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1 Introduction

The correlation functions in the N = 4 super-Yang-Mills theory (SYM) can be calculated
both at weak and at strong coupling, owing to the AdS/CFT duality [1–3]. The two-point
functions, by conformal symmetry, are determined by the spectrum of anomalous dimen-
sions, which can be computed non-perturbatively with the help of integrability (see [4–6]
for recent reviews), in the leading planar order of the large-N expansion. The three-
point functions are the simplest observables of the next order in 1/N . The three-point
functions of protected operators can be calculated at strong coupling in the supergravity
approximation [7–11]. Non-protected operators with large quantum numbers constitute
another potentially solvable case. At strong coupling they are dual to classical spinning
strings [12–15], and there has been a renewed interest in computing their correlation func-
tions holographically [16–18], but going beyond two-point correlators seems to be a difficult
task. Here we consider an intermediate case when two operators in the correlator are semi-
classical and one is protected.1 The three-point function can then be calculated with the
help of the method developed in [20]. We will also discuss transition to the regime when
all three states are semiclassical.

The three-point functions are determined by conformal symmetry up to an overall
numerical factor. If the operators are scalar and conformal primary, their three-point
functions have the form:

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x1 − x2|∆1+∆2−∆3 |x1 − x3|∆1+∆3−∆2 |x2 − x3|∆2+∆3−∆1
.

(1.1)
1Similar calculations are done, using a different method, in a parallel independent publication [19].
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Figure 1. (a) The three-point function of semiclassical operators. (b) The correlator of two
semiclassical operators and a supergravity mode.

The normalization here is important, and we will always assume that the two-point func-
tions of conformal primaries are unit normalized:〈

O†I(x)OJ(y)
〉

=
δIJ

|x− y|2∆I
. (1.2)

The constant CIJK then determines the coefficient with which the operator OI appears in
the operator product of OJ and OK :

OJ(x)OK(0) =
∑
I

CIJK |x|∆I−∆J−∆KOI(0) + descendants. (1.3)

On the string side of the duality, a SYM correlator is calculated by inserting vertex
operators in the string path integral. The string tension

√
λ/2π is large when the SYM

’t Hooft coupling λ is large, and at strong coupling the path integral is dominated by a
saddle point. The semiclassical states are characterized by parametrically large scaling
dimensions, ∆ ∝

√
λ, such that their vertex operators should be taken into account as

sources in the equations of motion for the embedding coordinates in AdS5 × S5 [21]. The
vertex operator insertions make the string shrink and approach the boundary of AdS5 at
x1, x2, x3, as shown in figure 1a.2 The correlator is determined by the classical string
action, and is thus exponential in

√
λ. The x-dependent factors in (1.1) are consistent

with this exponential dependence on (since ∆I ∼
√
λ) and, as shown in [17], the correct

space-time structure of the two- and three-point correlation functions indeed follows from
the classical string calculation. The OPE coefficients of the semiclassical states should also
be exponentially small (or large) at strong coupling: − lnCIJK ∝

√
λ.

2The semiclassical picture of the holographic correlation functions has been discussed at length in the

context of the AdS3/CFT2 correspondence [22].
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The classical string solutions that are dual to the two-point functions are relatively
simple. They can be obtained by the Euclidean continuation of spinning strings in global
AdS. In the Poincaré patch the string worldsheet indeed collapses onto the boundary at
two points [16, 17, 23]. Constructing solutions dual to three-point functions seems to be a
difficult problem.3 Here we study an intermediate case, when two strings are ”fat” (dual
to operators with ∆ ∝

√
λ) and one string is ”slim” and particle-like (dual to an operator

with ∆ = O(1)). The corresponding Witten diagram is shown in figure 1b. We further
assume that the ”fat” string is not much disturbed by the insertion of the ”slim” vertex
operator, which means that two of the operators in the correlator must be virtually the
same.4 Then we only need to know the fat-string solution for the two-point function and
the vertex operator of the slim string.

2 Holographic OPE

One of the operators in the correlation functions that we are going to compute will always
be a chiral primary. The chiral primary operators in N = 4 SYM theory are symmetrized
single-trace products of the six scalar fields from the N = 4 multiplet:

OCPO
I =

1√
k

(
8π2

λ

) k
2

Ki1...ik
I tr Φi1 . . .Φik . (2.1)

The coefficients Ki1...ik
I are symmetric traceless tensors of SO(6), which at the same time

define the spherical functions on S5:

YI(n) = Ki1...ik
I ni1 . . . nik . (2.2)

We assume the following normalization condition:

Ki1...ik
I Ki1...ik

J = δIJ . (2.3)

It guarantees the correct normalization of the two-point functions. Requiring orthonormal-
ity of the spherical functions leads to a different normalization condition, which is necessary
to keep in mind in the holographic calculations. The rescaling factor is computed in [9].

2.1 General formalism

To compute the three-point functions of the chiral primary operators with semiclassical
states, we will use the method applied in [20] to correlation functions of a local operator
with a Wilson loop. The method can be generalized to any non-local operator W which is

3The classical decay process of certain folded string solution has been studied in the Minkowski signa-

ture [24]. The relationship of these Minkowski-signature solutions in global AdS to the three-point functions

in SYM is not clear to us. On the one hand, as argued in [25], the holographic correlation functions are

described by tunneling. The Euclidean signature in this respect is more natural [18]. On the other hand,

the spinning string solutions with non-zero angular momenta in AdS approach the boundary at a point

only if the worldsheet is Minkowskian [17], otherwise (in the Euclidean signature) the boundary maps to a

line [18, 26].
4More precisely, they should be conjugate.
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dual to a classical string worldsheet. This can be a Wilson loop as in [20], or a product of
local operators as in our case. Let us define the following ratio of correlation functions:

〈OI(x)〉W =
〈W OI(x)〉
〈W〉

, (2.4)

where OI is the local operator of interest, which is dual to a supergravity mode.
At large distances the correlator falls off as |x|−2∆I , and we can extract the OPE

coefficient
CI [W] = lim

x→∞
|x|2∆I 〈OI(x)〉W . (2.5)

Assuming that the operator W has a finite space-time support, the OPE coefficient CI [W]
determines the amplitude to find OI in the operator expansion of W around the origin:

W =
∑
I

CI [W]OI(0) + descendants. (2.6)

When W is a product of two local operators, CI is related to the conventional OPE coef-
ficient from (1.1), (1.3):

CI [O†J(x1)OK(x2)] = |x1 − x2|∆ICJIK . (2.7)

How to calculate the correlation function (2.4) holographically? Keeping in mind that
OI is dual to a supergravity mode and W is dual to a classical string, the best suited
formalism is a hybrid of the first-quantized string theory and supergravity:

〈OI(y)〉W = lim
ε→0

π

ε∆I

√
2

∆I − 1

〈
φI(y, ε)

1
Zstr

∫
DX e−Sstr[X]

〉
bulk

. (2.8)

The integration variables X in the string path integral are the embedding coordinates of
the string worldsheet in AdS5 × S5 and, in principle, fermions, but in the semiclassical
approximation the fermions will not be important. For the AdS metric we take

ds2 =
dx2

µ + dz2

z2
, (2.9)

and parameterize S5 by a unit 6d vector n. The boundary conditions on the string world-
sheet are determined by the non-local operator W. The supergravity field φI(x, z) is dual
to the local operator OI , and the bulk average is defined by the action (interactions in the
bulk are 1/N suppressed):

Sbulk =
1
2

∫
d4x

dz

z5

[
(∂φI)

2 + ∆I (∆I − 4)φ2
I

]
. (2.10)

The field φI has the standard AdS propagator

〈φI(x, z)φI(y, w)〉bulk =
∆I − 1

2π2

z∆Iw∆I[
z2 + (x− y)2

]∆I

(
1 +O(w2)

)
. (2.11)
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The string action,

Sstr =

√
λ

4π

∫
d2σ
√
hhab∂aXM∂bXNGMN + . . . , (2.12)

depends on the supergravity modes φI indirectly, through the disturbance of the metric
created by the local operator insertion, which we denote by γMN :

GMN = gMN + γMN , (2.13)

where gMN is the unperturbed metric of AdS5 × S5. For brevity we have omitted the
coupling to BMN , the dilaton, and the fermions. The response of the metric to a pertur-
bation in φI depends on the details of the Kaluza-Klein reduction of the 10d supergravity
on S5 [27]. In general, the 10d metric perturbation is a linear combination of the normal
modes φI and their derivatives:

γMN = V I
MNφI , (2.14)

where V I
MN is a second-order differential operator with X-dependent coefficients.

At large λ the string path integral is dominated by a saddle point, and we can substitute
the classical solution for XM = (z(σ), xµ(σ),n(σ)), expand the string action to the linear
order in φI , and use the propagator (2.11) to calculate the bulk expectation value:

〈OI(y)〉W = −
√

2 (∆I − 1)λ
8π2

∫
d2σ
√
hhab∂aXM∂bXN

×V I
MN

(
X,

∂

∂x
,
∂

∂z

)
z∆I[

z2 + (x− y)2
]∆I

, (2.15)

The answer has the form of a vertex operator in the coordinate representation [28, 29]
integrated over the classical string worldsheet.

We can now take y to infinity, to determine the OPE coefficient CI [W]. The vertex
operator then simplifies a bit. In particular, ∂/∂x can be set to zero [20], because differ-
entiating in x increases the power of y and thus only contributes to correlators with the
descendants of OI(y):

CI [W] = −
√

2 (∆I − 1)λ
8π2

∫
d2σ
√
hhab∂aXM∂bXNV I

MN

(
X,

∂

∂z

)
z∆I . (2.16)

Throughout this paper we will use the conformal gauge for the classical solutions, and later
the Weyl-invariant factor

√
hhab will be replaced by δab.

In the case when OI is the chiral primary operator OCPO
I , the dual supergravity field

sI is a mixture of the metric with the RR four-form. The metric perturbation (2.14) can be
written explicitly after decomposing the 10d index into the tangent-space indices of AdS5

(m,n, . . .) and S5 (α, β, . . .): M = (m,α). The Kaluza-Klein reduction on S5 [27] gives [9]
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(see also [30]):

hmn =
1
Nk

2
k + 1

YI [2∇m∇n − k(k − 1)gmn] sI

hαβ =
2
Nk

kgαβYIsI

aαβγδ = − 1
Nk

εαβγδε∇εYIsI

amnpr =
1
Nk

εmnprsYI∇ssI , (2.17)

where YI ≡ YI(n) are the spherical functions (2.2). The common normalization factor,

N 2
k =

N2k(k − 1)
2k−3π2(k + 1)2

, (2.18)

takes into account the 10d gravitational constant, which appears in front of the supergravity
action and is equal to κ2

10 = (2π)5/8N2 in the units of the AdS radius, the mixing effects
in the KK reduction, and the unusual normalization of the spherical functions. The OPE
coefficients owe their universal 1/N dependence on N precisely to this normalization factor
(and ultimately to the 10d gravitational constant).

The RR field couples only to fermions which at the classical level can be neglected.
Substituting the metric from (2.17) into the string action we finally get for the OPE
coefficient5

CCPO
I [W] =

2
k
2
−3(k + 1)

√
kλ

πN

∫
d2σ YI(n)

[
zk−2 (∂x)2 − zk−2 (∂z)2 − zk (∂n)2

]
. (2.19)

We are going to use this formula to compute the three-point functions of various semiclas-
sical operators with the BMN-type chiral primary,

Ok =
1√
k

(
4π2

λ

) k
2

trZk, Z = Φ1 + iΦ2. (2.20)

This operator is the highest-weight state in the [0, k, 0] representation of SO(6). In the
standard angular parameterization of the five-sphere,

n = (sin θ cosϕ, sin θ sinϕ, cos θ sinα cosψ, cos θ sinα sinψ,

cos θ cosα cosβ, cos θ cosα sinβ), (2.21)

the associated spherical function is

Yk =
(
n1 + in2√

2

)k
= 2−

k
2 (sin θ)k e ikϕ. (2.22)

5In passing from (2.16) to this equation the partial derivatives in x can be dropped and the covariant

derivatives ∇µ are replaced by the Christoffel symbols.
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2.2 BMN operators

As a check on the formalism we first consider the case when the other two operators are
also chiral primaries, but carry large quantum numbers. The OPE coefficients of three
chiral primary operators are actually known exactly [9], since they are not renormalized
and do not depend on λ [9, 31–35] (but there are non-trivial 1/N corrections [36]). For the
BMN primaries (2.20) the OPE coefficients are equal to

Ck1k2k3 =
1
N

√
k1k2k3 (2.23)

where the condition k1 = k2 + k3 must be imposed to satisfy the R-charge conservation.
We can compute CJ+k

Jk at strong coupling in the regime when two operators are fat
and one is slim:

J = O
(√

λ
)
, k = O(1). (2.24)

The two-point function
〈
O†JOJ

〉
then is describes by the classical string solution [17, 23]:

x = R tanhκτ, R =
|x1 − x2|

2

z =
R

coshκτ
(2.25)

ϕ = iκτ, θ =
π

2
. (2.26)

which is basically the Euclidean continuation of the BMN geodesic [37]. The parameter κ
is related to the R-charge/dimension of the fat operators:

κ =
J√
λ
. (2.27)

Substituting this solution into (2.19) we find that the OPE coefficient scales with the
distance in the right way: Ck[O†J+k(x1)OJ(x2)] ∝ Rk = 2−k|x1 − x2|k, which agrees with
the conformal structure of the three-point function. Pulling out the factor of |x1 − x2|k

according to (2.7), and performing integration over the classical worldsheet we find:

CJ+k
J,k =

1
N

2−k−1J(k + 1)
√
k κ

∫ +∞

−∞
dτ

e−kκτ

coshk+2 κτ
=

1
N
J
√
k, (2.28)

in agreement with the exact result — in the regime (2.24) we cannot distinguish J and
J + k.

2.3 Spinning strings in S5

When the fat operators are dual to a spinning string on S5, the AdS part of the solution
for the two-point function is again described by the point-like geodesic (2.25). In S5 the
worldsheet is a periodic solution of the O(6) sigma-model n(σ, τ). The OPE coefficient
with the BMN chiral primary is given by (2.19), with (2.22) substituted for the spherical
function:

Ck =
(k + 1)

√
kλ

8πN

∫
d2σ zk e ikϕ sink θ

[
(∂x)2 − (∂z)2

z2
− (∂n)2

]
. (2.29)

– 7 –
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Using the explicit form of the AdS geodesic and excluding (∂n/∂σ)2 with the help of the
Virasoro constraints, we find, after extracting the factor of |x1 − x2|k:

Ck = −(k + 1)
√
kλ

2k+2πN

∫ +∞

−∞

dτ

coshk κτ

∫ 2π

0
dσ e ikϕ sink θ

[
κ2 tanh2 κτ +

(
∂n
∂τ

)2
]
. (2.30)

The periodic solutions of the O(6) sigma-model can be constructed in full generality
with the help of integrability methods [38, 39]. The dual operators can then be identified
through the Bethe ansatz equations. In principle the general finite-gap solution is know in
a relatively explicit form [40], but not explicit enough to calculate the integral (2.30). Here
we will compute the OPE coefficient for the folded string solution. The starting point is
the string that rotates on the big circle of S5 and spins around its centre of mass [41], which
then should be Wick rotated to the Euclidean signature. The dual operator corresponds
to the two-cut solution of the classical Bethe equations [42].

The folded string solution is characterized by two frequencies ω1, ω2 of rotation around
S5 and around the string’s centre of mass:

ϕ = iω1τ, ψ = iω2τ, α =
π

2
, θ = θ(σ), θ́2 = κ2 − ω2

1 sin2 θ − ω2
2 cos2 θ.

(2.31)
The σ dependence can be integrated in terms of elliptic functions whose modulus s is
related to the frequencies by

s =
κ2 − ω2

1

ω2
2 − ω2

1

. (2.32)

The periodicity in σ relates ω1, ω2 and κ:√
ω2

2 − ω2
1 =

2K(s)
π

, (2.33)

where K(s) is the complete elliptic integral of the first kind.
Instead of the frequencies, it is more convenient to characterize the solution by the

conserved quantum numbers, the two angular momenta and the energy:

J1 =

√
λω1E(s)
K(s)

, J2 =

√
λω2 (K(s)− E(s))

K(s)
, ∆ =

√
λκ, (2.34)

where E(s) is the complete elliptic integral of the second kind. The angular momenta J1 and
J2 are the Noether charges associated with the isometries ϕ→ ϕ+ const , ψ → ψ+ const .
The dual operator has the form trZJ1W J2 + permutations, Z = Φ1 + iΦ2, W = Φ3 + iΦ4,
and ∆ is its exact scaling dimension. Eqs. (2.32) and (2.33) express the dimension as
a function of the R-charges in an implicit form: ∆ = ∆(J1, J2). Finally, it is useful to
introduce a parameter

a =
ω1

κ
=
J1K(s)
∆E(s)

. (2.35)

The the integral in (2.30) can be calculated in terms of the hypergeometric function:

C fold.
fold.,k =

1
N

π
√
k∆
(
1− a2

)
Γ
(

(1+a)k
2

)
Γ
(

(1−a)k
2

)
8sK(s)(k − 1)!

×
[
(k + 1− s)2F1

(
−k − 1

2
,
1
2

; 1; s
)
− (k + 1)2F1

(
−k + 1

2
,
1
2

; 1; s
)]

.(2.36)
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At a→ 1, the folded string shrinks to a point and goes over to the point-like solution dual
to the chiral primary operator. However, we do not recover the OPE coefficient of three
chiral primaries (2.28) in the limit a→ 1. There is an extra factor of (k−1)/2k. Why? The
difference can be attributed to the anomaly that arises when the slim string vertex operator
approaches the fat string vertex operator at τ = −∞. The integrand in (2.29) contains
an exponential factor e ikϕzk ∼ e k(κ−ω1)τ that cuts off the integral at large negative τ ,
because κ > ω1. In the point-string limit κ → ω1 the suppression disappears. The square
bracket decomposes in the limit in two terms. One is additionally suppressed as e 2κτ and
survives the BMN limit, making the τ integral in (2.28) manifestly convergent. The other
term is proportional to θ́2 ∼ κ − ω1 and vanishes as the string becomes point-like, but it
does not have the additional exponential suppression and integration in τ diverges in the
limit leading to the 0/0 cancelation.

2.4 Saddle point approximation

At large k the integral over the vertex operator insertion in (2.29) is dominated by a saddle
point, a solution of the equation

cot θ ∂aθ + i∂aϕ+
∂aZ

Z
= 0. (2.37)

This constitutes a set of two equations on two variables and consequently is satisfied in a
finite number of points. The OPE coefficient then is exponentially suppressed:

Ck ∼ e−kS , (2.38)

where S = − ln sin θ(σ∗)− iϕ(σ∗)− lnZ(σ∗) and σ∗ = (τ∗, σ∗) is the solution of (2.37) with
the smallest possible suppression.

For instance, the folded string OPE with the chiral primary is exponentially small at
large k:

C fold.
fold.,k '

1
N

(
1
s
− 1
)√

λ

k
exp

[
k

(
1 + a

2
ln

1 + a

2
+

1− a
2

ln
1− a

2

)]
(2.39)

For the folded string there are two degenerate saddle points:

τ∗ =
1

2κ
ln

1− a
1 + a

, σ∗ =
π

2
and

3π
2

: θ(σ∗) =
π

2
. (2.40)

The pre-exponential factor vanished at the saddle point and has to be expanded to the
second order to get the correct coefficient in front. It is actually easier to compute the
integral exactly and then take the large-k limit. In the point-like string limit of a→ 1, the
saddle point (2.40) approaches the boundary and the exponential suppression disappears.

Our calculations were accurate at k = O(1), but the limit of k → ∞ should have an
overlapping region of validity

√
λ � k � 1 with the k/

√
λ → 0 limit of the OPE with

all three string states being semiclassical.6 Because we took the limit x3 → ∞ in the
three-point function, the vertex operator of a fat string with k ∼

√
λ creates an infinite

spike on the worldsheet with two other vertex insertions ending on the boundary of AdS,

– 9 –
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Figure 2. The vertex operator creates an infinite spike.

figure 2. When k/
√
λ → 0 the spike shrinks to zero size. The saddle point σ∗ determines

the position where the spike is attached to the macroscopic worldsheet, or better to say,
the position where the equations of motion allow the spike to appear when we gradually
raise k/

√
λ from zero. We are going to demonstrate this explicitly in the next section, by

starting with finite k/
√
λ and then taking the limit of k/

√
λ→ 0.

3 Fine structure of the spike

Now we consider the regime when we insert the vertex operator (2.22) with k ∼
√
λ in the

string path integral. When k ∼
√
λ the vertex operators changes the boundary conditions

for the embedding coordinates and creates an infinite spike [43, 44] (figure 2). There may
be other vertex operators or Wilson loops, which we do not specify, as we will be interested
in the structure of the solution in the vicinity of the insertion point. The local worldsheet
coordinates will be denoted by w, w̄, and we will assume that the vertex operator is inserted
at w = 0.

At λ→∞, the logarithm of the vertex operator is of the same order as the action:7

S =

√
λ

4π

∫
d2w

[
(∂z)2 + (∂x)2

z2
+ (∂θ)2 + sin2 θ (∂ϕ)2

]
− k ln z(0)− ikϕ(0)− k ln sin θ(0).

(3.1)
We do not display other coordinates or other vertex operators as we will be interested in
the most singular behavior near w = 0.

6This has been explicitly verified for the Wilson loop correlator with a local operator [43, 44].
7The action is written in the conformal gauge. The dependence on the 2d metric should also drop from

the vertex operator due to its marginality.

– 10 –



J
H
E
P
0
9
(
2
0
1
0
)
0
3
0

Figure 3. The string worldsheet in the vicinity of a spike.

The vertex operator creates a localized source in the equations of motion:

∂a

(
∂axµ

z2

)
= 0

−∂2 ln z − (∂x)2

z2
= 2πχδ(w)

−∂2θ + sin θ cos θ (∂ϕ)2 = 2πχ cot θ δ(w)

−∂a
(
sin2 θ ∂aϕ

)
= 2πiχδ(w), (3.2)

where
χ =

k√
λ
. (3.3)

The source determines the boundary conditions for the worldsheet fields at w = 0:

ln z → −χ ln |w|
θ → π

2
ϕ → −iχ ln |w|. (3.4)

Let us see in more detail what is the structure of the classical worldsheet in the vicinity of
w = 0.

We begin with the shape of the string in AdS. According to the boundary conditions,
the worldsheet has an infinite spike going all the way to the horizon (figure 3), with the
AdS z coordinate scaling as z ∼ |w|−χ. As far as the xµ coordinates are concerned, we
can try an axially symmetric scaling ansatz x ∼ |w|αw, where x = x1 + ix2 is the complex
coordinate on the boundary of AdS3. The ansatz goes through the equations if α satisfies:

α

2

(α
2

+ 1 + χ
)

+
(α

2
+ 1
)(α

2
+ χ

)
= 0,

giving
α =

√
1 + χ2 − 1− χ. (3.5)
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It is easy to understand the meaning of this result by making the conformal map to
the cylinder:

w = e−τ+iσ. (3.6)

The transformation z → e χτz, x → e−χτx generates a mass term of magnitude χ in the
equations of motion for x. The frequency of the nth Fourier mode of a 2d field of mass χ is
equal to ωn =

√
n2 + χ2. The axially symmetric solution corresponds to the single-winding

mode x ∼ e−ω1τ+iσ.
The rate at which x goes to zero at w → 0 is always larger than the rate at which

ln z goes to infinity. For this reason x does not backreact on z up to the next-to-next-to-
leading order. It is therefore easy to deduce the next term in the expansion of z in w by
just treating ln z as a free massless field with the source at the origin. The most general
solution then reads:

z = |w|−χ
(
z0 + ∂z0w + ∂̄z0w̄

)
+ . . .

xµ = xµ0 + |w|
√

1+χ2−1−χ (∂xµ0w + ∂̄xµ0 w̄
)

+ . . . , (3.7)

where z0, xµ0 , ∂z0, ∂̄z0, ∂xµ0 , and ∂̄xµ0 are constants, not determined by the equations of
motion.

Now we can take the χ → 0 limit. The spike then disappears, and (3.7) becomes an
ordinary Taylor expansion of the regular solution without the source at w = 0. We can thus
regard (z0, x

µ
0 ) as the target-space coordinates of the point at which the spike is attached

to the string worldsheet. The constants ∂z0, . . . are Taylor expansion coefficients of the
smooth solution (z0(w), xµ0 (w)) for the string without the spike.

We now turn to the S5. The boundary conditions imply that e iϕ → const |w|χ and
cos θ → const |w|χ at w → 0. Corrections to this behavior are of two types. There are
regular corrections in powers of w, w̄, as well as non-analytic corrections in |w|χ. Which of
those are more important depends on the value of χ. When χ → 0 and the spike shrinks
leaving behind some regular solution θ0(w), ϕ0(w), the non-analytic corrections are more
important, moreover in the strict χ → 0 limit they cease to be suppressed and have to
be re-summed. It is possible to do the re-summation explicitly, although the details are
somewhat lengthy. The solution which is accurate to all orders in |w|χ and to the first two
orders in w, w̄ is derived in the appendix A:

e iϕ =
|w|χ e iϕ0 sin θ0√
1− |w|2χ cos2 θ0

[
1 + i

1− |w|χ cos2 θ0

1− |w|2χ cos2 θ0

(
∂ϕ0w + ∂̄ϕ0w̄

)
+

(1− |w|χ) cot θ0

1− |w|2χ cos2 θ0

(
∂θ0w + ∂̄θ0w̄

)]
+ . . .

cos θ = |w|χ cos θ0 − |w|
√

1+χ2−1

[
1− |w|χ cos2 θ0

sin θ0

(
∂θ0w + ∂̄θ0w̄

)
+i (1− |w|χ) cos θ0

(
∂ϕ0w + ∂̄ϕ0w̄

)]
+ . . . , (3.8)

where again θ0, ϕ0, ∂θ0, . . . are constants not fixed by the equations of motion. These
constants can be regarded as the Taylor coefficients of the regular solution. The above
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approximate solution is valid in the limit of w → 0 (in that case all subleading |w|nχ terms
can be dropped), as well as in the double-scaling limit w → 0, χ → 0, with |w|χ fixed (in
which case |w|

√
1+χ2−1 should be replaced by 1).

To the leading order in w, the solution (3.7), (3.8) automatically satisfies the Virasoro
constraints, which reflects the marginality of the vertex operator (2.22). At the next
order the Virasoro constraints are not automatic and lead to the relationship between the
expansion coefficients ∂z0, . . .

Requiring that

0 = Tww ≡
(
∂z

z

)2

+ (∂θ)2 + sin2 θ (∂ϕ)2 , (3.9)

and imposing the same condition on Tw̄w̄, we find a linear relationship between the coeffi-
cients:

∂z0

z0
+ cot θ0 ∂θ0 + i∂ϕ0 = 0,

∂̄z0

z0
+ cot θ0 ∂̄θ0 + i∂̄ϕ0 = 0. (3.10)

Viewed as a condition on the unperturbed solution θ0, ϕ0, it determines a point on the
worldsheet to which the spike can be attached without violating the Virasoro constraints.
This condition is the same as the saddle point equation (2.37), which was derived when we
neglected the backreaction of the vertex operator on the shape of the string.

4 Discussion

It would be interesting to compare the three-point functions computed at weak and at
strong coupling, in particular to check if the structural observations made recently in the
one-loop corrections to the three-point functions of scalar operators [45] survive at strong
coupling. It would also be interesting to generalize integrability methods to three-point and
higher correlation functions. The spectral equations derived using integrability methods
determine the eigenvalues of the light-cone string Hamiltonian. To compute correlation
functions, which are analogous to closed string amplitudes in the familiar flat-space setting,
one also needs to know the wavefunctions, which are more or less equivalent to vertex
operators. The vertex operators of the chiral states can be deduced from the supergravity
equations of motion, and probably do not receive α′ (1/

√
λ) corrections. It would be

interesting to understand how to systematically construct vertex operators of non-protected
states [18, 29]. Then one will be able to compute their holographic three-point functions,
at least in the approximation used in this paper.

Acknowledgments

I would like to thank R. Janik and V. Kazakov for collaboration on the initial stages of
this project and for numerous discussions. I benefited a lot from the discussions with
J. Escobedo, I. Kostov, D. Serban, A. Sever and P. Vieira. I would like to thank M. Costa,
R. Monteiro, J. Santos and D. Zoakos for sending me the draft of [19] prior to publication,
and the Perimeter Institute for hospitality during the course of this project. This work
was supported in part by the Swedish Research Council under grant 621-2007-4177, in part

– 13 –



J
H
E
P
0
9
(
2
0
1
0
)
0
3
0

by the ANF-a grant 09-02-91005, and in part by the grant for support of scientific schools
NSH-3036.2008.2.

A Spike in S5

It is easier to analyze the solution in the polar coordinates (3.6). To the leading order,
the solution depends only on τ , and the equations of motion become ordinary differential
equations: (

sin2 θ ϕ̇
)
˙ = 0

θ̈ − sin θ cos θ ϕ̇2 = 0. (A.1)

The boundary conditions (3.4) require that ϕ→ iχτ , θ → π/2 at τ →∞. Taking this into
account we find the solution that depends on the two integration constants:

cos θ = e−χτ cos θ0 (A.2)

e iϕ = e iϕ0 cot θ. (A.3)

The next order in w, w̄ corresponds to the first Kaluza-Klein mode in σ and is sup-
pressed by an extra factor of e−τ , which is a small correction at τ → ∞. The equations
of motion can be consequently linearized.

We consider a slightly more general setup when the linear correction is the nth har-
monic. Substituting

δθ = ξ e−nτ+inσ, δϕ = η e−nτ+inσ

into the equations of motion (3.2) and linearizing in ξ and η, we get:

−
(
sin2 θ η̇

)
˙+ n sin2 θ η̇ + n

(
sin2 θ η

)
˙+ 2iχn cot θ ξ − 2iχ (cot θ ξ)˙ = 0

−ξ̈ + 2nξ̇ + χ2
(
1− cot4 θ

)
ξ + 2iχ cot θ η̇ − 2iχn cot θ ξ = 0, (A.4)

where cos θ is the leading-order solution (A.2).
There are two possible regimes: (I) τ →∞, finite χ and (II) τ →∞, χ→ 0, χτ -fixed.

In case (I) we can set θ = π/2, which yields

ξ = const e
“
n−
√
n2+χ2

”
τ
, η = const . (A.5)

In case (II) there is a scaling region τ ∼ 1/χ, where ξ = ξ(χτ) and η = η(χτ). We can
then neglect the terms of order χ2 (and keep those of order χ) in the linearized equations.
In particular we can neglect the second derivatives in τ . The equations then are of the first
order and can be integrated:

ξ = sin θ
(

C1

1− cos θ
+

C2

1 + cos θ

)
η = i

(
C1

1− cos θ
− C2

1 + cos θ

)
(A.6)
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The constants of integration C1, C2 can be expressed in terms of ∂θ0, ∂ϕ0 by setting χ = 0,
when θ → θ0 and ξ → ∂θ0, η → ∂ϕ0. Finally, we can write the solution of the linearized
equations in the form that is valid both in the regime (I) and (II) by simply multiplying

ξ in (A.6) by e
“
n−
√
n2+χ2

”
τ , which is equivalent to 1 in the regime (II). This gives the

solution (3.8) quoted in the main text.
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