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Abstract: The cold dark matter (CDM) scenario has proved successful in cosmology.

However, we lack a fundamental understanding of its microscopic nature. Moreover, the

apparent disagreement between CDM predictions and subgalactic-structure observations

has prompted the debate about its behaviour at small scales. These problems could be

alleviated if the dark matter is composed of ultralight fields m ∼ 10−22 eV, usually known

as fuzzy dark matter (FDM). Some specific models, with axion-like potentials, have been

thoroughly studied and are collectively referred to as ultralight axions (ULAs) or axion-like

particles (ALPs). In this work we consider anharmonic corrections to the mass term coming

from a repulsive quartic self-interaction. Whenever this anharmonic term dominates, the

field behaves as radiation instead of cold matter, modifying the time of matter-radiation

equality. Additionally, even for high masses, i.e. masses that reproduce the cold mat-

ter behaviour, the presence of anharmonic terms introduce a cut-off in the matter power

spectrum through its contribution to the sound speed. We analyze the model and derive

constraints using a modified version of class and comparing with CMB and large-scale

structure data.
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1 Introduction

The evidence collected over the last decades suggests that most of the matter in the universe

exists in the form of dark matter (DM), whose effects have only been detected through its

gravitational interaction. In particular, the assumption that dark matter is composed of

non-relativistic particles, the so-called cold dark matter (CDM), has produced a remarkable

concordance with the observational data over a wide range of scales and evolution epochs.

It is one of the foundations of the succesful standard cosmological model ΛCDM.

Notwithstanding agreement with observations, several ingredients are lacking in our

understanding of DM. In the first place, we have been unable to detect any non-

gravitational interaction of DM. Most of the work in the field is currently devoted to

direct, indirect detection and production searches. Owing to this effort it has been pos-

sible to tighten the parameter space of the most popular models. This lack of additional

interactions makes it more difficult to discriminate between different models. There are

many candidates that behave like CDM on cosmological scales, with masses ranging from

the meV of the QCD axion [1] to the TeV [2, 3] and going up to the 100 M� of the pri-

mordial black holes [4]. The other ingredient missing is a precise understanding of the DM

behaviour on small, i.e. galactic, scales. Even though most DM models mimic CDM on

cosmological scales, their predictions usually differ on smaller scales [5] so they could be dis-

criminated based only on their gravitational effects. In fact, there exist three long-standing

debates, questioning the agreement between observations and the CDM theoretical predic-

tions [6, 7], the so-called ‘too big to fail ’ [8], ‘missing satellites ’ [9] and especially the

‘core-cusp’ problem [10]. The ‘core-cusp’ problem refers to the discrepancy between the

density profiles of CDM halos obtained in N -body simulations, that tend to be cuspy in

the center, and the ones inferred from observations, that point to the existence of a central
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core. Although these problems are sometimes attributed to baryonic effects unaccounted

for in the simulations [11], they remain one of the main challenges of the CDM model.

An interesting alternative that neatly solves the ‘core-cusp’ problem is fuzzy dark

matter (FDM) [12]. In this picture, dark matter is composed of ultralight particles with

m ∼ 10−22 eV, so that its Compton wavelength (m−1) reaches astrophysical scales. Then,

the formation of cusps is prevented [13]. The wave nature of the particles on the smallest

scales makes them impossible to localize. While solving this problem, FDM behaves as a

rapidly oscillating coherent scalar field, thus recovering the CDM behaviour on cosmological

scales. In his groundbreaking work [14], Turner analyzed a homogeneous oscillating scalar

field in an expanding universe. He showed that a rapidly oscillating scalar field with a

power-law potential V (φ) ∝ φn behaves as a perfect fluid with an effective equation of

state w = (n− 2)/(n+ 2). More general expressions can be obtained from a version of the

virial theorem [15]. The results of Turner show that a massive scalar field, i.e. harmonic

potential, oscillating coherently with a frequency much higher than the expansion rate

behaves as CDM, at least at the background level. Afterwards, ultralight scalar fields

have been thoroughly studied at the perturbation level [15–19], proving that the same

conclusion holds. Perturbations of coherent oscillating scalar fields admit an effective fluid

description with an effective sound speed nearly zero, like CDM. The main cosmological

signature of these models is the supression of growth at small scales. Below some Jeans

scale k−1
J the modes do not grow appreciably, translating into a cut-off in the matter power

spectrum [18]. Additionally, there are important effects in CMB temperature, lensing and

polarization spectra. These effects were analyzed in [20, 21] using the publicly available

code AxionCAMB. Although the work on ultralight fields has been mainly concerned

with scalar fields, there are recent results on higher spin fields. It has been shown that

abelian vectors at the background [22] and perturbation level [23], non-abelian vectors [24]

and arbitrary-spin fields [25] behave in a similar way. Interestingly, the results of [25] show

that it is possible to achieve an isotropic model of higher-spin dark matter as long as it is

rapidly oscillating.

These ideas have been applied to the axion, a particularly well-motivated DM candi-

date. The standard QCD axion was initially proposed to solve the strong CP problem [26–

28] in particle physics. Likewise, the appereance of many light scalar fields seems to be a

generic feature of different string-theory scenarios. Some of these fields have a similar origin

as the QCD axion, arising from the breaking of an approximate shift symmetry, and are

usually known as axion-like particles (ALPs) or ultralight axions (ULAs) [29, 30]. ALPs

present similar periodic potentials but with a mass much smaller than the QCD axion that

could lie in the range of ultralight fields m ∼ 10−22 eV. While behaving like FDM, ALPs

have a rich phenomenology based on their assumed interaction with matter. Aside from

the standard searches for axions, there is a wealth of dedicated searches and projected

experiments on the lookout for ultralight axions. These include studies of the neutral

hydrogen distribution in the universe [31, 32], laboratory constraints based on nuclear in-

teractions [33], variation of fundamental constants [34, 35], astrophysical bounds [36–38],

gravitational wave searches [39, 40] and analysis of CMB spectral distortions [41, 42]. A

prominent feature of the model is the presence of anharmonic corrections over the mass
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term in FDM. These corrections arise, to first order, as quartic corrections in the potential

with the opposite sign of the mass term, i.e. attractive self-interactions. These effects have

been studied, as well as the effect of the full axion potential [43, 44] and their effect on

the linear matter power spectrum seems to be negligible. However, self-interactions could

modify non-linear structures in a significant way [45].

Another possibility involves introducing a positive quartic correction, i.e. repulsive

self-interactions. It is more difficult to find particle-physics models in this case [46], but

the model is nonetheless well motivated as the simplest modification leading to a stable

potential. This modification has been previously analyzed in some works [47–52]. The

additional source of pressure from the repulsive self-interactions helps to solve the ‘core-

cusp’ problem with larger masses [46]. Additionaly, unlike the axion case, it could explain

the formation of vortices in galaxies [53].

In this work we will consider a fuzzy dark matter model with an additional quartic

self-interaction. Using a modified version of the cosmological Boltzmann code class [54]

and parameter-extraction code MontePython [55] we will constrain the parameters of the

model with CMB [56] and large-scale structure (LSS) [57] data. Section 2 presents the

model and the relevant equations for background and perturbation evolution. In section 3,

we review the averaging procedure when the field is rapidly oscillating and the effective fluid

equations in this case. Section 4 discusses a simplified model and estimates analytic bounds

on the parameters, highlighting the main physical effects and the origin of the constraints

on the model. In section 5 we present the result of the full numerical analysis and the

final constraints on the model, as well as a discussion of its physical origin. Section 6

summarizes the conclusions and prospects for future work.

2 Exact evolution

Let us assume a scalar field with Lagrangian

L =
1

2
gµν∂µφ∂νφ− V (φ), (2.1)

and potential

V (φ) =
1

2
m2φ2 +

1

4
λφ4 , (2.2)

in a homogeneous and isotropic universe with a flat Robertson-Walker metric in conformal

time η

ds2 = a2(η)
(
dη2 − dx2

)
. (2.3)

The equation of motion for a homogeneous scalar field in this background is

φ̈+ 2Hφ̇+ a2V ′(φ) = 0 , (2.4)

where H = ȧ/a and ˙≡ ∂/∂η . The density and pressure are

ρ =
φ̇2

2a2
+ V (φ) , (2.5)

P =
φ̇2

2a2
− V (φ) . (2.6)
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We choose initial conditions

φ = φ0 , (2.7)

φ̇ = 0 , (2.8)

The value φ0 will be chosen to match the desired energy density ρφ today. Section 5

contains more details about how this matching is performed. These are the usual initial

conditions when the axion-like particles are produced through a misalignment mechanism

[58] and the field starts its evolution frozen. It is important to note that the choice of initial

conditions has a deep impact in the subsequent evolution. In [49], the authors considered

a case similar to ours, but with an initial velocity φ̇ 6= 0. In this case, there is an initial

phase of stiff-matter domination, absent in our case, constrained to be short enough not

to spoil BBN.

We now introduce scalar perturbations over a flat Robertson-Walker metric. Following

the notation of [59], the general form of the perturbations is

ds2 = a2(η)
[
(1 + 2Φ)dη2 − 2∂iBdxidη − ((1− 2Ψ)δij + 2∂i∂jE) dxidxj

]
. (2.9)

The equation of motion for the scalar field perturbation is

δ̈φ+ 2H ˙δφ+ (k2 + a2V ′′)δφ =
(
k2(B − Ė) + Φ̇ + 3Ψ̇

)
φ̇− 2a2ΦV ′ , (2.10)

where the gauge has not yet been fixed. We can introduce a different parameterization,

reminiscent of a perfect fluid. The components of the perturbed energy-momentum tensor

are [59]

δT 0
0 ≡ δρφ = a−2(φ̇ ˙δφ− φ̇2Φ) + V ′δφ , (2.11)

δT ij ≡ −δPφ δij = −
(
a−2(φ̇ ˙δφ− φ̇2Φ)− V ′δφ

)
δij , (2.12)

δT 0
i ≡ (ρφ + Pφ)(viφ − ∂iB) = a−2φ̇ ∂iδφ . (2.13)

We can rewrite (2.10) in terms of the fluid variables, introducing δ = δρ/ρ and u =

(1 + w)(v −B), where w is the equation of state for the scalar field

w ≡ P

ρ
=
φ̇2 − 2a2V (φ)

φ̇2 + 2a2V (φ)
. (2.14)

In the synchronous gauge, the metric variables read

Ψ = −1

6

(
h−∇2µ

)
,

E =
1

2
µ ,

Φ = B = 0 ,

and the equations of motion are

δ̇ = −3H(1− w)δ − ku− 9H2(1− c2
ad)

u

k
− 1

2
(1 + w)ḣ , (2.15)

u̇ = 2Hu+ kδ + 3(w − c2
ad)Hu , (2.16)
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where c2
ad is the adiabatic sound speed

c2
ad =

Ṗ

ρ̇
= 1 +

2

3

a2V ′

Hφ̇
. (2.17)

Following the analysis of [18] we provide the system with initial conditions

δ = 0 , (2.18)

u = 0 , (2.19)

valid up to corrections of order (kη)4. The scalar field starts its evolution frozen in a value

φ0 with an equation of state w ' −1. As the universe expands the field starts rolling

down the potential, when it reaches the minimum it undergoes rapid oscillations. These

oscillations occur when the effective frequency ωeff ∼
√
V ′′(φ) is bigger than the friction

term H, so once the scalar field starts oscillating its frequency becomes much larger than

the expansion rate, the inverse of the evolution time scale of the background.

On the numerical side, this means that it becomes prohibitely expensive to compute

the exact evolution of the field, following every oscillation. However, the huge difference

between time scales allows us to average the equations of motion and turn to an effective

description.

3 Averaged evolution

The study of the cosmological evolution of a fast oscillating scalar was first performed

in [14]. Basically, if the oscillation frequency of the scalar field is much higher than the

expansion rate of the universe, the cosmological evolution becomes independent of the

periodic phase of the field at leading order. Consequently, the Einstein equations can be

approximately solved averaging in time the energy-momentum tensor

Gµν = 8πG 〈Tµν〉 , (3.1)

where

〈Tµν〉 (t) =
1

T

∫ t+T/2

t−T/2
Tµν(t′)dt′ . (3.2)

If the field is periodic, we can consider an integer number of periods as the integration

interval. However, similar results can be reached for fast-evolving bounded solutions aver-

aging over time spans much bigger than the inverse of its frequency but much smaller than

the inverse of the expansion rate, ω−1 � T � H−1. The averaging error in both cases

results O(HT ).

To leading order we can drop the averages of total time derivatives, so it can be

proved [19] that 〈
φ̇2/a2

〉
= −

〈
φφ̈/a2

〉
=
〈
V ′(φ)φ

〉
+O

( H
ωeff

)
, (3.3)

and with this result the effective equation of state can be written as

w =
〈P 〉
〈ρ〉 =

〈V ′φ− 2V 〉
〈V ′φ+ 2V 〉 =

n− 2

n+ 2
+O

( H
ωeff

)
, (3.4)
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for power-law potentials V (φ) ∝ φn. As it can be seen, a massive scalar field, V = m2φ2/2,

would behave as CDM while a field with quartic self-interactions, V = λφ4/4, would behave

as radiation.

The massive case is particularly simple and the equation of motion can be solved

through a WKB expansion. Thanks to this adiabatic expansion in the parameter O(H/ma)

the averages can be performed explicitly, isolating the fast evolving factor and integrating

by parts, as explained in [19].

In this work, we are interested in anharmonic corrections to the mass term (2.2). We

can obtain the first order correction in λ to the equation of state (3.4) assuming that the

mass term is dominant, so the WKB expansion of [19] still holds to lowest order in λ

φ(η) ' φc

a3/2
cos

(∫ η

ma(η′)dη′
)

+O
( H
ma

)
, (3.5)

With this WKB expression, we have, to lowest order in λ,〈
φ4
〉
' 3

2

〈
φ2
〉 〈
φ2
〉

+O
( H
ma

)
, (3.6)

〈ρ〉 ' m2
〈
φ2
〉

+O
( H
ma

)
, (3.7)

so the first anharmonic correction to the equation of state is

w ' 3λ

8m4
〈ρ〉 . (3.8)

In this effective description the background evolution of the field is described through its

density and its effective equation of state, using the conservation equation

ρ̇ = −3H(1 + w)ρ . (3.9)

where for the equation of state w we will use the formula

w =

3λ

8m4
ρ

1 +
9λ

8m4
ρ

, (3.10)

that smoothly interpolates between the radiation-like w ' 1/3 and matter-like w ' 0

behaviour, whenever the quartic or quadratic part of the potential dominates. Now we can

apply the same trick to the evolution of the perturbations. The equations of motion for

the fluid variables are

δ̇ = 3H(w − c2
s)δ − ku−

1

2
(1 + w)ḣ , (3.11)

u̇ = −H(1− 3w)u+ kc2
sδ , (3.12)

where δ ≡ 〈δρ〉 / 〈ρ〉, u ≡ (1+w) 〈v〉 stand for averaged quantities and w, c2
s are the effective

equation of state and sound speed. To complete the system there only remains to compute

the effective sound speed

c2
s =
〈δP 〉
〈δρ〉 . (3.13)
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In contrast with the adiabatic sound speed, the sound speed is gauge-dependent. But, as

we will show now, the gauge ambiguities remain of order O(H/ωeff) so our effective sound

speed turns out to be gauge-independent. In fact, identical expressions have previously

been obtained working in the comoving gauge [49] and in the Newtonian gauge [19]. To

leading order we have 〈
∂η(φ̇δφ+ φδφ̇)

〉
= 0 +O

( H
ωeff

)
. (3.14)

Then, using (2.10) and (3.14) we can obtain the result〈
φ̇ ˙δφ

〉
=

1

2

〈
a2V ′δφ+ (k2 + a2V ′′)φδφ

〉
+ Φ

〈
a2V ′φ

〉
+O

( H
ωeff

)
, (3.15)

and finally compute the effective sound speed for a generic gauge

c2
s =
〈δP 〉
〈δρ〉 =

1
2

〈
V ′δφ+ ((k/a)2 + V ′′)φδφ− 2V ′δφ

〉
− Φ

〈
φ̇2/a2 − V ′φ

〉
1
2 〈V ′δφ+ ((k/a)2 + V ′′)φδφ+ 2V ′δφ〉 − Φ

〈
φ̇2/a2 − V ′φ

〉 +O
( H
ωeff

)
(3.16)

=

〈
((k/a)2 + V ′′)φδφ− V ′δφ

〉
〈((k/a)2 + V ′′)φδφ+ 3V ′δφ〉 +O

( H
ωeff

)
. (3.17)

As we anticipated, the gauge ambiguities in the metric perturbations remain of order

O(H/ωeff), so the final expression holds in any gauge. Moreover, it can be rewritten in a

manifestly gauge-invariant form substituting δφ by its gauge-invariant perturbation [59]

δφ(gi) = δφ+ φ̇(B − Ė) , (3.18)

and using the relations〈
V ′φ̇

〉
= 〈∂η(V )〉 = 0 +O

( H
ωeff

)
, (3.19)〈

V ′′φφ̇
〉

=
〈
φ∂η(V

′)
〉

= −
〈
V ′φ̇

〉
+O

( H
ωeff

)
= 0 +O

( H
ωeff

)
, (3.20)

we obtain

c2
s =

〈
((k/a)2 + V ′′)φδφ(gi) − V ′δφ(gi)

〉〈
((k/a)2 + V ′′)φδφ(gi) + 3V ′δφ(gi)

〉 +O
( H
ωeff

)
. (3.21)

This expression agrees with the result obtained in [19] working in the Newtonian gauge,

so the same conclusions apply. In particular, a generic feature of this kind of models is a

suppression of growth c2
s ' 1 for small scales k � ωeff. In the case of a power-law potential

V (φ) = C
nφ

n, for large scales k � ωeff we have

c2
s =

n− 2

n+ 2
+O

( H
ωeff

)
. (3.22)
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For a harmonic potential n = 2, the zero-order term drops out and we must calculate the

first-order corrections in k. Our potential of interest is a polynomial V (φ) = 1
2m

2φ2 + λ
4φ

4,

a mass term plus an anharmonic correction, in this case we have [19]

c2
s =

k2

4m2a2
+

3

4

λ

m4
ρ , (3.23)

where ρ is the energy density of the scalar field and the anharmonic correction is assumed

to be small. In our numerical solution we will use an effective sound speed

c2
s =

(
k

2ma

)2

+
3

4

λ

m4
ρ

1 +

(
k

2ma

)2

+
9

4

λ

m4
ρ

, (3.24)

suggested by the form of (3.17) and that smoothly interpolates between all the regimes

of interest.

4 Heuristic constraints on the non-harmonic contribution

In this section we will discuss the simplest limits that constrain the model. With this

objective let us assume a simple cosmology composed of radiation, cosmological constant

and our scalar field

H2 = a2H2
0

(
Ωφ(a) +

Ωrad

a4
+ ΩΛ

)
, (4.1)

where Ωi = 8πGρi/(3H
2
0 ) are the abundances with i ∈ {φ, rad,Λ} which correspond to

scalar field, radiation and cosmological constant respectively.

• Limits on λ from background evolution. The position of the peaks in the CMB

temperature spectrum, especially the first one, is very sensitive to the amount of

matter and the redshift of equality zeq. We can assume that to have a viable model

of dark matter this quantities remain essentially the same as in ΛCDM. In this case,

to have a dark matter behaviour that resemble CDM the anharmonic corrections at

this time should be small

1� w ' 3

8

λ

m4
ρφ(aeq) . (4.2)

This imposes an upper limit on λ, namely

λ <
8

3

m4

ρφ(aeq)
, (4.3)

excluding the orange region in figure 1.

• Limits on m from perturbation evolution. If λ is small enough, the background

evolution of the effective fluid is identical to ΛCDM. In this case we can obtain

limits from the behaviour of the perturbations. From (3.11) and (3.12) it can be

– 8 –
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seen that if we neglect the expansion rate, c2
sk

2 � H2, density perturbations evolve

according to

δ̈ ' −c2
sk

2δ . (4.4)

producing an oscillatory behaviour instead of the standard growth. To avoid a

clear disagreement with observations, the effect of a non-negligible sound speed

must be small

c2
sk

2 < H2 . (4.5)

Translating into a lower bound in the allowed masses

m >
k2

2aH . (4.6)

As before, we assume that zeq corresponds to the standard value and we apply the

condition (4.6) at this redshift, that will give us the most conservative limit. For the

wavenumber, we choose k = 0.2 Mpc−1, the highest mode observed in LSS at the

linear level. The constraint is

m >∼ 10−26 eV , (4.7)

excluding the blue region in figure 1.

• Observable effects of anharmonic corrections. Finally, there is a region in the param-

eter space that we cannot yet exclude and where the effects of anharmonic corrections

to the sound speed may be important

c2
s '

k2

4m2a2
+

3

4

λ

m4
ρφ . (4.8)

Imposing that the second term dominates over the harmonic contribution yields an

upper bound on λ

λ >
k2m2

3ρφa2
, (4.9)

corresponding to a region that we cannot exclude right away, but where effects of the

anharmonic corrections to the sound speed are to be expected.

An additional result that can be obtained from (4.5) is the Jeans wavenumber

c2
sk

2
J = H2 . (4.10)

Sub-Hubble modes below this Jeans wavenumber, k < kJ , grow while modes with k > kJ
are suppressed. In the massive case with λ = 0 we obtain

k2
J = 2aHm . (4.11)

Now, since we have seen that the quartic correction affects the sound speed, it will also

affect the Jeans scale. It is natural to ask what combination of parameters (m, λ) can have

a similar impact on structure formation as the case (m̃, λ̃ = 0). To this end, we look for

the combination that gives the same Jeans scale at the matter-radiation equality. Since
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−26 −24 −22 −20
log10(m/eV)

−110

−105

−100

−95

−90

−85

lo
g

10
(λ

)

m̃ = 10−26 eV

m̃ = 10−22 eV

Figure 1. Different heuristic bounds. Orange region corresponds to the parameter-space excluded

for the effects of λ on the background evolution. In the blue region, the effect of a non-negligible

sound speed results in a strong disagreement with observations, hence it is excluded. The green

curves represent (4.12) for two different masses. According to the argument in the main text, points

along each curve should give similar structure-formation results.

its scaling in time is not significantly modified, this simple estimate should capture the

essential features of structure formation in both models. Equating both sound speeds and

inserting the result (4.11) we have an estimate for λ

λ = 4.96× 10−100

(
m̃

10−24 eV

)3(1− r2

r4

)
, r ≡ m̃

m
. (4.12)

This simple result suggests for instance that, at the linear level, structure formation should

be similar in the models (m̃ = 10−26 eV, λ̃ = 0) and (m = 10−24 eV, λ ' 4.96× 10−98), a

result that we will check with the full numerical solution. This estimate is represented in

figure 1 for two different masses m̃.

After discussing some approximate bounds on our model and its physical origin, we

will devote the next section to the full numerical solution.

5 Numerical evolution and constraints

We modify the publicly available Boltzmann code class [54] and include this ultralight

scalar field as a new species, that will assume the role of dark matter. Now, we summarize

the key changes in the code and the evolution scheme chosen for the scalar field.

• At the background level, we start solving the equation (2.4) with initial conditions

φ̇ = 0 and φ = φ0. The initial value φ0 is chosen internally with a built-in shooting

algorithm such as to match the energy density Ωφ(today) required. As a technical

aside, it is critical to start with a sensible initial guess for φ0, so that the shooting

algorithm converges quickly. In [18] the authors provide analytical formulae for the

– 10 –
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initial guess in the harmonic case, that works as well if the anharmonic corrections

are small. If the quadratic and quartic terms are comparable it is more difficult to

find analytical expressions that fit our purposes. In our case, we precompute an in-

terpolation table for different values of m, λ and φ0 yielding some value Ωφ(m,λ, φ0).

We only compute a coarse table, so that we still use the shooting algorithm to adjust

φ0 and achieve the desired precision in Ωφ.

Another technical point involves the choice of φ̇ initial condition. Since class starts

the integration at a finite aini = 10−14, it is not strictly valid to set φ̇(aini) = 0. The

proper way to account for this finite initial time is to use the slow-roll approximation

to obtain the analytic evolution at early times

φ̇ ' −a
3
iniV (φ0)

3H0
. (5.1)

However, we have checked that, in practice, evolution starts early enough to be

equivalent to use φ̇(aini) = 0. As long as the field starts in the slow-roll regime, the

results are not significantly modified by the initial choice of φ̇.

With the initial conditions provided, the field starts its evolution frozen, slowly rolling

down the potential until its natural frequency term in (2.4) dominates and it under-

goes rapid oscillations. In this case it is computationally expensive to follow every

oscillation so we turn to the averaged equations when
√
V ′′(φ) > 3H.

In the averaged regime, we solve (3.9), matching continuously with the solution in the

exact regime, and compute the pressure using the effective equation of state (3.10).

• At the perturbation level, we first solve (2.15) and (2.16) with adiabatic initial con-

ditions δ = u = 0. For each mode k we start the integration early enough to ensure

that we start well within the exact regime,
√
V ′′(φ)� 3H. In the averaged regime,√

V ′′(φ) > 3H, we solve the equations (3.11) and (3.12) with the sound speed given

by (3.24).

Some results for temperature and matter power spectra are shown in figures 2 and 3. They

show the impact of different choices of m and λ, while the other cosmological parameters are

fixed to their Planck [56] best-fit values. As anticipated, the main cosmological signature

is the appearance of a cut-off in the matter power spectrum. This cut-off has already been

discussed in the harmonic case [18]. In our case, we see that the anharmonic terms produce

a similar effect.

5.1 Physical effects

The main physical effect responsible for the appearance of a cut-off in the matter power

spectrum has already been discussed. In the averaged regime, the scalar field that supplies

the dark matter component behaves like a fluid with a non-negligible sound speed. On small

scales, above a certain Jeans scale kJ , the density perturbations oscillate and the growth

is suppressed. This effect is illustrated in the figure 4 for modes above and below kJ .
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Figure 2. Temperature power spectrum. On the left, results for a massive scalar field without

self-interaction. On the right, results for different self-interaction strengths for a mass that is

indistinguishable from CDM with λ = 0.
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Figure 3. Matter power spectrum. On the left, results for a massive scalar field without self-

interaction. On the right, results for different self-interaction strengths for a mass that is indistin-

guishable from CDM with λ = 0.
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Figure 4. Evolution in time of the dark matter transfer functions compared to the standard

ΛCDM evolution, represented by dotted lines, with Jeans scale at equality kJ(zeq) = 0.03 Mpc−1

and kJ(zeq) = 0.11 Mpc−1 respectively.
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In the case of the CMB temperature power spectrum, it is far more difficult to disentan-

gle the physical effect responsible for each feature. We split the effects in two categories,

those coming from the modified background evolution and those coming from the per-

turbations. Furthermore, we will refer to two extreme cases (m = 10−27, λ = 0) and

(m = 10−24, λ = 10−97) as m-case and λ-case respectively. To gain some insight into the

CMB spectrum structure, we will rely on simplified, analytical estimates [60–62] and work

in the Newtonian gauge. In particular, we will analyze the evolution of the background and

the perturbations. The thermodynamic part of the evolution, i.e. redshift of recombination

and decoupling, is not appreciably modified since it takes place well after equality, when

the scalar field closely resembles CDM.

Background evolution. The modified equation of state (3.10) changes the background

evolution, modifying in particular the redshift of matter-radiation equality zeq and in gen-

eral the expansion history a(τ). In the m-case, the field transitions directly from the

frozen value w ' −1 to a matter-like phase, while in the λ-case there is an intermediate

radiation-like phase. There are two key effects

• First peak position. The position `peak of the first peak can be estimated as

θpeak =
π

`peak
' ds|dec

da|dec
, (5.2)

where the angular diameter da distance is defined as

da|dec = adec

∫ η0

ηdec

dη , (5.3)

ds|dec is the sound horizon of the photon-baryon plasma evaluated at decoupling

ds|dec = adec

∫ ηdec

0
cs γdη , (5.4)

and the sound speed for the baryon-photon plasma is

c2
s γ =

1

3(1 +R)
, R ≡ 3ρb

4ργ
. (5.5)

The angular diameter distance is almost unaffected but the sound horizon is slightly

modified. Compared to ΛCDM we obtain relative deviations on `peak of about +2%,

shift to the left, in the m-case and −0.7%, shift to the right, in the λ-case. Both are

compatible with the tiny deviations observed in figure 2.

• Damping envelope. Another physical scale that is modified is the diffusion length

λD|dec = adec

(∫ ηdec

0
Γ−1dη

)1/2

, (5.6)

where

Γ = aneσTxe = −κ̇ xe , (5.7)
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is the Thomson scattering rate. The diffusion length governs the damping envelope,

e−(`/`D)2 , through the relation

θD =
π

`D
' λD|dec

da|dec
. (5.8)

For a reference multipole ` = 820, corresponding to the third acoustic peak, in the

λ-case we obtain a modified damping envelope that produces an enhancement of 6%

compared to ΛCDM, that can explain the overall increase of power in figure 2. For the

m-case, we obtain the puzzling result of a suppression of 0.7%, in clear disagreement

with the observed effect. However, we will shortly see how a novel effect in the

perturbation evolution can account for this overall amplification.

Perturbation evolution. In the tightly coupled regime, the photon temperature fluc-

tuation evolves according to

Θ̈0 +
Ṙ

1 +R
Θ̇0 + k2c2

s γΘ0 = −k
2

3
ψ +

Ṙ

1 +R
φ̇+ φ̈ , (5.9)

In the standard scenario, ignoring slow changes in R, φ and ψ from the expansion, we have

Θ̈0 + k2c2
s γΘ0 ' −

k2

3
ψ . (5.10)

This produces an oscillatory pattern with frequency ω = kcs γ and zero-point displaced

by an amount −(1 + R)ψ. The main part of the temperature Sachs-Wolfe effect comes

from the contribution |Θ0 +ψ|2|dec, so the displacement of the zero-point of the oscillations

gives the characteristic asymmetry between odd and even peaks in the CMB temperature

spectrum. Our modification of dark matter produces two interrelated effects, oscillation

and suppression of growth at small scales.

• Effects of suppression of growth at small scales. The suppression of dark matter den-

sity perturbations at small scales also suppresses the gravitational wells ψ, shifting

the zero-point of the oscillation back to zero. This effect, alone, reduces the asym-

metry among the peaks, decreasing the odd and increasing the even peaks. This

explains the characteristic enhancement of the second peak with respect to the third

one in figure 2.

• Effects of oscillatory behaviour. There only remains to explain one effect, the striking

gain in peak amplitude in the m-case. According to the modification in the damping

envelope, the peaks should be slightly suppressed and their enhancement is actually

related to a resonance effect. In the standard scenario, the term ψ behaves like a

constant external force, shifting the equilibrium position of the photon oscillations.

In our case, it is not constant anymore, but oscillates with a frequency kcs given by

the sound speed of the dark matter perturbations (3.24). These two frequencies, kcs
and kcs γ , are comparable for a range of k values, as shown in figure 5, producing a

resonant effect that increases the height of the peaks, as shown in figure 6.
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Figure 5. Sound speed at decoupling for photons and dark matter. Around k ' 0.1 Mpc−1 the

sound speed for both fluids, hence the oscillation frequency too, are close and we have a resonant

driving.
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Figure 6. Evolution in time of the mode k = 0.1 Mpc−1, corresponding approximately to the fifth

acoustic peak, until decoupling.

Moreover, since according to (3.24) the scale of the crossover in figure 5 evolves ∝ a,

as we go from decoupling back in time it moves to smaller k. That is to say, although

the crossover at decoupling is located around k ' 0.1 Mpc−1, smaller k have also

fulfilled the resonance condition at previous times, so they have also got amplified.

5.2 Observational constraints

To compare this model with CMB and LSS observations and refine the heuristic constraints

obtained in section 4, we use the public parameter-extraction code MontePython [55]. We

will compare our results with two different data sets: CMB measurements by Planck and

large-scale structure information by WiggleZ [57]. We perform two analysis, Planck only

and Planck+WiggleZ. In each case we vary the six ΛCDM base model parameters, in

addition to the foreground parameters, plus m and λ, the mass and anharmonic parameter.

We choose logarithmic priors in our model parameters, as shown in table 1.
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Parameter minimum maximum

Ωbh
2 − −

Ωφh
2 − −

h − −
log(1010As) − −
ns − −
τ2

reio 0.04 −
log10(m/eV) −26 −23.3

log10(λ) −111 −98

Table 1. Prior ranges on the base ΛCDM parameters and the model parameters m and λ. A

symbol − means that there is no prior. Additionally, the fixed parameters include the neutrino

properties. In our case, two massless neutrinos plus a massive one with m = 0.06 eV, such that

Neff = 3.046 and mν/Ων = 93.14 eV.

It is important to note that to perform an accurate comparison with LSS data we

must restrict our analysis to linear scales k <∼ 0.2 h/Mpc. The non-linear module in class

includes HaloFit [63], but since it has not been calibrated for our model we restrict

our analysis to linear scales without non-linear corrections. It is to be expected that, in

the future, as more N -body simulations with ultralight fields become available, non-linear

information will allow us to tighten the constraints.

We do not observe any significant degeneracy between m, λ and the rest of cosmological

parameters. Best-fit results are shown in table 2, while the marginalized countour for our

model parameters is represented in figure 7.

6 Conclusions

The presence of self-interactions in the ultralight field potential can lead to the appearance

of new background-evolution phases, like the radiation-like due to our quartic potential.

This modified background evolution, and especially its critical effect on the sound speed

of dark matter perturbations, can lead to significant differences from observations. The

observational signatures of the anharmonic contribution are similar to the mass term, the

most prominent being the appearance of a cut-off in the matter power spectrum. This

produces constraints for masses that would be otherwise indistinguishable from CDM, i.e.

m >∼ 10−24 eV. Our constraints on λ complement other bounds present in the literature,

e.g. [51]. This bounds on λ follow a scaling law with m4 according to (4.3). We can

extrapolate the results to higher masses using the 2σ region of figure 7, obtaining an

approximate constraint on λ

log10(λ) < −91.86 + 4 log10

( m

10−22 eV

)
, (6.1)

for masses m > 10−24 eV.

So far, we have only analyzed linear observables, but in fact larger effects on non-

linear scales are expected. The available parameter space could be further constrained in

– 16 –



J
H
E
P
0
8
(
2
0
1
8
)
0
7
3

Base parameters Planck Planck+WiggleZ

Ωbh
2 0.02223± 0.00047 0.02212+0.00042

−0.00041

Ωφh
2 0.1189+0.0044

−0.0041 0.1204+0.0032
−0.0034

h 0.677± 0.019 0.670+0.016
−0.014

log(1010As) 3.070+0.056
−0.053 3.057+0.046

−0.041

ns 0.965+0.016
−0.021 0.963+0.011

−0.010

τ2
reio 0.070+0.028

−0.029 0.061+0.024
−0.021

log10(m/eV) > −24.5 > −24.4

log10(λ) − < −99.0

Derived parameters

zreio 9.2+2.6
−2.7 8.4+2.2

−2.1

ΩΛ 0.690+0.024
−0.027 0.681± 0.021

YHe 0.24778± 0.00020 0.24773± 0.00018

100θs 1.04193+0.00098
−0.00099 1.04182+0.00084

−0.00083

Table 2. Best fit results with 95% confidence level.
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Figure 7. Contour plots with 95% and 99% confidence levels and 1d marginalized distributions.
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the future using cosmological information with non-linear observables, as more simulations

with ultralight fields become available. Even without non-linear information, using the

formula (4.12) one could put forward the proposal that similar results on structure for-

mation could be obtained for higher masses with a positive λ. For instance, results for

m̃ = 10−22 eV might be reproduced with masses m ' 10−5 eV adding a self-interaction of

the order of λ ' 10−24, very close to the limit that can be obtained from (6.1). Nevertheless,

a definitive answer to this suggestive proposal require a fully non-linear analysis.
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