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1 Introduction

The isomorphism between the Lorentz group in four dimensions and the Mobius group

of conformal transformations in two dimensions, have been used in several theoretical

approaches for the computation of scattering amplitudes in the past. It is indeed the

corner stone of the realisation of Penrose’s Twistor Space [1] and the impressive subsequent

development of scattering amplitudes of massless particles in Twistor space, started by

Witten more than a decade ago [2]. A generalisation of this isomorphism is the Embedding

Formalism for the d-dimensional conformal group, built upon the work of Dirac [3] and

which has been particularly useful in the context of the AdS/CFT correspondence

Recently, there has been a growing effort in writing the dynamics of four-dimensional

Minkowski space in terms of observables in two-dimensional conformal field theory, greatly

motivated by the renewed interest on the asymptotic BMS symmetries in gravitational

theories [4, 5] (for a more recent discussion see [6]), based on the observation that the

Lorentz group in four-dimension acts as the Mobius group on the two dimensional null-

infinity boundary, recently baptised as the celestial sphere CS [7]. From this point of view,

it is expected that scattering amplitudes in four-dimensions can be recasted in terms of

some sort of correlator in a certain two-dimensional conformal field theory. It has indeed

been shown that soft theorems can be rewritten as Ward identities in a two-dimensional

conformal field theory [8, 9] and hence, they should be somehow related to two-dimensional

current algebras [10, 11]. The conserved currents and the stress-tensor of the corresponding

two-dimensional field theory has been discussed in [7, 12].

The S-matrix is usually defined with respect to plane waves. More recently, Pasterski,

Shao and Strominger considered expanding the S-matrix on so called conformal primary

– 1 –



J
H
E
P
0
8
(
2
0
1
7
)
1
3
3

wave functions. The wave functions are constructed by convoluting plane waves with

bulk-to-boundary propagators in AdS3, and thus transforms covariantly under the Mobius

group [13]. Using this transformation allows one to transform Lorentz invariant scalar

scattering amplitudes into Mobius covariant quantities, which can be considered as the

correlation functions of some 2d CFT. The proposed map is:

Ã(∆i, wi, w̄i) ≡
n∏
i=1

(∫
d2zi

dyi
y3
i

G∆(yi, zi, z̄i;w, w̄)

)
A(mj p̂j) , (1.1)

where we have n copies of integration over AdS3 coordinates, and G∆ are the bulk to

boundary propagators. The AdS3 coordinates are imbedded in the four-dimensional mo-

menta satisfying the massive on-shell constraint p2 = −m2. Explicit results were obtained

for the three-point function of φ2ϕ theory, which is fixed by symmetries.

In this note we intend to explore this relation further by studying the convolution of

factorisation singularities of flat space scattering amplitudes that admit a cubic diagram

expansion. By ensuring that the mass is conserved at each vertex, we show that the

factorisation singularity for massive poles, enforces that the n-point kinematics can be

mapped to a configuration of a contact AdS3 Witten diagram. Once dressed with bulk to

boundary propagators and integrate over the whole AdS space, one reproduce an n-point

correlation function, i.e.:

=
n∏
i=1

(∫
d2zi

dyi
y3
i

G∆(yi, zi, z̄i;w, w̄)

)
, (1.2)

where for the cubic diagram on the r.h.s. we identify the leading singularity, which refers

to when all propagators are on-shell. Since all tree-level scalar Witten diagrams can be re-

expressed in terms of finite sums of contact diagrams [14–16], with the scaling dimensions

of external operators being shifted, thus any Witten diagram can be rewritten as a combi-

nation of leading singularities of the massive S-matrix, dressed with appropriate conformal

primary wave functions. On the other hand, if the internal propagator is massless, the

leading singularity then converts to exchange Witten diagrams in the split representation.

Note that one motivation for understanding the factorisation singularity of the S-matrix

under the map eq. (1.1), is if the relation between flat space S-matrix and correlation

functions holds, then it is important to understand how flat space unitarity appears in

the correlation function. Since we’ve shown that the flat space massive singularity yields

contact Witten diagram, which yields log pieces of cross-ratios for the correlator, assuming

that this is the sole source of logarithmic terms the unitarity of flat-space S-matrix then

implies that the coefficient of log u must be definite positive.

Mass conservation can be interpreted as momentum conservation in one dimension

higher, where the momentum is massless. The embedding of the previous construction in
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terms of a massless theory allows us to introduce the Cachazo-He-Yuan (CHY) representa-

tion for the propagator singularities. In particular, as discussed in [17], by parameterising

the moduli space of n-punctures by a single parameter τ such that

σi =
vi
τ

i ∈ L, σi = τui i ∈ R . (1.3)

where σi are the coordinates of the punctures and we’ve separated it into a left and right

set, the parameter τ then encodes the pinch limit of the Riemann sphere. Moreover, in such

parameterisation, one can identify that one of the scattering equation constraints becomes

δ(τ2F − p2
I) (1.4)

where pI would be the associated momenta of the internal particle and F is some τ inde-

pendent polynomial. Thus by inserting a factor of δ(τ) in the CHY integrand, we reproduce

the factorisation constraint. This combined with the fact that there the CHY formula can

be naturally computed from a world sheet chiral string theory [18, 19], give an interesting

2d/2d correspondence:

2d CFT ↔
n∏
i=1

(∫
d2zi

dyi
y3
i

G∆(yi, zi, z̄i;w, w̄)

) ∫
d2nσi CHY

(∏
j

τjδ(τj)

)
, (1.5)

where τi are moduli for the degenerate limits of punctures on the Riemann sphere.

The remaining of this paper is organised as follows: in section 2 we quickly review the

Pasterski-Shao-Strominger (PSS) proposal for the transformation of scattering amplitudes

in flat space into correlation functions of conformal field theory at co-dimension two, then

in section 3 we move to the study of the transform at the factorisation singularities of the

S-matrix. Finally, in section 4 we propose a duality relation between correlation functions

in two-dimensional chiral string theory in the CHY representation of the S-matrix and

correlation functions from the PSS transformation.

2 The PSS proposal

The fact that d-dimensional conformal symmetry can be linearly realised as a d + 2-

dimensional Lorentz symmetry has a long history of applications that dates back to Dirac

(see [20] for references and review). It is then natural to ask whether or not observables on

both sides of the relation can also be mapped. For CFTs, the natural physical observables

are correlation functions, which transform covariantly under conformal transformations.

On the d + 2-dimensional side, the natural Lorentz covariant physical observable is the

S-matrix, which upon Lorentz transformation generates a little transformation. The next

task is then to find a map between the variables on the two sides.

Recently Pasterski, Shao and Strominger (PSS) [13] presented a proposal for such a

map, where as a first step, the four-dimensional massive momenta R1,3 is mapped into the

coordinates of hyperbolic space H3. Taking the metric of H3 as,

ds2
H3

=
dy2 + dzdz̄

y2
, (2.1)
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the three-dimensional hyperbolic space is mapped to the four-dimensional momenta in a

SL(2,C) covariant form as:

p̂aȧ(y, z) ≡ p̂µ(y, z)σµ =
i

y

[
1 z̄

z y2 + |z|2

]
(2.2)

such that p̂2 = Det[p̂aȧ] = −1. For a particle of mass m, it’s momenta is given as p = mp̂.

It was conjectured that the correlation function of some 2D CFT can be related to

the S-matrix in four-dimensions, where the external states are conformal primary wave-

functions, defined as:

φ±∆,m(Xµ;w, w̄) =

∫ ∞
0

dy

y3

∫
dzdz̄ G∆(y, z, z̄;w, w̄) exp

[
±im p̂µ(y, z, z̄)Xµ

]
(2.3)

where the ± in the exponent indicates the incoming and outgoing states and

G∆(y, z, z̄;w, w̄) is the scalar bulk-to-boundary propagator in H3 of conformal dimension

∆ [21],

G∆(y, z, z̄;w, w̄) =

(
y

y2 + |z − w|2

)∆

. (2.4)

Note that we can write the bulk to boundary propagator as

G∆(y, z;w) =

−i [w 1
]a
p̂(y,−z)a,ȧ

[
w̄

1

]ȧ−∆

, (2.5)

which manifests it’s covariant property under the SL(2,C) transformation w′ = (aw +

b)/(cw + d),

G∆(y′, z′, z̄′;w′, w̄′) = |cw + d|2∆G∆(y, z, z̄;w, w̄) . (2.6)

The correlation function Ã∆1,··· ,∆n(wi, w̄i) is then related to the flat space S-matrix as

defined as A(mp̂) by:1

Ã(∆i, wi, w̄i) ≡
∫
d4X

n∏
i=1

φ±∆i,mi
(Xµ;wi, w̄i)A(mj p̂j). (2.7)

The four-dimensional integral d4X simply produces the momentum conservation delta

function. The plausibility of eq. (2.7) stems from the two sides sharing the same symmetry,

as verified in [13], for the case of φ2ϕ interaction, where mϕ ∼ 2mφ.

1Here A(mp̂) is the flat space S-matrix in momentum space that is stripped of momentum conservation

delta function.
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2.1 The three point contact term

The explicit example shown in [13] is a three-point contact term, and the mass of one

particle is near-extremal, i.e. it is near the sum of the other two. Here we present a brief

review, since most of the details will be utilised for the n-point construction.

Taking the mass of the first particle ϕ to be 2(1 + ε)m and the masses of the other two

particles be m. We will take ε > 0 in order for the decay process to be physical. Evaluating

the Xµ-integral, we arrive at the following expression for the scalar three-point amplitude,

Ã(wi, w̄i) = i(2π)4λm−4

(
3∏
i=1

∫ ∞
0

dyi
y3
i

∫
dzidz̄i

)

×
3∏
i=1

G∆i(yi, zi, z̄i;wi, w̄i) δ
(4)(−2(1 + ε)p̂1 + p̂2 + p̂3) , (2.8)

where we used −p1 + p2 + p3 = m[−2(1 + ε)p̂1 + p̂2 + p̂3]. In general, three of the four

momentum conservation delta function solves one of the momenta in terms of others, while

the remaining one simply enforces

p2
n =

( n−1∑
i=1

pi

)2

= −m2
n (2.9)

For the current case the integral of (y3, z3) is straightforwardly localized, leaving a

Jacobian factor of

−
(
−2(1 + ε)

y2
1 + |z1|2

y1
+
y2

2 + |z2|2

y2

)−1

(2.10)

and we are left with the final delta function, which is proportional to the on-shell condition,

δ

(
2(1+ε)

1

y1
− 1

y2
− 1

y3

)
=

(
−2(1+ε)

y2
1+|z1|2

y1
+
y2

2+|z2|2

y2

)
δ(p̂1 · p̂2 + (1+ε))

Note that the pre factor on the r.h.s. exactly cancels the previous Jacobian factor. Thus

one concludes that momentum conservation fixes the position of one leg:

zn = −yn

(∑
i

mi
zi
yi

)
, yn =

−
∑

imi
y2
i +|zi|2
yi

1 +
(∑

ij
mimjziz̄j
yiyj

) (2.11)

where the summation range is i = 1, · · · , n−1 and appropriate additional signs for each

term depending on whether it is incoming or outgoing.

It is convenient to parameterise the remaining two AdS3 points as

y2 = y1 +R cos θ, z2 = z1 +R sin θeiφ , (2.12)

for which the argument of the delta function becomes

δ(p̂1 · p̂2 + (1+ε)) = 2y1(y1 +R cos θ)δ(2εy1y2 −R2) . (2.13)
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Figure 1. The factorization singularity of s-channel diagram leads to a contact Witten diagram in

AdS3.

Thus the final constraint forces (y2, z2) → (y1, z1), and through eq. (2.11), so is (y3, z3),

arriving at a contact diagram in AdS3. Note that if ε < 0, there will be no solution for the

delta function since it is below the production threshold.

The support of the delta function in equation (2.13), at leading order in ε, is given by,

R =
√

2ε y1 = R̃
√
ε , (2.14)

where R̃ = y1

√
2. Therefore, the integration measure translate into the coordinate

(R̃, θ, φ) as, ∫
d2z1 dy1 → ε3/22π

∫
R̃2dR̃ dΩ . (2.15)

So more precisely, we are retaining the leading order in small ε expansion. In the following

sections we are going to use heavily the condition (2.13), therefore the final transformation

should be understood as the leading piece in ε. More explicitly for the three-point function

considered in this section we write,

Ã3(wi, w̄i) ≈ 2i
(2π)5

m4
λε1/2

∫ ∞
0

dy2

(y2)4

∫
d2z2

×
∫
R̃2dR̃

∫
dΩ δ(R̃2 − 2y2

2)

3∏
i=1

G∆i(yi, zi, z̄i;wi, w̄i)

∼ λε
1/2

m4

∫ ∞
0

dy2

y3
2

∫
d2z2

3∏
i=1

G∆i(yi, zi, z̄i;wi, w̄i) . (2.16)

3 Contact diagrams from factorization singularities

As mentioned previously, an interesting question one can immediately pose for such a cor-

respondence is how consistency conditions are mapped. The S-matrix is subject to locality

and unitarity constraints which translate into the presence of propagator singularities as

well as consistent residues. Here we will explore the implication of factorisation singularities

on the n-copy AdS integral.

3.1 A four-point example

Let’s assume that (1, 2) are incoming and (3, 4) are outgoing with identical absolute mass.

Mass conservation restricts the s-channel pole to be massive. The contribution of the

– 6 –
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s-channel diagram yields:

1

p̂1 · p̂2 + 1 + ε
=

2y1y2

(2εy1y2 −R2
12)

. (3.1)

where we’ve applied a change of variable:

y12 = R12cosθ12, z12 = R12sinθ12e
iφ12

y34 = R34cosθ34, z34 = R34sinθ34e
iφ34 . (3.2)

where yij ≡ yi− yj and zij ≡ zi− zj . It is clear that there is a pole on the integration over

R12 along the real axes. Here we will focus on the contribution of the “leading” singularity

associated with the propagator at R12 =
√

2εy1y2. In other words, we will focus on the

factorisation singularity:

δ((p1 + p2)2 + 4m2) = δ(p̂1 · p̂2 + 1) = δ(p̂3 · p̂4 + 1) , (3.3)

where the second equality holds on the support of overall momentum conservation. As

seen from the previous section whenever the AdS coordinates appear under the constraint

p̂i · p̂j + 1 = 0 , (3.4)

points i and j will be forced to be coincidental. Thus eq. (3.3) simply forces points 1, 2

and 3, 4 to be coincidental respectively. Finally, three of the four momentum conservation

delta function solves one of the momenta in terms of others, and the remaining constraint

is (2.9), which in this case leads to:

p̂1 · p̂3 + 1 = 0 . (3.5)

Therefore momentum conservation forces all points to be coincidental. In other words, we

end up with a contact term in AdS3 as indicated in figure 1.

Let us put all the pieces together in this simple example, to illustrate how this will

work in general. From equation (2.7) for four-particles we have,

Ã4(wi, w̄i) = i(2π)4 λ2

4m4

(
3∏
i=1

∫ ∞
0

dyi
y3
i

∫
dzidz̄i

)

×
4∏
i=1

G∆i(yi, zi, z̄i;wi, w̄i)δ(p̂1 · p̂2 + 1 + ε)δ(p̂1 · p̂3 + 1) , (3.6)

where should be understood that p4 has been fixed by momentum conservation, the first

delta function in the second line comes from the singularity pole (3.3) whereas the second

delta function comes from the remaining delta from momentum conservation (2.9), namely

δ(p2
4 +m2). From the explicit computation for the vertex (2.16), we have also learned that

upon integration, every localisation delta function δ(p̂i · p̂j +1+ ε), give us a leading scaling

ε1/2, so up to a numerical factor and at leading order in ε we find,

Ã4(wi, w̄i) ∼ λ2 ε
1/2

m4

∫ ∞
0

dy1

y3
1

∫
d2z1

4∏
i=1

G∆i(yi, zi, z̄i;wi, w̄i) . (3.7)
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This is the contact four-point Witten diagram in AdS3. Taking for simplicity ∆i = ∆, i =

1 · · · 4 and using Feynman parametrisation this integral can be done, resulting in [22, 23],

Ã4(wi, w̄i) ∼ λ2 ε
1/2

m4

Γ(2∆− 2)

Γ(2∆)

2π2(∏
i<j xij

) 2
3

∆
F (u, v) (3.8)

where F is a function of the cross ratios u, v,

u =
w12w34

w13w24
, v =

w12w34

w14w23
(3.9)

and is given by,

F (u, v) =

∫ ∞
0

dz

(uv)
2
3

∆
2F1

(
∆,∆ | 2∆ | 1− (u+ v)2

(uv)2
− 4

(uv)
sinh2(z)

)
. (3.10)

As we see, the transformed amplitude (3.8) has the right form of a four-point correlation

function in a conformal field theory. However, to explore it further, it is convenient to

rewrite it in a more illuminating way in the Mellin representation. The Mellin representa-

tion of contact Witten diagram is well understood and is given as [16],2

F (u, v) =
1

(2πi)2

∫ i∞

−i∞
dsdt us+t v−t Γ(−s)2Γ(−t)2Γ(s+ t)2 . (3.11)

The above representation should be understood as a contour integral in s and t along

the imaginary line, picking the residues at the poles of the gamma functions. It is im-

mediately noticed that the integrand contains double poles whenever s or t or (−s − t)
are positive integers which will produce logarithmic singularities in u and v. These loga-

rithmic singularities corresponds to contributions from small anomalous dimensions since

|wij |∆+γ = |wij |∆(1 + γ log |wij |+O(γ2)).

Note that the fact that the factorisation singularity is connected to the single logs

in the four-point function implies that if this is the sole source of logarithmic piece, then

unitarity of the scattering amplitude requires that the log u piece of the correlation function

must have a positive coefficient.

Even though we’ve only reproduced contact Witten diagrams, factorisation Witten

diagrams can be represented in a similar fashion. It was shown [14–16] that the latter can

be rewritten as a finite series expansion in terms of contact quartic Witten diagrams,

2∆0−∆
2∑

k=1

ak
|w13|k

∫
dp1Gk(p1;w1, w̄1)Gk(p1;w3, w̄3)G∆0(p1;w2, w̄2)G∆0(p1;w4, w̄4) ,

ak =
(∆0)2

−k

4
(

2∆0−∆
2

)
1−k

(
2∆0+∆−d

2

)
1−k

. (3.12)

2Notice that in two dimensions, the cross ratios u and v are not independent, they are related by v = u
1−u

and hence the Mellin representation (3.11) seems to be ill-defined as it should be an integration over one

single variable. However, we have chosen to keep it in this form to include the more general case in higher

dimensions.

– 8 –
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Figure 2. The five point diagram built from cubic vertices, with arrows indicating the momen-

tum flow.

where ∆0 denotes the conformal dimension of the external fields, which in this note have

been taken to be identical, and ∆ denotes the conformal dimension of the exchanged field.

Taking w1 = 0, w3 = 1, we find that factorization Witten diagrams can be identified as the

residue of

A(p̂) =

2∆0−∆
2∑

k=1

ak
(p̂1 − p̂4)

. (3.13)

Note that the coefficients ak are all positive definite which is consistent from the view point

of S-matrix unitarity.

Finally, since the constraint localises all AdS points, the only possible Lorentz invariant

is p̂i · p̂j = p̂2
i = −m2

i , i.e. the residue degenerates to a number. In other words, exchanging

different higher spin states amounts to a trivial normalisation constant for the contact

AdS3 diagram.3

3.2 The n-point generalization

We are now ready to make the full fledged proposal. We will consider all cubic graphs

whose mass is conserved. The constraint arising from all massive propagators going on-

shell, along with momentum conservation at each vertex, will reduce the n copies of AdS

integrals to a single copy, thus corresponding to a contact Witten diagram.

Consider the five-point cubic diagram represented in figure 2, where the arrows repre-

sent the moment flow for p1 + p2 = p3 + p4 + p5. The associated pole singularities are,

δ
(
(p1 + p2)2 + 4m2

in

)
δ
(
(p4 + p5)2 + 4m2

out

)
where m1 = m2 = min and m3 = m4 = m5 = mout. This localises p̂1 → p̂2 and p̂4 → p̂5.

Once again, momentum conservation can be used to solve for p̂3 and as in previous sections,

the remaining on-shell condition becomes,

p2
3 = −m2

out = [(p1 + p2)− (p4 + p5)]2 = 4(−m2
in −m2

out − 2moutminp̂1 · p̂3) . (3.14)

Mass conservation ensures that min = 3mout/2, and one again finds,

p̂1 · p̂5 + 1 = 0

which localises p̂1 → p̂5, leading us to a single contact term in AdS3.

3This can also be understood from the four-point kinematics s and t. When s = 4m2,

t =
s− 4m2

2
(1− cos(θ)) = 0 ,

– 9 –
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Figure 3. Half Ladder Feynman diagram.

n-point ladder diagrams. The above analysis can be straightforwardly generalised to

the scattering of n−particles for the half-ladder diagram shown in figure 3. Let us start

considering an even number of particles such as, half of them are incoming with identical

mass min and the rest are out-going with also the same mass mout, i.e min = mout. Let

the incoming particles to be adjacent. As before, mass conservation is imposed on each

vertex. Momentum conservation allows us to fix one momentum, namely pn. Following the

order of the particle labels as in figure 3, the analysis is quite simple. The delta function

singularity coming from the first propagator δ
(
(p1 + p2)2 + 4m2

o

)
, forces p̂1 → p̂2 as we

have shown before. Then the singularity from the next vertex, namely,

δ
(
(p1 + p2 + p3)2 + 9m2

o

)
= δ

(
(2p1 + p3)2 + 9m2

o

)
leads us to δ(p̂1 · p̂3 +1), or p̂1 → p̂3. Continuing in this order, the singularity corresponding

to the propagator at the right hand side of the vertex attached to pr with r < n/2 is given by,

δ

((
r∑
j=1

pr

)2

+

(
r∑
j=1

mo

)2)
= δ

((
(r − 1)p1 + pr

)2
+ (rmo)

2

)
, (3.15)

which once again leads us to p̂1 → p̂r. We keep going until we reach the last propagator

at the final vertex and we use it to localize the leg pn−2 along with the previous localised

n− 3 particles at the right of it.4 Finally, the condition (2.9) plus mass conservation, leads

us to

p2
n = −m2

o =

(
n/2∑
j=1

pj −
n−1∑

j=n/2+1

pj

)2

=

(
n

2
p1 −

(
n

2
− 2

)
p1 − pn−1

)2

, (3.16)

or equivalently

p̂1 · p̂n−1 + 1 = 0 , (3.17)

which implies p̂n−1 → p̂1 and therefore we end up again with a single contact term in AdS3.

Now consider odd-number of particles, with (n−1)/2 incoming and (n+1)/2 outgoing.

Mass conservation tells us that:

min =
n+ 1

n− 1
mout . (3.18)

and thus the only possible residue is a number.
4We can as well keep going until we reach half of the diagram at leg n/2 and then perform the same

analysis from right-to left until we reach the leg corresponding to particle n
2

+ 2, in any case, we will arrive

to the same conclusion.
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Figure 4. Benzene-type diagram.

We perform a similar procedure as before, starting from left-to-right until we reach the leg

(n − 1)/2 and then the other way around until we reach the leg n+1
2 + 1. So finally the

condition (2.9), leads us to

p2
n =

(
(n−1)/2∑
j=1

pj −
n−1∑

j=(n+1)/2

pj

)2

=

(
(n− 1)

2

)2

(p1 − pn−1)2 , (3.19)

which after some algebra is equivalent to

p̂1 · p̂n−1 + 1 = 0 , (3.20)

where we have used mass conservation condition (3.18). Let us recall that on the final

transform we are retaining the leading order in an ε expansion, and as we saw above, every

delta function forcing a localisation will contribute to a ε1/2 scaling, therefore, the Witten

contact diagram coming from the n−particle half-ladder appear at order ε(n−3)/2, coming

from (n− 3) propagators.

Benzene diagram. Now we consider the Benzene-type diagram represented in figure 4

for six-particles scattering with p1 + p2 = p3 + p4 + p5 + p6. Looking at the following

pole singularity, ∏
j={1,3,5}

δ
(
(pj + pj+1)2 + 4m2

j

)
where m1 = m2 = min and m3 = m4 = m5 = m6 = mout. It localises p̂j → p̂j+1 for

j = {1, 3, 5}. Momentum conservation can be used to solve for p6 and the additional

condition (2.9) leads us to,

4p2
6 = −4m2

out = [2p1 − 2p3]2 = 4(−m2
in −m2

out − 2moutminp̂1 · p̂3)

by mass conservation we have that min = 2mout, so, replacing it in the above equation we

end up with

p̂1 · p̂3 + 1 = 0

which is again the localisation condition to p̂1 → p̂3.
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Figure 5. One-shell one-loop diagrams.

One-loop on-shell graphs. Finally, let us consider the one-loop on-shell triangle and

box graphs displayed in figure 5. For the triangle, after imposing mass-conservation on

every vertex, we can write the amplitude as (notice that mout = 2min)

A(pi) =

∫
dp`δ

(
p2
` +m2

`

)
δ
(
(p1 + p`)

2 + (min +m`)
2
)
δ
(
(p2 − p`)2 + (m` −min)2

)
The first delta function constrains the loop momentum to be on-shell, and hence the

integration dp` above corresponds to a new AdS3 point. After some algebra we can see

that the second delta and third delta functions enforce the localisation of p̂1 → p̂` and

p̂2 → p̂` respectively, and momentum conservation fix p3 = p1 + p2 = 2min p̂`.

The remaining condition from momentum conservation,

p2
3 = −4m2

in = (p1 + p2)2 = −4m2
in , (3.21)

is satisfied by mass conservation and therefore does not impose any additional constraint.

The box is slightly more involved, but the argument applies similarly. The on-shell

loop momenta condition and vertex mass conservation (taking all the external masses to

be the same magnitude), allow us to write the amplitude as,

A(pi) =

∫
dp`δ

(
p2
` +m2

`

)
δ
(
(p1 + p`)

2 + (min +m`)
2
)

×δ
(
(p1 + p` − p3)2 −m2

`

)
δ
(
(p2 − p`)2 + (m` −min)2

)
, (3.22)

as before, the first delta function forces the loop momenta to be on-shell, the second on

the first line and the second on the second line, enforces p̂1 → p̂` and p̂2 → p̂` respectively.

The first one on the second line can be carried out similarly leading us to,

1

(2m2
in + 2minm`)

δ (1 + p̂` · p̂3) , (3.23)

hence implying p̂3 → p̂`. The remaining momentum conservation delta function reads then,

p2
4 = −m2

out = (p1 + p2 − p3)2 = p2
1 = −m2

in , (3.24)

which is trivially satisfied by mass conservation. Notice that we can extend these procedure

for general polygons at one-loop, i.e. beyond four-points unlike as for unitarity cuts, since

the delta functions are constraining the external data instead of the loop-momentum.
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In summary, imposing the mass conservation condition coming from momentum con-

servation in five dimensions, plus momentum conservation in 4d leads us to a Witten

contact term in AdS3 for the massive exchanges. At this point, is worth to make a cou-

ple of remarks. Contact Witten diagrams are also known as D−functions, as has been

defined in [24], and they can be elegantly represented in terms of Mellin amplitudes [16].

So far we have considered all incoming particles to be adjacent and similarly for all the

outgoing particles. This has been done in order to guarantee that we always have massive

propagators, in the case where there are alternate incoming and outgoing particles, it is

possible to produce massless propagators due to mass conservation. This case deserves

special attention and is going to be discussed later on in this note.

4 A 2d-2d duality

We see that in the above construction, mass conservation plays an essential role. While

this appears unnatural in a four-dimensional point of view, it arises naturally if we consider

it as a five-dimensional massless φ3 theory, where the fifth momenta can be identified as

the four-dimensional mass: ~p(5) = (p,m). Momentum conservation in fifth dimension will

then ensure that all masses are conserved at each vertex. At this point, this appears to be

mere cosmetics. However, by reinterpreting the kinematics as massless, we can utilise the

Cachazo, He, and Yuan (CHY) representation to reproduce the factorization singularity.

Recall that for φ3 theory, we can reconstruct its S-matrix by integrating over the

moduli space of punctured points on the Riemann sphere [17], where the integrand is given

by double cycles

mφ3
(α, β) =

∫ n∏
a=1

dσa
SL(2,C)

1

(σα1,α2 · · ·σαn,α1)(σβ1,β2 · · ·σβn,β1)

∏
i

δ

(∑
j 6=i

sij
σij

)
, (4.1)

where (α, β) are any couple of permutations over the set of labels {1, 2, · · · , n}, σi are the

positions of the punctures on the sphere, σij = σi − σj and sij = (pi + pj)
2. By relabelling

the puncture locations on the sphere as,

σa =
τ

ua
, a ∈ L, σa =

va
τ
, a ∈ R, (4.2)

where L and R define the subset of index L = {1, · · · , nL} and R = {nL + 1, · · · , n}, it

can be shown that the product of scattering equation delta functions factorises and the

integrand in (4.1) takes the form:

− (u1,2u1u2vn−1,nvn−1vn)2dτ
2

τ2
mφ3

(αL, L |βL, L)({u})

× δ
(
p2
R − τ2F

)
mφ3

(αR, R |βR, R)({v}) . (4.3)

Here F is some τ independent polynomial, and

mφ3
(αL, L |βL, L)({u}) =

∫ nL∏
a=3

dua
SL(2,C)

1

(u1u1,αL(2) · · ·uαL(nL−1),αL(nL)uαL(nL))

× 1

(u1u1,βL(2) · · ·uβL(nL−1),βL(nL)uβL(nL))

∏
a∈L\{1,2}

δ(faL)

(4.4)
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where (αL, βL) are any couple of permutations over the set of labels L\{1} and fLa are the

scattering equations for the subset of punctures in L,

fLa =
∑
b∈L\a

sa,b
ua,b

. (4.5)

with a similar expression for mφ3
(αR, R |βR, R)({v}) but for the subset of elements R and

variables va.

On the factorisation kinematics p2
R = 0, the delta function δ

(
p2
R − τ2F

)
localises τ2

to vanish and hence correspond to the pinch limit of the Riemann sphere. Now we can

easily turn this around and consider the pinch limit directly in the CHY integrand, which

via the scattering equations will enforce the kinematics to be in the factorisation limit. For

example, at four-points, one would have:

δ(s12) =

∫
dτ2

τ2
δ
(
p2
R − τ2F

)
τδ(τ) . (4.6)

At higher points, one can reproduce all factorisation singularities by successively pinching

the Riemann sphere, i.e. for n-factorisation singularities one simply performs a change of

variable to make n-pinch parameters manifest, and insert n-factors of delta functions that

localise these n parameters. The result of the integration would simply a product of n

factorisation delta functions.

Finally we parameterise the five dimensional momenta using our AdS coordinates,

where there is freedom in the embedding of four-dimensions. Depending on the embedding,

the internal moment can be massive or massless. We will discuss the massless case in the

next section. For the massive case, one finally establishes the following correspondence:

2d CFT ↔
n∏
i=1

(∫
d2zi

dyi
y3
i

G∆(yi, zi, z̄i;w, w̄)

) ∫
d2nσi CHY

(∏
j

τjδ(τj)

)
. (4.7)

where τj are the moduli of the Riemann sphere whose zero limit correspond to pinched limit.

5 Massless singularities

In reducing the five-dimensional representation to four-dimensions, one also naturally re-

covers cases where the propagators are massless. For massless singularities the AdS points

are no longer localised to a single point. Rather we recover configurations with multiple

bulk points similar to the factorization Witten diagrams. We will demonstrate this with

the previous four-point example.

Consider again the kinematics of the external lines in figure 1 but with factorisation

in the t-channel. Now mass conservation implies that the internal propagator is massless,

and hence

δ((p̂1 − p̂4)2) =
1

2
δ(p̂1 · p̂4 + 1) (5.1)

The factorisation singularity now identifies p̂1 to p̂4 and p̂2 to p̂3. However as momentum

conservation is simply p̂1 + p̂2 − p̂3 − p̂4 = 0, it is trivially satisfied in this limit, and hence
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Figure 7. Schematic diagram for the massless exchange residue in AdS3.

one ends up with two free points in AdS3, i.e. putting this together we got

Ã4(wi, w̄i) ∼ λ2 ε
1/2

m4

∫ ∞
0

dy1

y3
1

∫
dz2

1

∫ ∞
0

dy3

y3
3

∫
dz2

3

4∏
i=1

G∆i(yi, zi, z̄i;wi, w̄i) δ(0) rt(p̂1 · p̂3) ,

(5.2)

where rt(p̂1 · p̂3) represents the residue of the flat space amplitude around the singularity

in the t− channel, whose form now depends on the spin of the internal particle. This

expression is a factorisation Witten-like diagram, as shown in figure 6.

The residue of the massless singularity is now sensitive to the spin of the exchanged

particle. For spin-0 the residue is simply 1, while for spin-1 one has p̂3 · p̂1. These do

not appear to correspond to any bulk to bulk propagators in AdS which are non-rational

functions of p̂3 · p̂1, and thus cannot correspond to any single operator exchange. We will

further comment on this in the conclusions. Unlike the massive exchanges, the integral (5.2)

is divergent. In order to show it, let us consider the simplest case for a residue equal to 1.

By explicitly performing the integral we get [23],

Ã4(wi, w̄i) ∼ λ2 ε
1/2

m4

π2Γ(∆− 1)2

4Γ(∆)2

δ(0)

(|w12||w23|)2∆

(∫ ∞
0

dβ

β

)2

. (5.3)

By looking closer at the original integral (5.2), this divergence can be identified to be near

the region where one or both of the integration coordinates y1, y2 are near to zero and z1 is

near to w1 or w2 (or z2 is near to w3 or w3). In other words, the integral is divergent near

to the boundary points wi, i = 1, · · · , 4 and it should be regulated by an infrared cut-off.

In the case of a more general residue, i.e when rt(p̂1 · p̂3) is a polynomial in p1 · p3, it can

be seen that the degree of the divergence increases.

While the integral is divergent, it can be shown that it will be proportional to

a factorised Witten diagram in the “split” representation. For any SO(3, 1) invariant
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functionF (p̂1, p̂2) of two-points in AdS can be expanded in a basis of harmonic functions

Ω as [25, 26],5

F (p̂1, p̂2) =

∫ i∞

−i∞

dc

2πi
f(c)Ωc(p̂1, p̂2) , (5.4)

with

Ωc(p̂1, p̂2) =

∫
∂AdS

dwdw̄ G1+c(p̂1;w, w̄)G1−c(p̂2;w, w̄) . (5.5)

By using this representation, we can rewrite the residue rt(p̂1 · p̂3) as

rt(p̂1 · p̂3) =

∫ i∞

−i∞

dc

2πi
fÃ(c)

∫
∂AdS

dwdw̄ G1+c(p̂1;w, w̄)G1−c(p̂3;w, w̄) , (5.6)

where

fÃ(c) =
1

Ωc(p̂2, p̂2)

∫
dp̂1Ωc(p̂1, p̂2)Ã(p1 · p3) , (5.7)

such the residue can be written as an expansion in terms of Bulk-to-Boundary propagators.

By assuming we regulated the integral (5.2) by say, putting a cutoff near to the boundary,

and inserting the representation (5.6) in (5.2) we can represent the massless exchange by

a split diagram as in figure 7.

6 Conclusions and outlook

In this note, we have considered the correspondence between four-dimensional S-matrix

singularities and two dimensional CFT. This is in the context of the Pasterski, Shao and

Strominger construction, where one replaces the usual S-matrix plane waves with confor-

mal primary wave function. The kinematic space is conveniently parametrised by AdS3

coordinates, and thus correspond to n- AdS bulk points. The focus on the factorisation

singularities is then the first step to understand the implications of the dynamic properties

of the S-matrix.

We show that for massive scalar theories, if mass conservation is implemented at each

cubic vertex, the massive factorisation singularities along with over all momentum conser-

vation, will localise the n-copy of AdS bulk points to a single point thus forming a contact

Witten diagram. Note that in this case, the different spin exchanges simply degenerates

to an overall normalisation constant. The fact that some singularities of the S-matrix

are related to contact diagrams (D-functions), is somehow reminiscent to the situation

in AdS/CFT where some of the singularities in the D-functions are related to S-matrix

elements in flat space [27–29]. It would be interesting to pursue this connection further.

For massless singularities, the result is a factorisation Witten diagram with polynomial

residues whose degree depends on the spin of the exchange particle, which are rational

polynomials. However, these do not correspond to the usual bulk to bulk massless spin-

1 exchanges which would require non-rational functions of p̂i · p̂j . Rather, one has an

exchanged Witten diagram written in the split representation. It would be interesting to

5Here we particularise to the AdS3 case.
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see if this can be rewritten in terms of a (integral) sum of usual exchange Witten diagrams

with varying dimensions for the exchanged operator.

The fact that mass must be conserved at each vertex indicates that the constraints are

more naturally embedded in massless constraint of five-dimensional kinematics, where the

conservation is simply the extra dimensional Poincare symmetry. This identification also

allows us to use the CHY representation for massless S-matrix, and reinterpret the factor-

ization singularities as pinch limits of the Riemann sphere. This establishes an interesting

2d/2d correspondence.
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