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1 Introduction

At the CERN Large Hadron Collider (LHC), the top quark will be produced copiously.

The cross section for the top-quark pair-production amounts to several hundred pb [1–3],

and order 106 top-quark events will be observed each year if the LHC runs with 14 TeV

collision energy and achieves the designed luminosity. Collecting these top-quark events,

detailed analysis on the properties of the top quark will be possible, such as precise de-

terminations of its mass and width, structure of electroweak and strong interactions, and

its spin properties [4]. The current world average of the top-quark mass measurements

from the combined analysis of CDF and D0 collaborations at the Fermilab Tevatron reads

mt = 173.1 ± 1.3 GeV [5] (see also [6]). Furthermore, the top-quark production process is

considered as a standard candle process. Namely, it serves understanding detector perfor-

mances, e.g. jet energy calibrations, from comparisons of experimental measurements with

theoretically reliable or well-controllable predictions, for observables including jet topolo-

gies, backgrounds and underlying events.

There have been many studies on top-quark production processes at the LHC.1 Up-

date analyses on the total pair-production cross-section are presented in [1–3], includ-

ing the next-to-leading-order (NLO) correction [7, 8] and resummation of threshold log-

arithms [9–11] in QCD. Differential distributions including decays of the top-quark have

also been known up to NLO [12–14], and various distributions are investigated in [15–19].

1See e.g. [4, 18] for more complete review.
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Recently, tt̄ invariant-mass (mtt̄) distribution near threshold has been investigated

incorporating the bound-state effects [20, 21]. The effects are found to be significant

at the LHC, since (in contrast to the Tevatron) the gluon-fusion channel dominates the

cross section and there are significant contributions from (the remnant of) the color-singlet

tt̄ resonances.

In this paper we compute the fully differential cross sections for the top-quark pair

productions and their subsequent decays at the LHC. In particular, we incorporate the

bound-state effects, which are important in the tt̄ threshold region, into the cross sec-

tions. We extend the studies of [20, 21] and present a theoretical frame to incorporate the

bound-state effects to the differential cross sections. Using this result, we compute various

kinematical distributions of the top quarks and their decay products at hadron colliders,

by developing a Monte-Carlo (MC) event-generator incorporating the bound-state effects.

(There exist similar MC event-generators for computing the top-quark cross-sections in the

tt̄ threshold region at future e+e− colliders [22–24].) Through the analysis, we elucidate

the nature of the bound-state effects at various stages: at the partonic matrix-element

level, both with and without including the decay of the top quark, and in the kinematical

distributions after incorporating the initial-state radiation (ISR) effects. Theoretically the

fully differential cross sections contain more information on the bound-state effects than

just the tt̄ invariant-mass distribution; for instance, it is known that the top momentum

distribution is sensitive to the resonance wave functions in momentum space [25, 26]. From

a practical point of view, the differential cross sections are useful for studying effects of

various kinematical cuts, detector acceptance corrections, detector calibrations, etc.

The method for incorporating tt̄ bound-state effects has been developed mainly in the

studies of tt̄ productions in e+e− collisions [27–29]. Formally, in the limit where we neglect

the top-quark width, Γt → 0, bound-state effects can be incorporated by resummation

of the Coulomb singularities (αs/β)n, where β is the velocity of the top quark in the tt̄

c.m. frame. In contrast to the e+e− collision, at hadron colliders, tt̄ pairs are produced in

both color-singlet and octet states, and the (partonic) collision energy is not fixed. Due

to the latter reason, we have to set up a theoretical framework which is valid both in

the threshold region (mtt̄ ≃ 2mt) and in the high-energy region (mtt̄ ≫ 2mt). The former

region is where the bound-state effects (Coulomb corrections) become significant and where

the non-relativistic approximation is valid. On the other hand, in the latter region, the

bound-state effects are not significant and the top quarks are relativistic. We present a

framework which takes into account all the leading-order (LO) corrections in both regions.

Namely, we incorporate all the (αs/β)n terms in the threshold region, while we include all

the βn terms in the relativistic region. (Some of the important subleading corrections are

also incorporated.) Furthermore, we interpolate the two regions smoothly in a natural way.

Another important aspect in computing the differential cross sections for the top-quark

productions and decays is to construct full amplitudes corresponding to the bW+b̄W− final

state and to incorporate off-shellness of the top quarks appropriately [30]. The former is

important to incorporate the polarizations of t and t̄ and angular correlations in their decay

products. (In appendix D, we will further discuss the polarizations of the W ’s from the

top quarks.) The latter is intimately related to the former and is known to be particularly
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important in the threshold region. In the bW+b̄W− production, there are non-resonant

diagrams where bW+ and b̄W− are not produced from the decay of t and t̄. Often the non-

resonant diagrams are omitted in the studies of tt̄ productions, since they are suppressed in

the events where both t and t̄ are nearly on-shell. In the threshold region, however, either

of t and t̄ tends to be off-shell due to restricted phase-space and the binding effects [25], and

the non-resonant diagrams can give non-negligible contributions compared to the resonant

(tt̄) diagrams [31]. Since these contributions interfere with each other, all the diagrams have

to be taken into account at the amplitude level. Moreover, because of the requirement by

unitarity, we also have to ensure a consistent treatment of the finite decay width of the

top quark in our framework. We will discuss these points within our framework, which

includes the bound-state effects as well as the non-resonant diagrams, in connection with

a known problem regarding a gauge cancellation.

In order to compute numerically various kinematical distributions at hadron colliders,

we develop a MC event-generator, which is adapted to the MadEvent [32, 33] environment.2

We include the bound-state effects in the hard-scattering part of the LO event-generator, on

the basis of our theoretical framework. The ISR and/or final-state radiation (FSR), which

are of importance at hadron colliders, are incorporated via the parton-shower approach.

Since the parton shower does not alter the normalizations of the cross sections at the

partonic level, we will complement the overall normalizations, known up to NLO [20, 21],

by multiplying the cross sections in the individual channels with the so-called “K-factors.”

We note, however, that our aim here is to construct a generator valid only up to LO

with respect to the differential distributions, in this first attempt to include the bound-

state effects. Compare with the existing NLO event-generators, such as MC@NLO [34, 35]

and POWHEG [36], which realize a consistent treatment of perturbative corrections for any

process and any phase-space point.

Using the generated events, we study the bound-state effects on the top quark differ-

ential distributions at the LHC, focusing on the events in a relatively low mtt̄ region. A tt̄

pair gains a binding energy due to exchange of Coulomb gluons between them. This effect

tends either of t and t̄ to be off-shell below the threshold, and the effect remains even a few

tens GeV above the threshold, due to the large width of the top quark. We will quantify

this picture through detailed examinations of the top quark differential distributions.

The paper is organized as follows. In section 2, we give a theoretical framework for

computing the amplitudes for top-quark pair-production at hadron colliders, incorporating

the bound-state effects (section 2.1), the finite width effects (section 2.2), and the ISR

effects and K-factors (section 2.3). In section 3, we present numerical studies for various

kinematical distributions in tt̄ production, using the MC simulation which implements the

ingredients explained in the previous section. In section 4, we summarize our results. To

avoid complexity in the main body of the paper, several detailed discussions are presented

in the appendices. In appendix A, we identify the tt̄ Green function in a Feynman ampli-

tude. In appendix B, we derive the off-shell suppression factor. In appendix C, the color

2The Fortran code for the event generator including the bound-state corrections is available at

http://madgraph.kek.jp/~yokoya/TopBS/.
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Figure 1. Feynman diagrams for gg → tt̄ and qq̄ → tt̄ at the tree-level.

decomposition of the amplitude is explained. In appendix D, we examine the leptonic

decays of W ’s from top quarks with and without spin correlations.

2 Inclusion of bound-state effects

In this section we present a theoretical investigation of how to include the tt̄ bound-state

effects in the matrix elements for gg → bW+b̄W− and qq̄ → bW+b̄W−. In particular we

include the effects such that the amplitude is correct in the leading-order approximation

both in the tt̄ threshold region and in the high energy region. Inclusion of several different

effects is explained in steps: In section 2.1 we explain how to incorporate the bound-state

effects; in section 2.2 important higher-order effects of the large top-quark decay-width are

incorporated; in these subsections, we consider only the partonic S-matrix elements. In

section 2.3 we incorporate the ISR effects and the K-factors in the corresponding partonic

differential cross sections.

For later convenience, we divide each amplitude into two parts, the tt̄ (double-resonant)

part and the non-resonant part, as

M(c)(I → bW+b̄W−) = M(c)
tt̄

(I → tt̄→ bW+b̄W−) + M(c)
nr (I → bW+b̄W−) , (2.1)

where I = gg or qq̄ represents initial-state partons, and c represents the color (c = 1 and

8 for the singlet and octet, respectively) of I, or equivalently, of bb̄ in the final-state. The

first term on the right-hand side represents the sum of the diagrams which contain both

t and t̄ as an intermediate state. This part of the amplitude consists of I → tt̄ processes

followed by subsequent decays of t and t̄. The second term represents the sum of the rest of

the diagrams, which consists of single(-top)-resonant diagrams and non-resonant diagrams.

Figure 1 shows the tree-level Feynman diagrams for the processes gg → tt̄ and qq̄ → tt̄.

Some examples of the tree-level diagrams included in each part for I = gg are shown in

figure 2. In general each part is gauge-dependent. In this paper, we work in Feynman

gauge for SU(3)c and in unitary gauge for the broken electroweak symmetry.

In computing the tree-level Feynman diagrams which contain the top-quark propaga-

tors, we include the (on-shell) top-quark decay-width Γt in the propagator denominator

as

SF (pt) =
i(p/t +mt)

p2
t −m2

t + imtΓt
. (2.2)

2.1 LO cross section valid from threshold to high energies

In this subsection we include the bound-state effects in the tt̄ amplitude M(c)
tt̄

. We consider

the narrow-width limit of top-quark width in this subsection. Namely, we take into account

– 4 –
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Figure 2. Typical Feynman diagrams for the double-resonant (left), single-resonant (middle) and

non-resonant (right) contributions in the gg → bW+b̄W− process. They belong to M(c)
tt̄

, M(c)
nr and

M(c)
nr , respectively. The term “resonant” is used to refer to the t or t̄ quark propagator (shown with

double line) which can become close to on-shell. The blob in the left diagram represents the first

three diagrams in figure 1.

only the leading contributions as Γt → 0. Important subleading effects by the finite top-

quark width will be investigated separately in the next subsection.

We start by reviewing the conventional method for including the bound-state effects

in the matrix element (or in the fully differential cross section) of e+e− → tt̄→ bW+b̄W−

close to the threshold of tt̄ pair productions. At the leading-order, this is achieved by

multiplying the tree-level amplitude corresponding to the diagrams e+e− → tt̄→ bW+b̄W−

by an enhancement factor as [25, 26]3

M(e+e−→ tt̄→ bW+b̄W−) = M(e+e−→ tt̄→ bW+b̄W−)tree ×
G(1)(E + iΓt, ~p)

G0(E + iΓt, ~p)
. (2.3)

Here, the non-relativistic Green functions are defined by4

[
(E + iΓt) −

{
−∇2

mt
+ V

(c)
QCD(r)

}]
G̃(c)(E + iΓt, ~r) = δ3(~r), (2.4)

G(c)(E + iΓt, ~p) =

∫
d3~r e−i~p·~r G̃(c)(E + iΓt, ~r) . (2.5)

E =
√
s−2mt is the c.m. energy measured from the threshold; mt is the pole mass of the top

quark; ~r denotes the relative coordinate of t and t̄, while ~p denotes the three-momentum of

t (or minus the three-momentum of t̄), both defined in the c.m. frame; V
(c)
QCD(r) is the QCD

potential between the tt̄ pair in the color-singlet (c = 1) or color-octet (c = 8) channel. In

e+e− collisions, tt̄ pairs are produced in the color-singlet channel, hence c = 1 in eq. (2.3).

The free non-relativistic Green function G0(E+ iΓt, ~p) is obtained from G(c)(E+ iΓt, ~p) by

setting V
(c)
QCD(r) → 0. Formally the above Green function can be expressed as

G(c)(E + iΓt, ~p) =
〈
~p
∣∣∣ 1

E + iΓt − ~p 2/mt − V
(c)
QCD(r)

∣∣∣~r = ~0
〉
, (2.6)

using an operator notation in quantum mechanics. By definition, the above Green function

contains only the S-wave contributions.

3There are two tree-level diagrams for e+e− → tt̄→ bW+b̄W− with γ and Z boson intermediate states.

M(e+e− → tt̄→ bW+b̄W−)tree denotes the sum of them.
4In this study, G(c)(E + iΓt, ~p) is computed numerically by solving the Schrödinger equation in coor-

dinate space and taking Fourier transform [25]. Alternatively, one may solve the Schrödinger equation in

momentum space directly [26].
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There are two methods to compute the total cross section for e+e− → tt̄→ bW+b̄W−

incorporating the bound-state effects. One way is to integrate the absolute square of the

matrix element given in eq. (2.3) over the phase-space of the final bW+b̄W− state. The

other method is to use the optical theorem (unitarity relation) and take the imaginary

part of a current-current correlator (two-point function). At the leading-order, the latter

method leads to the formula [27, 28]:

σtot(e
+e− → tt̄→ bW+b̄W−) = σtot(e

+e− → tt̄)tree ×
Im
[
G̃(1)(E + iΓt, ~r = ~0)

]

Im
[
G̃0(E,~r = ~0)

] , (2.7)

where the Green function in coordinate space is defined in eq. (2.4). σtot(e
+e− → tt̄)tree

denotes the Born cross-section for the production of on-shell top quarks. Note that in the

denominator we set Γt to zero in G̃0, whereas Γt is retained in the denominator in eq. (2.3).

The different treatment of Γt is because in eq. (2.3) we use the tree-level amplitude with

unstable top quarks (in the intermediate state), whereas in eq. (2.7) we use the tree-level

cross section of the on-shell top quarks (in the final state).

Both formulas (2.3) and (2.7) incorporate all the leading-order corrections ∼ (αs/β)n

in the threshold region E ≪ mt. On the other hand, the formulas are not valid at higher

c.m. energies E >∼ mt, since relativistic corrections ∼ βn, which grow with energy, are

neglected in these formulas.

Now we turn to the partonic cross sections for the top-quark productions in hadron

collisions, I → tt̄ → bW+b̄W− with I = gg and qq̄. Unlike e+e− collisions, the collision

energy of the initial state cannot be fixed. Thus, we need to consider both threshold and

high-energy regions. The formulas which we propose, valid in both regions within the

leading-order approximation, can be summarized as follows:

(1) The tt̄ amplitude for I → tt̄→ bW+b̄W− is given by

M(c)
tt̄ (I→ tt̄→ bW+b̄W−) =M(c)

tt̄ (I→ tt̄→ bW+b̄W−)tree×
G(c)(E′ + iΓt, ~p)

G0(E′ + iΓt, ~p)
, (2.8)

with

E′ = E +
E2

4mt
. (2.9)

The Feynman diagrams which contribute to the tree-level amplitude M(c)
tt̄

(I → tt̄→
bW+b̄W−)tree are those shown in figure 1, after attaching the decay vertices t→ bW+

and t̄ → b̄W− to each diagram. There are both color-singlet (c = 1) and color-octet

(c = 8) channels in the case I = gg, while there is only the color-octet channel in the

case I = qq̄. Here, E is defined from the tt̄ invariant-mass mtt̄ as E = mtt̄ − 2mt.

The only essential difference from the corresponding formula for the e+e− collision,

eq. (2.3), is the use of the modified energy E′ [eq. (2.9)] instead of E.

(2) We may compute the tt̄ invariant-mass distribution by integrating the absolute square

of the above amplitude |M(c)
tt̄

(I → tt̄→ bW+b̄W−)|2 over the bW+b̄W− phase-space

– 6 –
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for each fixed mtt̄. Alternatively we may obtain the formula for the tt̄ invariant-

mass distribution using the optical theorem, similarly to the e+e− → tt̄ case. In the

leading-order approximation, this reads

σ̂
(c)
tot(I → tt̄→ bW+b̄W−) = σ̂

(c)
tot(I → tt̄)tree ×

Im
[
G̃(c)(E′ + iΓt, ~r = ~0)

]

Im
[
G̃0(E′, ~r = ~0)

] . (2.10)

As in the e+e− → tt̄ case, σ̂
(c)
tot(I → tt̄)tree is the Born cross-section for the on-shell

top quarks; accordingly Γt is set to zero in G̃0(E
′, ~r = ~0

)
. We note that the tt̄

invariant-mass distribution obtained from eq. (2.10) does not exactly coincide with

that obtained by integrating |M(c)
tt̄ (I → tt̄→ bW+b̄W−)|2 over the bW+b̄W− phase-

space; the difference is O(Γt/mt) and will be discussed in the next subsection.

In the following we sketch our theoretical consideration which led to the above formu-

las (2.8) and (2.10), where some details are relegated to appendix A. As explained in that

appendix, part of the Feynman amplitude for I → tt̄ → bW+b̄W− can be identified with

a Green function that dictates the time evolution of the tt̄ system. (Such an identification

is possible in all kinematical regions.) In the c.m. frame of tt̄, for the initial-state | i 〉 and

final-state | f 〉 of the tt̄ system, this Green function can be written formally as5

〈f | 1

mtt̄ −H + iΓt
| i 〉 , (2.11)

where mtt̄ is the c.m. energy of tt̄ (tt̄ invariant-mass). The full QCD Hamiltonian is denoted

by H. Because of this property, the amplitude for I → tt̄→ bW+b̄W−, which incorporates

the tt̄ bound-state effects, can be obtained from the tree-level amplitude by multiplying an

enhancement factor:

M(c)
tt̄ (I → tt̄→ bW+b̄W−) ≈ M(c)

tt̄ (I → tt̄→ bW+b̄W−)tree

×

〈
~p
∣∣∣ 1

mtt̄ −H + iΓt

∣∣∣~r = ~0
〉

〈
~p
∣∣∣ 1

mtt̄ −H0 + iΓt

∣∣∣~r = ~0
〉 . (2.12)

H0 denotes the Hamiltonian H after setting αs → 0, i.e. the free Hamiltonian. As before,

~r denotes the relative coordinate of t and t̄, while ~p denotes the three-momentum of t,

both defined in the c.m. frame of the tt̄ system. Corrections to eq. (2.12), which come

from the non-resonant part of the amplitude (i.e. that vanish as Γt → 0), are neglected;

see appendix A.

In the above equation, we have taken advantage of the fact that we work in the leading-

order approximation and set the initial-state of the Green functions as |~r = ~0〉. This follows

from the following consideration. Naively, the tt̄ system cannot be regarded as being created

by contact interaction (i.e. at the same point ~r = ~0) in the t- and u-channel diagrams

of gg → tt̄, in which the top-quark is exchanged between the initial gg (see figure 1).

5As already stated, treatment of the top-quark width is correct only in the leading order.
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In the non-relativistic region, however, we may set ~p → 0 in the t- or u-channel top-

quark propagator in the leading-order approximation. The denominator of the propagator

effectively reduces to a constant close to the threshold, so that tt̄ can be regarded as being

created at the same point. On the other hand, in the relativistic region the enhancement

factor in eq. (2.12) reduces to 1 + O(αs). Hence, it is justified to evaluate the Green

functions with the initial-state |~r = ~0〉 within our present approximation.

Since our aim is to include the leading-order contributions both in the relativistic

and non-relativistic regions, the full form of the Hamiltonian is not necessary. In the

region where t and t̄ are relativistic, mtt̄ − 2mt
>∼ mt, the leading-order contribution in the

Hamiltonian reads

H = 2
√
~p 2 +m2

t + O(αs) , (2.13)

as shown in appendix A. It is nothing but the sum of the energies of free on-shell t

and t̄. The above equation also indicates how the next-to-leading order effects enter the

Hamiltonian. On the other hand, in the non-relativistic region, E = mtt̄ − 2mt ≪ mt, the

leading-order contributions in the Hamiltonian can be written explicitly as

H = 2mt +

[
~p 2

mt
+ V

(c)
QCD(r)

]
×
[
1 + O(αs, β)

]
. (2.14)

It is indicated that the next-to-leading order corrections enter as O(β) relativistic correc-

tions or O(αs) corrections.

A natural choice of the Hamiltonian, which incorporates the leading-order contribu-

tions in both regions and smoothly interpolates these regions, is given by

HLO = 2
√
~p 2 +m2

t + V
(c)
QCD(r). (2.15)

In fact, it is well known that, when computing higher-order corrections in Coulombic

bound-state problems, part of them (relativistic corrections) contribute exactly in the above

form [37]. Thus, in principle, one may determine the enhancement factor in eq. (2.12) using

the above Hamiltonian.

Due to technical reasons, however, we use an alternative form of the enhancement

factor, which is equivalent within the present approximation. By substituting E = mtt̄ −
2mt to the on-shell relation

mtt̄ = 2
√
~p 2 +m2

t , (2.16)

one finds that

E +
E2

4mt
=
~p 2

mt
. (2.17)

Therefore, if we define

G(c)
(
E′ + iΓt, ~p

)
=
〈
~p
∣∣∣ 1

E′ + iΓt − (~p 2/mt + V
(c)
QCD(r))

∣∣∣~r = ~0
〉

(2.18)
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with E′ defined by eq. (2.9), the position of the pole of G(c)(E′ + iΓt, ~p) is the same as that

of 〈~p|(mtt̄ −HLO + iΓt)
−1|~r = ~0〉 in the limit αs → 0. Furthermore, in the non-relativistic

region, evidently G(c)(E′, ~p) is the same as 〈~p|(mtt̄ −HLO + iΓt)
−1|~r = ~0〉 in the leading-

order approximation. Hence, we may compute the matrix element by the formula eq. (2.8).

One may be worried that, although the replacement E → E′ correctly accounts for the

pole position, the residue of the pole may be altered significantly from that of eq. (2.12) in

the relativistic region. This is not the case, since the change of the residue will be canceled

in the ratios of the Green functions in eqs. (2.8) and (2.10).

The advantage of using G(c)(E′+ iΓt, ~p) is that one can obtain it from the conventional

non-relativistic Green function with a minimal modification E → E′ = E + E2/(4mt). In

particular, properties of G(c) are fairly well known.

Let us comment on the dependence of the Green function on the top-quark width Γt in

eq. (2.18). In eq. (2.2) the shift of the pole position of the top-quark propagator due to the

finite top-quark width can be incorporated simply by a replacement m2
t → m2

t − imtΓt. If

we apply it to eq. (2.16), one finds that iΓt will be added to the left-hand side of eq. (2.17).

Hence, inclusion of Γt as in eq. (2.18) is correct in the leading-order approximation.

Throughout our analysis, we include an important subleading correction to the bound-

state effects, in order to make our analysis more realistic. This is the NLO (1-loop) cor-

rection to the static potentials V
(c)
QCD(r) between the tt̄ pair. The NLO potential reads [38]

V
(c)
QCD(r;µB) = C(c)αs(µB)

r

[
1 +

αs(µB)

4π

{
2β0 [ln(µBr) + γE ] + a

(c)
1

}]
(2.19)

with

C(1) = −CF , C(8) =
CA

2
− CF , (2.20)

β0 =
11

3
CA − 2

3
nq, a

(1)
1 = a

(8)
1 =

31

9
CA − 10

9
nq, (2.21)

for the MS coupling. Here, γE = 0.5772 . . . denotes the Euler constant; CF = 4/3 and

CA = 3 are color factors. The QCD potential is renormalization-group invariant, and

we evaluate the above expression at the Bohr scale of µB = 20 GeV and with nq = 5

(αs(µB) = 0.153).

Now we perform a few tests of our formulas, eqs. (2.8) and (2.10). First we examine

the impact of the replacement E → E′. The tt̄ invariant-mass distributions dσ̂/dmtt̄

computed with these formulas are compared with dσ̂/dmtt̄ computed by the formulas valid

only in the threshold region, namely eqs. (2.8) and (2.10) after we replace E′ by E. In

figure 3 we plot σ̂ for gg → tt̄ in the color-singlet channel.6 The green solid and dotted

lines are those computed using eqs. (2.8) and (2.10), respectively, while the red dot-dashed

and dotted lines are those computed with the same formulas but after the replacement

E′ → E. For comparison, the Born cross-sections [using eqs. (2.8) and (2.10) but without

6In sections 2.1 and 2.2, the partonic tt̄ invariant-mass distribution (before including the effects of ISR

and parton distribution function) is proportional to the partonic total cross-section and delta function,

dσ̂/dmtt̄ ∝ σ̂δ(ŝ−m2
tt̄); c.f. eq. (17) of [20]. Hence, we plot σ̂(ŝ = m2

tt̄) instead of dσ̂/dmtt̄ in these

subsections.
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Figure 3. Partonic tt̄ invariant-mass distributions for gg → tt̄ → bW+b̄W− in the color-singlet

channel. The green solid line is calculated with E′ = E + E2/(4mt) [eq. (2.9)], while the red

dot-dashed line is calculated with E instead of E′. The black dashed line represents the Born cross-

section. The dotted lines are those for the gg → tt̄ process (production of on-shell top quarks).

the enhancement factors] are also plotted with the dashed and dotted black lines. All

the cross sections are computed with mt = 173 GeV and Γt = 1.49 GeV (the tree-level

top-quark decay-width).

The difference between the tt̄ invariant-mass distributions using eqs. (2.8) and (2.10)

(solid and dotted green lines) is due to O(Γt/mt) corrections. The replacement E′ → E

in eq. (2.10) changes the tt̄ invariant-mass distribution slightly above the tt̄ threshold;

compare the green dotted and red dotted lines. The difference between the two cross

sections is about 2.5% in the large mtt̄ region.

On the other hand, the effect of the replacement E′ → E in eq. (2.8) is much more

pronounced above the tt̄ threshold. There exist a large enhancement which amounts to

nearly a factor of two around mtt̄ = 400 GeV; compare the green solid and red dot-dashed

lines. The origin of this large enhancement can be identified with a mismatch of the on-shell

conditions satisfied by the pole positions of the t and t̄ propagators contained in M(c)
tt̄,tree

and by the pole position contained in G0(E + iΓt, ~p). [Note that σ̂
(c)
tot,tree in eq. (2.10) does

not contain the t or t̄ propagator, so that this mismatch problem does not occur when

we replace E′ by E in eq. (2.10); compare the green and red dotted lines.] In fact, the

mechanism of this abnormally large deviation is closely tied to a characteristic bound-state

effect on the invariant-mass distributions of the bW+ and b̄W− systems. We will investigate

this issue in detail in section 3, in which we examine closely the differential distributions.

Nevertheless, even without going into these details, the present comparison clearly shows

the necessity of a proper treatment of the relativistic kinematics, when we include the

bound-state effects to the fully differential cross section of the process I → tt̄→ bW+b̄W−.

Since our formulas are correct in the narrow width limit Γt → 0, the unitarity relation

should be restored in this limit. In order to check this, in figure 4 we plot the ratios of
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Figure 4. Ratios of the partonic cross sections for gg → bW+b̄W− and gg → tt̄, in the color-

singlet channel at mtt̄ = 360GeV. These are plotted as functions of Γt. Green solid, red dashed

and black dotted lines are those with the modified energy E′, with E instead of E′, and for the

Born cross-sections, respectively.

dσ̂/dmtt̄ computed using eqs. (2.8) and (2.10) as we vary the value of Γt at a fixed mtt̄ of

360 GeV.7 We confirm that the ratio approaches to unity as Γt is reduced, in the case that

we use our relativistic formulas (green solid line) or in the case that we use the tree-level

cross sections (black dotted line). In sharp contrast, the ratio does not approach to unity

in the case that we replace E′ by E (red dashed line) due to the mismatch problem. It

shows invalidity of the non-relativistic approximation far above the threshold, especially

for the fully differential cross section.

As is well known, the leading-order bound-state effects in the tt̄ threshold region are

contained in the S-wave part of the amplitude. In the case of gg → tt̄, the S-wave contri-

butions reside in the J = 0 amplitude both for the color-singlet and color-octet channels.

Hence, it may be more appropriate to include the bound-state effects only in the J = 0

amplitude, rather than multiplying the whole tt̄ amplitude by the enhancement factor as

in eq. (2.8). Theoretically, the difference between the two prescriptions is subleading. We

examine this feature by comparing the tt̄ invariant-mass distributions computed in both

ways. In figure 5, we plot the tt̄ invariant-mass distributions for gg → tt̄ process. Each

solid line represents the cross section computed using eq. (2.10), namely, the whole Born

cross-section (the sum of the Born cross-sections for all J ’s) is multiplied by the enhance-

ment factor. Each dashed line represents the sum of the cross sections for all J ’s, where

only the J = 0 cross section is multiplied by the enhancement factor. The red (solid and

dashed) lines represent the cross sections for gg → tt̄ in the color-singlet channel, while the

blue (solid and dashed) line represent those in the color-octet channel.

7As we vary the value of Γt in the t propagator and the Green functions, the value of the weak gauge

coupling constant gW in the tbW vertex is varied consistently, such that the tree-level top-quark width

takes the correct value.
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Figure 5. Partonic tt̄ invariant-mass distributions for gg → tt̄ in the color-singlet (red), color-octet

(blue) channels, and the sum of them (black). The solid lines are calculated by multiplying the

bound-state enhancement factor to the whole tt̄ amplitude. The dashed lines are calculated as the

sum of contributions from all J ’s, where only the J = 0 amplitude is multiplied by the enhancement

factor. The dotted lines represent the Born cross-sections corresponding to the above lines.

The cross section in the singlet channel is more enhanced if we use the overall pre-

scription, eq. (2.10), since the force between the color-singlet tt̄ pair is attractive and hence

the enhancement factor is larger than one. The difference of the two prescriptions is siz-

able only above the tt̄ threshold and becomes maximal around mtt̄ ≃ 400 GeV, where the

difference is about 7%. On the other hand, the cross section in the octet channel is more

reduced if we use the overall prescription, since the force between the color-octet tt̄ pair is

repulsive and the enhancement factor is (slightly) less than one. The difference of the two

prescriptions is at most 2%. The black lines (solid and dashed) represent the sum of the

cross sections for gg → tt̄ in the above two channels. The difference of the two prescriptions

in this case is at most about 1%, since the differences have opposite signs in the two chan-

nels and are largely canceled. Thus, the difference of the two prescriptions is rather small

and much smaller than other subleading corrections which we neglect in our analysis. Fur-

thermore, we have checked that the above tendencies are not changed significantly by the

ISR effects. Therefore, for simplicity of our analysis, we will adopt the overall prescription

in the following analysis, namely, we will not decompose the amplitude into different J ’s.

In the case of qq̄ → tt̄, there is only the J = 1 color-octet channel at tree level. Hence,

the enhancement factor multiplies the whole amplitude also in this case.

2.2 Effects of large Γt

In this subsection we describe how we incorporate part of the subleading corrections that

are induced by the large top-quark width. As an inevitable consequence of numerically

integrating the fully differential cross sections for I → tt̄→ bW+b̄W−, there is a significant

phase-space-suppression effect. We partly compensate this effect, which is related to a

gauge cancellation inherent in the inclusive cross section.
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First, we briefly review existing theoretical studies on the treatment of the top-quark

width, in the cases with and without bound-state effects. In the latter case, many schemes

have been proposed for incorporating the top-quark width. The use of the top-quark prop-

agator in eq. (2.2) is called the fixed-width scheme (FWS). It is widely used in simple

analysis of the cross sections which include the top quark as an unstable intermediate par-

ticle. It is known, however, that subleading electroweak effects are not properly treated in

this scheme. At present, the complex-mass scheme (CMS) [39] seems to be most advanced

from a practical point of view, due to the simplicity of its implementation. In fact, for

the process e+e− → W+W−, which is kinematically similar to tt̄ productions, the fully

differential cross section has been computed incorporating the effects of W -boson width

with NLO accuracy in this scheme, basically in all kinematical regions [40]. For tt̄ pro-

ductions in hadron collisions, the fully differential cross sections is computed incorporating

top-quark width with LO accuracy in CMS, and various differential cross sections in differ-

ent schemes were compared [30]. In particular, the study has shown an agreement within

errors between all the calculated cross sections in CMS and in FWS. (FWS is simpler but

less sophisticated than CMS.)

Regarding tt̄ productions in the threshold region including the bound-state effects,

studies on the finite-width effects are most advanced in the total cross section for e+e− →
tt̄. The finite-width effects have been incorporated with NNLO accuracy8 [41, 42], using

the velocity-Non-Relativistic QCD (vNRQCD) effective field theory framework [43, 44].

Recently an NLO correction to the total cross section arising from the single-top resonance

region has been pointed out and computed in [31], using unstable-particle effective field

theory [45, 46]. On the other hand, in the corresponding fully differential cross section the

width effects are incorporated only up to NLO accuracy [47] (apart from the contributions

from the single-top resonance region). MC generators, developed specifically for simulation

studies in the threshold region of the e+e− → tt̄ process, have incorporated both bound-

state effects and finite-width effects in the LO approximation [22, 24]. For tt̄ productions in

hadron collisions, only the tt̄ invariant-mass distributions have been computed with NLO

accuracy, incorporating the bound-state effects, finite-width effects and ISR effects in the

threshold region [20, 21].

One effect is known to be particularly important in computing the fully differential

cross sections in the threshold region of tt̄ productions. It is the phase-space-suppression

effect [25, 26, 48], which is formally an NNLO effect of the top-quark width, but it seriously

modifies the shape of the sharply rising S-wave cross section as a function of mtt̄, after

integrating the differential cross section over the final-state phase-space [25]. Let us briefly

explain this effect. The tt̄ cross section starts to rise below the tt̄ threshold mtt̄ = 2mt

as a result of formation of tt̄ resonances. This means that the dominant kinematical con-

figuration is such that one of t and t̄ is on-shell and the other is off-shell. Therefore, the

phase-space of bW which decayed from the off-shell t or t̄ is reduced as compared to the

on-shell case. This suppresses the production cross section, and this effect is automatically

incorporated if we integrate the LO differential cross section numerically over the phase-

8In the tt̄ threshold region, it is customary to count Γt/mt ∼ O(αW ) ∼ O(α2
s).
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space of the final bW+b̄W−. A remarkable feature is that there is another effect at NNLO

which exactly cancels the phase-space-suppression effect, for the integrated cross section

at each tt̄ invariant-mass [49, 50]. This is the Coulomb-enhancement effect due to gluon

exchanges between t and b̄ (decayed from t̄) and between t̄ and b. The cancellation is guar-

anteed by gauge invariance (Ward identity). It protects the tt̄ resonance widths from being

determined by gauge-dependent off-shell width of the top quark. Consequently the only

surviving NNLO effect to the tt̄ resonance widths turns out to be the time-dilatation effect

due to the relative motion of t and t̄ inside the resonances, which is gauge independent.9

Thus, we face a problem when we compute differential cross sections in the tt̄ threshold

region by a MC generator: The phase-space-suppression effect is automatically incorpo-

rated, while the Coulomb-enhancement effect due to gluon exchanges between t and b̄ (or t̄

and b) is difficult to incorporate in a MC generator. (This is not yet achieved even in theo-

retical computations of the e+e− → tt̄ differential cross sections.) Our prescription in this

study is only effective. Since we know that the phase-space-suppression effect is canceled

in the inclusive tt̄ cross section, we multiply the tt̄ amplitude M(c)
tt̄

(I → tt̄ → bW+b̄W−)

by an enhancement factor such that the phase-space-suppression factor is canceled. In

addition, we include the non-resonant diagrams, which are formally O(Γt/mt) compared

to the LO amplitude.

Hence, our full amplitude at the parton level is given by

M(c)

bW+b̄W−
(I → bW+b̄W−) = M̃(c)

tt̄
+ M̃(c)

nr (2.22)

with

M̃(c)
tt̄

= M(c)
tt̄

×
[

mtΓt√
stΓt(st)

· mtΓt√
st̄Γt(st̄)

] 1
2

, (2.23)

M̃(c)
nr = M(c)

tt̄,tree
×
(

1 −
[

mtΓt√
stΓt(st)

· mtΓt√
st̄Γt(st̄)

] 1
2

)
+ M(c)

nr , (2.24)

where M(c)
tt̄ is defined by eqs. (2.8) and (2.9), and M(c)

nr denotes the sum of the tree-level

non-resonant diagrams. The factor in the square bracket represents the inverse of the

phase-space-suppression factor (see appendix B for the derivation), where Γt(st) denotes

the running top-quark width in unitary gauge evaluated at the top-quark invariant-mass st;

its explicit form is given in appendix B, eq. (B.5). At large tt̄ invariant-masses, the bound-

state effects diminish, namely M(c)
tt̄ → M(c)

tt̄,tree, hence the above bW+b̄W− amplitude is

defined such that it reduces to the tree-level amplitude, M(c)

bW+b̄W−
→ M(c)

tt̄,tree
+ M(c)

nr .

At the differential level, the above treatment of the cancellation of the phase-space-

suppression effect is only effective, since the Coulomb-enhancement effect does not cancel

the phase-space-suppression effect at each kinematical point. Nevertheless, we consider

that a higher priority should be given to the gauge cancellation mechanism that is inherent

in the inclusive cross section. We also note that the replacement E → E′ in the Green

9In principle, the momenta of t and t̄ can be determined from the final state, in the LO approximation.

Hence, the relative motion is a gauge-independent quantity.
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Figure 6. Partonic tt̄ invariant-mass distributions for gg → tt̄ and qq̄ → tt̄ in the individual

channels. Four lines in each figure are computed from (i) |M(c)
tt̄

|2 (black dotted), (ii) |M̃(c)
tt̄

|2 (blue

dashed), (iii) |M(c)
tt̄

+ M(c)
nr |2 (red dot-dashed), and (iv) |M̃(c)

tt̄
+ M̃(c)

nr |2 (green solid). The figures

in the right show the magnification of the threshold region.

function, eqs. (2.8) and (2.9), automatically incorporates the time-dilatation effects to the

resonance widths.10

In figure 6, we compare the tt̄ invariant-mass distributions for gg → tt̄ and qq̄ → tt̄ in

all the channels, which are computed by integrating the following four cross sections over

the bW+b̄W− phase-space, where the tt̄ invariant-mass mtt̄ is defined as the invariant-mass

of the final bW+b̄W− system: (i) |M(c)
tt̄
|2 (black dotted), (ii) |M̃(c)

tt̄
|2 (blue dashed), (iii)

|M(c)
tt̄

+ M(c)
nr |2 (red dot-dashed), and (iv) the absolute square of our formula eq. (2.22)

(green solid). Comparing the distributions for (i) and (ii), or, (iii) and (iv), we see that the

phase-space-suppression effects are sizable especially close to the threshold of gg → tt̄ in the

color-singlet channel. This is consistent with the explanation given above. In particular, in

each figure the difference between (iii) and (iv) is hardly visible at large mtt̄. We may also

compare the distributions for (i) and (iii), or, (ii) and (iv), to see the contributions of the

non-resonant amplitude. The contributions become comparatively larger at high energies

for gluon-fusion channels, since the contribution of the s-channel diagram in M(c)
tt̄

decreases,

while contributions of the single-resonant diagrams in M(c)
nr increase. On the other hand,

for qq̄ channel, contributions from the non-resonant diagrams are small everywhere.

In figure 7(a) we plot the tt̄ invariant-mass distributions for gg → bW+b̄W− (sum of

the color-singlet and octet channels), using eq. (2.22) after integrating over the bW+b̄W−

phase-space (red solid line). The tt̄ invariant-mass distribution at the Born level for gg →
10The relation E′ + iΓt = ~p 2/mt (corresponding to m2

t → m2
t − imtΓt) is relativistically correct, so that

the time-dilatation effect enters the lifetime of the tt̄ system. It can also be seen by the fact E′ + iΓt−
~p2

mt
≃

E + iΓt − ~p2

mt

+ 1
4mt

“

~p2

mt

− iΓt

”2

≃ E + iΓt

“

1 − ~p2

2m2
t

”

− ~p2

mt

+ ~p4

4m3
t

, where
“

1 − ~p2

2m2
t

”

represents the

time-dilatation effect and ~p4

4m3
t

represents a relativistic correction.
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Figure 7. tt̄ invariant-mass distributions for the processes gg → bW+b̄W− (color-summed) and

qq̄ → bW+b̄W−. The red solid line is plotted using eq. (2.22) for the partonic amplitude, while the

black dashed line represents the Born-level cross section.

bW+b̄W− in FWS is also plotted (black dashed line). The difference of the two lines signifies

the bound-state effects, after including the non-resonant diagrams and compensating the

phase-space-suppression effect. The enhancement of the distribution by the bound-state

effect is visible not only in the threshold region but also up to about mtt̄ = 500 GeV. The

enhancement factors are about 1.05 and 1.02 at mtt̄ = 400 GeV and 500 GeV, respectively.

The tt̄ invariant-mass distributions for qq̄ → bW+b̄W− are also plotted in figure 7(b). The

enhancement factor is smaller than unity because of the repulsive force, whose values are

about 0.96 and 0.98 at mtt̄ = 400 GeV and 500 GeV, respectively.

2.3 Inclusion of ISR effects and K-factors

In this subsection we explain how we incorporate the ISR effects in the cross sections in

our framework. In addition, we determine the K-factors to match our predictions for the

tt̄ invariant-mass distributions to the available NLO predictions.

In hadron collisions, it is important to include the ISR effects. In our framework, they

are incorporated by connecting the differential cross sections computed from the matrix

elements eq. (2.8) to a parton-shower simulator such as PYTHIA [51] or HERWIG [52]. In

addition, we include “K-factors” as the normalization constants of the cross sections for

I → bW+b̄W− in the individual channels.11 The K-factors are determined such that the

tt̄ invariant-mass distribution for each channel in the threshold region matches the corre-

sponding NLO prediction in the threshold region. We also extrapolate these K-factors to

the large mtt̄ region. The main reason to do so is a lack of the NLO predictions in the large

mtt̄ region for the individual channels: The present theoretical prediction for the NLO

tt̄ invariant-mass distribution in the large mtt̄ region is provided numerically only for the

color-summed cross section for on-shell top-quark productions [12]. Theoretically, by naive

extrapolation of the K-factors, we reproduce the double-logarithmic terms of the cross sec-

11Note that the parton shower simulators incorporate ISR effects by way of stochastic processes, and that

the tt̄ invariant-mass distributions handed to the simulators at the parton level are not affected by the ISR

effects.
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tions correctly in the large mtt̄ region, due to the universal structure of soft-gluon emissions;

on the other hand, we do not reproduce the single-logarithmic and non-logarithmic terms.

The NLO corrections to the tt̄ invariant-mass distributions in the threshold region

are known for the individual channels [20, 21]. The corrections are given in terms of the

hard-correction factors and the gluon radiation functions. The major difference of the

predictions of [20] and [21] is that in the latter predictions contributions from high
√
ŝ

(the c.m. collision energy of the initial partons) are included more accurately.12 Hence, we

use the latter predictions to compute the K-factors.13 We can determine the K-factors by

taking the ratios of these NLO partonic cross sections and our (LO) partonic cross sections

given in section 2.2. Since the NLO cross sections [20, 21] do not include contributions from

non-resonant diagrams M(c)
nr , accordingly we incorporate only the contributions from the

resonant diagrams M̃(c)
tt̄

in the LO cross sections when we compute the K-factors. (In most

of the threshold region, the effect of M̃(c)
nr is irrelevant in any case, since resonant diagrams

dominate.) Furthermore, in calculating the K-factors, we use the CTEQ6M PDFs [56] and

the 2-loop running of the strong coupling constant αs for the NLO mtt̄ distribution, while

the CTEQ6L1 PDFs and the 1-loop running of αs are used for the LO distribution. (We

find that the K-factors obtained by using the MSTW2008 PDFs [57] are quite similar.)

In general, the K-factors depend on mtt̄. We first examine mtt̄-dependences of the

K-factors as we choose different renormalization and factorization scales, µR and µF . The

renormalization scale µR enters the NLO formula as the scale of the strong coupling con-

stant and also through the logarithmic term in the hard-vertex function; see eq. (3.2) of [21].

On the other hand, the factorization scale µF enters the NLO formula as the scale of the

parton distribution functions (PDFs) and through the terms with ln
(
m2

tt̄/µ
2
F

)
in the gluon

radiation functions; see eqs. (3.4-3.7) of [21]. We find that, the mtt̄-dependences of the

K-factors can be relatively flat in the threshold region, with appropriate choices of µR and

µF . In this case, extrapolation of the K-factors from the threshold region to the high mtt̄

region can be performed trivially. Indeed, for simplicity of our analysis, we take the K-

factors to be independent of mtt̄. In figure 8, we plot the K-factors of the tt̄ invariant-mass

distributions in the individual channels at the LHC with
√
s = 14 TeV, in the cases that we

choose the scales as µR = µF = κmt with κ = 0.5, 1, 2. As can be seen, the mtt̄-dependence

of the K-factors are mild. We have also examined the K-factors corresponding to the LHC

with
√
s = 7 TeV and Tevatron with

√
s = 1.96 TeV; we find that the K-factors are only

mildly dependent on mtt̄ also in these cases. In table 1, we list the numerical values of the

K-factors for all the channels corresponding to the LHC
√
s = 14 TeV, 7 TeV and Tevatron√

s = 1.96 TeV, obtained at mtt̄ = 2mt for µR = µF = κmt with κ = 0.5, 1, 2. The values

of the K-factors for κ = 1 will be used in the following.

We check consistency of our K-factor normalization in the large mtt̄ region, by com-

paring our prediction for the color-summed tt̄ invariant-mass distribution with the NLO

prediction. In figure 9 we plot the ratio of these two cross sections. In the former distribu-

12In the gluon radiation functions, the terms enhanced by plus-distributions or delta-functions as z → 1

are common in [20] and [21], while non-enhanced terms differ.
13In [21], effects of resummation of threshold logs are also examined and found to enhance the normal-

ization at 10% level. See also [53–55].
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(middle) and qq̄ (bottom) channels at the LHC
√
s = 14TeV. The dashed, solid and dotted lines

are obtained with µR = µF = κmt with κ = 0.5, 1 and 2, respectively.

LHC 14 TeV LHC 7 TeV Tevatron

κ gg[c=1] gg[c=8] qq̄ gg[c=1] gg[c=8] qq̄ gg[c=1] gg[c=8] qq̄

0.5 0.79 1.02 0.88 0.87 1.13 0.89 1.30 1.72 0.87

1 1.14 1.39 1.16 1.31 1.60 1.18 2.11 2.60 1.18

2 1.48 1.75 1.42 1.75 2.07 1.45 2.95 3.48 1.45

Table 1. K-factor normalization constant for each channel (gg color-singlet, octet and qq̄) for

the LHC
√
s = 14TeV, 7 TeV and the Tevatron, with setting the factorization and renormalization

scales to µR = µF = κmt with κ = 0.5, 1, 2.

tion, we include the K-factors, while we do not include the non-resonant diagrams M̃(c)
nr

[c.f. (ii) of figure 6]. The latter distribution is computed for the on-shell tt̄ productions, by

MC@NLO [34, 35] with CTEQ6M PDFs with a scale choice µF = µR =
√
m2

t + p2
T,t. As can be

seen, both cross sections are mutually consistent within 2% accuracy up to mtt̄ = 800 GeV.

Including non-resonant diagrams in a way that the gauge cancellation holds effectively,

our final formula for the matrix element at parton level reads

M(c)

bW+b̄W−
(I → bW+b̄W−) =

√
K
[
M̃(c)

tt̄ + M̃(c)
nr

]
. (2.25)

M̃(c)
tt̄

and M̃(c)
nr are given in eqs. (2.23) and (2.24).

3 Event generation and top-quark distributions

In this section, we present numerical evaluations of various kinematical distributions of

the top-quark computed from the pp → bW+b̄W− cross section, using the theoretical

framework explained in the previous section. In particular we study the bound-state effects

on these distributions.
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Figure 9. Ratio of the two color-summed tt̄ invariant-mass distributions: The former is our

prediction including the K-factors but omitting the non-resonant diagrams, and the latter is the

NLO prediction by MC@NLO for on-shell top quarks.

Our numerical calculations are carried out based on the MadGraph output [58] which

makes use of the HELAS subroutines [59] for helicity-amplitude calculations. The original

MadGraph output code has been modified to implement the color-decomposition and to

include the bound-state effects via the Green functions. For the convenience of the readers,

we collect the formulas necessary for decomposing amplitudes into the color-singlet and

octet components of the tt̄ (or bb̄) system in appendix C. In particular, we discuss how to

implement the color decomposition into the MadGraph notation. The bound-state correction

factor

G(c)(E, ~p) =
G(c)(E, ~p)

G0(E, ~p)
, (3.1)

c.f. eq. (2.8), is pre-tabulated to save time for computing the momentum-space Green

functions.14

We perform phase-space integrations using BASES/SPRING [60], or alternatively by

adapting our code to MadEvent [32, 33] utilities (ver. 4.4.42), where both tools are able

to generate unweighted events at the partonic final-state level. For each event, we assign

the specific color-flow according to an ordinary manner, except the color-singlet channel,

as explained in appendix C. The generated events can be subsequently provided e.g. to

PYTHIA for simulations of parton-showering and hadronizations.

In the main body of this paper, we do not consider the decay of W ’s but consider only

the observables constructed from the bW+b̄W− final state. The W -boson decays can be

incorporated at the PYTHIA stage, where however the polarization of W -bosons cannot be

taken into account. Alternatively, one can calculate the helicity amplitudes including the

decay of W -bosons by specifying a decay mode for each W -boson. In appendix D, as a sam-

14The S-wave Green function depends only on |~p| but not on the direction of the three-momenta.
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Figure 10. tt̄ invariant-mass distribution in pp → bW+b̄W− at
√
s = 14TeV. Green solid line

is our full prediction and blue dashed line is the Born-level prediction. The NLO tt̄ production

computed by MC@NLO is also plotted in red dots. Right figure is the magnification of the threshold

region.

ple case, we examine the distributions of dileptons in the dilepton mode, where bothW ’s de-

cay leptonically, and study the effects ofW -boson polarization and bound-state corrections.

Below we show the results at the partonic bW+b̄W− final-state level. We do not

discuss the parton-showering and hadronization effects, in order to concentrate on the

examination of bound-state effects. For the parton distribution functions, we use the

CTEQ6L1 parameterization with the LO evolution (1-loop running) of the QCD coupling

constant. We set the renormalization and factorization scales to µR = µF = mt and

incorporate the K-factors obtained in section 2.3 to the cross sections in the individual

channels. [The final formula for the matrix element is given by eq. (2.25).] We set the top-

quark pole-mass, the (tree-level) on-shell top-quark width and the strong coupling constant

as mt = 173 GeV, Γt = 1.49 GeV and αs(Mz) = 0.1298, respectively.

In figure 10(a), we plot the tt̄ invariant-mass distribution in pp → bW+b̄W− pro-

duction at
√
s = 14 TeV. The tt̄ invariant-mass mtt̄ is defined as the invariant-mass of

the final bW+b̄W− system. The green solid line represents the full result which includes

the bound-state effects as well as the K-factors, and the blue dashed line represents the

Born-level result (the LO prediction in the conventional perturbative QCD approach).

Figure 10(b) shows a magnification of the same cross sections in the threshold region. As

shown in [20, 21], theoretically the bound-state effects can be seen most clearly in the

shape of the mtt̄ distribution in the threshold region. One can see that the cross section

is enhanced over the Born cross-section significantly by the bound-state effects, and there

appears a broad peak below the threshold corresponding to the 1S0 resonance state in the

color-singlet tt̄ channel. Far above the threshold, the bound-state effects disappear and the

cross section approaches the Born-level distributions, up to the K-factor normalization.

In the same figures, we also compare our prediction with the NLO mtt̄ distribution

computed by MC@NLO [34, 35] with CTEQ6M PDFs and the scale choice of µF = µR =√
m2

t + p2
T,t. The latter prediction includes the full NLO QCD corrections (but not the

Coulomb resummation) for the on-shell tt̄ productions; we switched on an option of MC@NLO
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Figure 11. The same as figure 10, but for the LHC
√
s = 7TeV.

to incorporate off-shellness of the top-quarks effectively by re-weighting the cross section

by skewed Breit-Wigner functions [61], so that the cross section is non-zero below the

threshold. (However, non-resonant diagrams are not incorporated.) Below and near the

threshold, our prediction is much larger than the MC@NLO prediction, due to the bound-state

formation. The two cross sections become approximately equal from around mtt̄ ∼ 370–

380 GeV up to larger mtt̄. Note that, in figure 9, the contributions from non-resonant

diagrams are not included in our full prediction, whereas in figures 10 they are included.

Integrating the distributions over mtt̄, the total cross section by our full (Born-level) cal-

culation is estimated as σbW+b̄W− = 855 pb (633 pb), while we obtain σtt̄ = 816 pb as the

MC@NLO prediction.

The shape of the mtt̄ distribution at the LHC 7 TeV, shown in figure 11, is similar to

that for the LHC 14 TeV. The total cross sections are estimated to be 158 pb, 106 pb and

146 pb by our full, Born-level calculations and MC@NLO, respectively.

Let us examine other distributions of the top quark. From figures 10 and 11, it is obvi-

ous that the phase-space region, where the bound-state effects are important, corresponds

to a rather limited portion of the full top-quark events produced at the LHC. Thus, in

various distributions formed by the full events, the bound-state effects may well be negli-

gible in practice. In order to examine the bound-state effects closely, in the following we

consider the events restricted by mtt̄ ≤ 370 GeV (except where otherwise stated), instead of

considering the full events. They amount to about 9% (8%) of the full events according to

our calculation with (without) the bound-state corrections at the LHC 14 TeV. Due to the

large tt̄ cross sections at the LHC, still a large number of such near-threshold events would

be accumulated. In this paper, we do not discuss the important subject of how to measure

mtt̄ in real experiments, which requires detailed studies of errors and fake solutions; one

may find them in earlier studies [15, 17].

One observes a characteristic bound-state effect in the (bW+)-(b̄W−) double-invariant-

mass distribution. In figures 12, we show the density plots of the invariant-masses of the

bW+ and b̄W− systems, given by (a) the Born-level prediction and (b) our full prediction.

In each figure, the number of events is normalized to 100,000 in total, and the number of

events per bin (0.2 GeV×0.2 GeV) is plotted with graded colors. The Born-level prediction
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Figure 12. Two-dimensional density plots of the bW+ and b̄W− invariant-masses, for the events

with mtt̄ ≤ 370GeV at the LHC
√
s = 14TeV. Left figure (a) is the Born-level prediction and right

figure (b) is our full result (including the bound-state corrections and K-factors). The mean value

and the root-mean-square value displayed in each figure are calculated for the events within the

frame of the figure.

(a) is essentially determined by the product of the Breit-Wigner functions, hence the dis-

tribution is almost reflection symmetric with respect to the on-shell lines (pb +pW+)2 = m2
t

and (pb̄ + pW−)2 = m2
t . By contrast, the distribution by our full prediction (b) is not sym-

metric and biased towards the configuration, where one of t or t̄ is on-shell and the other

has an invariant-mass smaller than mt. In fact, such a configuration is known to be the

dominant configuration just below the threshold in e+e− → tt̄ [24, 25], although in that

case deviation from the double Breit-Wigner distribution [figure 12(a)] is more prominent.

(Note that, below the threshold, t and t̄ cannot become simultaneously on-shell.)

In order to quantify the correlated deformation of the double-invariant-mass distribu-

tion, we count the fraction of the events for which both or either of the bW+ and b̄W−

invariant-masses satisfy

|mbW −mt| ≤ kΓt, (3.2)

where k = 1, 2, . . . , 5. These fractions are tabulated in table 2 for our full prediction

and for the Born-level prediction. The bound-state effect reduces the fraction for which

both invariant-masses are close to on-shell more than the fraction for which either of the

invariant-masses is close to on-shell. In the former case, the change of the fraction by

the bound-state effect amounts up to about 4%. For comparison, we also tabulate the

same fractions for the full events; in this case, the variation of the fractions are small

and at most 1%. In any case, a proper understanding of this effect would be important,

since it potentially biases the mass cut and may affect, for instance, the top-quark mass

measurement with high accuracy.
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mtt̄ ≤ 370 GeV Full events

k both [%] either [%] both [%] either [%]

1 37.0 (41.1) 87.0 (87.6) 46.8 (47.7) 90.3 (90.4)

2 55.5 (59.0) 95.2 (95.2) 67.6 (68.3) 97.0 (97.0)

3 64.2 (66.3) 97.3 (97.1) 76.3 (76.8) 98.5 (98.5)

4 69.2 (70.3) 98.1 (98.0) 81.0 (81.4) 99.1 (99.1)

5 72.3 (72.9) 98.6 (98.4) 83.9 (84.2) 99.4 (99.4)

Table 2. A fraction of events which satisfy |mbW − mt| ≤ kΓt for both or either of the bW

invariant-masses. The events with mtt̄ ≤ 370GeV as well as the full events at the LHC 14TeV are

considered. In the bracket is shown the result in Born-level.

Let us explain the mechanism how the bound-state effects alter the double-invariant-

mass distribution. As shown in appendix A, the leading part of the tt̄ amplitude M(c)
tt̄ has

a form

M(c)
tt̄

∝
〈

1

mtt̄ − [2
√
p̂2 +m2

t + V
(c)
QCD(r)]

〉
×
(

1

p̂0
t −

√
p̂2 +m2

t

+
1

p̂0
t̄ −

√
p̂2 +m2

t

)
(3.3)

where p̂µ
t ≡ p̂µ

b + p̂µ
W+ and p̂µ

t̄
≡ p̂µ

b̄
+ p̂µ

W−
are defined in the tt̄ c.m. frame, and p̂ ≡ |~̂pt|

denotes the magnitude of the top-quark three-momentum in this frame. The first factor on

the right-hand side 〈(mtt̄−H)−1〉, with H = 2
√
p̂2 +m2

t +V
(c)
QCD(r) [c.f. eq. (2.15)], denotes

the Green function of the tt̄ system. We suppress the top-quark width for simplicity. In

the case that tt̄ is in the singlet channel (c = 1), the potential energy between t and t̄ is

negative, V
(1)
QCD(r) < 0. Therefore, the denominator of the Green function become close

to zero (hence, the Green function is most enhanced) if p̂ is somewhat larger than the

on-shell momentum pOS ≡
√
m2

tt̄
/4 −m2

t , i.e., p̂ > pOS. On the other hand, the second

factor (p0
t −

√
p̂2 +m2

t )
−1 + (p0

t̄ −
√
p̂2 +m2

t )
−1 is most enhanced when p̂ = pOS, since

p0
t + p0

t̄ = mtt̄. Thus, there is a competition between the two factors on the right-hand

side of eq. (3.3). As a consequence, the dominant configuration is the one in which neither

of the two factors are maximal. In fact, in the dominant configuration one of t and t̄ is

on-shell and the other is off-shell: p̂2
t = m2

t , p̂
2
t̄ < m2

t , or, p̂2
t < m2

t , p̂
2
t̄ = m2

t . The effect is

opposite in the case that tt̄ is in the octet channel (c = 8). Since the magnitude of the octet

potential is much smaller than the singlet potential, V
(8)
QCD/V

(1)
QCD = −1/8, the bound-state

effect turns out to be much larger in the singlet channel than in the octet channel.

Displayed in figures 13(a) and (b) are the top-quark momentum (p̂) distributions of

the events with mtt̄ = 370 GeV (not with mtt̄ ≤ 370 GeV), for the color-singlet and octet

channels, respectively. To see essential features, only the tt̄ diagrams are taken into account

and the K-factors are not included. In each figure, the black solid (blue dotted) line shows

our full prediction (Born-level prediction). The peak momentum for each distribution is

shown with a vertical line. The peak momenta of the Born-level distributions are (to a

good approximation) the on-shell momentum, p̂peak ≈ pOS = 65.5 GeV. We see that the

bound-state effects shift the peak momentum by about 0.7 GeV to a larger value for the

color-singlet distribution, while the peak momentum of the color-octet channel is shifted
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Figure 13. Top-quark momentum (p̂ ≡ |~̂pt|) distributions in the partonic center-of-mass frame

for a fixed mtt̄ = 370GeV, (a) for the color-singlet channel, and (b) for the octet channel. The

solid lines represent our full prediction, after omitting the non-resonant diagrams. The dotted lines

represent corresponding distributions at the Born-level. In figure (a), the distribution by the non-

relativistic formula (replacing E′ → E in the Green function) is also plotted (the red dashed line).

only by 50 MeV to a smaller value. In the color-summed cross section, the peak momentum

is shifted to a larger value. Consequently, one of the invariant-masses of the bW+ and b̄W−

systems is reduced below mt. The integral of this effect over the region mtt̄ ≤ 370 GeV can

be seen in figure 12(b).

One may suspect that the above shifts of the invariant-masses (or the shift of the

peak momentum) may be an artifact of our specific method to interpolate the tt̄ cross

sections in the threshold region and in the higher mtt̄ region. To check this, let us estimate

the size of the shift of the peak momentum at mtt̄ = 370 GeV and compare it with the

above prediction. The distance a top-quark propagates before it decays is estimated as

γcτ = mtt̄/(2mtΓt) = 0.72 GeV−1 = 1/(1.4 GeV). This distance is considered to be within

the range where the potential V
(1)
QCD(r) can be estimated perturbatively, although the 1-

loop potential tends to underestimate the bound-state effect.15 The shift of the average

momentum may be estimated by
[
{mtt̄−V (1)

QCD(γcτ)}2/4−m2
t

]1/2−pOS = 0.66 GeV. Hence,

the effect seen in figure 13(a) seems to be physical.

We note that the effect elucidated here is a kind of effect that can never be seen

in perturbative QCD computations for the on-shell tt̄ productions, such as those given

in [34–36]. This is because, the effect originates from the exchange of Coulomb gluons

between off-shell t and on-shell t̄ (or vice versa). Our full prediction correctly incorporates

the (gauge-independent) LO off-shellness of the top quark as dictated by the exchange of

Coulomb gluons, which is crucial for predicting the deformations of the top-quark momen-

tum distribution and the double-invariant-mass distribution of the bW+ and b̄W− systems.

Now we are in a position to understand the origin of the abnormally large enhancement

of the cross section, which we observed in section 2.1, in the case that we use the non-

relativistic formula for the differential cross section at large mtt̄; see the red dot-dashed

15See e.g. [62] for the recent status of the perturbative prediction for the QCD potential.
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Figure 14. Normalized distributions of (a) the top-quark momentum, p = |~pt| = |~pb + ~pW+ |, and

(b) the bW invariant-mass, both defined in the lab. frame and for the events with mtt̄ ≤ 370GeV.

Green solid lines represent our full predictions, while the blue dashed lines represent the Born-level

predictions.

line in figure 3. The non-relativistic formula corresponds to replacing the Hamiltonian

H = 2
√
p̂2 +m2

t + V
(c)
QCD(r) by H = 2mt + p̂2/mt + V

(c)
QCD(r) in the Green function in

eq. (3.3). Thus, the non-relativistic formula overestimates the kinetic energy of the tt̄

system in the large mtt̄ region, 2mt + p̂2/mt > 2
√
p̂2 +m2

t . For this reason, the two factors

on the right-hand side of eq. (3.3) can be brought close to maximal simultaneously with a

nearly on-shell momentum, p̂ ≃ pOS, since all the denominators in this expression nearly

vanish. Since the individual factors are made of pole-type functions, applying an inaccurate

kinematical relation only in one of the denominators can lead to a substantial overestimate

of the cross section. In figure 13(a) we also plot the top-quark-momentum distribution

computed with the non-relativistic formula, eq. (2.8) after the replacement E′ → E for

the singlet channel (red dashed line). As can be seen, the peak momentum approaches the

on-shell momentum and the distribution is more enhanced around the peak, compared to

our full prediction.

Other top-quark distributions are less affected by the bound-state effects. In fig-

ure 14(a), we show the normalized distribution of the top-quark momentum p = |~pt| =

|~pb + ~pW+| in the laboratory frame. In figure 14(b), we show the normalized distribution of

the invariant-mass of bW (bW+ or b̄W−). The Born-level and full predictions are shown by

the green solid and blue dashed lines, respectively. These lines in figure 14(b) correspond

to the projections of figures 12(a,b) to the mbW+ (or mb̄W−) axis. All the histograms in

figures 14(a,b) are normalized, such that their integrals take the same value.

In e+e− collisions, the top-quark momentum distribution in the threshold region is

known to be proportional to the absolute square of the momentum-space Green func-

tion [25, 26], whose shape is strongly influenced by the bound-state effects. At hadron

colliders, the top-quark momentum is boosted along the beam direction, and also the par-

tonic collision energy is not fixed. As a result, even if we limit the events to those with

mtt̄ ≤ 370 GeV, the distribution of the top-quark momentum (p, defined in the lab. frame)

is not much affected by the bound-state effects at hadron colliders.
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The mbW distribution is important for the determination of the top-quark mass, hence

it should be understood well. The bound-state effects deform the Born-level mbW distribu-

tion towards the lower side. The mean values of mbW over the range |mbW −mt| < 5GeV

are estimated to be 172.7 GeV and 172.9 GeV, for the full and Born-level predictions, re-

spectively. The change of the mean value is about −200 MeV, for the restricted events with

mtt̄ ≤ 370 GeV. At the LHC 7 TeV, we obtain almost the same result as in the 14 TeV case.

At the Tevatron 1.96 TeV, where the qq̄ color-octet channel dominates, the mean values of

mbW are estimated as 172.96 GeV and 172.98 GeV, respectively. Thus, the variation of the

mean value is rather small. Note that MC@NLO predicts a mbW distribution similar to the

Born-level distribution, since it simply re-weights the on-shell tt̄ cross-section by skewed

Breit-Wigner functions.

4 Summary

In the first part of this paper (section 2), we explain our theoretical framework for including

the bound-state effects in the fully differential cross sections for the top-quark production

and their subsequent decay processes at hadron colliders.

We formulate a theoretical basis to compute the fully differential top-quark cross-

sections, which are valid at leading-order both in the threshold and high-energy regions,

and which smoothly interpolate between the two regions. The tree-level tt̄ double-resonant

amplitude for each process is multiplied by a correction factor, which is written in terms

of the (well-known) non-relativistic Green function, but using a modified energy. This

prescription preserves the required unitarity relation between the total and differential

cross sections, which would be seriously violated had we used the naive non-relativistic

formula for the differential cross sections at higher energies.

We also include into the cross sections two important subleading corrections induced

by the large top-quark width. (i) In addition to the tt̄ double-resonant diagrams, which

receives the above bound-state corrections, we include the contributions of non-resonant

diagrams, whose effects are comparatively larger at higher energies. (This is more or less

trivial.) (ii) As long as we perform numerical integrations of the differential cross sections,

a sizable phase-space-suppression effect in the threshold region is inevitable, due to the

sizable off-shellness of top quarks. In order to effectively account for the gauge cancellation

by the Coulomb enhancement, we compensate the phase-space-suppression effect (by hand).

Finally we incorporate ISR and the K-factors. ISR effects are incorporated by con-

necting our differential cross sections to a parton-shower simulator such as PYTHIA or

HERWIG. We determine the K-factors for the cross sections in the individual channels by

matching them to the corresponding NLO tt̄ invariant-mass distributions in the threshold

region. With an appropriate choice of scales and using mtt̄-independent K-factors, we have

checked that the color-summed tt̄ invariant-mass distribution agrees with the conventional

NLO prediction by MC@NLO reasonably well at high energies.

In the latter part of the paper (section 3), using the above fully differential cross

sections, we compute numerically various kinematical distributions of the top quark, con-

structed from the momenta of the bW+b̄W− final state (at the parton level). Our com-
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putations are carried out by MC event-generation using MadGraph, after implementing the

color decomposition and the bound-state corrections to the output codes.

We confirmed that our prediction reproduces the known NLO predictions for the tt̄

invariant-mass distribution in the threshold region (which include bound-state effects) at

the LHC 7 TeV or 14 TeV; in particular it exhibits the 1S resonance peak below threshold.

Furthermore, our prediction approaches smoothly to the conventional NLO prediction

(without bound-state effects) at higher invariant-masses, from around 30 GeV above

the threshold.

We restrict the events to those with mtt̄ ≤ 370 GeV (in the case 2mt = 346 GeV),

corresponding to about 10% of the full events, and examine kinematical distributions other

than the mtt̄ distribution. In particular, a characteristic bound-state effect on the (bW+)-

(b̄W−) double-invariant-mass distribution is observed. The distribution is deformed from

the double Breit-Wigner shape, towards the configuration in which one of the tt̄ pair is

close to on-shell and the other has a smaller invariant-mass than mt.

The effect can be understood as a consequence of a competition between the contribu-

tions from the (dominant) color-singlet Green function and from the t and t̄ propagators.

If the top-quark width were tiny, the Breit-Wigner distribution would tend to a delta-

function, and the top quarks would be forced to on-shell. Due to the large decay width,

however, the binding effect (towards off-shell mass) and the Breit-Wigner constraint (to-

wards on-shell mass) remain to be competitive up to a few tens GeV above the threshold.

This effect lowers the mean value of each bW invariant-mass by a few hundred MeV for

the above restricted set of events. The correlated deformation of the double-invariant-mass

distribution may affect the mass cut and eventually the top quark mass measurement at

the LHC. This requires further careful investigations. It would be worth emphasizing that

the bound-state effect elucidated here can never be seen in the conventional perturbative

QCD corrections to the on-shell tt̄ productions, since the off-shellness of the top quark

by the LO Coulomb binding effects plays a crucial role, and therefore it signifies a unique

aspect of the present study.

We examine other distributions, namely the (single) bW invariant-mass distribution

and top-quark-momentum distribution. The bound-state effects on these distributions as

a whole are not very significant, although there are certain systematic tendencies in the

small deformations of the distributions, such as the aforementioned shift of the mean value

of the invariant-mass. Furthermore, the dilepton distributions are examined including the

leptonic decays of W ’s at the matrix-element level (appendix D). We have confirmed the

previous observations that the effects of W -boson polarization are quite significant, whereas

we find that the bound-state effects are much smaller.
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A Green function of the tt̄ system

In this appendix we explain how part of the Feynman amplitude corresponding to I →
tt̄ → bW+b̄W− (I = gg and qq̄) can be identified with a Green function that dictates

the time evolution of the tt̄ system. The argument is not restricted to the non-relativistic

region. In order to define the bound-state as an eigenstate of the full Hamiltonian, we

consider the limit Γt → 0.16

Before providing a general argument, it would be pedagogical to demonstrate a decom-

position of the three-point function 〈0 |T : ψ̄(x)γµψ(x) : ψ̄(y)ψ(z) | 0 〉 in the free top-quark

case, i.e., in the limit αs → 0. Here, ψ(x) represents the top-quark field operator. The

three-point function is included, for example, in the amplitude for γ∗ → tt̄ → bW+b̄W−.

One can express the three-point function as

〈0 |T : ψ̄(x)γµψ(x) : ψ̄(y)ψ(z) | 0 〉tree
F.T.
==

pα
t γα +mt

p2
t −m2

t + iǫ
γµ −pβ

t̄
γβ +mt

p2
t̄
−m2

t + iǫ
(A.1)

=

[
Λ+(~p)

p0
t − ω(~p) + iǫ

− Λ−(~p)

p0
t + ω(~p) − iǫ

]
γµ

[
Λ−(~p)

p0
t̄
− ω(~p) + iǫ

− Λ+(~p)

p0
t̄
+ ω(~p) − iǫ

]
,

where F.T. stands for the Fourier transform, and ω(~p) =
√
~p 2 +m2

t . In the second equality,

we have separated the contributions of particle propagating forward in time and antiparticle

propagating backward in time. Here,

Λ±(~p) =
±ω(~p)γ0 − ~p · ~γ +mt

2ω(~p)
(A.2)

represent the projection operators of a four-component spinor to the t and t̄ components.

Let us drop the contributions of non-resonant parts (far off-shell contributions) in the last

line of eq. (A.1), which are O(Γt/mt) had we retained the top-quark width in the top quark

propagator. This corresponds to taking the contribution of the time ordering x0 < y0, z0

of the left-hand-side of the equation. Noting that p0
t + p0

t̄ = mtt̄, the resonant part can be

expressed as

Λ−(~p)

p0
t̄
− ω(~p) + iǫ

γµ Λ+(~p)

p0
t − ω(~p) + iǫ

=
Λ−(~p) γµ Λ+(~p)

mtt̄ − 2ω(~p) + iǫ
×
[

1

p0
t − ω(~p) + iǫ

+
1

p0
t̄ − ω(~p) + iǫ

]
. (A.3)

In coordinate space, this equation corresponds to the splitting of the time ordering x0 <

y0, z0 into two orderings x0 < y0 < z0 and x0 < z0 < y0. On the right-hand side, the factor

outside the square bracket represents the time evolution of the tt̄ system. We may identify

the denominator of this factor with mtt̄ −H0 + iǫ and observe that the Hamiltonian H0 of

16We are not aware how to incorporate the resonance width in the formulation explained in this appendix.

It should not be a problem, however, since we want to find an expression that is valid as Γt → 0.
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the free tt̄ system is given by 2ω(~p) = 2
√
~p 2 +m2

t . The first term in the square bracket

represents the propagation of t after t̄ decayed first, whereas the second term represents

the propagation of t̄ after t decayed first.

Now we develop a general argument. The four-point function of t and t̄

〈0 |T ψ(x1)ψ̄(x2)ψ̄(x3)ψ(x4) | 0 〉 (A.4)

is a building block of the Feynman amplitude for I → tt̄ → bW+b̄W−. The above four-

point function can be decomposed to the sum of the different time orderings of x1, x2, x3, x4.

As shown in [63], the bound-state contributions are included in the orderings in which

Min(x0
1, x

0
2) > Max(x0

3, x
0
4). In fact, one may use the relation

θ(x0)
F.T.
==

i

k0 + iǫ
, (A.5)

to show that

〈0 |T ψ(x1)ψ̄(x2)ψ̄(x3)ψ(x4) | 0 〉
∣∣∣∣
Min(x0

1,x0
2)>Max(x0

3,x0
4)

(A.6)

F.T.
==

[
∑

n

1

2Mn

ϕn(~pf )ϕ̄n(~pi)

mtt̄ −Mn + iǫ

]
×
[

1

p0
t,f − ω(~pf ) + iǫ

+
1

p0
t̄,f

− ω(~pf ) + iǫ

]

×
[

1

p0
t,i − ω(~pi) + iǫ

+
1

p0
t̄,i

− ω(~pi) + iǫ

]
+ (non-resonant part),

in the c.m. frame of the tt̄ pair. pµ
t,i and pµ

t,f (pµ
t̄,i

and pµ
t̄,f

) denote the four momenta of

the initial and final t (t̄), respectively, in the tt̄ c.m. frame; ~pi = ~pt,i = −~pt̄,i and ~pf =

~pt,f = −~pt̄,f . The first line on the right-hand side of eq. (A.6) is identified with the Green

function of the tt̄ system, which includes the bound-state poles, 〈~pf | [mtt̄ −H + iǫ]−1 | ~pi 〉.
The bound-state wave functions are defined as17

ϕn(~p) =
〈0 |ψ(0) | t; ~p 〉 〈t; ~p | ψ̄(0) | n 〉

2ω(~p)
= ±〈0 | ψ̄(0) | t̄;−~p 〉 〈t̄;−~p |ψ(0) | n 〉

2ω(~p)
,

ϕ̄n(~p) =
〈n |ψ(0) | t; ~p 〉 〈t; ~p | ψ̄(0) | 0 〉

2ω(~p)
= ±〈n | ψ̄(0) | t̄;−~p 〉 〈t̄;−~p |ψ(0) | 0 〉

2ω(~p)
. (A.8)

|
(−)
t ; ~p〉 denotes the (anti)top-quark one-particle state with momentum ~p. The bound-state

|n 〉 is defined as an eigenstate of the full Hamiltonian, H |n 〉 = Mn |n 〉, and it is assumed

to be a CP eigenstate.

In eq. (A.6), the bound-state poles stem from the time evolution between Min(x0
1, x

0
2)

and Max(x0
3, x

0
4), whereas the single particle poles stem from the time evolution between

17ϕn(~p) is related to the Bethe-Salpeter wave function χn(p) by

χn

„

pt − pt̄

2

«

≡

Z

d4(x− y) exp

»

i



pt − pt̄

2
· (x− y) +Mn

x0 + y0

2

ff–

〈0 |T ψ(x) ψ̄(y) |n 〉 (A.7)

= ϕn(~p)

»

i

p0
t − ω(~p) + iǫ

+
i

p0
t̄
− ω(~p) + iǫ

–

+ (terms without a single particle pole).
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x0
1 and x0

2 and between x0
3 and x0

4. For instance, in the case that x0
1 > x0

2 > x0
3 >

x0
4, one may insert the projection operators to the subspaces spanned by single particle

states,
∫ d3~p

(2π)32ω(~p)
| t; ~p 〉 〈t; ~p | and

∫ d3~p
(2π)32ω(~p)

| t̄;−~p 〉 〈t̄;−~p |, to extract the contributions

from single-particle poles. Then the bound-state poles and single-particle poles appear

from the Fourier transform

θ(x0
2 − x0

3) 〈t; ~p | ψ̄(0, ~x2) e
−iH(x0

2−x0
3) ψ̄(0, ~x3) | t̄;−~p 〉 (A.9)

F.T.
== 〈t; ~p | ψ̄(0)

1

mtt̄ −H + iǫ
ψ̄(0) | t̄;−~p 〉

=
∑

n

1

2Mn

〈t; ~p | ψ̄(0) |n 〉 〈n | ψ̄(0) | t̄;−~p 〉
mtt̄ −Mn + iǫ

+ (non-resonant part),

and

θ(x0
1 − x0

2) 〈0 |ψ(0) e−iH(x0
1−x0

2) | t; ~p 〉 F.T.
==

i

p0
t − ω(~p) + iǫ

〈0 |ψ(0) | t; ~p 〉 (A.10)

+(terms without a single particle pole).

We may also express θ(x0
3 − x0

4) 〈t̄;−~p | e−iH(x0
3−x0

4) ψ(0) | t; ~p 〉 in a similar manner. The

second line of eq. (A.9) can be identified with the Green function of the tt̄ system.

B Derivation of the off-shell suppression effect

In this appendix we derive the off-shell suppression effect for the process I → tt̄ with

I = gg or I = qq̄ in the threshold region. A similar formula for the process e+e− → tt̄ was

derived in [25].

The tree-level double-resonant amplitude has a form

M(c)
tt̄ (p1, p2; pb, pW+, pb̄, pW−)tree (B.1)

= D(pt; pb, pW+) · SF (pt) · P(c)
I (p1, p2; pt, pt̄) · S̄F (pt̄) · D̄(pt̄; pb̄, pW−),

where D and D̄ represent the decay part of t and t̄, respectively, SF and S̄F denote the

propagators for t and t̄, respectively, in FWS:

SF (pt) =
i(p/t +mt)

p2
t −m2

t + imtΓt
, (B.2a)

S̄F (pt̄) =
i(−p/t̄ +mt)

p2
t̄
−m2

t + imtΓt
. (B.2b)

P(c)
I represents the tt̄ production part which depends on the initial-state partons I.

Integrating |M(c)
tt̄,tree

|2 over the bW+b̄W− phase-space for a fixed tt̄ invariant-mass
√
s,

we obtain the tt̄ invariant-mass distribution in the following form:

σ̂
(c)

I→bW+b̄W−
(s) =

∫
dst

2π

dst̄

2π
ρ(st)ρ(st̄) σ̂

(c)
I,off(s; st, st̄), (B.3)
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where

ρ(s) = 2
√
sΓt(s)|∆F (s)|2 , ∆F (s) =

1

s−m2
t + imtΓt

, (B.4)

and Γt(s) denotes the running width of the top quark with p2
t = s in the unitary gauge.

Explicitly it is given by replacing m2
t by s in the on-shell decay width:

Γt(s) = θ
(
s− (mW +mb)

2
) GF s

3
2

8
√

2π
λ

(
1,
m2

W

s
,
m2

b

s

)
f

(
m2

W

s
,
m2

b

s

)
, (B.5)

where f(x, y) = 1+x−2y−2x2 +xy+y2 and λ(a, b, c) =
√
a2 + b2 + c2 − 2(ab+ bc+ ca).

In eq. (B.3), σ̂
(c)
i,off(s; st, st̄) represents the off-shell tt̄ cross-section, corresponding to the t

and t̄ invariant-masses of st and st̄, respectively.

The formula (B.3) is obtained in the following manner. First we define the t and t̄

decay parts of the matrix-element squared, integrated over the bW phase-space, as

σt(p/t) ≡
∫
dΦ2(p

2
t ; pb, pW+)

∑(
DDd

)
=

Γt(p
2
t )√
p2

t

p/t(1 − γ5), (B.6a)

σ̄t̄(p/t̄) ≡
∫
dΦ2(p

2
t̄ ; pb̄, pW−)

∑(
D̄dD̄

)
=

Γt(p
2
t̄ )√
p2

t̄

p/t̄(1 − γ5), (B.6b)

where the summation is over the spins of the final b-quark and W -boson. Here and

hereafter, Ad = γ0A†γ0 denotes the Dirac conjugate. Decomposing the four-body phase-

space and utilizing eqs. (B.6), the bW+b̄W− cross-section is given by

σ̂
(c)

I→bW+b̄W−
(s)=

1

2s

∫
dp2

t

2π

dp2
t̄

2π
dΦ2(s; pt, pt̄)Tr

[{
Sd

FσtSF

}
·P(c)

I ·
{
S̄F σ̄t̄S̄d

F

}
·P(c)d

I

]
, (B.7)

where Tr includes averaging over the spins and colors of the initial-state partons. The

spinor matrices in the curly brackets {· · · } are calculated to be

Sd

FσtSF = 2
√
p2

t Γt(p
2
t )|∆F (p2

t )|2Σt(p/t), (B.8a)

S̄F σ̄t̄S̄d

F = 2
√
p2

t̄ Γt(p
2
t̄ )|∆F (p2

t̄ )|2Σt̄(p/t̄), (B.8b)

with

Σt,t̄(p/) =
p2 +m2

t

2p2
p/±mt ±

p2 −m2
t

2p2
p/γ5. (B.9)

Thus, we obtain eq. (B.3) with the off-shell cross section

σ̂
(c)
I,off(s; p2

t , p
2
t̄ ) =

1

2s

∫
dΦ2(s; pt, pt̄)Tr

[
Σt(p/t) · P(c)

I · Σt̄(p/t̄) · P(c)d
I

]
. (B.10)

Note that in the case p2
t = p2

t̄ = m2
t , σ

(c)
I,off equals the on-shell tt̄ production cross section.
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Below the tt̄ threshold, the dominant kinematical configuration is such that either one

of t and t̄ is on-shell, because of the presence of the |∆F |2 factors. Taking this into account,

the off-shell cross section can be approximated by

σ̂
(c)
I,off(s; st, st̄) ≃ σ̂

(c)
I→tt̄(s)

λ(1, st

s ,
st̄

s )

βt
FI

(
m2

t

st
,
m2

t

st̄

)
, (B.11)

where σ̂
(c)
I→tt̄

(s) are the cross sections for the on-shell tt̄ productions; Fgg(x, y) = xy and

Fqq̄(x, y) = (2 +x+ y)/4. The factor λ(1, st

s ,
st̄

s ) originates from the tt̄ phase-space volume

and reduces to βt =

√
1 − 4m2

t

s in the on-shell limit st = st̄ = m2
t .

Thus, the ratio of the bW+b̄W− cross section to the on-shell tt̄ cross section is given

by

σ
(c)

I→bW+b̄W−
(s)

σ
(c)
I→tt̄(s)

≃
∫
dst

2π

dst̄

2π
ρ(st)ρ(st̄)

λ(1, st

s ,
st̄

s )

βt
FI

(
m2

t

st
,
m2

t

st̄

)
. (B.12)

√
stΓt(st)

√
st̄Γt(st̄) in the ρ factors, which stems from the bW phase-space volumes, pos-

sesses strong dependences on the invariant-masses of t and t̄:
√
sΓt(s) ∼ s2 since the

running width behaves as Γt(s) ∼ s3/2. Below the threshold, either of t and t̄ is forced to

be off-shell (p2 < m2
t ), hence

√
stΓt(st)

√
st̄Γt(st̄) acts as a suppression factor. On the other

hand, the remaining factors λ/βt and FI give only weak enhancement near the threshold.

Thus, the effect of phase-space-suppression is approximately accounted for by the ratio

√
stΓt(st)

mtΓt
·
√
st̄Γt(st̄)

mtΓt
(B.13)

for fixed st and st̄. The ratio eq. (B.12) is considerably less than unity below the threshold.

C Color decomposition of the amplitude and color flow in gg channel

In this section, we describe the color structure of the gg → tt̄ matrix-element, and its

decomposition into color-singlet and octet components. Moreover, we comment on the

color flow in gg channel.

By explicitly stating the color indices of initial-state gluons (a, b) and final-state t and

t̄ (i,j), the matrix element at the Born-level can be written in a following form;

Mab
ij (pk, λk) =

1

2

{
T a, T b

}
ij
MS(pk, λk) +

1

2

[
T a, T b

]
ij
MA(pk, λk), (C.1)

where MS and MA represent the subamplitudes for color-symmetric and anti-symmetric

part, respectively, which depend on the 4-momenta and helicities of initial- and final-state

particles. The color-factor in the color-symmetric part is decomposed into

1

2

{
T a, T b

}
ij

=
1

2N
δabδij +

1

2
dabcT c

ij , (C.2)
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where the first term represents color-singlet contribution and the second term color-octet.

The color-anti-symmetric part contains only color-octet contribution;

1

2

[
T a, T b

]
ij

=
i

2
fabcT c

ij . (C.3)

Since each part do not interfere with each other, the absolute square of the amplitude with

summing over colors is given as a sum of each contribution;

∑

colors

∣∣∣Mab
ij

∣∣∣
2

=
∑∣∣∣∣

1

2N
δabδij

∣∣∣∣
2

|MS |2

+
∑∣∣∣∣

1

2
dabcT c

ij

∣∣∣∣
2

|MS |2 +
∑∣∣∣∣

i

2
fabcT c

ij

∣∣∣∣
2

|MA|2 . (C.4)

The first line in the r.h.s. in eq. (C.4) is the color-singlet contribution and the second line

the color-octet.

Alternatively, we may express the amplitude in the following basis;

Mab
ij (pk, λk) =

(
T aT b

)
ij
MJ1(pk, λk) +

(
T bT a

)
ij
MJ2(pk, λk). (C.5)

The two basis, eq. (C.1) and eq. (C.5) are related byMS = MJ1+MJ2 andMA = MJ1−MJ2.

The absolute square of the amplitude is then written in a matrix form as,18

∑

colors

∣∣∣Mab
ij

∣∣∣
2

=
1

3

(
M∗

J1
M∗

J2

)( 16 −2

−2 16

)(
MJ1

MJ2

)
. (C.6)

By rewriting the absolute square of the color-singlet part of the amplitude in this basis,

the corresponding matrix for the color-singlet gg → tt̄ amplitude is found to be

∑∣∣∣∣
1

2N
δabδij

∣∣∣∣
2

|MS |2 =
1

3

(
M∗

J1
M∗

J2

)( 2 2

2 2

)(
MJ1

MJ2

)
. (C.7)

The color-octet contribution is obtained by subtracting eq. (C.7) from eq. (C.6).

Finally, we comment on the color flow in gg channel.19 In the color-singlet case, the

color flow is disconnected between initial-state and final-state, reflecting the color-factor

δabδij ; see the left diagram in figure 15.

In the color-octet case, there exist two kind of color flows, middle and right diagrams

in figure 15, associated with the color-factor; (T aT b)ij and (T bT a)ij , respectively. Either

of the two may be selected according to the ratio |MJ1 |2 : |MJ2 |2 at each phase-space point

and given helicities of initial and final-state particles in event generations. The color flow

in qq̄ channel is unique at Born-level.

18This matrix corresponds to the matrix CF in the MadGraph code (matrix.f).
19We thank F. Maltoni for pointing out the modification of the color-flow structure in MadEvent, see also

ref. [64].
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Figure 15. Color-flow diagrams in the gg → tt̄ amplitudes. Left diagram representing the color-

factor δabδij is for the color-singlet case, middle and right diagrams representing the color-factor

(T aT b)ij and (T bT a)ij , respectively, are for the color-octet case.

D Dilepton distributions in dilepton decay mode

In the main body of this paper we assume that the W -bosons from top-quark decays are on-

shell. In this appendix, we take into account decays of the W -bosons at the matrix-element

level. The advantage is to correctly take into account the off-shellness and polarization of

the W -bosons. This is crucial to predict correctly the angular distributions as well as other

kinematical distributions of the decay daughters of W ’s. As an example, we show some

distributions in the dilepton decay mode pp→ bW+b̄W− → bℓ+νℓb̄ℓ
−ν̄ℓ, where ℓ = e, µ.

We calculate the amplitudes from the set of Feynman diagrams obtained by just adding

the W → ℓνℓ vertex to the Feynman diagrams for the bW+b̄W− final state. We generate

the dilepton events at the LHC
√
s = 14 TeV with standard kinematical cuts for the lepton

momenta, |ηℓ| ≤ 2.5 and pT,ℓ ≥ 10 GeV. To avoid a singularity due to the vanishing running

top-quark width, see eq. (B.5) in appendix B, we restrict the phase-space integral region to

mbW > mb+mW . Note that the matrix-elements for mbW < mb+mW are very suppressed.

We set the W -boson decay-width to ΓW = 2.05 GeV.

In figures 16, we plot three different distributions of kinematical variables constructed

from the four-momenta of dileptons: (a1, a2) the invariant-mass of the two leptons, (b1,

b2) the distance in the η-φ plane, ∆Rℓℓ =
√

∆η2
ℓℓ + ∆φ2

ℓℓ, and (c1, c2) the difference of

the azimuthal angles, ∆φℓℓ. The first three graphs (a1, b1, c1) correspond to the events

from all the mtt̄ region, while the last three (a2, b2, c2) to the events with mtt̄ ≤ 370 GeV.

The solid lines represent our full prediction, and the dashed lines represent the Born-

level predictions. To see the effects of the non-zero W -boson polarization, we also plot

the distributions computed from the bW+b̄W− events followed by the leptonic decays of

on-shell unpolarized W -bosons.

We find that, due to the bound-state corrections, all three distributions are shifted

to the lower side, although the variations are fairly small even for the events with mtt̄ ≤
370 GeV. By contrast, the effects of the non-zero W -boson polarization is pronounced,

especially for the events with mtt̄ ≤ 370 GeV. The most evident difference can be seen

in the ∆φℓℓ distribution, where the full calculation predicts that the number of events at

∆φℓℓ = 0 is more than twice than the number of events at ∆φℓℓ = π, while almost flat

distribution by assuming the unpolarized W -bosons.

This finding is consistent with the similar study in ref. [17] where the importance

of the top-quark spin correlation in the ∆φℓℓ distribution is examined for the events with

mtt̄ ≤ 400 GeV. They compare the ∆φℓℓ distribution fully taking into account the top-quark

spin correlation with that assuming the spherical top-quark decay into bW ’s followed by the

– 34 –



J
H
E
P
0
9
(
2
0
1
0
)
0
3
4

 [GeV]llm
0 50 100 150 200 250 300

N
o

rm
al

iz
ed

 d
is

tr
ib

u
ti

o
n

0

0.02

0.04

0.06

0.08

0.1 Full result

Born-level

(Unpolarized W-dec.)

Full Events

llR∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o

rm
al

iz
ed

 d
is

tr
ib

u
ti

o
n

0

0.02

0.04

0.06

0.08

0.1

0.12

ll
φ∆

0 0.5 1 1.5 2 2.5 3

N
o

rm
al

iz
ed

 d
is

tr
ib

u
ti

o
n

0

0.02

0.04

0.06

0.08

0.1

0.12

 [GeV]llm
0 20 40 60 80 100 120 140 160 180 200

N
o

rm
al

iz
ed

 d
is

tr
ib

u
ti

o
n

0

0.02

0.04

0.06

0.08

0.1

0.12

Full result

Born-level

(Unpolarized W-dec.)

 370 GeV≤ 
tt

Events for m

llR∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
o

rm
al

iz
ed

 d
is

tr
ib

u
ti

o
n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ll
φ∆

0 0.5 1 1.5 2 2.5 3

N
o

rm
al

iz
ed

 d
is

tr
ib

u
ti

o
n

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 16. Distributions in an invariant-mass (left), a distance in η-φ plane (middle), and a

difference in the azimuthal angle (right) of the two leptons for the dilepton events at the LHC√
s = 14TeV. Top three graphs are for the full events, and bottom three graphs are for the events

with mtt̄ ≤ 370GeV. Blue solid line is the full result, blue dashed line is the Born-level result, and

red dot-dashed line is obtained by the full calculation but assuming unpolarized W -bosons.

correlated W -boson decay. Our calculation assuming unpolarized W -boson decays includes

the correct angular distributions in t → bW decays, but forcing spherical distributions in

W → ℓνℓ decays. Thus, to predict the dilepton observables, all the spin correlations in

decays of top-quarks and also W -bosons are required. We confirm their finding that the

difference in ∆Rℓℓ distribution comes from mainly the difference in ∆φℓℓ distribution.
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