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1 Introduction

The standard model (SM) does not explain quark and lepton masses, nor does it explain

how quarks and leptons mix. The most studied and perhaps the most aesthetic approach to

parameterizing the masses and mixing angles is to extend the SM by a discrete group Γ into

whose irreducible representations (irreps) the standard model particles are assigned. Many

choices of this discrete flavor symmetry have been tried. As expected, larger groups can

typically provide a fuller description of flavor physics, but there are examples of relatively

small nonabelian discrete groups like A4 and T ′ that are somewhat more economical. Here

we take an agnostic approach as to the choice of discrete group and study a representative

set of examples that have been used in model building.

Notable early extensions of the standard model with discrete symmetries include the

work of Pakvasa and Sugawara [1] and Wyler [2] who used Γ = S3 and Γ = A4 respectively

to describe the quark sector, as well as Ma and collaborators [3, 4] who used Γ = A4 to

describe the lepton sector. Many other choices for Γ have subsequently been used in model

building, several of which will be discussed below. For an early brief review of possible

discrete groups that can be used for SM extensions see [5]. Recent extensive reviews with

more complete and up to date bibliographies are also available. See for instance [6–9].

Extending the SM by a discrete group is not without its perils. Global discrete symme-

tries are violated by gravity [10]. (As an example, consider the case when a star collapses

to a black hole. The no hair theorem tells us initial baryon number is lost and hence gravity

causes a global discrete symmetry to be violated. Similarly, global continuous symmetries

are violated by gravity. See e.g., [11–13], where it is argued that gravity also spoils the

Peccei-Quinn solution to the strong CP problem.) In addition, the discrete group can be

anomalous [14], it can lead to unwanted cosmic defects [15], etc. To avoid as many of these

problems as possible the most expedient approach is to gauge the discrete symmetry, i.e.,
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extend the SM by a continuous gauge group G in such a way that no chiral anomalies are

produced. Then one breaks this gauge group to the desired discrete group, G→ Γ, where

now Γ is effectively anomaly free and avoids problems with gravity.

Various examples of Lie groups breaking to discrete groups have been discussed in the

literature, but only in a few cases have the details of the minimization of the scalar potential

and the extraction of the scalar spectrum been investigated. Here we plan to include these

important details for many of the discrete groups of interest via the following procedure:

(i) First we provide irreps of G that contain trivial Γ singlets. These results are sum-

marized in the appendix.

(ii) Next we set up scalar potentials V with scalars in one of these irreps.

(iii) Then we find a vacuum expectation value (VEV) via the Reynolds operator [16, 17]

(related to the perhaps more familiar Molien series [18]) that can break G to Γ.

(iv) Next we minimize V to show that the VEV indeed does properly break the symmetry.

(v) Finally, we provide the spectrum of scalar masses at the Γ level after the breaking.

Our calculations are carried out with Mathematica and checked by hand where practical.

Many of the methods we employ were developed in work by Luhn [19] and by Merle

and Zwicky [20], where some of the results summarized here can be found. We believe

our results will be of interest to many model builders, since it will allow them to include

the minimal set of scalars necessary to break a gauge symmetry to a discrete symmetry of

interest. A few examples that go beyond the minimal set of scalars are also included, where

the symmetry breaking is carried out from a nonminimal G irrep or from a non-minimal G.

2 Lie group invariant potentials

Our task in this section is to construct Higgs potentials invariant under Lie groups G for

specific irreps. But first we must see which irreps are suitable for spontaneous symmetry

breaking (SSB), i.e., irreps whose decompositions include a trivial singlet of the desired

subgroup Γ ⊂ G to which we hope to break. Using the Mathematica package decomposeL-

Greps [21] along with GAP to generate the groups [22], one can easily produce tables of

branching rules from Lie group irreps to subgroup irreps and find such singlets. We have

done this for a number of cases and have included them in a short appendix for convenience

and to make the paper self contained.

2.1 Gauge group irreps containing discrete gauge singlets

The discrete groups Γ we will discuss and the gauge groups where they can be minimally em-

bedded are A4, S4, A5 ⊂ SO(3); Q6, T
′, O′, I ′ ⊂ SU(2); and T7,∆(27),PSL(2, 7) ⊂ SU(3).

Some of these discrete groups can also be embedded non-minimally. For example,

we include the case A4 ⊂ SU(3). Minimal and non-minimal embedding of other discrete

groups can be handled in a way similar to what is discussed here, and we hope that the

examples we discuss are sufficiently informative to aid in other cases.
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To spontaneously break G to Γ with some irrep R of G, it is necessary that R contains a

trivial Γ singlet. It is straightforward to look at the decomposition of R from G to Γ to make

this determination. The decomposition can be carried out by standard techniques starting

from character tables. Since it is the character tables that are usually provided in the

literature, for convenience we here provide an appendix with the tables of decompositions

of the first few irreps of SO(3), SU(2), and SU(3) to discrete groups of interest. For example,

as one can see in table 17 of the appendix, the 7 and 9 dimensional irreps of SO(3) have

trivial A4 singlets, therefore these irreps are both candidates for the scalar potential that

allows the spontaneous symmetry breaking SO(3)→ A4.

2.2 SO(3) potentials

Before going into constructing specific potentials we first comment on possible cubic terms;

a general renormalizable potential has quadratic, cubic, and quartic terms, but the cubic

terms tend to significantly complicate the analysis. We exclude these terms for simplicity

by imposing a Z2 symmetry (or, in many cases they vanish on their own upon summation),

so the following potentials are actually SO(3) × Z2 invariant. (The Z2 symmetry can be

avoided by including allowed cubic terms or by gauging it too.) The effect of including

the cubic terms is studied for a case where the analysis is tractable in section 4. We now

proceed to our first example, the breaking pattern SO(3) → A4.

2.2.1 A4

We begin by constructing an SO(3) invariant potential. As stated above, which irrep we

use depends on the discrete subgroup of interest. For example, if we want to break to the

tetrahedral group A4, which has been used to describe the tri-bimaximal neutrino mixing

pattern [7] [24] and co-bimaximal mixing [25], we look at table 17 and see that the lowest

dimensional irrep we can use is the 7. (For references to other recent work with A4 models

see [26–28].) In terms of the fundamental 3 of SO(3), we obtain a 7 as a direct product of

three 3s.

3× 3× 3 = 1 + 3 · 3 + 2 · 5 + 7 (2.1)

This product gives a generic rank 3 tensor with 27 independent components. To isolate

the 7, we take only the totally symmetric part, which reduces the number of components

from 27 to 10, giving the symmetric tensor Sijk. Then, using the fact that the Kroenecker

delta δij , is an invariant of the fundamental irrep of SO groups (for a discussion of Lie

group invariant tensors see [29]) we subtract off the three traces,
∑3

j δjkSijk, i=1,2,3 ,

to obtain the traceless symmetric tensor Tijk, which is our 7 dimensional SO(3) irrep.

As mentioned above, the most general renormalizable potential is constructed from the

independent quadratic, cubic, and quartic contractions of this tensor. In this case there

are two quartic terms, but notice that all the cubic terms, which necessarily include the

anti-symmetric Levi-Civita Tensor, εijk, vanish upon summation. Hence the potential for

the 7 is

V7 = −m2 TijkTijk + λ (TijkTijk)
2 + κ TijmTijnTklnTklm. (2.2)

It is instructive to go through the details of the construction of this potential. Others

follow via similar analyses. To construct V7 consider first the product

7× 7 = 1S + 3A + 5S + 7A + 9S + 11A + 13S. (2.3)
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Since the potential contains only one 7, we only need to consider the symmetric part of

the tensor product that we represent schematically as

T ⊗ T ∼ TijkTijk + TijmTijn + TikmTiln + TkmpTlnq. (2.4)

The first term is a singlet, i.e., it has no free indices, and therefore contributes to the

mass term in (2.2). There is no term in (2.4) with three free indices, so we can not construct

a cubic term for V7. To find the quartic terms we need to study the symmetric part of

T ⊗ T ⊗ T ⊗ T . Clearly (TijkTijk)
2 is allowed and it contributes to the λ term in (2.2).

Likewise TijmTijnTi′j′mTi′j′n contributes to the κ term. Squaring the last two terms in (2.4)

to form singlets does not give new terms, e.g., TikmTilnTi′kmTi′ln again tributes to the κ

term. Hence the most general potential for a 7 of SO(3) is as given in eq. (2.2).

In subsequent sections we find a vector (in a particular basis) pointing in the A4

direction, then minimize the potential, find the mass eigenstates, and show that they can

all be positive, implying a stable minimum. Minimization implies certain constraints on the

coupling constants must be satisfied as will be discussed. We proceed in analogous fashion

for other G→ Γ cases, but first we will collect all the potentials we need for the purpose.

2.2.2 S4

To break to the octahedral group, S4, we see from table 18 that the lowest irrep we can

use is the 9. From examining Kroenecker products, we see that we must begin with the

direct product of four 3s. Similar to the results in the previous subsection, we take the

symmetric part of this rank 4 tensor, Sijkl, which reduces the number of components to 15.

We then subtract off the six trace elements,
∑
δklSijkl, to obtain the desired 9-component

tensor. The associated potential is

V9 = −m2 TijklTijkl + λ (TijklTijkl)
2 + κTijklTijkpTmnopTmnol

+ρ TijklTijopTmnopTmnkl + τ TijklTijmnTkmopTlnop.
(2.5)

The construction of V9 is slightly more complicated do to the extra tensor index on the 9,

but proceeds in analogy with the construction of V7. In fact all other potentials constructed

from totally symmetric tensor irreps follow the same pattern. This covers all the cases we

will consider with the exception of the 15 of SU(3) which is similar, but where the mixed

symmetry of the 15 must be taken into account. Details of that construction can be found

in [19]. For examples where the octahedral group has been used to build models see [30, 31].

2.2.3 A5

Another subgroup of interest, which has been used in a number of recent models [32–35],

is A5. From table 19 we see that the 13 is the lowest dimensional irrep that contains a

trivial A5 singlet. Again starting from the fundamental SO(3) triplet one can show that the

Kroenecker product of six 3s is needed to get an irrep of this dimension. The symmetric

part of this rank 6 tensor, Sijklmn has 28 independent components, which is then reduced

to 13 by subtracting off the 15 trace elements,
∑
δmnSijklmn. The potential

V13 = −m2 TijklmnTijklmn + λ (TijklmnTijklmn)2 + κTijklmnTijklmtTopqrsnTopqrst

+ρ TijklmnTijklstTopqrmnTopqrst + τ TijklmnTijkrstTopqlmnTopqrst,
(2.6)

is constructed in a fashion similar to the A4 case.
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2.3 SU(2) potentials

We now proceed in a similar vein to construct SU(2) invariant potentials. In fact, for the

odd dimensional (real) representations, invariants must be constructed from triplets which

furnish an unfaithful representation of SU(2).1 As such the true symmetry of the theory is

not given by the potential alone and must be determined from the specifics of the model,

i.e., from the full Lagrangian. In the following cases, the omission of the cubic terms means

the potentials have a SU(2) × U(1) symmetry, where the U(1) is a phase. This phase can

also be gauged and then broken if necessary to avoid problems with global symmetries, or

in some cases cubic terms can be added that do not respect the U(1).

2.3.1 Q6

If we want to break to Q6 we see from table 20 that the lowest dimensional irrep we can use

is the 5. However, as explained in [36, 37], this irrep will actually break to the continuous

subgroup Pin(2). So we must look at the next lowest irrep with a trivial SU(2) singlet, the

7. We cannot break with a real 7 as in eq. (2.2) because there are no triplet representations

of Q6 that can be used to find a VEV in the unfaithful SO(3) representation. Thus we

must use the complex 7, which has the same potential as needed for the T ′ case which is

given in eq. (2.7) below.

2.3.2 T ′

To break from SU(2) to T ′, the binary tetrahedral group, we see from table 21 that the

smallest SU(2) irrep we can use is the 7. Since we must construct it from triplets the

potential is the same as in equation (2.2). The VEVs will also be the same.

Another possibility is to do the breaking to T ′ with a complex 7, which can be thought

of as a pair of real 7s. We can now build our representation out of the fundamental doublets

of SU(2), where we get the 7 by taking the direct product of six 2s and isolating the tensor

symmetric on all indices. The potential is

V7c = −m2 TijklmnT
ijklmn + λ (TijklmnT

ijklmn)2 + κTijklmnT
ijklmtTopqrstT

opqrsn

+ρ TijklmnT
ijklstTopqrstT

opqrmn + τ TijklmnT
ijkrstTopqrstT

opqlmn.
(2.7)

where the indices now run from 1 to 2. All cubic terms have vanished upon summation.

T ′ models are economical and have been used to explain both quark and lepton sector

parameters [5, 38–44]. A more complete set of recent T ′ model references can be found

in [44].

2.3.3 O′

To break from SU(2) to O′, the binary octahedral group, we see from table 22 that the

smallest SU(2) irrep we can use is the 9. As in the S4 example, we can construct our

1Group Theory Comments: the tetrahedral group A4 ⊂ SO(3) has double-valued representations that

correspond to single-valued representations of the binary (double) tetrahedral group T ′ ⊂ SU(2). As SO(3)

is not a subgroup of SU(2), likewise A4 is not a subgroup of T ′ [23]. Hence, besides the irreps of T ′ that are

coincident with those of A4, T ′ has three additional spinor doublet-like irreps. The relationships between

S4 and O′ and between A5 and I ′ are similar.

– 5 –



J
H
E
P
0
8
(
2
0
1
7
)
1
1
0

potential from triplets so the potential is the same as in equation (2.5) and the VEVs will

again be the same.

We can also consider the case of a complex 9 and build the representation out of SU(2)

doublets. We obtain the 9 through the symmetric product of eight 2s. The potential is

V9c =−m2 TijklmnopT
ijklmnop + λ (TijklmnopT

ijklmnop)2

+ κTijklmnopT
ijklmnoxTqrstuvwxT

qrstuvwp + ρ TijklmnopT
ijklmnwxTqrstuvwxT

qrstuvop

+ τ TijklmnopT
ijklmvwxTqrstuvwxT

qrstunop + σ TijklmnopT
ijkluvwxTqrstuvwxT

qrstmnop.

(2.8)

2.3.4 I′

The final SU(2) breaking case we consider is I ′, the binary icosahedral group, which has

been used in both three and four family extensions of the SM [45, 46]. Here the lowest

SU(2) irrep we can use is the real 13, which yields the same potential as we used for A5

(eq. (2.6)).

Alternatively for the case of a complex 13 we see that it is given by the symmetric

product of twelve 2s. The potential has seven quartic invariants, and the first few terms are

V13c =−m2 TabcdefghijklT
abcdefghijkl + λ (TabcdefghijklT

abcdefghijkl)2

+ κTabcdefghijklT
abcdefghijkxTmnopqrstuvwxT

mnopqrstuvwl + . . .
(2.9)

Potentials for higher tensors can be cumbersome to write, so let us introduce a new notation

to deal with them. For instance for the potential for the 13, let us define

T12a · T 12a = TabcdefghijklT
abcdefghijkl,

and

(T11a · T 11a)bc(T11a · T 11a)cb = TabcdefghijklT
abcdefghijkxTmnopqrstuvwxT

mnopqrstuvwl,

etc. Specifically we write na for the collection of indices a1a2a3 . . . an, etc. Then the full

potential is for the complex 13 takes the form

V13c =−m2 T12a · T 12a + λ (T12a · T 12a)2 + κ(T11a · T 11a)bc(T11a · T 11a)cb

+ ρ (T10a · T 10a)2b2c(T10a · T 10a)2c2b + τ (T9a · T 9a)3b3c(T9a · T 9a)3c3b

+ ν (T8a · T 8a)4b4c(T8a · T 8a)4c4b + σ (T7a · T 7a)5b5c(T7a · T 7a)5c5b

+ χ (T6a · T 6a)6b6c(T6a · T 6a)6c6b.

(2.10)

This notation is consistent when the tensor T is totally symmetric on all of its indices.2

2.4 SU(3) potentials

Similar to the previous section, the omission of cubic terms means that the following poten-

tials have an SU(3)×U(1) symmetry, where the U(1) can be dealt with as described above.

2We could write an even more compact notation in generalized dyadic form, e.g., the ν term would be

ν(T :8 T ) :4 (T :8 T ) which again defines how the tensor contractions are to be made, but we find this form

unnecessary here. However, it could be useful for expressions involving more complicated group invariants.

Cvitanovic’s “Bird Track” notation [29] can also be useful for this purpose.
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2.4.1 A4 and T7

In addition to SO(3), A4 can originate from a broken SU(3) symmetry. Looking at table 24

we see that the lowest dimensional irrep containing a trivial A4 singlet is the 6, but as

explained in [19], neither the 6, 10, nor 15′ will break SU(3) uniquely to A4, i.e., giving

these irreps an A4 VEV will necessarily leave a group larger than A4 unbroken. This leaves

us with the 15 as the smallest irrep that will uniquely break to an A4 subgroup, and

the same logic applies to T7. (A variety of T7 models have been proposed, see [47–50].)

To obtain a useful form of the 15 we first take the product 3 × 3 × 3̄ in SU(3); then by

specifying the part that is symmetric on 2 indices, Skij , we reduce the number of independent

components from 27 to 18. Finally, subtracting off the three traces:
∑3

j δjkS
k
ij , i = 1, 2, 3 ,

gives us the desired 15 component tensor. The associated potential [19] is

V15 =−m2 T kijT
ij
k + λ (T kijT

ij
k )2 + κT ijmT

jn
i T klnT

lm
k

+ ρ T ijmT
jn
i Tmkl T

kl
n + τ Tmij T

ij
n T

n
klT

kl
m + ν T ijmT

j
inT

km
l T lnk .

(2.11)

2.4.2 ∆(27)

From table 26 we see that we can use the 10 to spontaneously break from SU(3) to ∆(27).

We can get to this irrep by taking the product of three triplets and specifying the fully

symmetric part of the resulting tensor, which reduces to the desired ten independent com-

ponents. The potential is

V10 = −m2 TijkT
ijk + λ (TijkT

ijk)2 + κ TijmT
ijnTklnT

klm. (2.12)

where the cubic terms have vanished upon summation. This result can also be found in [19].

Examples where ∆(27) has been used to build models can be found in [51, 52].

2.4.3 PSL(2,7)

Another group that has garnered considerable interest as a flavor symmetry is

PSL(2, 7) [53]. Looking at table 27 we see that the lowest dimensional irrep of SU(3)

we can use to break to PSL(2, 7) is the 15′, (Dynkin label [4 0]). To get to a 15′ we take

the product of four fundamental triplets

3× 3× 3× 3 = 3 · 3 + 2 · 6̄ + 3 · 15 + 15′. (2.13)

The generic rank 4 tensor has 81 independent components, requiring it be symmetric on

all four indices reduces it to 15′ as required. The associated potential is

V15′ = −m2 TijklT
ijkl + λ (TijklT

ijkl)2

+κTijklT
ijkmTmnopT

lnop + ρ TijklT
ijmnTmnopT

klop.
(2.14)

Also of interest is the next lowest irrep suitable for breaking from SU(3) to PSL(2, 7),

the 28. We build this irrep by taking the symmetric product of six triplets, giving a fully

symmetric rank 6 tensor with 28 components. The associated potential is

V28 = −m2 TijklmnT
ijklmn + λ (TijklmnT

ijklmn)2

+κTijklmnT
ijklmtTopqrstT

opqrsn + ρ TijklmnT
ijklstTopqrstT

opqrmn

+τ TijklmnT
ijkrstTopqrstT

opqlmn.

(2.15)
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3 Vaccuum alignments for spontaneous symmetry breaking

3.1 Vacuua for SO(3) potentials

The invariant tensors from the previous section can be written in terms of a d-dimensional

orthonormal basis, where d is the number of independent tensor components. To illustrate

this consider the 5 of SO(3) which is a second rank symmetric traceless tensor, Tij . It has

a basis

|1〉 =
1√
2

(|11〉 − |22〉);

|2〉 =
1√
6

(|11〉+ |22〉 − 2 · |33〉);

|3〉 =
1√
2

(|12〉+ |21〉);

|4〉 =
1√
2

(|13〉+ |31〉);

|5〉 =
1√
2

(|23〉+ |32〉).

(3.1)

Where |ij〉 is the ijth component of the tensor. Using this basis the matrix form

of Tij is

Tij =


1√
2
|1〉+ 1√

6
|2〉 1√

2
|3〉 1√

2
|4〉

1√
2
|3〉 − 1√

2
|1〉+ 1√

6
|2〉 1√

2
|5〉

1√
2
|4〉 1√

2
|5〉 −

√
2
3 |2〉

 . (3.2)

With an explicit basis, it now makes sense to look for a d-component vacuum alignment

that minimizes the potential and is invariant under the desired subgroup. How do we find

this specified direction? First, note that we can express our basis above in polynomial

form, assigning component 1 to x, 2 to y, and 3 to z:

|1〉 =
1√
2

(x2 − y2);

|2〉 =
1√
6

(x2 + y2 − 2z2);

|3〉 =
1√
2

(xy + yx) =
√

2xy;

|4〉 =
√

2xz;

|5〉 =
√

2yz.

So if we find a polynomial that is invariant under the desired subgroup we can convert it

into a vacuum alignment by expressing it as a vector in terms of these basis functions [20].

To find a polynomial, I(x, y, z), invariant under a group H, one employs the Reynolds

Operator [16, 17]

I(x, y, z) =
1

|R(H)|
∑

h∈R(H)

f

(
h ◦

(
x
y
z

))
. (3.3)

– 8 –
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Where R(H) is a representation of the group, |R(H)| is the number of elements in the

group, and f
(
h ◦

(
x
y
z

))
signifies the result of a group element h acting on the vector

(x, y, z) and then input into a trial function f(x, y, z). Taking a group representation and

a trial function as inputs, it will output a polynomial invariant of the group. Often this

output will be zero, the trivial invariant, but with enough educated guesses for the trial

functions, a non-trivial invariant is easily obtained in most cases. Trial polynomials of the

form xnymzd−n−m will typically be most useful in finding invariants of degree d. Note

we have specified polynomials in three variables here, but we can use the same procedure

to find invariants in terms of any number of variables, real or complex. E.g., in two real

dimensions we can find an invariant I(x, y) with a trial function f(x, y).

Many of the invariants we use have been obtained by Merle and Zwicky and are avail-

able in their Mathematica package SUTree. The invariants for the SU(2) cases we needed

were not in SUTree, but were generated using their Reynolds Operator methods [20].

3.1.1 A4

As an initial practical example lets examine the symmetry breaking pattern SO(3) → A4.

The irrep of interest is a 7 which is the symmetric, traceless part of 3× 3× 3. Expressed

it in terms of 7 orthonormal components we have

|1〉 =
1

2
(|111〉 − |122〉 − |212〉 − |221〉),

|2〉 =
1√
60

(3 · |111〉+ |122〉+ |212〉+ |221〉 − 4 · |133〉 − 4 · |313〉 − 4 · |331〉),

|3〉 =
1

2
(|222〉 − |112〉 − |121〉 − |211〉),

|4〉 =
1√
60

(3 · |222〉+ |112〉+ |121〉+ |211〉 − 4 · |233〉 − 4 · |323〉 − 4 · |332〉),

|5〉 =
1

2
(|333〉 − |113〉 − |131〉 − |311〉),

|6〉 =
1√
60

(3 · |333〉+ |113〉+ |131〉+ |311〉 − 4 · |223〉 − 4 · |232〉 − 4 · |322〉),

|7〉 =
1√
6

(|123〉+ |132〉+ |213〉+ |231〉+ |312〉+ |321〉).

(3.4)

Using xyz as a trial polynomial in equation (3.3), (d = 3, n = m = 1) gives us back

xyz as our invariant polynomial. Expressed in terms of this basis our A4 invariant vacuum

alignment is remarkably simple:

v = [0, 0, 0, 0, 0, 0, 1]. (3.5)

The VEV for spontaneous breaking will be this unit vector multiplied by a constant

which minimizes the potential. Next we must show that this VEV is unique to A4. The

gauge group will spontaneously break to the largest subgroup which leaves that VEV

invariant. So G will only break to a desired subgroup, H, if there is no other group, H ′,

which is invariant under the specified VEV and satisfies H ⊂ H ′ ⊂ G. Unless H is maximal
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in G, it is difficult to systematically determine which subgroup will be left invariant for a

given breaking, so each case must be considered individually. For the present case we start

with the fact that the only groups that contain A4 and are subgroups of SO(3) are S4 and

A5. Examining the branching rules for both these groups, one sees that a 7 of SO(3) does

not break to a trivial singlet of either S4 or A5, and thus the largest group left invariant

by this VEV must be A4. Hence we have obtained the desired result for the case at hand.

Let us pause to expand on the above remarks. Note that we can not have an unbroken

continuous group in addition to A4, since there is just not enough room in SO(3) to allow

it. The only continuous subgroups of SO(3) are SO(2) and U(1) and they are both abelian.

If we think of A4 as the rotation group of the tetrahedron, then we need finite linear

combinations of all the SO(3) to do these rotations, indicating that there are no remaining

SO(3) to identify with an additional factor in a subgroup like A4×U(1). We can generalize

the previous statement to apply to the binary tetrahedral and binary icosahedral groups

of SU(2). Similar logic applies to several SU(3) cases while for others we refer to the

literature. We will comment on various individual cases below.

3.1.2 S4

For the 9 of SO(3), it is more convenient, and yields equivalent results (up to a normaliza-

tion)3 to express our basis in terms of spherical harmonics of degree l = 4, Y m
4 (wherem =

−4,−3 . . . 0 . . . 3, 4). In order to get real basis vectors, we define them as:

|1〉 = Y 0
4 ; |2〉 =

i√
2

(Y 1
4 + Y −14 );

|3〉 =
1√
2

(Y 1
4 − Y −14 ); |4〉 =

1√
2

(Y 2
4 + Y −24 );

|5〉 =
i√
2

(Y 2
4 − Y −24 ); |6〉 =

i√
2

(Y 3
4 + Y −34 ); |7〉 =

1√
2

(Y 3
4 − Y −34 );

|8〉 =
1√
2

(Y 4
4 + Y −44 ); |9〉 =

i√
2

(Y 4
4 − Y −44 ).

(3.6)

We find that the polynomial, x4 + y4 + z4 is S4 invariant. Expressed in terms of our

basis this is

v =

[√
7

5
, 0, 0, 0, 0, 0, 0, 1, 0

]
. (3.7)

Because S4 is a maximal subgroup of SO(3), i.e., there is no group H ′ that nontrivially

satisfies S4 ⊂ H ′ ⊂ SO(3), so for any VEV of the 9, we can be sure the VEV in eq. (3.7)

breaks SO(3) uniquely to S4.

3.1.3 A5

As mentioned previously, to break from SO(3) to A5 the irrep of interest is the

totally symmetric traceless tensor with 13 independent components contained in

3× 3× 3× 3× 3× 3. In this case it is again easier to express the components in terms

3One can also use this method for the A4 case, see [54].
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of spherical harmonics, in this case of degree l = 6, Y m
6 (wherem = −6,−5 . . . 0 . . . 5, 6). In

order to get real basis vectors, we define them as

|1〉 = Y 0
6 ; |2〉 =

i√
2

(Y 1
6 + Y −16 );

|3〉 =
1√
2

(Y 1
6 − Y −16 ); |4〉 =

1√
2

(Y 2
6 + Y −26 );

|5〉 =
i√
2

(Y 2
6 − Y −26 ); |6〉 =

i√
2

(Y 3
6 + Y −36 ); |7〉 =

1√
2

(Y 3
6 − Y −36 );

|8〉 =
1√
2

(Y 4
6 + Y −46 ); |9〉 =

i√
2

(Y 4
6 − Y −46 ); |10〉 =

i√
2

(Y 5
6 + Y −56 );

|11〉 =
1√
2

(Y 5
6 − Y −56 ); |12〉 =

1√
2

(Y 6
6 + Y −66 ); |13〉 =

i√
2

(Y 6
6 − Y −66 ).

(3.8)

We find that a degree six invariant polynomial is
(
(1+
√
5)2

4 x2 − y2
)(

(1+
√
5)2

4 y2 −

z2
)(

(1+
√
5)2

4 z2 − x2
)

[20]. The associated VEV is proportional to

v =

[
1, 0, 0,−

√
21

2
, 0, 0, 0,−

√
7, 0, 0, 0,

√
105

22
, 0

]
. (3.9)

As in the case of S4, A5 is also a maximal subgroup of SO(3), so we can be certain our

alignment breaks SO(3) uniquely to A5.

3.2 Vacuua for SU(2) potentials

3.2.1 T ′

Because SU(2) breaks to T ′ from the same real seven dimensional irrep that breaks SO(3)

to A4, the potentials are the same and the basis will be the same as in the A4 section

above. In addition, the Reynolds operator yields the same polynomial invariant xyz, so

the VEV is identical. On the other hand the complex 7 has a different origin, specifically

that of the symmetric tensor with 6 indices:4

|1〉 = |111111〉 ;

|2〉 =
1√
6

(|111112〉+ |111121〉+ |111211〉+ |112111〉+ |121111〉+ |211111〉);

|3〉 =
1√
15

(|111122〉+ |111212〉+ |111221〉+ |112112〉+ |112121〉+ |112211〉

+ |121112〉+ |121121〉+ |121211〉+ |122111〉+ |211112〉
+ |211121〉+ |211211〉+ |212111〉+ |221111〉);

|4〉 =
1√
20

(|111222〉+ |112122〉+ |112212〉+ |112221〉+ |121122〉+ |121212〉

+ |121221〉+ |122112〉+ |122121〉+ |122211〉+ |211122〉
4Because this is a complex irrep there are actually 14 basis states; the basis states listed are the 7

real parts of the tensor components, while bases 8 through 14 are the imaginary parts. These conjugate

components have been suppressed here since they will always be set to zero at vacuum in order to have a

real VEV. This will be the case for all of the complex irreps we consider.
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+ |211212〉+ |211221〉+ |212112〉+ |212121〉+ |212211〉
+ |221112〉+ |221121〉+ |221211〉+ |222111〉);

|5〉 =
1√
15

(|112222〉+ |121222〉+ |122122〉+ |122212〉+ |122221〉+ |211222〉

+ |212122〉+ |212212〉+ |212221〉+ |221122〉+ |221212〉
+ |221221〉+ |222112〉+ |222121〉+ |222211〉 ;

|6〉 =
1√
6

(|122222〉+ |212222〉+ |221222〉+ |222122〉+ |222212〉+ |222221〉 ;

|7〉 = |222222〉 . (3.10)

We find that the polynomial 1
2(xy5−yx5) is left invariant by T ′ for this representation

and the associated VEV is proportional to

v = [0,−1, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0]. (3.11)

(Where we have divided the real and imaginary components of the basis with a “;”). To

make sure we have broken to T′ we must show that this VEV does not break SU(2) to any

larger group. The only SU(2) subgroups that contain T′ as a subgroup are I′, the binary

icosahedral group, and O′, the binary octahedral group. Looking at tables of branching

rules we see that the 7 of SU(2) does not contain a trivial singlet of either of these groups,

so we can be certain the breaking is to T ′ as desired.

3.2.2 Q6

For the breaking SU(2) → Q6 we use the same basis for the complex 7 as with T ′ above.

We find the polynomial 1
2(x6 + y6) is left invariant by Q6, and this leads to a VEV propor-

tional to

v = [1, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0]. (3.12)

To make sure we have broken to Q6 and not any larger subgroups, we first note that

the 7 does not break to any Qn with n > 6 (see page 6 of [37]). The only other larger

SU(2) subgroup that can be spontaneously broken with a 7 is T ′, but we find that T ′ has

only one degree six invariant which is given in the subsection above. Therefore, the VEV

in eq. (3.12) is the result we were seeking.

3.2.3 O′

Like the other double cover groups, the basis and vacuum direction for the breaking of O′

with a real 9 of SU(2) will be the same as its SO(3)→ S4 counterpart above.

The complex 9 arises from the basis of the symmetric tensor with 8 doublet indices:

|1〉 = |11111111〉 ; |2〉 = |22222222〉 ;

|3〉 =
1√
8

(|11111112〉+ perms);

|4〉 =
1√
8

(|22222221〉+ perms); |5〉 =
1√
28

(|11111122〉+ perms);

|6〉 =
1√
28

(|22222211〉+ perms); |7〉 =
1√
56

(|11111222〉+ perms);

|8〉 =
1√
56

(|22222111〉+ perms); |9〉 =
1√
70

(|11112222〉+ perms),

(3.13)
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where here and in what follows ‘+perms’ means we include all inequivalent permutations

of tensor indices.

Here the relevant O′ invariant polynomial is x8 + y8 + 14x4y4, which leads to a VEV

proportional to

v = [1, 1, 0, 0, 0, 0, 0, 0,
14√
70

; 0, 0, 0, 0, 0, 0, 0, 0, 0]. (3.14)

Where only |1〉 = |2〉 and |9〉 = 14√
70
|1〉 are nonvanishing. O′ is a maximal subgroup of

SU(2), so we can be certain our alignment breaks SU(2) uniquely to O′.

3.2.4 I′

Similar to the spontaneous symmetry breaking behavior of the T ′ case relative to the A4

case with a real 7, the basis for the symmetry breaking to I ′ with the real 13 will be the

same as for A5 above. Additionally, both groups have the same invariant polynomial so

the vacuum directions will be the same.

On the other hand, a complex 13 arises from the basis of the symmetric tensor with

12 doublet indices:

|1〉 = |111111111111〉 ; |2〉 = |222222222222〉 ;

|3〉 =
1√
12

(|111111111112〉+ perms);

|4〉 =
1√
12

(|222222222221〉+ perms); |5〉 =
1√
66

(|111111111122〉+ perms);

|6〉 =
1√
66

(|222222222211〉+ perms); |7〉 =
1√
220

(|111111111222〉+ perms);

|8〉 =
1√
220

(|222222222111〉+ perms); |9〉 =
1√
495

(|111111112222〉+ perms);

|10〉 =
1√
495

(|222222221111〉+ perms); |11〉 =
1√
792

(|111111122222〉+ perms);

|12〉 =
1√
792

(|222222211111〉+ perms); |13〉 =
1√
924

(|222222111111〉+ perms).

(3.15)

Here the I ′ invariant polynomial is x11y + 11x6y6 − y11x, which leads to a VEV pro-

portional to

v =

[
0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0,

√
11

12
; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
, (3.16)

Where only |4〉 = − |3〉 and |13〉 =
√

11
12 · |3〉 are nonvanishing. I ′ is a known maximal

subgroup of SU(2), so we can be certain our alignment breaks SU(2) uniquely to I ′.

3.3 Vacuua for SU(3) potentials

First let us show that we can get nonmaximal discrete subgroups from continuous groups.

For this purpose we use the example SU(3) → A4 where we break with a 15 of SU(3).

Then we find vacuua for the maximal cases discussed above. Then finally, for PSL(2, 7) we

give both a minimal case with a VEV for the 15′ of SU(3) and a nonminimal breaking via

a 28 of SU(3) using the potential given in eq. (2.15).
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3.3.1 A4

The complex 15 dimensional basis needed to break SU(3) to A4 is that of the traceless

3× 3× 3̄ tensor that is symmetric on the first two indices [19]. For a basis we write

|1〉 =
1√
3

(|111〉 − |122〉 − |212〉);

|2〉 =
1

2
√

6
(2 · |111〉+ |122〉+ |212〉 − 3 · |133〉 − 3 · |313〉);

|3〉 =
1√
3

(|222〉 − |233〉 − |323〉);

|4〉 =
1

2
√

6
(2 · |222〉+ |233〉+ |323〉 − 3 · |211〉 − 3 · |121〉);

|5〉 =
1√
3

(|333〉 − |311〉 − |131〉);

|6〉 =
1

2
√

6
(2 · |333〉+ |311〉+ |131〉 − 3 · |322〉 − 3 · |232〉);

|7〉 = |112〉 ; |8〉 = |113〉 ; |9〉 = |223〉 ;

|10〉 = |221〉 ; |11〉 = |331〉 ; |12〉 = |332〉 ;

|13〉 =
1√
2

(|123〉+ |213〉); |14〉 =
1√
2

(|231〉+ |321〉); |15〉 =
1√
2

(|312〉+ |132〉).

(3.17)

Because this tensor is constructed from the product 3 × 3 × 3̄, the invariant should

be of degree 2 in the variables x, y, z and degree 1 in the conjugate variables, x∗, y∗, z∗.

Inputting the trial polynomial xyz∗ into the Reynolds operator produces the invariant:

xyz∗ + yzx∗ + xzy∗. In the basis of eq. (3.17) the VEV is proportional to

v = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (3.18)

i.e., where only |13〉 = |14〉 = |15〉 are nonzero.

One can examine the generators of A4 and SU(3) to see that this VEV breaks SU(3)

uniquely to A4, see [19].

3.3.2 T7

The irrep we use and also the basis we need for T7 are the same as for A4 above. The

invariant polynomial in this case is x2y∗ + y2z∗ + z2x∗ and the corresponding VEV is

proportional to

v = [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (3.19)

where |7〉 = |9〉 = |11〉 are nonvanishing.

Similar to the A4 case, one can verify this VEV uniquely breaks SU(3) to T7 by

examining how the T7 generators operate on v, see [19].
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3.3.3 ∆(27)

For ∆(27), the relevant invariant tensor is the fully symmetric part of 3 × 3 × 3 with 10

independent components

|1〉 = |111〉 ; |2〉 = |222〉 ; |3〉 = |333〉 ;

|4〉 =
1√
3

(|112〉+ |121〉+ |211〉); |5〉 =
1√
3

(|113〉+ |131〉+ |311〉);

|6〉 =
1√
3

(|221〉+ |212〉+ |122〉); |7〉 =
1√
3

(|223〉+ |232〉+ |322〉);

|8〉 =
1√
3

(|331〉+ |313〉+ |133〉); |9〉 =
1√
3

(|332〉+ |323〉+ |233〉);

|10〉 =
1√
6

(|123〉+ |231〉+ |312〉+ |321〉+ |213〉+ |132〉).

(3.20)

The ∆(27) invariant polynomial is x3 + y3 + z3, which leads to a VEV proportional to

v = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (3.21)

Again explicit forms of the generators can be examined in order to verify the uniqueness

of this VEV for breaking from SU(3) to ∆(27) [19].

3.3.4 PSL(2,7)

Our basis for the 15′ comes from the fully symmetric 3 × 3× 3× 3 tensor and is

|1〉 = |1111〉 ; |2〉 = |2222〉 ;

|3〉 = |3333〉 ;

|4〉 =
1

2
(|1112〉+ |1121〉+ |1211〉+ |2111〉); |5〉 =

1

2
(|1113〉+ |1131〉+ |1311〉+ |3111〉);

|6〉 =
1

2
(|2221〉+ |2212〉+ |2122〉+ |1222〉); |7〉 =

1

2
(|2223〉+ |2232〉+ |2322〉+ |3222〉);

|8〉 =
1

2
(|3331〉+ |3313〉+ |3133〉+ |1333〉); |9〉 =

1

2
(|3332〉+ |3323〉+ |3233〉+ |2333〉);

|10〉 =
1√
6

(|1122〉+ perms); |11〉 =
1√
6

(|1133〉+ perms);

|12〉 =
1√
6

(|2233〉+ perms);

|13〉 =
1√
12

(|1123〉+ perms); |14〉 =
1√
12

(|2213〉+ perms);

|15〉 =
1√
12

(|3312〉+ perms).

(3.22)

The relevant PSL(2, 7) invariant polynomial is x3z+y3x+z3y [20], which gives a VEV

proportional to

v = [0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (3.23)
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where the nonvanishing vacuum components are |5〉 = |6〉 = |9〉. We can be sure we have

broken to the correct subgroup5 because PSL(2, 7) is known to be a maximal in SU(3).

Finally, for the 28 of SU(3) we write the basis for the fully symmetric 36 tensor in

the form

|1〉 = |111111〉 ; |2〉 = |222222〉 ;

|3〉 = |333333〉 ; |4〉 =
1√
6

(|111112〉+ perms);

|5〉 =
1√
6

(|111113〉+ perms); |6〉 =
1√
6

(|222221〉+ perms);

|7〉 =
1√
6

(|222223〉+ perms); |8〉 =
1√
6

(|333331〉+ perms);

|9〉 =
1√
6

(|333332〉+ perms); |10〉 =
1√
15

(|111122〉+ perms);

|11〉 =
1√
15

(|111133〉+ perms); |12〉 =
1√
15

(|222211〉+ perms);

|13〉 =
1√
15

(|222233〉+ perms); |14〉 =
1√
15

(|333311〉+ perms);

|15〉 =
1√
15

(|333322〉+ perms); |16〉 =
1√
30

(|111123〉+ perms);

|17〉 =
1√
30

(|222231〉+ perms); |18〉 =
1√
30

(|333312〉+ perms);

|19〉 =
1√
20

(|111222〉+ perms); |20〉 =
1√
20

(|111333〉+ perms);

|21〉 =
1√
20

(|222333〉+ perms); |22〉 =
1√
60

(|111223〉+ perms);

|23〉 =
1√
60

(|111332〉+ perms); |24〉 =
1√
60

(|222113〉+ perms);

|25〉 =
1√
60

(|222331〉+ perms); |26〉 =
1√
60
|333112〉+ perms);

|27〉 =
1√
60

(|333221〉+ perms); |28〉 =
1√
90

(|112233〉+ perms).

(3.24)

The necessary invariant polynomial is x5y + y5z + z5x − 5x2y2z2 [20], which gives a

VEV with real components proportional to

v =

[
0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−

√
5

3
; 0, 0, . . . 0

]
(3.25)

i.e., where only |4〉 = |7〉 = |8〉, and |28〉 = −
√

5
3 · |4〉 are nonzero.

5Luhn [55] has shown that the VEV in eq. (3.23) has a Z28 symmetry and the vacuum of the potential

V15′ in eq. (2.14) is also symmetric under this symmetry. However, other terms in the Lagrangian will

violate this Z28, e.g., the Yukawa terms. As it is a discrete symmetry, its breaking can not lead to a

pseudo Goldstone boson, but there could be other phenomenological consequences of this Z28 that would

be interesting to explore.
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Value Multiplicity

0 3

4m2 1
8m2κ

5(3λ+κ) 3

Table 1. Scalar mass eigenstates for the SSB pattern SO(3)→ A4 using a real 7 of SO(3).

4 Vacuum expectation values and mass spectra

Thus far, we have discussed how to set up potentials corresponding to specific gauge group

representations and then we found vacuum alignments that can potentially be used to

break the gauge symmetry to desired discrete subgroups. In this section we minimize the

scalar potentials and show where symmetry breaking in the desired directions are allowed.

We will find the scale of the symmetry breaking and resulting tree level scalar mass states

in terms of the coupling constants of the potential. As usual, the minimization conditions

of the potential will lead to constraints on the values of these constants.

4.1 SO(3) cases

4.1.1 A4 scalar spectrum

We found earlier that a VEV in the direction (3.5) will break SO(3) to A4. The actual VEV

is proportional to this direction vector, with the constant of proportionality being the scale

of the symmetry breaking. To determine this scale one must minimize the potential (2.2).

To achieve this we compute the first derivative with respect to each basis state, insert the

alignment from (3.5), and set this equal to zero. This alignment (and all of our alignments

below) will give an equation in terms of one basis state (or one linear combination of basis

states). For the present case we solve for |7〉 and take the positive solution to obtain

the VEV

V =

√
3m2

2(3λ+ κ)
[0, 0, 0, 0, 0, 0, 1]. (4.1)

As for any non-trivial stable vacuum, m2 must be positive. So to have a real value

for our breaking scale, 3λ + κ must also be positive. We find the scalar mass states by

calculating the matrix of second derivatives (the Hessian), inserting the VEV from above,

and computing the eigenvalues of the matrix. The resulting values and their multiplicities

are given in table 1.

Looking at table 17 in the appendix, we see that the multiplicities of the eigenvalues

match up with the branching of the 7 for SO(3)→ A4, as expected. We see that there are

three zero eigenvalues corresponding to the three Goldstone bosons from the breaking of all

the generators of SO(3). Constraints on the coupling constants arise from the requirement

that at a minimum of the potential, the eigenvalues must all be positive or zero. Since

m2 and 3λ+ κ must be positive, requiring the third eigenvalue to be positive leads to the

constraint κ > 0 in this case.
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J
H
E
P
0
8
(
2
0
1
7
)
1
1
0

Value Multiplicity

0 3

4m2 1

5m2(5κ+8ρ−2τ)
7(90λ+10κ+7ρ+2τ) 3

20m2(5κ+8ρ−2τ)
7(90λ+10κ+7ρ+2τ) 2

Table 2. Scalar mass eigenstates for the SSB pattern SO(3)→ S4 using a real 9 of SO(3).

4.1.2 S4 scalar spectrum

For S4 we minimize the potential from (2.5) using the alignment (3.7). We obtain a VEV

V =

√
25m2

4(90λ+ 10κ+ 7ρ+ 2τ)

[√
7

5
, 0, 0, 0, 0, 0, 0, 1, 0

]
. (4.2)

Hence a real value for the symmetry breaking scale requires 90λ+ 10κ+ 7ρ+ 2τ > 0.

The scalar mass states6 are found in table 2 and are all non-negative if

5κ+ 8ρ− 2τ > 0

is also satisfied. The three zeros correspond to the broken SO(3) generators.

4.1.3 A5 scalar spectrum

For A5, we minimize the potential from (2.6) using the alignment (3.9). We obtain a VEV

V =

√
1155m2

128(λ+ 140κ+ 84ρ+ 65τ + 14ν + 9σ − 2χ)

×
[
1, 0, 0,−

√
21

2
, 0, 0, 0, , 0, 0, 0,

√
105

22
, 0

]
. (4.3)

A real value for our breaking scale requires 420λ+ 140κ+ 84ρ+ 65τ + 14ν + 9σ − 2χ > 0.

The scalar mass states7 are given in table 3.

Again we have the three zero eigenvalues corresponding to the broken SO(3) generators.

To have non-negative masses we must satisfy the constraints

105κ+ 196ρ+ 240τ − 14ν − 19σ + 12χ > 0 ,

and

14ρ+ 45τ + 14ν − 11σ + 18χ > 0.
6In order to normalize the eigenvalues for S4 to those in other cases when we do not use the spherical

harmonic basis, we have multiplied all quadratic terms by a factor of 1
8

and quartic terms by a factor of 1
64

.
7Again by expressing the states in terms of spherical harmonics, we obtain different normalizations for

our basis states which lead to a different normalization scale for the VEV scale and scalar mass states. To

correct this for A5 we have multiplied the quadratic term by a factor of 5
352

and the quartic terms by ( 5
352

)2

so that our states are now normalized the same way as our other breakings.
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E
P
0
8
(
2
0
1
7
)
1
1
0

Value Multiplicity

0 3

4m2 1

28m2(105κ+196ρ+240τ−14ν−19σ+12χ)
33(420λ+140κ+84ρ+65τ+14ν+9σ−2χ 5

28m2(14ρ+45τ+14ν−11σ+18χ)
33(420λ+140κ+84ρ+65τ+14ν+9σ−2χ 4

Table 3. Scalar mass eigenstates for the SSB pattern SO(3)→ A5 using a real 13 of SO(3).

Value Multiplicity

0 4

4m2 1

2m2κ
3(2λ+κ+ρ+τ) 2

4m2(κ+ρ+τ)
2λ+κ+ρ+τ 1

−3m2(2ρ+3τ)
5(2λ+κ+ρ+τ) 1

−2m2(2ρ+3τ)
5(2λ+κ+ρ+τ) 2

−m2(6ρ+7τ)
5(2λ+κ+ρ+τ) 1

−2m2(8ρ+9τ)
15(2λ+κ+ρ+τ) 2

Table 4. Scalar mass eigenstates for the SSB pattern SU(2)→ Q6 using a complex 7 of SU(2).

4.2 SU(2) cases

4.2.1 Q6 scalar spectrum

We break the symmetry of the potential given in eq. (2.7) with the alignment in eq. (3.12)

to obtain a VEV

V =

√
m2

2(2λ+ κ+ ρ+ τ)
[1, 1, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0]. (4.4)

Thus we require κ+2λ+ρ+τ > 0. The eigenvalues of the Hessian are given in table 4.

The constraints from these mass eigenvalues are

κ > 0 ,

κ > − (ρ+ τ),

and

2ρ+ 3τ, 6ρ+ 7τ, 8ρ+ 9τ < 0.

There are clearly stable minima when λ > 0, κ > 0, ρ < 0 and τ < 0. The extra zero

eigenvalue comes from breaking an accidental U(1) phase symmetry. This gives rise to a

pseudo-goldstone boson that can gain a mass through quantum corrections.
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1
7
)
1
1
0

Value Multiplicity

0 4

4m2 1

12m2τ
5(12λ+6κ+4ρ+3τ) 3

16m2(2ρ+3τ)
5(12λ+6κ+4ρ+3τ) 3

4m2(8κ+8ρ+9τ)
3(12λ+6κ+4ρ+3τ) 3

Table 5. Scalar mass eigenstates for the SSB pattern SU(2)→ T ′ using a complex 7 of SU(2).

4.2.2 T ′ scalar spectrum

The potential and the vacuum alignment of the breaking of SU(2) to T′ with a real 7 are

the same as for SO(3)→ A4. Therefore the breaking scale and the mass states will be

exactly the same, as the two models can only be differentiated by the non-scalar part of

the Lagrangian.

For a the breaking with a complex 7 we minimize the potential in eq. (2.7) but this

time using the alignment eq. (3.11) to obtain the VEV

V =

√
3m2

(12λ+ 6κ+ 4ρ+ 3τ)
[0,−1, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0], (4.5)

which leads to the constraint that 12λ+ 6κ+ 4ρ+ 3τ > 0. The eigenvalues of the Hessian

are shown in table 5.

From the requirement of positive eigenvalues we deduce the constraints

τ > 0 ,

ρ > − 3

2
τ ,

and
3

8
τ > κ > −8ρ− 9

8
τ .

As in the Q6 example, the extra zero eigenvalue is a result of breaking the U(1) phase

symmetry in the potential.

4.2.3 O′ scalar spectrum

The breaking scale and scalar mass spectrum of SU(2) to O′ with a real 9 is exactly the

same as that for SO(3) to S4, where differences between two models would come from the

non-scalar part of the Lagrangian.
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0
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)
1
1
0

Value Multiplicity

0 4

4m2 1

−24m2σ
7(60λ+30κ+20ρ+15τ+14σ) 2

5m2(10ρ+15τ+16σ)
7(60λ+30κ+20ρ+15τ+14σ) 3

20m2(10ρ+15τ+16σ)
7(60λ+30κ+20ρ+15τ+14σ) 2

2m2(25κ+25ρ+25τ+24σ)
60λ+30κ+20ρ+15τ+14σ 3

3m2(25τ+32σ)
7(60λ+30κ+20ρ+15τ+14σ) 3

Table 6. Scalar mass eigenstates for the SSB pattern SU(2)→ O′ using a complex 9 of SU(2).

For a complex 9 we minimize the potential in eq. (2.8) using the alignment eq. (3.14)

and obtain a VEV

V =

√
25m2

4(60λ+ 30κ+ 20ρ+ 15τ + 14σ)

×
[
1, 1, 0, 0, 0, 0, 0, 0,

14√
70

; 0, 0, 0, 0, 0, 0, 0, 0, 0

]
.

(4.6)

Thus 60λ+ 30κ+ 20ρ+ 15τ + 14σ must be > 0. Looking at table 6, we see that there

are 3 zeros corresponding to the 3 broken SU(2) generators, as well as an extra zero from

breaking the U(1) phase symmetry.

We have the additional constraints

σ < 0 ,

10ρ+ 15τ + 16σ > 0 ,

25κ+ 25ρ+ 25τ + 24σ > 0 ,

and

25τ + 32σ > 0.

4.2.4 I′ scalar spectrum

Simlar to the cases of T ′ and O′, the breaking scale and mass spectrum of a real 13 of

SU(2) to I ′ are the same of that of SO(3) to A5 with a real 13.

For a complex 13 we minimize the potential of eq. (2.9) using the alignment eq. (3.16)

and obtain a VEV

V = 7

√
6m2

5(420λ+ 210κ+ 140ρ+ 105τ + 84ν + 70σ + 65χ)

×
[
0, 0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0,

√
11

7
; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
.

(4.7)
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0
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(
2
0
1
7
)
1
1
0

Value Multiplicity

0 4

4m2 1

28m2(14ν+35σ+45χ)
33(420λ+210κ+140ρ+105τ+84ν+70σ+65χ) 4

5m2(49σ+72χ)
33(420λ+210κ+140ρ+105τ+84ν+70σ+65χ) 5

14m2(210ρ+315τ+392ν+455σ+480χ)
33(420λ+210κ+140ρ+105τ+84ν+70σ+65χ) 5

m2(980κ+980ρ+882τ+784ν+735σ+720χ)
3(420λ+210κ+140ρ+105τ+84ν+70σ+65χ) 3

4m2(441τ+882ν+1225σ+1350χ)
33(420λ+210κ+140ρ+105τ+84ν+70σ+65χ) 4

Table 7. Scalar mass eigenstates for the SSB pattern SU(2)→ I ′ using a complex 13 of SU(2).

Thus 420λ+ 210κ+ 140ρ+ 105τ + 84ν + 70σ+ 65χ must be positive. The eigenvalues

of the Hessian (see table 7) are all real and positive semidefinite for positive scalar quartic

couplings. (More detailed constraints on the scalar quartics can clearly be extracted from

the individual mass eigenvalues.) There are 3 zeros corresponding to the 3 broken SU(2)

generators, as well as an extra zero from breaking the U(1) phase symmetry.

4.3 SU(3) cases

4.3.1 A4 scalar spectrum

For the nonminimal breaking SU(3) → A4 we minimize the potential eq. (2.11) and use

the alignment eq. (3.18) to get the VEV [19]

V =

√
m2

2(3λ+ η + κ+ ρ+ τ)

× [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. (4.8)

Thus 3λ + η + κ + ρ + τ must be positive. The eigenvalues of the Hessian are shown

in table 8.

We expect eight zeros corresponding to the broken generators of SU(3), but again an

extra zero eigenvalue arises from breaking the accidental U(1) phase symmetry. As for

constraints, we can readily see that

η < 0,

5κ+ 2ρ+ 4τ >
√

(4τ + 2ρ− 3κ)2 + 16(ρ+ κ+ 2η)2,

and

3κ− 5η − 2ρ+ 4τ >
1

3

√
(9η − 7κ+ 10ρ− 4τ)2 + 8(ρ+ 2κ− 4τ)2

are required. An example of where all these constraints can be satisfied is

2ρ = 3κ, ρ+ κ = −2|η|, and 5κ+ 3ρ > 0, where κ, ρ, and τ > 0.
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H
E
P
0
8
(
2
0
1
7
)
1
1
0

Value Multiplicity

0 9

4m2 1

m2(−2η+κ−2ρ+4τ)
3λ+η+κ+ρ+τ 2

−3m2η
3λ+η+κ+ρ+τ 6

m2

4(3λ+η+κ+ρ+τ)(5κ+ 2ρ+ 4τ +
√

(4τ + 2ρ− 3κ)2 + 16(ρ+ κ+ 2η)2) 3

m2

4(3λ+η+κ+ρ+τ)(5κ+ 2ρ+ 4τ −
√

(4τ + 2ρ− 3κ)2 + 16(ρ+ κ+ 2η)2) 3

m2

2(3λ+η+κ+ρ+τ)(3κ− 5η − 2ρ+ 4τ + 1
3

√
(9η − 7κ+ 10ρ− 4τ)2 + 8(ρ+ 2κ− 4τ)2) 3

m2

2(3λ+η+κ+ρ+τ)(3κ− 5η − 2ρ+ 4τ − 1
3

√
(9η − 7κ+ 10ρ− 4τ)2 + 8(ρ+ 2κ− 4τ)2) 3

Table 8. Scalar mass eigenstates for the SSB pattern SU(3)→ A4 using a 15 of SU(3).

Value Multiplicity

0 9

4m2 1

2(2κ−ρ+2τ)m2

κ+3λ+ρ+τ 2

m2

12(3λ+κ+ρ+τ) × α 6

m2

12(3λ+κ+ρ+τ) × β 6

m2

12(3λ+κ+ρ+τ) × γ 6

Table 9. Scalar mass eigenstates for the SSB pattern SU(3)→ T7 using a 15 of SU(3).

4.3.2 T7 scalar spectrum

For this breaking we again minimize eq. (2.11), now using the alignment eq. (3.19) to obtain

the VEV [19]

V =

√
m2

2(3λ+ κ+ ρ+ τ)

× [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. (4.9)

Thus 3λ + κ + ρ + τ must be positive. The eigenvalues of the Hessian are shown in

table 9, where α, β, γ are the three roots of the polynomial 10368η2(ρ−κ−τ)+3888ηρ2−
15552ηκτ+(648η2+972ηκ−648ηρ−180ρ2+1296ητ+720κτ)x+(6ρ−54η−21κ−36τ)x2+x3.

We have the constraints

2κ− ρ+ 2τ > 0,

and

α, β, γ > 0.
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1
7
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1
1
0

Value Multiplicity

0 11

4m2 1

4κm2

3λ+κ 2

κm2

3(3λ+κ) 6

Table 10. Scalar mass eigenstates for the SSB pattern SU(3)→ ∆(27) using a 10 of SU(3).

The extra zero is once again due to breaking the U(1) phase symmetry. We cannot remedy

this by including cubic terms this time, because we need the couplings on those terms to

vanish in order to have a stable minimum. Numerical studies show that there is a range of

scalar quartic coupling constant values where the minimum is stable. An example of such

numerical analysis will be discussed below.

4.3.3 ∆(27) scalar spectrum

Minimizing the potential of eq. (2.12) with the alignment eq. (3.21) we obtain a VEV

V =

√
m2

2(3λ+ κ)
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (4.10)

giving the constraint 3λ+κ > 0. The eigenvalues of the Hessian are in table 10, from which

we see that κ > 0 is required. Again we have an extra zero from an accidental U(1), and

in this case the cubic terms vanish upon summation. The two extra zeros are the result of

an additional ∆(27) singlet within the 10. (For a detailled explanation see [19].)

4.3.4 PSL(2,7) scalar spectrum

Minimizing the potential of eq. (2.14) with the alignment eq. (3.23) we obtain a VEV

V =

√
m2

6λ+ 2κ+ ρ
[0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

(4.11)

Thus 6λ+2κ+ρ > 0. The eigenvalues of the Hessian are found in table 11 from which

we get the constraints

ρ > 0, and 7κ+ 8ρ > 0.

We once again have an extra zero, but this time it is possible to include cubic terms to

break the U(1) phase. The two cubic terms we can include are

εimqεjnrεkosεlptT
ijklTmnopT qrst,

and

εimqεjnrεkosεlptTijklTmnopTqrst,

(4.12)
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0
1
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Value Multiplicity

0 9

4m2 1

(7κ+8ρ)m2

2(6λ+2κ+ρ) 8

2(3−
√
2)ρm2

3(6λ+2κ+ρ) 6

2(3+
√
2)ρm2

3(6λ+2κ+ρ) 6

Table 11. Scalar mass eigenstates for the SSB pattern SU(3)→ PSL(2, 7) using a 15′ of SU(3).

Value Multiplicity

0 8

4.002 1

.006003 1

0.323647 6

0.125244 6

0.838169 8

Table 12. Numerical results where cubic terms are included for the scalar mass eigenstates of the

SSB pattern SU(3)→ PSL(2, 7) using a 15′ of SU(3).

which are Hermitian conjugates and are included in the potential with the same real cou-

pling constant, ζ. The VEV scale for the potential including the cubic is now

−3ζ ±
√

9ζ2 + 4m2(6λ+ 2κ+ ρ)

2(6λ+ 2κ+ ρ)
. (4.13)

Notice that there may be two possible solutions. The constraint that must hold in

both cases is 9ζ2 + 4m2(2κ+ 6λ+ ρ) ≥ 0.

Calculating the eigenvalues of the Hessian produces solutions involving the roots of

a polynomial which is much too large to display, but it is notable that it does produce

8 zeros rather than 9. Furthermore, following the usual procedure, but this time numer-

ically where for simplicity setting all quartic coupling constants to unity, the quadratic

coupling to -1 and the cubic to .001 (these values are selected to ensure a stable mini-

mum) produces a VEV scale of approximately 0.3335 and eigenvalues whose multiplicities

match the branching rules SU(3)→ PSL(2, 7), as shown in table 12. The degeneracy of

the pseudo-Goldstone mass with that of the true Goldstones is lifted as expected, as can

be seen in table 12. Finally note that although we have set all the coupling constants

except for the cubic to integer values, we can easily rescale them to smaller values to be

sure we are in the perturbative regime of the theory without disturbing the stability of the

result. Specifically, while the scalar quartic couplings in the numerical example are not in
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Value Multiplicity

0 16

4m2 1

4(7ρ+9τ)m2

5(42λ+14κ+7ρ+6τ) 7

(21κ+20ρ+18τ)m2

42λ+14κ+7ρ+6τ 8

1
200(42λ+14κ+7ρ+6τ)2

×A 6

1
200(42λ+14κ+7ρ+6τ)2

×B 6

1
200(42λ+14κ+7ρ+6τ)2

× C 6

1
200(42λ+14κ+7ρ+6τ)2

×D 6

Table 13. Scalar mass eigenstates for the SSB pattern SU(3)→ PSL(2, 7) using a 28 of SU(3).

the perturbative range, we can rescale all the quartics by a factor s and ζ by a factor
√
s.

This leaves the eigenvalues unchanged and puts us into the perturbative regime.

Moving on to the 28, we minimize the potential in eq. (2.15) with the alignment

eq. (3.25) to obtain a VEV

V =

√
9m2

2(42λ+ 14κ+ 7ρ+ 6τ)

[
0, 0, 0, 1, 0, 0, 1, 1, 0, 0, . . . 0, 0,−

√
5

3
; 0, 0, . . . 0

]
. (4.14)

Thus 42λ+14κ+7ρ+6τ > 0. The eigenvalues of the Hessian are given in table 13 Further

constraints are

7ρ+ 9τ > 0 ,

21κ+ 20ρ+ 18τ > 0,

and A, B, C, D > 0.

where A, B, C, and D are the roots of a very large quartic polynomial. Numerical work

shows that all four roots can be positive, simultaneously leading to all positive eigenvalues

in table 13 and a stable minimum when the other constraints are also satisfied. We see that

there are eight zeros from the broken generators of SU(3), and one zero from breaking the

broken U(1) phase. But unique to this breaking we have seven extra zeros, which implies

that there are seven more broken generators from an accidental symmetry of the Lagrangian

that we have so far been unable to identify, leading to a total of 8 pseudo-Goldstone bosons.

4.4 Symmetry breaking summary

Let us briefly summarize our results. We have shown that we can break from G to Γ for

the gauge and discrete groups listed in the introduction. The minima can be stable since

none of the eigenvalues of the scalars are negative for allowed regions of parameter space.

Zero eigenvalues correspond to Goldstone bosons in each case and to additional pseudo-

Goldstone bosons in several cases. Specifically for the cases we have studied of SO(3)
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SSB pattern decomposition

SO(3)→ A4 7→ 1 + 3G + 3

SO(3)→ S4 9→ 1 + 2 + 3G + 3

SO(3)→ A5 13→ 1 + 3G + 4 + 5

Table 14. Scalar mass eigenstates for the SSB patterns SO(3) → A4, S4 and A5 using real

symmetric tensor irreps of SO(3).

SSB pattern decomposition

SU(2)→ Q6 7c → 1 + 1′ + (1′ + 2′)G + 2′ + 1pGB + 1′ + 1′ + 2′ + 2′

SU(2)→ T ′ 7c → 1 + 3G + 3 + 1pGB + 3 + 3

SU(2)→ O′ 9c → 1 + 2 + 3G + 3 + 1pGB + 2 + 3 + 3

SU(2)→ I ′ 13c → 1 + 3G + 4 + 5 + 1pGB + 3 + 4 + 5

Table 15. Scalar mass eigenstates for the SSB patterns SU(2)→ Q6, T
′, O′ and I ′ using symmetric

tensor irreps of SU(2), i.e., complexified symmetric tensor irreps of SO(3).

breaking to a discrete symmetry the results are summarized in table 14. The G subscript

indicates the Goldstones. In each case the masses of the particles in different discrete group

irreps are all different, so the initial degeneracy of the scalar masses is lifted to the extent

allowed by the discrete group. For the cases of SU(2) breaking to discrete symmetries,

the results are summarized in table 15. Again all the discrete group irreps correspond to

different masses except for the zero eigenvalue states where we have indicated the true

Goldstones and the pseudo-Goldstones (by subscripts pGB) due to breaking of the phase

symmetry on the potentials. The subscript c indicates that the irreps are complexified

and the decompositions are written in terms of real components. The results begin to

become more complicated for the SU(3) cases we have investigated, and this can be seen

in table 16. Now some irreps masses have become degenerate and we have indicated these

cases by collecting those discrete group irreps with parentheses and labeling the collection

with a deg. subscript. All the cases have a pseudo-Goldstones associated with breaking of

phase invariance. The breaking to T7 with a 10 leads to two additional pseudo-Goldstones

as discussed in [19] and the breaking to PSL(2, 7) with a 28 has seven additional pseudo-

Goldstones. Since the 28 was derived from 36 one could conjecture that the potential has a

Spin(6) ∼ SU(4) accidental symmetry that contains the gauged SU(3), and that the VEV

breaks all 15 SU(4) plus the phase to give a total of 16 massless states. Finally, recall

that for the breaking to PSL(2, 7) with a 15′ we have shown that phase symmetry can be

avoided if we add cubic terms, hence there is no pseudo-Goldstone after SSB in that case,

see table 12.

5 Discussion and conclusion

The standard model includes 28 unspecified parameters, some of which describe fermion

masses and mixing angles. Consequently, we do not know why the quark and lepton masses

and mixings are what they are. To fix these parameters, a standard approach has been

to extend the SM by a discrete symmetry, but this approach is not without its difficulties
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SSB pattern decomposition

SU(3)→ A4 15→ 1 + (1′ + 1′′ + 3 + 3)G + (3 + 3)
deg.

+ 1pGB + (1′ + 1′′)
deg.

+ 3 + 3 + 3 + 3

SU(3)→ T7 15 −→ 1 + (1′ + 1′′ + 3′ + 3′′)G + (3′ + 3′′)
deg.

+1pGB + (1′ + 1′′)
deg.

+ (3′ + 3′′)
deg.

+ (3′ + 3′′)
deg.

SU(3)→ ∆(27) 10→ 1 + 1pGB + (Σ9
n=2)G + 3 + (1 + 1)pGB + (12 + 13)

deg.
+ (Σ9

n=4)
deg.

SU(3)→ PSL(2, 7) 15′ → 1 + 6 + 8G + 1pGB + 6 + 8

SU(3)→ PSL(2, 7) 28→ 1 + 6 + 6 + 7 + 8G + 1pGB + 6 + 6 + 7pGB + 8

Table 16. Scalar mass eigenstates for the SSB patterns SU(3) → A4, T7, ∆(27) and PSL(2, 7)

using symmetric tensor irreps of SU(3), except for the 15 which is of mixed symmetry.

as discussed in the Introduction. What would seem more natural would be to increase

the gauge group to SU(3) × SU(2) × U(1) × G and extend the scalar sector. Then this

model can be of the same general type as the SM, i.e., an anomaly-free gauge theory

with fermions that gets spontaneously broken by VEVs of scalar fields. If the SSB of G

results in a discrete subgroup Γ then we arrive at a SU(3) × SU(2)×U(1)× Γ via a route

that avoids the problems just mentioned, without choosing an ad hoc discrete group for

extending the SM.

The region where a certain VEV corresponds to a minimum of a potential depends

on the constraints on the values of the coupling constants. If the constraints are violated,

then one or more of the scalar mass squared eigenvalues becomes negative indicating an

instability. To resolve the instability the VEV must orient itself in a new direction where

all the mass eigenvalues are again positive. Since the potentials we consider are in gen-

eral fairly complicated, involving numerous coupling constants, we would expect to find

several minima for each potential. Hence a complete exploration would require studying

the coupling constant constraints in the full multidimensional parameter space for each

potential. Here we have dealt only with renormalizable dimension four potentials, and

their tree level minima. More generally, we could include running of the coupling constant

with energy scale or temperature. Such running could cause a phase transition carrying us

from one minimum to another. Let us consider just one specific example, the potential V7c .

Amongst other possibilities, it can be used to break SU(2) to Q6 or to T ′. The Q6 breaking

requires we satisfy the constraint 2ρ + 3τ < 0, while breaking to T ′ requires 2ρ + 3τ > 0.

(See tables 4 and 5.) There is a domain wall at the boundary where 2ρ + 3τ = 0, where

both cases have three extra eigenvalues going to zero. Near the boundary loop corrections

become important and one can see that if the coupling constant run so that this boundary

is crossed, then there is a phase transition from one symmetry to the other. This happens

smoothly if the phase transition is second order but the field could get hung up in a local

minimum if the phase transition is first order.

Here, based on the techniques of Luhn [19] and Merle and R. Zwicky [20], we have

demonstrated that we can carry out the G → Γ SSB in many cases of interest, specif-

ically breaking to A4, S4, A5, Q6, T
′, O′, I ′, T7,∆(27) and PSL(2, 7). Other cases can be

handled by the same techniques. Many other discrete groups have been occasionally used

to extend the SM, e.g., D4, D5, D7, D14,∆(54),∆(96), and Σ(81) have all appeared in the
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literature [56–58]. For a discussion of breaking SO(3) to dihedral groups see [54]. Fur-

ther information about the classification of the discrete subgroups of SU(3) can be found

in [20, 59–61]. In addition products of discrete groups are often employed, where the prod-

ucts often contain Zn factors. For example if the fundamental charge of a U(1) gauge

group is q, then by breaking a U(1) with scalar particle of charge nq one arrives at Zn.

To gauge these cases we can start with a product gauge group and break to the desired

discrete group, G1 × G2 × . . . → Γ1 × Γ2 × . . .. As long as there are no cross terms in

the scalar potential, then we can proceed as above. In some cases the cross terms can

destabilize the minima, so they must either be eliminated, or dealt with by other means.

Results given here could be applied to extend recent work on gauging two Higgs doublet

models [62]. Using our results to extend models currently in the literature can solve some

existing problems, and the inclusion of new scalars in the spectrum may be of interest,

since some may be detectable either directly or indirectly depending on the details of the

model. Such phenomenological investigations need to proceed on a model by model basis,

and we plan to look at some specific examples in future work.
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A Branching rules

In this appendix we present the branching rules for the embeddings of discrete groups into

Lie groups used in the paper. The vertical axes label the dimensions of the Lie Group

representations, and the horizontal the dimensions of the discrete group representations.

We begin with a list of tables.

• Table 1: Scalar mass eigenstates for the SSB pattern SO(3) → A4 using a real 7

of SO(3);

• Table 2: Scalar mass eigenstates for the SSB pattern SO(3) → S4 using a real 9

of SO(3);

• Table 3: Scalar mass eigenstates for the SSB pattern SO(3) → A5 using a real 13

of SO(3);

• Table 4: Scalar mass eigenstates for the SSB pattern SU(2)→ Q6 using a complex 7

of SU(2);

• Table 5: Scalar mass eigenstates for the SSB pattern SU(2)→ T ′ using a complex 7

of SU(2);

• Table 6: Scalar mass eigenstates for the SSB pattern SU(2)→ O′ using a complex 9

of SU(2);
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• Table 7: Scalar mass eigenstates for the SSB pattern SU(2)→ I ′ using a complex 13

of SU(2);

• Table 8: Scalar mass eigenstates for the SSB pattern SU(3)→ A4 using a 15 of SU(3);

• Table 9: Scalar mass eigenstates for the SSB pattern SU(3)→ T7 using a 15 of SU(3);

• Table 10: Scalar mass eigenstates for the SSB pattern SU(3)→ ∆(27) using a 10 of

SU(3);

• Table 11: Scalar mass eigenstates for the SSB pattern SU(3)→ PSL(2, 7) using a 15′

of SU(3);

• Table 12: Numerical results where cubic terms are included for the scalar mass

eigenstates of the SSB pattern SU(3)→ PSL(2, 7) using a 15′ of SU(3);

• Table 13: Scalar mass eigenstates for the SSB pattern SU(3)→ PSL(2, 7) using a 28

of SU(3);

• Table 14: Scalar mass eigenstates for the SSB patterns SO(3)→ A4, S4 and A5 using

real symmetric tensor irreps of SO(3);

• Table 15: Scalar mass eigenstates for the SSB patterns SU(2) → Q6, T
′, O′ and

I ′ using symmetric tensor irreps of SU(2), i.e., complexified symmetric tensor irreps

of SO(3);

• Table 16: Scalar mass eigenstates for the SSB patterns SU(3) → A4, T7, ∆(27) and

PSL(2, 7) using symmetric tensor irreps of SU(3), except for the 15 which is of mixed

symmetry;

• Table 17: SO(3)→ A4;

• Table 18: SO(3)→ S4;

• Table 19: SO(3)→ A5;

• Table 20: SU(2)→ Q6;

• Table 21: SU(2)→ T ′;

• Table 22: SU(2)→ O′;

• Table 23: SU(2)→ I ′;

• Table 24: SU(3)→ A4;

• Table 25: SU(3)→ T7;

• Table 26: SU(3)→ ∆(27).

• Table 27: SU(3)→ PSL(2, 7)
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Dimension 11 12 13 3

3 0 0 0 1

5 0 1 1 1

7 1 0 0 2

9 1 1 1 2

11 0 1 1 3

Table 17. SO(3)→ A4.

Dimension 11 12 2 31 32

3 0 0 0 1 0

5 0 0 1 0 1

7 0 1 0 1 1

9 1 0 1 1 1

11 0 0 1 2 1

Table 18. SO(3)→ S4.

Dimension 1 3 3 4 5

3 0 0 1 0 0

5 0 0 0 0 1

7 0 1 0 1 0

9 0 0 0 1 1

11 0 1 1 0 1

13 1 0 1 1 1

Table 19. SO(3)→ A5.

Dimension 11 12 13 14 21 22

2 0 0 0 0 1 0

3 0 1 0 0 0 1

4 0 0 1 1 1 0

5 1 0 0 0 0 2

6 0 0 1 1 2 0

7 1 2 0 0 0 2

8 0 0 1 1 3 0

9 2 1 0 0 0 3

10 0 0 2 2 3 0

11 1 2 0 0 0 4

Table 20. SU(2)→ Q6.

Dimension 11 12 13 21 22 23 3

2 0 0 0 1 0 0 0

3 0 0 0 0 0 0 1

4 0 0 0 0 1 1 0

5 0 1 1 0 0 0 1

6 0 0 0 1 1 1 0

7 1 0 0 0 0 0 2

8 0 0 0 2 1 1 0

9 1 1 1 0 0 0 2

10 0 0 0 1 2 2 0

11 0 1 1 0 0 0 3

Table 21. SU(2)→ T ′.

Dimension 11 12 21 22 23 31 32 4

2 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 1 0

4 0 0 0 0 0 0 0 1

5 0 0 1 0 0 1 0 0

6 0 0 0 0 1 0 0 1

7 0 1 0 0 0 1 1 0

8 0 0 0 1 1 0 0 1

9 1 0 1 0 0 1 1 0

10 0 0 0 1 0 0 0 2

11 0 0 1 0 0 1 2 0

Table 22. SU(2)→ O′.

Dimension 11 22 23 31 32 41 42 5 6

2 0 1 0 0 0 0 0 0 0

3 0 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 1 0 0

5 0 0 0 0 0 0 0 1 0

6 0 0 0 0 0 0 0 0 1

7 0 0 0 1 0 1 0 0 0

8 0 0 1 0 0 0 0 0 1

9 0 0 0 0 0 1 0 1 0

10 0 1 0 0 0 0 1 0 1

11 0 0 0 1 1 0 0 1 0

12 0 1 0 0 0 0 1 0 1

13 1 0 0 0 1 1 0 1 0

Table 23. SU(2)→ I ′.

Dimension 11 12 13 3

3 0 0 0 1

6 1 1 1 1

8 0 1 1 2

10 1 0 0 3

15 1 1 1 4

15′ 2 2 2 3

21 1 1 1 6

24 2 2 2 6

27 3 3 3 6

Table 24. SU(3)→ A4.
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Dimension 11 12 13 31 32

3 0 0 0 1 0

6 0 0 0 1 1

8 0 1 1 1 1

10 1 0 0 1 2

15 1 1 1 2 2

15′ 1 1 1 2 2

21 1 1 1 3 3

24 1 1 1 4 3

27 1 1 1 4 4

Table 25. SU(3)→ T7.

Dimension 11 12 13 14 15 16 17 18 19 31 32

3 0 0 0 0 0 0 0 0 0 1 0

6 0 0 0 0 0 0 0 0 0 0 2

8 0 1 1 1 1 1 1 1 1 0 0

10 2 1 1 1 1 1 1 1 1 0 0

15 0 0 0 0 0 0 0 0 0 5 0

15′ 0 0 0 0 0 0 0 0 0 5 0

21 0 0 0 0 0 0 0 0 0 0 7

24 0 0 0 0 0 0 0 0 0 0 8

27 3 3 3 3 3 3 3 3 3 0 0

Table 26. SU(3)→ ∆(27).

Dimension 1 32 32 6 7 8

3 0 1 0 0 0 0

6 0 0 0 1 0 0

8 0 0 0 0 0 1

10 0 0 1 0 1 0

15 0 0 0 0 1 1

15′ 1 0 0 1 0 1

21 0 1 1 0 1 1

24 0 1 0 1 1 1

27 0 0 0 2 1 1

28 1 0 0 2 1 1

Table 27. SU(3)→ PSL(2, 7).
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[53] G. Chen, M.J. Pérez and P. Ramond, Neutrino masses, the µ-term and PSL2(7), Phys. Rev.

D 92 (2015) 076006 [arXiv:1412.6107] [INSPIRE].

[54] M. Koca, R. Koc and H. Tutunculer, Explicit breaking of SO(3) with Higgs fields in the

representations l = 2 and l = 3, Int. J. Mod. Phys. A 18 (2003) 4817 [hep-ph/0410270]

[INSPIRE].

[55] C. Luhn, private communication.

[56] C. Hagedorn, M.A. Schmidt and A. Yu. Smirnov, Lepton mixing and cancellation of the

Dirac mass hierarchy in SO(10) GUTs with flavor symmetries T 7 and Σ(81), Phys. Rev. D

79 (2009) 036002 [arXiv:0811.2955] [INSPIRE].

[57] S.F. King, C. Luhn and A.J. Stuart, A grand ∆(96)× SU(5) flavour model, Nucl. Phys. B

867 (2013) 203 [arXiv:1207.5741] [INSPIRE].

[58] V.V. Vien and H.N. Long, Quark masses and mixings in the 3-3-1 model with neutral leptons

based on D4 flavor symmetry, J. Korean Phys. Soc. 66 (2015) 1809 [arXiv:1408.4333]

[INSPIRE].

[59] P.O. Ludl, On the finite subgroups of U(3) of order smaller than 512, J. Phys. A 43 (2010)

395204 [Erratum ibid. A 44 (2011) 139501] [arXiv:1006.1479] [INSPIRE].

[60] W. Grimus and P.O. Ludl, Finite flavour groups of fermions, J. Phys. A 45 (2012) 233001

[arXiv:1110.6376] [INSPIRE].

[61] P.O. Ludl, Comments on the classification of the finite subgroups of SU(3), J. Phys. A 44

(2011) 255204 [Erratum ibid. A 45 (2012) 069502] [arXiv:1101.2308] [INSPIRE].

[62] W.-C. Huang, Y.-L.S. Tsai and T.-C. Yuan, G2HDM: gauged two Higgs doublet model, JHEP

04 (2016) 019 [arXiv:1512.00229] [INSPIRE].

– 35 –

https://doi.org/10.1103/PhysRevD.90.013004
https://doi.org/10.1103/PhysRevD.90.013004
https://arxiv.org/abs/1403.6136
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6136
https://doi.org/10.1142/S0217732314501399
https://arxiv.org/abs/1508.02585
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.02585
https://arxiv.org/abs/1609.03895
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.03895
https://doi.org/10.1016/j.nuclphysb.2016.10.010
https://arxiv.org/abs/1601.03300
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.03300
https://doi.org/10.1007/JHEP09(2012)128
https://arxiv.org/abs/1206.7072
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.7072
https://doi.org/10.1103/PhysRevD.92.076006
https://doi.org/10.1103/PhysRevD.92.076006
https://arxiv.org/abs/1412.6107
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6107
https://doi.org/10.1142/S0217751X03015891
https://arxiv.org/abs/hep-ph/0410270
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0410270
https://doi.org/10.1103/PhysRevD.79.036002
https://doi.org/10.1103/PhysRevD.79.036002
https://arxiv.org/abs/0811.2955
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.2955
https://doi.org/10.1016/j.nuclphysb.2012.09.021
https://doi.org/10.1016/j.nuclphysb.2012.09.021
https://arxiv.org/abs/1207.5741
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5741
https://doi.org/10.3938/jkps.66.1809
https://arxiv.org/abs/1408.4333
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4333
https://doi.org/10.1088/1751-8113/44/13/139501
https://doi.org/10.1088/1751-8113/44/13/139501
https://arxiv.org/abs/1006.1479
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1479
https://doi.org/10.1088/1751-8113/45/23/233001
https://arxiv.org/abs/1110.6376
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.6376
https://doi.org/10.1088/1751-8113/45/6/069502
https://doi.org/10.1088/1751-8113/45/6/069502
https://arxiv.org/abs/1101.2308
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2308
https://doi.org/10.1007/JHEP04(2016)019
https://doi.org/10.1007/JHEP04(2016)019
https://arxiv.org/abs/1512.00229
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00229

	Introduction
	Lie group invariant potentials
	Gauge group irreps containing discrete gauge singlets
	SO(3) potentials
	A(4)
	S(4)
	A(5)

	SU(2) potentials
	Q(6)
	T'
	O'
	I'

	SU(3) potentials
	A(4) and T(7)
	Delta(27)
	PSL(2,7)


	Vaccuum alignments for spontaneous symmetry breaking
	Vacuua for SO(3) potentials
	A(4)
	S(4)
	A(5)

	Vacuua for SU(2) potentials
	T'
	Q(6)
	O'
	I'

	Vacuua for SU(3) potentials
	A(4)
	T(7)
	Delta(27)
	PSL(2,7)


	Vacuum expectation values and mass spectra
	SO(3) cases
	A(4) scalar spectrum
	S(4) scalar spectrum
	A(5) scalar spectrum

	SU(2) cases
	Q(6) scalar spectrum
	T' scalar spectrum
	O' scalar spectrum
	I' scalar spectrum

	SU(3) cases
	A(4) scalar spectrum
	T(7) scalar spectrum
	Delta(27) scalar spectrum
	PSL(2,7) scalar spectrum

	Symmetry breaking summary

	Discussion and conclusion
	Branching rules

