd. Notice the

introduction of the additional global symmetry SU(K). The superpotential is taken to be

W = Q̃XXQ̃ + XUV + V V T . (3.6)

We now study this theory in two different limits (one of which recovers the original electric

description), depending on which gauge group factor becomes strong first.

3.1.1 The limit ΛSp(N+K−4) ≫ ΛSU(N)

If ΛSp(N+K−4) ≫ ΛSU(N), the strong dynamics of the Sp group dominates first, producing

s-confinement [28]. This yields mesons

M : (XX) , (XV ) , (V V ) (3.7)

and the usual nonperturbative (pfaffian) superpotential. Below the confining scale we

obtain

W = Q̃(XX)Q̃ + (XV )U + (V V )T + Pf M . (3.8)

The fields (XV ), U , (V V ) and T are now massive, and integrating them out we arrive

at the electric description (3.1). Notice that in this limit all the fields charged under the

global SU(K), as well as the K dependence in the gauge group, have disappeared from the

low energy theory.

3.1.2 The limit ΛSU(N) ≫ ΛSp(N+K−4)

When ΛSU(N) ≫ ΛSp(N+K−4) the SU(N) factor should be dualized first. We obtain

– 10 –
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SU(N + K − 1) Sp(N + K − 4) SU(K) Sp(2N − 2) SU(N + 3)

q 1 1 1

q̃ 1 1 1

p̃1 1 1 1 1

x 1 1 1

u 1 1 1

V 1 1 1

T 1 1 1 1

(QQ̃) 1 1 1

(QP̃ ) 1 1 1 1

(QU) 1 1 1

(XP̃ ) 1 1 1 1

(XQ̃) 1 1 1

(XU) 1 1 1

The superpotential now reads

W = (Q̃X)(Q̃X) + (XU)V + V V T +

+q(QQ̃)q̃ + q(QP̃ )p̃1 + q(QU)u + x(XP̃ )p̃1 + x(XQ̃)q̃ + x(XU)u . (3.9)

The terms in the second line arise from Seiberg duality.

Integrating out the heavy fields leaves an s-confining Sp(N +K−4) gauge group, which

gives mesons (xx) and (x(XP̃ )). The confined theory superpotential is

W = q̃(xx)q̃ + (xx)uuT + q(QQ̃)q̃ + q(QP̃ )p̃1 + q(QU)u +

+(x(XP̃ ))p̃1 + (xx)(N+K−2)/2(x(XP̃ )) , (3.10)

where the last term is schematic for the nonperturbative superpotential that contains a

Pfaffian of mesons. Finally, integrating out (x(XP̃ )) and p̃1, the low energy theory becomes

SU(N + K − 1) SU(K) Sp(2N − 2) SU(N + 3)

q 1 1

q̃ 1 1

u 1 1

(xx) 1 1 1

(QQ̃) 1 1

(QP̃ ) 1 1 1

(QU) 1 1

T 1 1 1

(3.11)

with

W = q̃(xx)q̃ + (xx)uuT + q(QQ̃)q̃ + q(QU)u + q(xx)(N+K−2)/2(QP̃ ) . (3.12)

After a renaming of fields, this coincides with the magnetic description (3.3). In particu-

lar, this procedure explains how the superpotential baryonic deformation arises from the

s-confining superpotential.
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In summary, starting from the product gauge group theory (3.5), we have shown how

to recover the electric and (an infinite family of) magnetic descriptions, by varying the

holomorphic ratio ΛSU(N)/ΛSp(N+K−4). This result implies that both limits have the same

phase structure, and also illustrates how the gauge and global symmetries may be reduced

in the IR.

3.2 Perturbative analysis of the magnetic theory

Let us now focus directly on the magnetic description (3.3). Here we analyze the dynam-

ics at the perturbative level, discussing the classical chiral ring and abelian symmetries.

In section 3.3 we include nonperturbative effects and argue that the SU(K) symmetry is

eliminated quantum-mechanically.

First we map the anomaly free abelian symmetries of the electric theory (given

in (2.11)) to the magnetic theory with arbitrary K, obtaining

U(1) U(1)R

q − (K−4)QQ+(N+K−4)QQ̃

N+K−1

(N+K−4)(1−RQ̃)−(K−4)RQ

N+K−1

q̃ − (N+3)QQ+3QQ̃

N+K−1

N+K+2−(N+3)RQ−3RQ̃

N+K−1

p̃
−(N+3)QQ+[(N−3)+N(N−1)/K]QQ̃

N+K−1 Rp̃

a 2
(N+3)QQ+3QQ̃

N+K−1 2
(N+3)RQ+3RQ̃−3

N+K−1

M1 QQ + QQ̃ RQ + RQ̃

M2 −(N + 2)QQ − 2QQ̃ 4 − (N + 2)RQ − 2RQ̃

s1 QQ +
(

1 − N
K

)

QQ̃ RQ + 1
K (N + K − 2 − (N − K)RQ̃)

s2 −2N
K QQ̃

2
K (N + K − 2 − NRQ̃)

where

Rp̃ =
5 − (N − 1)(N − 2)/K − N − (N + 3)RQ + (N − 3 + N(N − 1)/K)RQ̃

N + K − 1
. (3.13)

At the perturbative level, the chiral ring of (3.3) is larger than that of the electric

theory, and includes fields that are charged under the SU(K) symmetry. Imposing F-term

conditions reduces the gauge invariants in the chiral ring to the singlets

M1 , M2 , s1 , s2 (3.14)

and baryons

qj+3a(N+K−j−4)/2 , j ≤ min(N + K − 4, N) , j ∈ 2Z≥0 . (3.15)

Using the anomaly free symmetries, the mapping between the two theories for K ≥ 3 is

QQ̃ ↔ M1

QP̃ ↔ M2

QN−jAj/2 ↔ qj+3a(N+K−j−4)/2 . (3.16)
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The two invariants s1 and s2 that are charged under SU(K) do not map to any operator

in the electric theory. In section 3.3 it will be argued that these fields are lifted by

nonperturbative corrections to the superpotential.

As we mentioned before, the cases K = 1, 2 are special. For K = 1 the duality was

presented in section 2, and there is a complete correspondence between the electric and

magnetic chiral ring given in (2.13). When K = 2 (N even) the mapping becomes

QQ̃ ↔ M1

QP̃ ↔ M2

QN−jAj/2 ↔ qj+3a(N−j−2)/2 , j ≤ N − 2 , j ∈ 2Z≥0

AN/2 ↔ s2 . (3.17)

The invariant s1 charged under SU(K = 2) is not mapped to any electric operator.

3.3 Nonperturbative effects and truncation of global symmetries

We reviewed in section 2.3 how a field is truncated quantum-mechanically from the chiral

ring if its vev leads to a dynamical superpotential that forbids supersymmetric vacua.

We now argue that s1 and s2, charged under SU(K), are removed from the chiral ring by

similar effects.

Consider giving s1 a rank r expectation value. A simple way to find the dynamical

superpotential is to consider anomalous axial and R symmetries. The relevant fields in the

IR dual and their charges under the anomalous symmetries are

U(1)A U(1)R

q 1 − 2
N+K−1

q̃ −1 2 + 2
N+K−1

p̃ −1 2 + 2
N+K−1

a 2 −2 − 4
N+K−1

ΛN+2K+r−2
L N + K − 1 0

qN+3−raK−2p̃K−r N + K − 1 2 − 2r

(3.18)

where ΛN+2K+r−2
L ∼ 〈sr

1〉ΛN+2K−2.

For r > 1, the following superpotential is allowed by all the U(1) symmetries:

Wdyn = CN,K,r

(

ΛN+2K+r−2
L

qN+3−raK−2p̃K−r

)1/(r−1)

, (3.19)

where CN,K,r is a nonzero constant (as we argue below). Eq. (3.19) leads to a runaway with

no supersymmetric vacua, so s1 is forced to have rank 1 or less. For s1 of rank 1, similar

arguments establish that there is a quantum modified moduli space with supersymmetry

breaking. We conclude that s1 is not part of the chiral ring.

Similarly, when s2 has a rank 2r expectation value the following superpotential is

consistent with all symmetries

Wnp = C ′
N,K,r

(

ΛN+2K+r−2
L

qN+3aK−2−rp̃K−2r

)1/(r−1)

, (3.20)

– 13 –



J
H
E
P
0
9
(
2
0
1
1
)
0
4
6

where ΛN+2K+r−2
L ∼ 〈sr

2〉ΛN+2K−2. This leads to a runaway, removing s2 from the

quantum chiral ring.

The presence of these dynamical effects in the conformal window of the chiral theory is

quite intriguing, especially for s2, whose vev does not produce massive quarks (at least at

a perturbative level). It would be interesting to check these predictions with an instanton

calculation when r = 2. However, it is possible to relate these nonperturbative effects

in chiral theories (as well as in (2.14)) to the familiar ADS superpotentials as follows.

Consider deconfining the antisymmetric tensor a in the dual theory to obtain a product

gauge group theory where the field a of (3.3) is replaced by an additional gauge group

Sp(N + K − 4) with matter content

SU(N + K − 1) Sp(N + K − 4)

X ′

U ′ 1

V ′ 1

(3.21)

together with an extra superpotential term

W ⊃ X ′U ′V ′ . (3.22)

The full superpotential of this new theory is (3.4) plus (3.22), replacing a → X ′X ′.

The magnetic theory is recovered in the limit ΛSp(N+K−4) ≫ ΛSU(N+K−1) when the

Sp(N + K − 4) factor s-confines.

We first discuss the nonperturbative effects triggered by a nonzero vev of s2. For this,

we take the opposite limit ΛSp(N+K−4) ≪ ΛSU(N+K−1) and dualize the SU(N + K − 1)

factor first. The steps are similar to those in section 3.1. After dualizing and integrating

out massive fields, the matter content is nearly identical to that in (3.5); in this table,

{Q, Q̃, P̃ ,X,U} correspond to the magnetic quarks dual to {q, q̃, U ′,X ′, p̃}, respectively,

V is the meson (p̃X ′), and T is s2. We also have additionally the singlets M2 and the

meson (qU ′) and two superpotential terms involving these fields, which are unimportant

for this discussion.

At this stage, the Sp(N + K − 4) group is s-confining. Importantly, the meson (p̃X ′),

produced by dualizing the SU factor, is a fundamental flavor of Sp(N + K − 4). If we now

turn on a rank 2r expectation value for s2, the superpotential term

W ⊃ (p̃X ′)(p̃X ′)〈s2〉 (3.23)

(see (3.4)) acts as a mass term for (p̃X ′). Thus below the scale 〈s2〉 the number of

fundamentals in the Sp(N + K − 4) group is reduced to N + K − 2r, and for r > 1 there

is a dynamical superpotential [28]

Wdyn ∝
(

ΛN+K+r−3
Sp

XN (p̃X ′)K−2r

)1/(r−1)

(3.24)

This theory has a runaway instability, with no supersymmetric vacua, truncating s2 from

the chiral ring.
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A very similar discussion holds when s1 has a nonzero vev. In this case, we first

integrate out the massive q and p̃ fields and then dualize the SU(N + K − 1). This also

leads to a theory with no supersymmetric vacua.

Varying now the ratio of scales from ΛSU(N+K−1)/ΛSp(N+K−4) from much greater than

one to much smaller than one, we connect these theories without supersymmetric vacua

to the magnetic theory of (3.3). Since there are no phase transitions under a variation

of a holomorphic coupling, we conclude that turning on s1 or s2 leads to a theory (3.3)

without supersymmetric vacua. Therefore CN,K,r and C ′
N,K,r above are nonzero. Notice

that by varying the dynamical scales in the product gauge group theory we have related

an Sp instanton calculation to a nonperturbative effect in a chiral theory.

We have thus found that due to dynamical effects, all the gauge invariants that are

charged under SU(K) are eliminated from the chiral ring of the magnetic SU(N + K − 1)

theory. The classical flavor symmetry SU(K) disappears nonperturbatively, and the

magnetic global symmetry group that acts on the chiral ring is reduced to that of the

original electric theory (3.1). This truncation of global symmetries is related to the chiral

nature of the models.

4 Dynamics at the superconformal fixed point

In section 3 we argued that the electric theory (which is independent of K) and the

magnetic dual theories (for any K) flow to the same superconformal fixed point in the

far IR. The infrared behavior of both theories can be understood via a-maximization [23],

which will be used in this section to determine the exact dimensions of the gauge invariants

in the electric and magnetic theories. The superconformal R-charges will be found to be

consistent with the mapping of the chiral rings proposed in (3.16). Furthermore, we will

show that the a-function has the same value in the electric and magnetic theory, giving

further evidence that the two theories are dual.

In a superconformal theory, the dimension of a gauge invariant operator, ∆O, is

proportional to its superconformal R charge, RO; for a spin zero field, the relation is

∆O = 3
2RO. Since there are often many additional U(1) symmetries in the IR, it is

not clear which linear combination of U(1) charges corresponds to the superconformal

R-charge. This is the case for our theories, since we found in (2.11) that the R-charges

are not uniquely determined. In [23] it was shown that the superconformal R-charge can

be determined by maximizing the central charge

a =
3

32

[

3TrR3 − TrR
]

. (4.1)

The a-function is a measure of the number of degrees of freedom of the theory. If the

electric and magnetic theories are dual, they must describe the same physics in the far IR,

and the propagating degrees of freedom at the fixed point should match. However, the

number of degrees of freedom of the magnetic dual theories in the UV depend on K (this

can be seen from the a-function, which explicitly depends on K in the UV when all fields

are free and have an R-charge of 2/3). This means that the K dependence must be canceled
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as we flow to the IR fixed point, matching onto the electric theory. The calculation of the

value of a at the fixed point will then provide a very nontrivial test on our dual pairs.

We first analyze the electric theory (2.1) in section 4.1 and the magnetic dual

theory (3.3) in section 4.2.

4.1 a-maximization in the electric theory

We begin with an analysis of the electric theory. To determine the R-charges, we use the

conditions outlined in footnote 4. We self-consistently require each term in the superpoten-

tial to be marginal, i.e. have an R-charge of 2, and require vanishing of the U(1)RSU(N)2

anomaly (or equivalently, a vanishing beta function). As we found in (2.11), this leaves

two unknown charges, which we choose to be RQ and RQ̃. In terms of these,

RA = −2(RQ̃ − 1) (4.2)

RP̃ = 4 − (N + 3)RQ − 2RQ̃ . (4.3)

The superconformal R-charges are determined by extremizing the a-function [23]

a =
3

32

(

2(N2 − 1) + N(N + 3)f(RQ) + Nf(RP̃ )

+N(2N − 2)f(RQ̃) +
1

2
N(N − 1)f(RA)

)

, (4.4)

where the first term is the contribution from the gauginos, and

f(RO) = 3(RO − 1)3 − (RO − 1) . (4.5)

We now use (4.2) and (4.3) to express the a-function in terms of RQ and RQ̃.

Requiring that
∂a

∂RQ
= 0 ,

∂a

∂RQ̃

= 0 , (4.6)

the solution that maximizes a is

RQ̃ =
1

2

(

4 − 4RQ − NcRQ

)

, (4.7)

and RQ can be expressed in terms of N as

RQ =
12 − 12N − 4N2 + 4

3

√
N4 + 4N3 + 5N2 − 18N + 9

12 − 8N − 7N2 − N3
. (4.8)

The R-charges RQ̃, RP̃ , and RA can now all be expressed in terms of N .

Next, we have to check that no gauge-invariants in the chiral ring hit the unitarity

bound. For a scalar gauge-invariant operator O in the chiral ring, we have to check that

RO > 2/3. A field with RO < 2/3 violates unitarity and will instead be interpreted as

a free field with RO = 2/3 and decoupled from the superconformal strong dynamics.

Operationally, this has implications for the a-maximization procedure. In particular, there

is an accidental U(1) symmetry associated with rotations of the free field O, which needs
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to be accounted for in the a-maximization calculation. This can be done following [29, 30],

modifying the a-function as

a → a +
3

32
dim(O) f(2/3) − 3

32
dim(O) f(RO) . (4.9)

The chiral ring of the theory is given by QQ̃, QP̃ , and QkA(N−k)/2. We find that QP̃

violates the unitarity bound for

N & 4.46 . (4.10)

Above this value, QP̃ is free and is subtracted from the a-function,

a → a +
dim(QP̃ )

96
(2 − 3RQP̃ )2(5 − 3RQP̃ ), (4.11)

where dim(QP̃ ) = N + 3 and RQP̃ = RQ + RP̃ . The R-charges of all the fields can now be

determined again from (4.6) (note that (4.2) and (4.3) remain unchanged). The explicit

solution is somewhat cumbersome, but at large N it simplifies to

Q Q̃ P̃ A

R(N → ∞) 0.202 0.697 −0.202
N 0.607

No other fields in the chiral ring hit the unitarity bound as a function of N .

The a-function at the fixed point can now be expressed in terms of N , and at large

N it becomes

a ≃ 0.122N2 + O(N) . (4.12)

Below, we compare the a-function of the electric theory to its value in the magnetic dual.

4.2 a-maximization in the magnetic theory for general K

Let us now calculate the a-function in the magnetic dual theory for general N and K. We

will show that the anomalous dimensions and value of the a-function are independent of

K, and agree with those of the electric theory.

Requiring anomaly cancellation and that each term in the superpotential is marginal

leaves two unknown R-charges. Choosing them to be RM1 and Rs2, the rest of the charges

read

Rq = −4 + 2(K − 4)RM1 − KRs2

2(N + K − 1)

Rq̃ = −−4(N + K) + 2(N + 3)RM1 + KRs2

2(N + K − 1)

Ra = −2(N + K + 1) − 2(N + 3)RM1 − KRs2

N + K − 1

Rs1 =
1

2
(2RM1 + Rs2)

Rp̃ = −−4(N + K) + 2(N + 3)RM1 + (N + 2K − 1)Rs2

2(N + K − 1)

RM2 =
1

2

(

4 + 2K + 2N − 2(N + 2)RM1 − KRs2

)

. (4.13)
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The a-function is given explicitly by

a =
3

32

(

2((N + K − 1)2 − 1) + (N + K − 1)(N + 3)f(Rq) + K(N + K − 1)f(Rp̃)

+(N + K − 1)(2N − 2)f(Rq̃) +
1

2
(N + K − 1)(N + K − 2)f(Ra)

+K(N + 3)f(Rs1) + (2N − 2)(N + 3)f(RM1) +

+
1

2
K(K − 1)f(Rs2) + (N + 3)f(RM2)

)

, (4.14)

where f(RO) was defined in (4.5). Using the relations (4.13) and extremizing, we find the

maximum

Rs2 =
2

K(N + 2)

(

−4 + 2K + (K + 4)N + N2 − 4N(N + 1)RM1

)

, (4.15)

with

RM1 =
2
(

− 18 + 15N + 6N2 + (N + 2)
√

9 − 18N + 5N2 + 4N3 + N4
)

3(−12 + 8N + 7N2 + N3)
. (4.16)

We now have to check the unitary bounds for the operators in the chiral ring, given by

M1, M2 and the baryons qj+3a(N+K−j−4)/2. M2 violates the unitarity bound for N & 4.46.

Recalling that M2 is mapped to QP̃ , this is precisely the same result we found in (4.10)

for the electric theory, which is quite encouraging for our duality.

Above this value of N , M2 becomes free and decouples from the interacting sector.

This implies that the last term of the superpotential (3.4) becomes irrelevant in this range.

We conclude that this baryonic operator changes from dangerously irrelevant to irrelevant,

as N is increased to N & 4.46. Thus, above this value the a-maximization computation

has to be corrected in two ways: the last term in the superpotential has to be ignored

(it becomes irrelevant), and the contribution of M2 has to be subtracted as we explained

before. The large N values of the corrected R-charges are

q q̃ p̃ a M1 M2 s1 s2

R(N → ∞) 0.303 0.798 −0.303 N
K 0.403 0.898 2

3 0.303 N
K 0.607 N

K

Expressing the a-function in terms of N and K, remarkably the K dependence cancels

completely, and the expression agrees exactly with the expression of the electric theory for

all N and K! In summary, we have shown that the R-charges and values of the a-functions

of the electric and magnetic theories agree, providing highly nontrivial evidence for the

validity of the duality.

5 The phase structure for F < N + 3 flavors

Having understood the superconformal phase that arises when F = N + 3, in this section

we analyze the phase structure when the number of flavors is reduced to F ≤ N + 2.

Mass terms can be added to decouple P̃ and/or some number of Q̃ flavors. These cases

are studied separately, as they lead to different infrared dynamics. We will find a rich

phase structure, including a conformal fixed point, confinement with and without chiral

symmetry breaking, and finally a nonperturbative instability for F ≤ N .
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5.1 F = N + 2 flavors from integrating out P̃ and one Q

Let us first study the mass flow upon deforming the theory with a mass for a single flavor

consisting of the fundamentals P̃ and QN+3,

δWelec = m QN+3P̃ , (5.1)

where QN+3 is the (N + 3)th flavor of Q. Below the scale m, the electric theory becomes

SU(N) Sp(2N − 2) SU(N + 2)

Q 1

Q̃ 1

A 1 1

(5.2)

where Q has been reduced to N + 2 flavors. The superpotential is still Wel = Q̃AQ̃.

The electric theory below the scale m coincides with the electric theory of a new

confining duality recently proposed in [31].5 We will find that the mass flow in the

magnetic theory coincides with the magnetic theory in [31], providing a further non-trivial

test of our proposed duality.

5.1.1 Magnetic description

We begin with the magnetic theory in section 2 (i.e. K = 1 in the magnetic theory (3.3)).

The electric deformation (5.1) corresponds in the magnetic theory to a deformation

δWmag = mΛ(M2)N+3 (5.3)

where (M2)N+3 refers to the (N + 3)th flavor of the meson M2 ∼ (QP̃ ), and we are taking

Λelec = Λmag = Λ for simplicity. The equations of motion for M2 then set

〈qN+3a
(N−1)/2〉 = −mΛ. (5.4)

The combination of F - and D-terms higgses the magnetic gauge group to Sp(N − 1).

Expanding around this vacuum, various fields obtain masses of order (mΛ
N−1

2 )
2

N+1 via (2.9);

the only remaining light degrees of freedom are

Sp(N − 1) Sp(2N − 2) SU(N + 2)

q 1

p̃ 1 1

M1 1

s 1 1

(5.5)

5We take care to observe that the proposed duality of [31] does not explicitly include the electric super-

potential Q̃AQ̃. However, such a superpotential is consistent with the explicit Sp(2N−2)×SU(N+2) global

symmetry, so its inclusion does not change the superconformal index [32]. Moreover, the theory without

such a superpotential would enjoy an SU(2N − 2) × SU(N + 2) global symmetry, and hence a different

index and dual description from that presented in [32]. Thus we posit that the new confining duality of [32]

implicitly includes the electric superpotential deformation Q̃AQ̃.
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where M2, q̃, and some components of the remaining fields have been rendered massive,

reducing the second global symmetry to SU(N + 2). The superpotential is (after a field

redefinition to absorb factors of 〈a〉)

Wmag = qM1M1q + qsp̃. (5.6)

This Sp(N − 1) theory then s-confines, giving mass to (qp̃), s and leaving

Sp(2N − 2) SU(N + 2)

(qq) 1

M1

(5.7)

with superpotential

Wmag = M1M1(qq) (5.8)

which coincides with the new confining dual of [31]. Here Sp(2N − 2) × SU(N + 2) are

global symmetries. The magnetic description implies that the IR phase corresponds to

confinement without chiral symmetry breaking.

At the origin of moduli space, the mapping of chiral rings is

QQ̃ ↔ M1 , QN ↔ (qq) . (5.9)

The remaining electric baryons QN−jAj/2 are not part of the chiral ring of the theory at

the IR fixed point. These are removed by nonperturbative effects, though a detailed study

will not be presented here. Instead, these effects will be illustrated in the case N = 3,

which we will discuss now.

It is useful to consider the case N = 3 in more detail, because the electric theory

becomes SQCD with SU(3) gauge group, 5 flavors (the antisymmetric is equivalent to

an antifundamental), and a baryonic deformation. We can then independently derive a

magnetic description using Seiberg duality, and compare with our proposed duality. The

Seiberg dual of (5.2) is SU(2) with five flavors and a superpotential

Wmag = q(QQ̃)q̃ + q(QA)a + q̃2 , (5.10)

where q is the magnetic quark dual to Q, and both A and a denote antifundamentals (in

the electric and magnetic theory, respectively). The last term in this superpotential is

the magnetic baryon q̃2 dual to Q̃AQ̃. This is now a mass term; integrating out q̃ we are

left with SU(2) with 3 flavors and a superpotential W = q(QQ̃)q(QQ̃) + q(QA)a, which

agrees with (5.5) at N = 3. This theory s-confines, giving masses to (qa) and (QA), thus

reproducing our dual (5.8).

We have focused on the case of K = 1 for clarity, but it is useful to consider the mass

flow in the magnetic theory for general K. The flow proceeds in an entirely analogous

fashion, with the gauge group higgsed to an s-confining Sp(N + K − 2) theory. After

s-confinement, the superpotential lifts the fields (qp̃), (p̃p̃), s1, s2, eliminating all fields

charged under SU(K) and reducing the IR matter entirely to (5.7). Thus we see that the

– 20 –



J
H
E
P
0
9
(
2
0
1
1
)
0
4
6

infinite family of magnetic theories parameterized by K flows to a single theory under

mass deformation.

The proposed duality between (5.2) and (5.7) may also be checked using a product

gauge group theory, and considering different limits of the holomorphic scales, along the

lines of section 3.1. This calculation is discussed in the appendix.

5.1.2 Phase structure

The magnetic description (5.7) is a weakly coupled theory of singlets, without gauge inter-

actions. Thus the theory is in a confining phase, and it does not break chiral symmetry.

The IR dynamics can be studied directly using a-maximization. This allows us to

determine the R-charges as described in section 4. In the electric theory (5.2), assuming

vanishing β-function and a marginal superpotential, we find

RQ =
2

3N
, RQ̃ =

2

3
− 3

N
, RA =

2

3
+

4

3N
. (5.11)

The R-charges of the gauge invariants are therefore

RQQ̃ =
2

3
, RQN−jAj/2 =

2 + j

3
(j ∈ 0, 2, . . . , N). (5.12)

This shows that the fields QQ̃ and QN are at the unitarity bound and are free fields,

consistent with a confined description in terms of weakly coupled gauge singlets. The

total a-function is a = (5N2 + 7N − 6)/96.

Similarly, in the magnetic theory (5.7) we obtain

RM1 =
2

3
, R(qq) =

2

3
. (5.13)

The fields M1 and (qq) are free, and consistent with the mapping to QQ̃ and QN , respec-

tively. The a-functions of both the electric and magnetic theories again agree exactly.

It is interesting to contrast the resulting phase diagram of the chiral theory with that

of SQCD. In the case of SQCD, the self-dual point in the interacting window corresponds

to Nf = 2Nc, below which there is an IR-free phase for Nc + 2 ≤ Nf ≤ 3
2Nc, followed

by confinement without chiral symmetry breaking (s-confinement) at Nf = Nc + 1, and

confinement with chiral symmetry breaking if Nf = Nc. In the case of the chiral theories

studied here — for any value of K — integrating out a single flavor changes the phase

from conformal directly to s-confining. A similar behavior was found in other chiral

examples in [14, 22]. Below we will obtain a transition from conformal to confining with

chiral symmetry breaking (as is expected in QCD).

5.1.3 The superconformal index

Further evidence for duality may be obtained by studying the superconformal indices [33]

of our proposed dual theories. The equality of superconformal indices in theories related

by Seiberg duality was conjectured in [32], and impressive evidence has been found by

comparing superconformal indices of known Seiberg duals [31]. While it is beyond the scope
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of this work to carry out an explicit computation of the superconformal index for the infinite

family of dual theories under consideration, there is considerable evidence to support our

conjecture that the superconformal indices of electric and magnetic theories agree.

As we have just seen, upon adding a mass deformation for one flavor our electric and

magnetic theories with F = N + 3 flow to the electric and magnetic theories of [31] with

F = N + 2, for which the superconformal indices were found explicitly to agree. While

this alone is not sufficient to demonstrate agreement between the superconformal indices

of the undeformed theories, it is quite suggestive.

Perhaps more compellingly, we found in section 3.1 that the electric and magnetic

theories with F = N + 3 may be related via a product gauge group in the UV. It is

expected that the superconformal indices of such theories will agree [31]. In this case,

the equality of superconformal indices follows from Bailey-type chains of symmetry

transformations [34, 35] relating the corresponding elliptic hypergeometric integrals.

Indeed, further support for this conjecture regarding the superconformal indices of theories

related by deconfinement may be found in the appendix. There we connect the proposed

(F = N + 2) dual theories of [31] via a product theory in the UV, consistent with the

agreement of their superconformal indices.

5.2 F = N + 2 flavors from integrating out one Q and one Q̃

A different theory with F = N + 2 is obtained by giving a mass to one Q and one Q̃,

δWel = mQα
N+3Q̃

2N−2
α . (5.14)

Below the scale m, the F-term for Q̃2N−2
α implies that Q̃α

2N−3 decouples from the superpo-

tential. The theory then acquires an accidental SU(2) global symmetry that acts on P̃ and

Q̃2N−3. Combining these fields into a doublet (denoted again by P̃ ), the matter content is

SU(N) SU(2) Sp(2N − 4) SU(N + 2)

Q 1 1

Q̃ 1 1

P̃ 1 1

A 1 1 1

(5.15)

with superpotential Wel = Q̃AQ̃. Notice that now Q̃ refers only to the remaining 2N − 4

light flavors.

5.2.1 Magnetic description

In the magnetic dual (3.3), the electric mass term maps to a linear deformation

δWmag = mΛ(M1)
2N−2
N+3 (5.16)

that induces an expectation value (qq̃)2N−2
N+3 = −mΛ. This breaks the gauge group to

SU(N + K − 2), and the Higgsing may be chosen along

qN+K−1
N+3 = q̃2N−2

N+K−1 =
√
−mΛ . (5.17)
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Decomposing the fields in representations of this group and integrating out massive

matter, the low energy theory becomes

SU(N + K − 2) SU(K) SU(2) Sp(2N − 4) SU(N + 2)

q 1 1 1

q̃ 1 1 1

p̃ 1 1 1

a 1 1 1 1

M1 1 1 1

N1 1 1 1

N2 1 1 1 1 1

s1 1 1 1

s2 1 1 1 1

(5.18)

where (N1)
a
i combines (M2)i and (M1)

2N−3
i into an SU(2) doublet (a = 1, 2 and i =

1, . . . , N + 2), while N2 ∝ (M2)N+3. The superpotential now reads

Wmag = q̃aq̃ + qM1q̃ + qs1p̃ + p̃ap̃s2 + a(N+K−2)/2N2 + q2a(N+K−4)/2N2
1 . (5.19)

The last two terms come from the baryonic deformation qa(N+K−2)/2M2 in (3.4), after

integrating out the massive fields qα
N+3 and aN+K−1,α. The mapping of the chiral rings

can be worked out starting from (3.16) and integrating out massive fields; in particular

we note that

QQ̃ ↔ M1 , QP̃ ↔ N1 , P̃AP̃ ↔ N2 . (5.20)

Additional evidence for this duality is obtained, as before, by constructing a product

gauge group theory that interpolates between the electric and magnetic descriptions by

varying a ratio of holomorphic parameters (see the appendix). Note that the magnetic

theory depends on the arbitrary integer K, as in the duals found in section 3. The

a-maximization results below show that the dynamics at the fixed point is actually

independent of K.

An interesting case arises for K = 2, because the electric and magnetic gauge groups

coincide, giving a self-dual description. This is valid for even N , and complements the

self-dual theory found in section 2 for odd N and F = N + 3 flavors.

5.2.2 Phase structure

Let us now discuss the long-distance dynamics using a-maximization. The superconformal

R-charges in the electric theory (5.15) are

RQ =
2

N + 4
, RQ̃ =

2

3
, RP̃ =

2

N + 4
, RA =

2

3
. (5.21)

We see that QP̃ hits the unitarity bound for all N ≥ 2. For larger N , the corrected

procedure yields

RQ =
−3 +

√
8N + 9

3N
, RQ̃ = RA =

2

3
, RP̃ =

−3(3N + 2) + (N + 2)
√

8N + 9

6N
. (5.22)
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The next field to hit the unitarity bound for N & (5 + 3
√

5)/2 ≃ 5.85 is P̃AP̃ . Re-doing

the a-maximization procedure with P̃AP̃ removed, we can again find the R-charges, which

are too cumbersome to display here. No other gauge invariants hit the unitarity bound.

Now consider the magnetic dual theory (5.18). We find that

RN1 =
4

N + 4
(5.23)

so N1 hits the unitarity bound for N ≥ 2. This is consistent with the above result for QP̃

and the map (5.20). It also means that the last term in the superpotential is irrelevant

for N ≥ 2. Ignoring this last term and removing N1 from the a-maximization procedure,

we can determine the R-charges for N ≥ 2. In particular,

RN2 =
11N + 6 − (N + 2)

√
8N + 9

3N
(5.24)

so N2 hits the unitarity bound for RN2 = (5 + 3
√

5)/2 ≃ 5.85, just like the gauge invariant

P̃AP̃ in the electric theory, to which N2 gets mapped. The second-to-last term in (5.19)

thus becomes irrelevant for N & 5.85, although it is interesting to note that in the range

2 ≤ N ≤ 5 it is dangerously irrelevant.

The a-maximization procedure can be continued for larger N , and we find no other

fields hitting the unitarity bound. Although we will not show the remaining R-charges

and values of the a-functions, we have checked that the predictions from the electric and

magnetic theories agree at the superconformal fixed point.

These results show that the theory is in a conformal phase.

5.3 The theory with F < N + 2 flavors

Integrating out one more flavor, we flow to a theory with F = N + 1 and matter content6

SU(N) Sp(2N − 4) SU(N + 1)

Q 1

Q̃ 1

P̃ 1 1

A 1 1

(5.25)

with Wel = Q̃AQ̃.

The magnetic dual can be obtained in three different ways, by turning on mass defor-

mations in (5.7), (5.18), or the product gauge group described in the appendix. All these

flows consistently lead to the same low energy magnetic dual, which is a theory with no

gauge group and weakly coupled fields. For instance, starting from (5.7), the electric mass

term corresponds to δWmag = mΛ(M1)
N+2
2N−2, which induces an expectation value

〈(qq)N+2,N+1(M1)
N+1
2N−3〉 = −mΛ . (5.26)

6We have performed an appropriate field renaming that depends on whether we integrate out two Q’s

and either two Q̃’s or one Q̃ and one P̃ .

– 24 –



J
H
E
P
0
9
(
2
0
1
1
)
0
4
6

Integrating out massive matter, the desired magnetic dual is

Sp(2N − 4) SU(N)

(qq) 1

M1

(qq)N+2,i 1

(M1)
i
2N−3

S 1 1

(5.27)

with superpotential

Wmag = M1M1(qq) . (5.28)

The singlet S corresponds to the complex modulus that parametrizes (5.26).

This shows that when F = N + 1 the theory is in a confining phase, with chiral

symmetry breaking: the global chiral symmetry is broken from Sp(2N − 4) × SU(N + 1)

to Sp(2N − 4) × SU(N). As before, this may also be checked using a-maximization.

Notice that we started from an s-confining theory and ended up in a confining phase with

chiral symmetry breaking. Starting instead from the theory (5.15) and turning on a mass

term, we obtain a transition from conformal to confining with chiral symmetry breaking.

These types of transitions are very interesting because of their potential connection to

nonperturbative effects in QCD.

It is interesting to contrast the chiral symmetry breaking above with the case Nf = Nc

in SU(Nc) SQCD, where a quantum modified moduli space breaks the chiral symmetry.

A similar effect must occur in the electric theory here (5.25), although we have not

calculated this directly. The chiral symmetry breaking can be seen explicitly in the

magnetic dual (5.27). Moreover, using the product gauge group in appendix A and setting

F = N + 1, the chiral symmetry breaking is seen to originate from a quantum constraint

generated by the Sp dynamics.

Finally, for F ≤ N , we find that the theory develops a runaway instability, caused by

nonperturbative effects. The considerations here are similar to those in section 3.3. Using

holomorphy and symmetries, it can be shown that the electric theory with F ≤ N allows

for a nonperturbative superpotential with runaway behavior. In terms of the product

gauge group theory of the appendix (now for F ≤ N), these nonperturbative effects can be

reproduced from an Sp ADS superpotential. This ends our analysis of the phase structure

of the chiral theories with F ≤ N + 3.

6 Generalizations and chiral/nonchiral dualities

In this section, we consider generalizations and applications of the previously discussed

dualities. In section 6.1, we present an infinite family of electric theories that is dual to an

infinite family of magnetic theories. These theories have different gauge groups and per-

turbative flavor symmetries, and all flow to the same IR fixed point. Using these results, in

section 6.2 we find a new chiral/nonchiral duality, relating a theory with an antisymmetric

and (anti)fundamentals to another theory with just (anti)fundamentals and singlets.
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6.1 An infinite family of duals

Having found that a single electric theory can be dual to an infinite family of magnetic

descriptions, a natural question is whether this can be extended to a duality between infinite

families of both electric and magnetic theories. We now exhibit this phenomenon in a class

of theories similar to (3.1), albeit with the addition of extra singlets and interactions.

The electric theory is given by

SU(N + K − 1) SU(K) Sp(2N − 2) SU(N + 3)

Q 1 1

Q̃ 1 1

P̃ 1 1

A 1 1 1

S1 1 1

S2 1 1 1

(6.1)

with a superpotential

Wel = Q̃AQ̃ + QP̃S1 + P̃AP̃S2 . (6.2)

The gauge group is SU(N+K−1) and the rest of the groups are flavor symmetries. The the-

ory has a nonrenormalizable interaction that is actually dangerously irrelevant, as in (3.4).

On the other hand, consider a magnetic theory with matter

SU(N + K ′ − 1) SU(K ′) Sp(2N − 2) SU(N + 3)

q 1 1

q̃ 1 1

p̃ 1 1

a 1 1 1

M 1 1

s1 1 1

s2 1 1 1

(6.3)

and superpotential

Wmag = q̃aq̃ + qMq̃ + qs1p̃ + p̃ap̃ s2 . (6.4)

Here K ′ is any integer such that N + K + K ′ is odd. We propose that the infinite set of

electric theories with fixed N and arbitrary K is dual to the family of magnetic theories

with the same N and arbitrary K ′ (of the allowed parity).

6.1.1 Tests of the duality

As before, we may perform various different tests on the conjectured duality. Here we

summarize briefly some of these.

First, the map of the electric and magnetic chiral rings for K,K ′ ≥ 3 is

QN+K−1−jAj/2 ↔ qj−K+4a(N+K+K ′−5−j)/2 , K − 4 ≤ j ≤ N + K − 1

QQ̃ ↔ M . (6.5)
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The rest of the mesons of the electric theory are lifted by the classical superpotential,

and all of the mesons in the magnetic theory are lifted. Nonperturbative superpotentials

imply that Si and si are not part of the chiral ring. Therefore, similarly to what we

found before, matter charged under the global symmetry factors SU(K) and SU(K ′) are

dynamically eliminated from the chiral ring. Additional evidence follows from the approach

of section 3, which can be used to construct a product gauge group theory that interpolates

between the electric and magnetic description as the ratio of holomorphic scales is varied.

The values K, K ′ = 1, 2 are special cases, because some of the Si or si become part

of the chiral ring. For instance, for K = 1 the correspondence is

QN−jAj/2 ↔ qj+3a(N+K ′−j−4)/2

S1 ↔ qa(N+K ′−1)/2

QQ̃ ↔ M . (6.6)

We have also found agreement between the electric and magnetic predictions using

a-maximization. The superconformal R-charges are consistent with (6.5). Moreover, we

self-consistently find that the perturbatively irrelevant quartic superpotential terms in the

electric and magnetic theory are marginal at the strongly coupled fixed point. All of the

fields are above the unitarity bound for any allowed N , K, and K ′.

Furthermore, the a-function in the electric and magnetic theories are the same and

independent of both K and K ′, which provides additional evidence that these theories all

flow to the same IR fixed point for arbitrary allowed K and K ′. This reveals interesting

strong coupling effects, since both families of theories can independently have an arbitrary

amount of matter in the UV, and yet the number of degrees of freedom at the fixed point,

as measured by the a-function, is the same.

6.1.2 Adding baryonic deformations

The duality can be extended by adding deformations to the electric and magnetic descrip-

tions. To make a closer contact with the results of section 3, we can deform (6.1) by an

additional operator

Wel ⊃ M2 QN+2A(K−3)/2 , (6.7)

where M2 is a new singlet under the gauge group and transforms as an antifundamental

of the flavor SU(N + 3).

Using the mapping of baryons (6.5), we find that the dual magnetic theory (6.3)

contains the additional singlets M2 and is deformed by

Wmag ⊃ M2 qa(N+K ′−2)/2 . (6.8)

This theory is the same as the magnetic dual found in section 3 (renaming K ↔ K ′),

while the electric description in that duality has now been generalized to (6.1) (together

with the extra M2 and the deformation (6.7)).

The a-function for the magnetic dual theory was already calculated in section 4.2.

We checked that it agrees with the electric theory with the baryonic deformation. As
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in the magnetic theory, the baryonic term in the superpotential in the electric theory is

dangerously irrelevant for N . 4.46 and becomes marginal for N & 4.46. It is interesting

that these statements hold for arbitrarily allowed K and K ′ — in particular, for N < 4.46,

the baryonic term can classically look highly irrelevant, yet still be marginal.

6.2 Chiral/nonchiral dualities

We end our analysis by pointing out that the case N = 3, K ′ = 1 in the above duality

leads to an interesting chiral/nonchiral duality. The reason is that the magnetic gauge

group then becomes SU(3), and the antisymmetric is simply an antifundamental. Let us

briefly summarize this case.

The electric theory is a chiral model with content (after renaming Nc = K + 2)

SU(Nc) SU(Nc − 2) Sp(4) SU(6)

Q 1 1

Q̃ 1 1

P̃ 1 1

A 1 1 1

S1 1 1

S2 1 1 1

(6.9)

with

Wel = Q̃AQ̃ + QP̃S1 + P̃AP̃S2 . (6.10)

The magnetic dual has matter content

SU(3) Sp(4) SU(6)

q 1

q̃ 1

p̃ 1 1

r̃ 1 1

s 1 1

(6.11)

and interactions

Wmag = q̃p̃q̃ + qr̃s . (6.12)

This description may be obtained from (6.3) after setting N = 3, K ′ = 1, applying Seiberg

duality once, and integrating out the massive matter (we do not show the intermediate

steps). The extra antifundamental r̃ arises from the antisymmetric, while s is the meson

(qa) and the other fields are dual quarks that have been re-labelled and given the same nota-

tion as the original magnetic quarks in (6.3). The superpotential term q̃aq̃ of the magnetic

theory in (6.4) is now a baryon that gets mapped to the first term in the Seiberg dual (6.12).

This duality relates a theory with an antisymmetric tensor and some (anti) fun-

damentals, to another theory with only (anti)fundamentals. As such, it may have

applications to particle physics models based on SU(5) GUTs. This duality also differs

from the Pouliot-Strassler type duals [9–13], which involve a symmetric tensor. It would

be interesting to apply some of the techniques developed here to these chiral/nonchiral

dualities with symmetric representations.
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7 Conclusions and future directions

In this work, we have studied the low energy dynamics and phase structure of chiral

supersymmetric Yang-Mills theory with gauge group SU(N), an antisymmetric tensor,

and F ≤ N + 3 flavors, in the presence of a cubic superpotential. We presented a rich set

of dualities and phase transitions, together with novel nonperturbative and RG effects.

Let us briefly summarize our results:

1) For F = N + 3 the theory flows to a superconformal fixed point. When N is odd the

theory admits a self-dual magnetic description. For arbitrary N , we found an infinite

set of magnetic theories with gauge group SU(N + K − 1) (where K is an arbitrary

integer of the same parity as N), and a UV global symmetry group containing SU(K).

Fields charged under the additional magnetic global symmetry are eliminated from

the chiral ring due to nonperturbative effects, and the K dependence from the a-

function and superconformal dimensions disappears at the IR fixed point.

2) For F = N + 2 there are two different theories distinguished by the number of

flavors involved in the cubic superpotential. One s-confines and has a weakly coupled

description in terms of gauge singlets. The other flows to a superconformal fixed

point, which admits a self-dual description (for even N), or another set of infinite

magnetic duals similar to that in 1).

3) When F = N + 1 the theory confines and breaks chiral symmetry. Thus the theory

transitions from conformal to confining without an intermediate free magnetic phase.

4) If F ≤ N , a runaway instability develops, caused by nonperturbative effects. This is

the analog of the ADS regime in SQCD, now in a chiral theory.

The behavior of the theory for F > N + 3 seems to be more involved, containing more

than one gauge group and leading to mixed phases of the type studied in [14, 19]. We leave

the analysis of this very intriguing regime to future work [20].

Our results also explain a puzzle found in works on deconfinement, first noticed

in [24]. Namely, the deconfinement method often leads to additional perturbative global

symmetries, which are absent from the original theory. Consistency of the duality demands

that for gauge-invariants in the chiral ring the global symmetries must agree, and in

the past it was not always clear how fields charged under additional global symmetries

would be removed. In this work, we found that new nonperturbative effects present in

chiral theories are responsible for truncating matter charged under the additional global

symmetries. We determined such effects using holomorphy and symmetries, as well as

known instanton calculations for Sp gauge groups. It would be interesting to have a direct

understanding of instanton effects in these chiral theories.

Decreasing the number of flavors by mass deformations, we found flows from supercon-

formal to s-confining (between 1) and 2) above), and from s-confining or superconformal

to confining with chiral symmetry breaking (between 2) and 3)). Some of these transitions

may prove fruitful in further understanding the phase structure of nonsupersymmetric
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QCD, where a transition from a conformal phase to a confining phase with chiral symmetry

breaking is expected. Generalizing these models, it would be useful to systematically

study the set of theories that lack a free magnetic phase.
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A Product gauge group flows for F < N + 3

In this appendix, we construct a product gauge group that interpolates between the electric

and magnetic theories with F = N + 2, as a function of a holomorphic parameter.

Let us begin by integrating out QN+3 and P̃ for simplicity; this was the theory

analyzed in section 5.1. Below this scale we therefore start from a product gauge group

theory with matter content

SU(N) Sp(N + K − 4) SU(K) Sp(2N − 2) SU(N + 2)

Q 1 1 1

Q̃ 1 1 1

X 1 1 1

U 1 1 1

V 1 1 1

T 1 1 1 1

(A.1)

The superpotential is, as before,

W = Q̃XXQ̃ + XUV + V V T . (A.2)

This theory can be studied in two different limits, depending on which gauge group factor

becomes strong first.

If ΛSp(N+K−4) ≫ ΛSU(N), the strong dynamics of the Sp group dominates first,

producing s-confinement. The theory in the infrared reduces precisely to (5.2), the electric

theory with one fewer flavor.

On the other hand, when ΛSU(N) ≫ ΛSp(N+K−4) the SU(N) factor should be dualized

first. We obtain
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SU(N + K − 2) Sp(N + K − 4) SU(K) Sp(2N − 2) SU(N + 2)

q 1 1 1

q̃ 1 1 1

x 1 1 1

u 1 1 1

V 1 1 1

T 1 1 1 1

(QQ̃) 1 1 1

(QU) 1 1 1

(XQ̃) 1 1 1

(XU) 1 1 1

The superpotential now reads

W = (Q̃X)(Q̃X) + (XU)V + V V T +

+q(QQ̃)q̃ + q(QU)u + x(XQ̃)q̃ + x(XU)u . (A.3)

The terms in the second line arise from Seiberg duality.

Integrating out the heavy fields leaves a confining Sp(N + K − 4) gauge group,

which gives mesons (xx) and breaks chiral symmetry. The confined theory superpotential

including nonperturbative effects is

W = q̃(xx)q̃ + (xx)uuT + q(QQ̃)q̃ + q(QU)u +

+L
(

Pf(xx) − ΛN+K−2
Sp

)

. (A.4)

Here L is a Lagrange multiplier field used to enforce the quantum modification of moduli

space. The equations of motion for L lead to a vacuum expectation value for (xx), which

higgses SU(N + K − 2) → Sp(N + K − 2) and gives mass to (xx), q̃. Integrating these

fields out, the low energy theory then becomes

Sp(N + K − 2) SU(K) Sp(2N − 2) SU(N + 2)

q 1 1

u 1 1

(QQ̃) 1 1

(QU) 1 1

T 1 1 1

(A.5)

with

W = q(QQ̃)(QQ̃)q + uuT + q(QU)u . (A.6)

This theory is itself s-confining. Upon confinement, integrating out massive fields

(qu), (uu), (QU), T yields

Sp(2N − 2) SU(N + 2)

(qq) 1

(QQ̃)

(A.7)
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and superpotential W = (QQ̃)2(qq). After a renaming of fields, this again coincides

precisely with the magnetic description of the dual in (5.5). This procedure also provides

further evidence for the proposed duality of [31] by explicitly connecting the electric and

magnetic theories in different limits of a holomorphic coupling.

The product gauge group theory for the case where one Q̃ is integrated out

(discussed in section 5.2) may be similarly constructed. The starting gauge group

is again SU(N) × Sp(N + K − 4). Dualizing SU(N) first gives gauge groups

SU(N +K − 2)×Sp(N +K − 4) and, upon integrating out the massive fields, we find that

the Sp factor s-confines. This generates a nonperturbative superpotential that has two

types of terms; these reproduce the last two terms of the magnetic superpotential (5.19).
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