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7.4 Summary and comparison 46

8 Conclusions and outlook 50

A Conventions for gamma matrices and spinors 51

– i –



J
H
E
P
0
8
(
2
0
1
7
)
0
4
3

B Killing spinors of AdS3 53

C Torsion conditions on spinor bilinears 55

C.1 Simplifying relations 56

C.2 Algebraic equations 56

C.3 Differential conditions: scalars 57

C.4 Differential conditions: one-forms 57

C.5 Differential conditions: higher forms 58

D Supergravity central charges 58

D.1 Holographic central charges at leading order 58

D.2 Holographic central charges at sub-leading order 59

E Properties of Kähler and Calabi-Yau varieties 59

E.1 Useful relations 60

E.2 Ample divisors in elliptically fibered Calabi-Yau threefolds 61

F AdS3 × S3
× S2

× P
1 solution with three-form fluxes 63

1 Introduction

F-theory [1–3] has a firm standing as a framework for constructing Type IIB Minkowski

vacua in even dimensions, which preserve minimal supersymmetry. The main focus thus

far in utilising F-theory has been on the construction and classification of Type IIB vacua

with varying axio-dilaton τ , as well as (p, q) 7-branes, which are naturally encoded in the

singularities of τ . The canonical setup to construct such vacua is the compactification on

elliptic Calabi-Yau varieties Yd of complex dimension d with base Bd−1, where the complex

structure of the elliptic fiber models the axio-dilaton.

In the current paper we will deviate from this and consider supergravity solutions

with AdS vacua of Type IIB supergravity, where we allow the axio-dilaton τ to vary

consistently with the SL(2,Z) duality transformations. In this sense we are constructing

F-theory solutions. Our main focus will be supersymmetric solutions with AdS factors,

which allow for a holographic interpretation. The motivation to study these backgrounds

arises from various points of view. It is in general an interesting question to characterise

systematically such Type IIB solutions, as a method for exploring superconformal field

theories (SCFTs). Moreover, recently1 various D3-brane configurations in F-theory have

been shown to give rise to 2d SCFTs [5–9]. These constructions are based on D3-branes

wrapped on a complex curve C in the base Bd−1 of the elliptic fibration. Our goal here is

to construct holographic duals to such 2d SCFTs. In this paper we are interested in the

1D3-branes wrapped on curves in compact Calabi-Yau threefolds were studied much earlier [4], however

in those setups the coupling of the D3-brane remains constant.
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case where the curve C is deformable, which is in contrast to the case of the strings in 6d

non-Higgsable clusters (NHC) [10], where the curve is rigid.

The main novelty in our configuration is that we consider a background, where the

complexified coupling τ of the N = 4 Super-Yang Mills (SYM) theory on the D3-brane

varies over the internal compact dimensions. This requires a particular topological twist of

the N = 4 SYM theory, which is known as the topological duality twist which accounts for

the additional varying coupling constant, and was introduced for U(1) gauge groups in [11]

and generalised to non-abelian groups in [12]. For the case of a single D3-brane wrapping

a curve above which the coupling varies, as we consider here, the 2d SCFTs were studied

in [8, 9] and the central charges for these abelian theories were obtained therein.

Concretely, we will consider F-theory on elliptically fibered Calabi-Yau threefolds Y3
with base B, where the D3-branes wrap a curve C ⊂ B, and an R

1,1 factor, giving rise to

strings with 2d (0, 4) supersymmetric theories on their worldvolume. We will see that the

holographic dual AdS3 solutions have a non-trivial axio-dilaton profile and the geometry

of the solution is of the form

AdS3 × S3 ×B , (1.1)

with τ varying holomorphically over B, which is a Kähler surface, and a specific form of

five-form flux.2 Constraints on B follow from the existence of a minimal elliptic Calabi-

Yau fibration above it, which imply that B is either P2, a Hirzebruch surface Fm, blow-ups

thereof, or an Enriques surface [14, 15]. As an F-theoretic solution this could formally be

said to correspond to a background of the form AdS3×S3×Y3. The fibration will necessarily

have fibers which degenerate and are thus singular, i.e. there are codimension one loci in the

base, above which τ will have log-singularities. Physically these correspond to the presence

of (p, q) 7-branes, which are sourced by the singularity in τ . The specific type of 7-brane is

canonically determined by the singularity type, using the Kodaira-Néron classification of

singular fibers [16, 17]. The base is a smooth Kähler surface, however the metric induced

from the Calabi-Yau fibration above it has singularities due to the presence of 7-branes.

This makes the direct Type IIB analysis somewhat more delicate. We will show that these

solutions exist, preserve the required supersymmetry, and we will be able to determine

some properties of the dual SCFTs, despite the singular nature of the Type IIB solutions.

In view of the subtleties with regards to the singularities of the metric on B, we will cor-

roborate these results by considering the M/F-dual solutions in 11d supergravity, which can

be obtained by T-duality and uplift to M-theory, where they become solutions of the type

AdS3 × S2 × Y3 with Eτ →֒ Y3 → B . (1.2)

These fall into the classification of supersymmetric AdS3 solutions presented in [18, 19].

Once lifted to 11d supergravity, the singularities of the six-dimensional metric can be

resolved, yielding a smooth Ricci-flat Kähler metric on the compact Calabi-Yau variety,

2Geometries of this type were discussed in [8] from the point of view of effective six-dimensional super-

gravity [13]. However, to the best of our knowledge the problem of lifting these to supersymmetric solutions

of ten dimensional supergravity was not addressed. Our findings demonstrate that only a restricted class

of 6d vacua discussed in [8] can be embedded consistently into F-theory.
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which is the resolution of Y3. This allows us to compute reliably the holographic central

charges, including certain sub-leading corrections.

More generally, we will show that in the Type IIB solution one can perform a quotient

of S3 by a discrete subgroup Γ = ΓADE ⊂ SU(2)L ⊂ SU(2)L × SU(2)R retaining the full

(0, 4) supersymmetry. The resulting

AdS3 × S3/Γ×B , (1.3)

solution is the most general F-theory geometry (with vanishing three-form fluxes) preserv-

ing (0, 4) supersymmetry. We will concentrate on the A series,3 where Γ = ZM , with the

quotient acting on the Hopf fiber of S3. In this case, the solution can be interpreted as the

near-horizon limit of D3-branes wrapped on a curve C ⊂ B transverse to an M -centered4

Taub-NUT space, corresponding to the presence of M Kaluza-Klein (KK) monopoles. Of

course, for M = 1 the near-horizon limit of the solutions corresponding to one KK or no

KK-monopoles are indistinguishable. However, we will see that the explicit dual 11d super-

gravity solution can be argued to correspond to the configuration with one KK-monopole

in Type IIB.

A priori the M/F-dual setup to the D3-branes wrapped on C × R
1,1 are M5-branes

that in addition wrap the elliptic fiber above the curve C, i.e. the M5-branes wrap an

elliptic surface, which we will denote by Ĉ, times R1,1. This is closely related to the MSW-

string [20–22], although here Ĉ is not an ample divisor of Y3, and as a result the supergravity

solution for this configuration does not exist. However, upon explicit T-duality and lift

to 11d, we will find that our F-theory solution can be interpreted in terms of M5-branes

wrapped on an ample divisor that is a linear combination of N times Ĉ and M times the

section of the fibration, B. The latter arise precisely from dualizing M KK-monopoles in

Type IIB.5 The spectrum of the wrapped M5-brane on Ĉ×R
1,1 and its relation to a single

D3-brane wrapped on C × R
1,1 with the topological duality twist, was analysed in [9].

The entire class of F-theory solutions AdS3 × S3/ZM ×B, and their 11d supergravity

duals AdS3 × S2 × Y3, is expected to be holographically dual to 2d (0, 4) SCFTs. The

details of the SCFTs will depend on a choice of Kähler manifold B and the elliptic fibration

above it, which specifies the 7-brane configuration, as well as the choice of holomorphic

curve C ⊂ B that the D3-branes wrap. Therefore, in this paper we will not attempt to

construct explicit 2d field theories that should flow to the SCFTs in the IR, beyond the

discussion in [9]. Nevertheless, some generic features of these SCFTs can be inferred from

the supergravity solutions and may be checked by using different methods, mainly based

on anomaly inflow on branes as well as anomalies of strings in 6d SCFTs. For M > 1

the supergravity solutions include an SO(2, 2)× SU(2)R isometry, with the Killing spinors

transforming each in the representation 2 of SU(2)R. This can therefore be identified as

the R-symmetry of a small superconformal algebra [24]. For M = 1 the F-theory solution

(but not the 11d supergravity dual) has an enhanced SO(4) ≃ SU(2)L × SU(2)R isometry.

3The D and E series result in three-dimensional spaces with non-abelian fundamental groups, which do

not posses continuous isometries.
4In the geometry, the M centers coincide, which results in a ZM singularity.
5Aspects of these backgrounds were studied in [23] from a different point of view.
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Since the Killing spinors do not transform under SU(2)L this corresponds to an emergent

flavour symmetry in the theory arising from D3-branes, with no KK-monopoles. In the

abelian case, this symmetry was shown to be realised in terms of a current algebra [8].

Information on the field theories arising from a stack of D3-branes only and those

involving in addition M KK-monopoles can be obtained using complementary approaches.

The former give rise to self-dual strings in 6d and we can determine the central charges

cL, cR from their anomaly polynomial. We can also reproduce these central charges in the

M-theory dual setup involving a stack of M5-branes wrapped on the (non-ample) divisor

Ĉ, by evaluating the relevant anomaly polynomial [25]. However, as remarked above, this

setup does not admit a supergravity dual, and there will be additional subtleties that

we shall discuss in detail. Conversely, for the theories arising in the presence of M KK-

monopoles, the anomaly polynomial for the 6d strings is not known, so in this paper we

will not be able to compute the central charges microscopically on the F-theory side in

these cases. For the M-theory configurations however, we can determine them from the

M5-brane anomaly polynomial, and successfully compare the results with the gravity duals.

We arrive at the F-theory solutions described above by performing a systematic anal-

ysis of the supersymmetry equations in Type IIB supergravity. We adopt the method of

G-structures, that has been employed to investigate supersymmetric solutions with AdS

factors in various settings — see [26–32] for a representative list of references. In this paper

we study warped AdS3 solutions of Type IIB supergravity, allowing for a general five-form

flux and arbitrary axio-dilaton, while setting the three-form fluxes to zero. Here we will

concentrate on solutions preserving (0, 4) supersymmetry, where our analysis shows that

the class of solutions is essentially unique. Generalisations of this setup will be discussed

elsewhere [33].

Examples of supersymmetric AdS3 solutions that can be thought of as the near-horizon

limit of brane intersections have been known for a long time [34], although in many cases

the dual SCFTs have remained somewhat elusive [35]. The conditions for AdS3 solutions

preserving at least (0, 2) supersymmetry, arising purely from wrapped D3-branes with

constant coupling, were spelled out in [36]. Following this work, a number of explicit

solutions have been found in [37–39], which also determined some properties of the putative

dual 2d (0, 2) SCFTs. The authors of [40] presented generalisations to include a particular

form of three-form fluxes. Finally, new interesting examples of solutions to the equations

in [36] were found in [41–43], where the precise dual (0, 2) SCFTs were identified and

non-trivial checks of the central charges were performed. In particular, the central charges

of (0, 2) SCFTs can be determined by the method of c-extremisation [44]. In all these

examples, however, the axio-dilaton is constant. In the present paper we will initiate a line

of investigation in which this can vary non-trivially over the internal manifold, setting the

stage for studying holography in the context of F-theory.

We should remark on other supergravity solutions with holographic duals, where non-

trivial profiles of the axio-dilaton have appeared — however none of which include a varying

axio-dilaton with the full SL(2,Z) monodromy, which we incorporate in this paper. AdS-

duals with particular constant, but not necessarily perturbative, values of the axio-dilaton,

which correspond to F-theory at constant coupling were studied in [45–47].
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There are also holographic setups with D3- and D7-branes, where the latter play the

role of flavour symmetries in the field theory dual, see e.g. [48] for a review. Typically these

correspond to configurations of D3- and D7-branes sharing four flat space-time directions,

corresponding to non-conformal four-dimensional field theories. When the backreaction of

the D7-branes is included, the supergravity solutions do not have an AdS factor. Another

closely related setup involving D3- and D7-branes was discussed in [49–51]. These are

configurations where, as in the present paper, the branes share two dimensions. Here

the D3-branes are placed into the supergravity background sourced by the D7-branes,

however the Type IIB solution does not possess SO(2, 2) isometry, and therefore it is not

holographically dual to a 2d SCFT. This is distinct from the setup that we consider, in

that it corresponds to a 4d gauge theory in the presence of 2d defects.

Recently, AdS6 solutions dual to 5d SCFTs were constructed in Type IIB supergravity,

which have a non-trivial τ profile that allows for poles in τ , but does not include any

SL(2,Z) monodromy [52, 53]. Furthermore there is the class of holographic duals to Janus

configurations, [54–57] where the gauge coupling varies along a real line, which was later

generalised to the θ-angle varying along the 1d line [58]. In contrast, in our configurations,

the complexified coupling τ varies holomorphically along the base of the fibration, which

is a complex surface in the present case, giving rise to an elliptic fibration with general

SL(2,Z) monodromy.

The rest of the paper is organised as follows. Section 2 contains a short overview of F-

theory and elliptic Calabi-Yau manifolds. In section 3 we derive the Type IIB supergravity

solutions using G-structure methods. In section 4 we present the computation of the

holographic central charges for the F-theory solutions. In section 5 we discuss the duality to

11d supergravity making contact with [20]. In section 6 we present the computation of the

holographic central charges for the M-theory solutions. Section 7 contains the microscopic

computations of the central charges of the dual SCFTs via anomaly inflow for 6d self-

dual strings and MSW-strings. We discuss our results in section 8. We include several

appendices containing supergravity computations as well as summarising mathematical

properties of the geometries used in the main part of the paper. Moreover, in appendix F

we present a new AdS3 solution of Type IIB supergravity, including three-form fluxes,

which is thereby outside the analysis in the rest of the paper.

2 F-theory and wrapped D3-branes

2.1 F-theory

We begin with some remarks regarding F-theory and solutions of Type IIB supergravity.

Consider a Calabi-Yau manifold, Y , which is elliptically fibered over a compact Kähler base

B, which we abbreviate as Eτ →֒ Y → B. If there are no singular fibers, the fibration is in

fact topologically trivial, i.e. Y = Eτ ×B, implying that the base B is itself a Calabi-Yau

variety, and also that τ does not vary over B. Here we will be interested in non-trivial

fibrations, which necessarily include so-called Kodaira singular fibers [16, 17].6 We consider

6As a cautious remark, despite the name, these are the resolved fibers above singular loci of the fibration.
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an elliptic fibration with a section, i.e. a map B → Eτ , which implies the existence of a

Weierstrass form of the elliptic fibration

y2 = x3 + fxw4 + gw6 , (2.1)

where f, g are sections of K−4
B and K−6

B , respectively, and thereby depend on the base

B. Here KB denotes the canonical class of the base. The hypersurface equation (2.1)

is written in an ambient space, which is the fourfold obtained as the total space of the

projectivization of the sum of line bundles over B

X4 = P(OB ⊕ (OB ⊕K−1
B )2 ⊕ (OB ⊕K−1

B )3) , (2.2)

where OB is the structure sheaf of B. The coordinates [w, x, y] satisfy standard projective

relations in P
1,2,3 and their class is given by [w] = σ, [x] = 2(σ + c1(B)) and [y] =

3(σ + c1(B)). In particular, the class of the section of the elliptic fibration is denoted

here by σ. For a more in depth review of elliptic fibrations and their geometry and more

specifically the intersection theory used in the following, we refer the reader to e.g. [59–61].

For each point in the base, this equation defines an elliptic curve, whose complex structure

can be determined via the j-function, which in turn depends on f and g. Singularities

in the elliptic fibration are characterised by the vanishing of the discriminant ∆ of the

Weierstrass equation, i.e.

∆ = 4f3 + 27g2 = 0 , (2.3)

which define complex codimension one loci in B. The type of singular fibers that can occur

were classified by Kodaira-Néron, and are characterised in terms of the order of vanishing

of (f, g,∆) along the discriminant locus. More concretely, the different singularities are

characterised in terms of the fibers that are obtained upon resolution.7 The resulting

Kodaira singular fibers are collections of rational curves (P1s) with precise intersection

patterns and multiplicities, given e.g. in terms of affine Dynkin diagrams of ADE Lie

algebras. The simplest Kodaira fiber is I1, which has

I1 : ord(f, g,∆) = (0, 0, 1) . (2.4)

The fiber is a node, i.e. a P
1 with a self-intersection. This fiber does not induce a singularity

in the total space of the fibration and thus no resolution is necessary, as one can check

directly. In F-theory, singularities of the axio-dilaton τ , i.e. vanishing of the discriminant

∆, determine the loci of the 7-branes, and the type of singularity characterises the (p, q)

charges of the 7-branes under the SL(2,Z) self-duality of Type IIB. The I1 singular fiber

corresponds to a single D7-brane. The worldvolume of the 7-branes is ∆ × R
1,d. The

effective theory of F-theory on Y × R
1,d is given in terms of the gauge theories on the

7-branes coupled to N = 1 supergravity in d+ 1 dimensions.

For a given Weierstrass model, the complex structure τ of the elliiptic curve can be

extracted from

j(τ) = −1728
(4f)3

∆
, (2.5)

7More precisely, these are Kähler deformations, which retain the Calabi-Yau property, so-called crepant

resolutions.
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where j(τ) is the Jacobi j-function. By expanding

j(τ) =
1

q
+ 744 + · · · , (2.6)

where q = e2πiτ . Using the asymptotic expansion along the loci where ∆ = 0 one can

extract the local behaviour of τ . For example, the axio-dilaton close to a 7-brane wrapping

the local divisor z = 0 in the base B has the profile

τ =
1

2πi
log z + · · · , (2.7)

which has a singularity at z = 0, and undergoes a monodromy τ → τ+1 around this locus.

More general (p, q) 7-branes will have γ ∈ SL(2,Z) monodromy. For elliptic K3s, this was

derived in [62]. Specifically this singular behaviour of the axio-dilaton implies that the

metric on the base will have singularities.

In the present context we are interested in solutions to the effective theory. Naively we

would define the F-theory supergravity solutions on Y in terms of Type IIB supergravity,

on B including τ which varies over B. However when the elliptic fibration has singularities

as in (2.7), the metric that is induced on the base B is expected to be singular. In the case

of K3 surfaces, this can be made explicit for non-compact [62] and for compact K3s [63, 64],

who also give a precise measure for the divergence of the curvature scalar close to the singu-

lar fibers. Thus a supergravity approach seems at first sight to be somewhat questionable.

In the absence of a first principle formulation of F-theory, the effective action of a

compactification on an elliptically fibered manifold Y is defined in terms of M/F-duality:

F-theory on Y × S1 defines the same effective theory as M-theory on Y . This will be the

approach that we will use to define the F-theory solution: there is a dual M-theory solution

on an elliptically fibered manifold Y , which is smooth and Calabi-Yau, with a smooth Ricci-

flat Kähler metric. Reducing to Type IIA, and performing a T-duality results in a Type

IIB solution with varying τ . The effective theory is obtained solely by considerations in

the 11d supergravity compactification. Whenever we allow for not only I1 but enhanced

singular fibers, the computations are done in the resolved geometry, where the singularities

are blown up retaining the Calabi-Yau property of Y3.

2.2 Elliptic fibrations

In the following it will be useful to have some geometric basics about elliptic fibrations in

place for studying F-theory solutions. Here our main interest is in elliptic threefolds, but

much can be generalised to other dimensions. We consider Calabi-Yau threefolds Y3, which

are elliptically fibered over a base B, which is a complex surface. Denote the projection

map π : Y3 → B. Furthermore we assume there is a section, which as explained earlier

implies the existence of a Weierstrass model.

It will be very important in the following to determine the possible divisors (4d sub-

manifolds) in such a geometry, which is the content of the Shioda-Tate-Wazir theorem [65],

which implies that the divisors of an elliptic Calabi-Yau threefold Y3 with a section, fall

into the following three classes:

– 7 –
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1. Section: this is the divisor obtained by the image of the base B in Y3. We denote it

simply by B. The dual (1, 1)-form will be denoted by ω0.
8

2. Pull-back of curves in the base B: for every effective curve Cα ∈ H2(B) we have a

divisor in Y3 given by π∗(Cα). We will refer to these as Ĉα ≡ π∗(Cα), and denote the

dual (1, 1)-forms by ωα.

3. Resolution/Cartan divisors: these divisors occur whenever there is a singularity in

the Weierstrass model of the elliptic fibration, and they are given in terms of rational

curves, that are obtained from the resolution of the singularities, fibered over a curve

in the base (which are components of the discriminant). In the literature these are

often referred to as Cartan divisors, as they are (in many cases) labeled by the simple

roots of the Lie algebra associated to the Kodaira singular fiber. The Cartan divisors

will be denoted by Di, and the dual (1, 1)-forms by ωi.

For most part of the paper we will consider smooth Weierstrass fibrations, i.e. there are

no Cartan divisors. However this can be easily generalised and we will comment on this

throughout the paper. Divisors are dual to (1, 1)-forms, and the Shioda-Tate-Wazir theo-

rem thus implies that the Kähler form of the Calabi-Yau can be expanded as

JY3 = k0ω0 +
∑

α

kαωα +
∑

i

kiωi . (2.8)

We will require that the Kähler class of the base

JB =
∑

α

kαωα , (2.9)

is dual inside B to a curve C, implying that kα ∈ Z
+. This means that JB is in fact the

Kähler class associated to the Hodge metric on B [66]. However, we do not require any

such integrality for k0.

The non-trivial triple intersections of the basis ωI = {ω0, ωα, ωi} in the Calabi-Yau

CIJK = DI ·Y3 DJ ·Y3 DK =

∫

Y3

ωI ∧ ωJ ∧ ωK , (2.10)

can be evaluated in terms of data of the base B as follows9

C000 =

∫

B
c1(B)2 = 10− h1,1(B)

C00α = −c1(B) · Cα

C0αβ = Qαβ

Cαij = −CijQαβC
β ,

(2.11)

8An elliptic fibration can have more rational sections, in which case there are additional divisors and

(1, 1) forms, which generate the Mordell-Weil group of the fibration. As this will not play any role here, we

refrain from discussing these further.
9Whenever we write · without any subscript in the following, this will denotethe intersection in B, unless

otherwise stated.
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where Qαβ is the intersection form on B and Cij the Cartan matrix of the gauge algebra g

associated to the singularity. The triple intersection Cijk were determined in [67–69] and

depend on codimension two singularities, which are labeled by representations of g.

In deriving these intersection numbers we have made use of the intersection relation

in Y3
10

σ ·Y3 (σ + c1(B)) = 0 . (2.12)

We will also need to compute intersections with c2(Y3). The total Chern class for the

Calabi-Yau can be written as

c(Y3) = (1 + [w])(1 + [x])(1 + [y])
c(B)

(1 + [y2])
, (2.13)

where c(B) is the total Chern class of the base and the denominator corresponds to the

class of the hypersurface equation (2.1). Expanding this to second order we obtain11

c2(Y3) = c2(B) + 11c1(B)2 + 12ω0 ∧ c1(B) , (2.14)

which allows the computation of integrals over c2(Y3) using the intersection numbers

in (2.11).

Finally, we will often consider curves C ⊂ B, and it will be useful to recall the adjunc-

tion formula

KC = (KB + C)|C , (2.15)

where KC and KB are the canonical classes of C and B, respectively. For a genus g curve

this implies

2(g − 1) = C · C − c1(B) · C . (2.16)

Throughout our considerations we will assume the base B to be smooth as a variety, albeit

the induced metric on B will have singularities that we will discuss in some detail later on.

2.3 D3-branes in F-theory and 2d (0, 4) SCFTs

The supergravity solutions that will be studied in this paper are dual to 2d N = (0, 4)

SCFTs arising from D3-branes wrapped on a curve, C, in the base of an elliptic Calabi-Yau

threefold, in an F-theory compactification to 6d. The field content for these 2d SCFTs was

worked out in [9], where in particular the abelian zero mode spectrum and the left and

right central charges were computed. The zero mode spectrum in terms of (0, 4) multiplets

was found to be

(0, 4) multiplet Multiplicity (cR, cL)

Hyper 1
2C · C + 1

2c1(B) · C (6, 4)

Twisted Hyper 1 (6, 4)

Fermi 1
2C · C − 1

2c1(B) · C + 1 (0, 2)

. (2.17)

10This follows from the fact that w, x, y cannot vanish at the same time, and thus [w] · [x] · [y] = 0 as inter-

sections in X4, or noting that the class of the hypersurface (2.1) is [y2], this becomes σ ·(σ+c1(B)) · [y2] = 0.
11Here we used the relation (2.12), which holds on Y3.
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In addition, one has half-Fermi multiplets arising from 3-7 strings, which contribute c37 =

8c1(B)·C to the left-moving central charge. The left and right central charges are computed

by summing the contributions from each multiplet with their appropriate multiplicity, and

are given by [8, 9]

cR = 3C · C + 3c1(B) · C + 6 ,

cL = 3C · C + 9c1(B) · C + 6 .
(2.18)

Notice that upon using the adjunction formula (2.16), the right central charge may be

rewritten as

cR = 6 (g + c1(B) · C) , (2.19)

which is manifestly a multiple of 6, as expected generically for (0, 4) SCFTs with small

superconformal algebra [70]. Under M/F-duality, this is equivalent to M5-branes wrapped

on the elliptic surface Ĉ = π∗(C) in the Calabi-Yau threefold. The 2d spectrum obtained

from a single M5-brane wrapped on an elliptic surface was also determined in [9] as

(0, 4) multiplet Multiplicity (cR, cL)

Hyper 1
2C · C + 1

2c1(B) · C + 1 (6, 4)

Fermi 1
2C · C − 1

2c1(B) · C + 1 (0, 2)

Half-Fermi 8c1(B) · C (0, 1)

. (2.20)

Here, the half-Fermi multiplets arise directly from the reduction of the 6d N = (2, 0) tensor

multiplet. This spectrum matches that of the D3-brane wrapped on C and therefore the

left and right central charges are also given by (2.18). These central charges are computed

for a single D3-brane, i.e. N = 1. In the following we will compute these holographically

for general N .

3 AdS3 solutions in F-theory dual to 2d (0, 4) theories

In this section we switch gears and turn to an explicit analysis of the supersymmetry equa-

tions of the ten-dimensional Type IIB supergravity. We will derive the AdS3 solutions of

interest starting from a very general ansatz and requiring the existence of (0, 4) supersym-

metry in the boundary SCFTs. The methods we use are by now completely standard,

but we nevertheless include some details here, for the benefit of readers that may not be

familiar with these.

3.1 Type IIB Killing spinor equations

To find supersymmetric solutions we first determine the constraints implied by the existence

of certain Killing spinors in Type IIB. We follow the Type IIB supergravity conventions

presented in [28], which we briefly summarise here. The equations of motion and super-

symmetry transformations for bosonic configurations were originally found in [71, 72]. The

Neveu-Schwarz Neveu-Schwarz (NS-NS) sector of Type IIB supergravity consists of the

metric g, a real scalar φ, called the dilaton, and a real two-form potential, B(2). The Ra-

mond Ramond (RR) sector includes a real scalar potential C(0), a real two-form potential
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C(2), and a real four-form potential, C(4), with self dual-field strength. It is convenient to

combine these fields into complex ones: we combine the scalars as

τ = τ1 + iτ2 ≡ C(0) + ie−φ , (3.1)

which we refer to as the axio-dilaton, and the three-form field strengths as

G ≡ ieφ/2(τdB(2) − dC(2)) . (3.2)

We are interested in bosonic solutions and therefore we set the fermionic content of the

theory to zero. We still wish to preserve supersymmetry, therefore the supersymmetry

variations must vanish identically. The bosonic variations, being proportional to fermionic

fields vanish trivially, whilst for the fermionic variations

δψM = DM ǫ− 1

96

(
Γ P1...P3
M GP1...P3 − 9ΓP1P2GMP1P2

)
ǫc +

i

192
ΓP1...P4FMP1...P4ǫ , (3.3)

δλ = iΓMPM ǫc +
i

24
ΓP1...P3GP1...P3ǫ , (3.4)

we must choose the bosonic fields such that they vanish. These are the Killing spinor

equations of Type IIB supergravity. The supersymmetry parameter ǫ is a Weyl spinor

satisfying the projection condition Γ11ǫ = −ǫ.

The covariant derivative D is with respect to both Lorentz transformations and local

U(1) transformations,

Dµ = ∇µ − iqQµ , (3.5)

where Q is the gauge field for the U(1) transformations. It takes the form

Q = − 1

2τ2
dτ1 , (3.6)

where τ = τ1 + iτ2 is the axio-dilaton and q is the charge under the U(1). The Killing

spinors have U(1) charge 1/2, P has charge 2, and G has charge 1. The field P , appearing

in the dilatino equation, is constructed from the axio-dilaton as

P =
i

2τ2
dτ . (3.7)

The equations of motion consist of the Einstein equation

RMN =2P(MP ∗
N)+

1

96
FMP1...P4F

P1...P4
N +

1

8

(
2G P1P2

(M G∗
N)P1P2

− 1

6
gMNGP 1...P3G∗

P1...P3

)
,

(3.8)

and the equations of motion for the fluxes

D ∗G = P ∧ ∗G∗ − iF ∧G , (3.9)

D ∗ P = −1

4
G ∧ ∗G . (3.10)
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These are supplemented by the Bianchi identities

DP = 0 , (3.11)

DG = −P ∧G∗ , (3.12)

dF =
i

2
G ∧G∗ , (3.13)

and the self-duality constraint

F = ∗F . (3.14)

3.2 AdS3 ansatz

In this paper we consider the most general class of bosonic Type IIB supergravity solu-

tions with SO(2, 2) symmetry and vanishing three-form fluxes. We take the 10d metric in

Einstein frame to be a warped product of the form

ds2 = e2A
(
ds2(AdS3) + ds2(M7)

)
, (3.15)

where ds2(AdS3) is the metric on AdS3, with Ricci tensor Rab = −2m2gab, and ds2(M7) is

the metric on an arbitrary internal 7d manifold M7. To preserve the SO(2, 2) symmetry of

AdS3 we impose A ∈ Ω(0)(M7,R), P ∈ Ω(1)(M7,C) and τ ∈ Ω(0)(M7,C). In this paper

we will not consider solutions with non-trivial three-form fluxes, thus our fluxes take the

form

F = (1 + ∗)dvol(AdS3) ∧ F (2) , G = 0 , (3.16)

with F (2) ∈ Ω(2)(M7,R). The Bianchi identity for the five-form flux gives two equations

for F (2), that read

dF (2) = 0 , d∗̂7F (2) = 0 , (3.17)

where ∗̂7 is the Hodge star on the unwarped metric ds2(M7).

We now use the spinor ansatz developed in appendix A and apply the results of ap-

pendix B for Killing spinors of AdS3. We consider the Killing spinor ansatz

ǫ = ψ1 ⊗ eA/2ξ1 ⊗ θ + ψ2 ⊗ eA/2ξ2 ⊗ θ , (3.18)

where ψi are Majorana Killing spinors on AdS3 and satisfy

∇aψi =
αim

2
ρaψi . (3.19)

The constants αi = ±1 are the eigenvalues of the matrix W discussed in appendix B. We

assume that the ψi are independent and that the ξi are Dirac spinors. With this ansatz

we can preserve N = {(4, 0), (2, 2), (0, 4)}, depending on the signs in (3.19), in the dual

SCFT, as discussed in appendix B. Each Majorana AdS3 Killing spinor will contribute a

single superconformal supercharge and a single Poincaré supercharge. The two indepen-

dent Dirac spinors will then imply that we preserve four superconformal supercharges and

four Poincaré supercharges and hence N = {(4, 0), (2, 2), (0, 4)} depending on the signs

in (3.19).
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Decomposing the 10d supersymmetry equations, (3.3) and (3.4), by using the above

ansatz (3.18) we obtain the equations

γµPµξ
c
j = 0 , (3.20)

(
1

2
∂µAγ

µ − iαjm

2
+

e−4A

8
/F
(2)

)
ξj = 0 , (3.21)

(
Dµ +

iαjm

2
γµ − e−4A

8
F (2)
ν1ν2γ

ν1ν2
µ

)
ξj = 0 , (3.22)

for each of the two spinors ξi. Note that we can derive some immediate consequences of

the algebraic condition (3.20), which implies

P 2ξ̄jξi = 0 . (3.23)

In particular for i = j we have that ξ̄iξi 6= 0 and therefore we see that necessarily

P 2 = 0 . (3.24)

Together with the equation of motion d ∗ P = 0, this implies that τ is harmonic

� τ = 0 . (3.25)

We are specifically interested in solutions where τ varies over the compact part of the space.

In a compact space without boundary the only harmonic functions are constant [73]. This

was noted in [28] in the context of supersymmetric AdS5 solutions and it implies that we

must allow for singularities in τ , as anticipated from general F-theory considerations; in

particular we will allow for log singularities as in (2.7).

3.3 Constraints for 2d (0, 4) supersymmetry

In the rest of the paper we specialise to the case where the dual 2d SCFTs have chiral

supersymmetry. In particular, we choose the convention where the supercharges are right-

moving i.e. N = (0, 4) supersymmetry, which implies we take α1 = α2 = 1.

To classify the solutions we shall analyse the G-structure defined by the Killing spinors

of the solution. This is a standard technique for finding the necessary and sufficient condi-

tions imposed by supersymmetry [74]. Let the Killing spinors of the solution have isotropy

group G, this then defines a canonical G-structure. One may construct tensors from these

Killing spinors as spinor bilinears, it follows that these tensors are then G-invariant. These

G-invariant tensors will satisfy a number of algebraic relations depending on the partic-

ular G-structure defined. One then analyses the information obtained from the Killing

spinor equations by computing the differential and algebraic conditions they impose on

the G-invariant tensors, these define the so called “intrinsic torsion” of the G-structure.

Finally one computes the integrability conditions of the Killing spinor equations and the

torsion conditions of the G-invariant tensors, and determines which equations of motion

and Bianchi identities are automatically satisfied, imposing the remaining conditions. This

classification procedure provides the most general local form of the solution given in terms

of the information contained in the G-structure.
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We find that the most general solutions in this class admit an SU(2) structure. In

seven-dimensions an SU(2) structure implies the existence of three independent one-forms

orthogonal to a four-dimensional foliation with SU(2) structure. This is specified by a real

two-form of maximal rank and a complex two-form satisfying the SU(2) structure relations

which we give later. We define the G-invariant tensors obtained from the Killing spinors in

appendix C. To compute the algebraic relations imposed by the SU(2) structure we shall

introduce an orthonormal frame using the gamma matrices defined in appendix A. One

may recover these results by making use of Fierz identities.

In the following we summarise the results, with more detailed provided in appendix C,

where in particular the torsion conditions for general αi are written down. Here we spe-

cialise to the relevant case α1 = α2 = 1.

From (C.18) and (C.22) we obtain the following conditions on the scalar bilinears

S11 = S22 = 1 , (3.26)

A11 = A22 = A12 = S12 = 0 . (3.27)

From (C.28) we see that there are three independent Killing vectors. Imposing that the

Killing vectors lie along a subspace defined by the vielbeins e5, e6, e7, consistent with an

SU(2) structure, is equivalent to imposing the projection condition

γ1234ξi = −ξi . (3.28)

In addition we have the freedom to choose K11 to be parallel to e7. In this frame the

independent one-forms and two-forms are given by12

K11 = −K22 = e7 , (3.29)

K12 = e5 − ie6 , (3.30)

B12 = 0 , (3.31)

U11 = −i(e12 + e34 − e56) , (3.32)

U22 = −i(e12 + e34 + e56) , (3.33)

V11 = V22 = 0 , (3.34)

V12 = −(e1 − ie2) ∧ (e3 − ie4) . (3.35)

The remaining forms may be expressed in terms of the forms defined above as

U12 = K11 ∧K12 ,

X11 = U11 ∧K11 ,

X22 = U22 ∧K22 ,

X12 = U11 ∧K12 = U22 ∧K12 ,

Y11 = V12 ∧K∗
12 ,

Y22 = −V12 ∧K12 ,

Y12 = −V12 ∧K11 = V12 ∧K22 .

(3.36)

12For notational simplification, we shall make use of the following shorthand notation for the wedge of

multiple vielbein ea1 ∧ . . . ∧ ean = ea1...an .
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3.4 F-theory AdS3 solution

After introducing the frame, it is now possible to reduce the differential conditions and

determine the final Type IIB supergravity solution. The remaining conditions are

e−4Ad
(
e4AKjj

)
= −2imUjj − e−4AF (2) , (3.37)

e−4Ad
(
e4AK12

)
= −2imU12 , (3.38)

d
(
e4AUij

)
= 0 , (3.39)

D
(
e6AV12

)
= 0 . (3.40)

First we determine F (2). The frame computation implies K11 = −K22 = e7, and inserting

this into (3.37) we find

F (2) = −ime4A(U11 + U22) = −2me4A
(
e12 + e34

)
. (3.41)

Notice that (3.39) implies that (3.41) satisfies the Bianchi identity for F (2). From this

explicit expression we may also compute ∗F (2) and show that it satisfies its equation of

motion. Observe from the algebraic equations (C.14)–(C.17) we have the relation

∂µA = −e−4A

4
Fµν ξ̄1γ

νξ1 , (3.42)

which together with (3.41) implies that the warp factor is constant

dA = 0 . (3.43)

Next we can determine the Killing vectors. From (C.28) we see that there are three

independent Killing vectors of the full solution whose dual one-forms are

K11 = −K22 = e7 ,

Re [K12] = e5 ,

Im [K12] = −e6 .

(3.44)

From the torsion conditions (3.37) the dual one-forms to these Killing vectors satisfy the

differential conditions

de5 = 2me67 , (3.45)

de6 = 2me75 , (3.46)

de7 = 2me56 , (3.47)

which is a warped form of the equations obeyed by the SU(2) invariant one-forms.13

13The Maurer-Cartan left-invariant one-forms in the coordinates we are using are

σ1,L = − sinψdθ + cosψ sin θdϕ , σ2,L = cosψdθ + sinψ sin θdϕ , σ3,L = dψ + cos θdϕ .

The coordinates have periods ψ ∈ [0, 4π], ϕ ∈ [0, 2π], θ ∈ [0, π] .These satisfy dσi,L = 1
2
ǫijkσj,L∧σk,L. The

right-invariant one-forms we shall take are

σ1,R = sinϕdθ − cosϕ sin θdψ , σ2,R = cosϕdθ + sinϕ sin θdψ , σ3,R = dϕ+ cos θdψ .

These satisfy dσi,R = − 1
2
ǫijkσj,Rσk,R. Of course we could take the right-invariant one-forms to solve the

same equation as the left-invariant one-forms however in the present case we have the desirable property

σ1,L ∧ σ2,L ∧ σ3,L = σ1,R ∧ σ2,R ∧ σ3,R.
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On the 4d subspace B we have an SU(2) structure with the Kähler-form given by

JB =
i

2
(U11 + U22) = e12 + e34 , (3.48)

with corresponding holomorphic two-form satisfying 1
2ΩB ∧ Ω̄B = JB ∧ JB = 2dvol(B),

which takes the form

ΩB = −V ∗
12 =

(
e1 + ie2

)
∧
(
e3 + ie4

)
. (3.49)

With these definitions the remaining torsion conditions become

dJB = 0 , (3.50)

D̄ΩB = 0 . (3.51)

Furthermore, from (C.20) and (C.21) it follows that P may only have components along

B and using (3.20) we find

J n
Bm Pn = iPm , (3.52)

and hence P is holomorphic. The form of P then implies that τ is holomorphic and

therefore τ satisfies

dτ ∧ ΩB = 0 . (3.53)

Notice that (3.52) implies the necessary conditions (3.24) and (3.25). From (3.51) we

may identify −Q as the canonical Ricci-form potential on the Kähler manifold B and hence

we have

R+ dQ = 0 , (3.54)

where R is the Ricci-form on B. Making use of the identity,

Rm1
m2

= Jm1
nR

n
m2

, (3.55)

the condition in (3.54) may be expressed as

RY3
mn ≡ Rmn − 1

2τ22
(∂mτ1∂nτ1 + ∂mτ2∂nτ2) = 0 . (3.56)

This equation relates the Ricci tensor of the base to the variation of τ over B. In particu-

lar, this is the Ricci flatness condition for the metric of an elliptically fibered Calabi-Yau

threefold Y3 valid away from the singularities in the fiber.

Since τ is holomorphic, away from loci where the fiber degenerates, the metric for the

elliptically fibered Calabi-Yau can be written as

ds2(Y3) =
1

τ2

(
(dx+ τ1dy)

2 + τ22dy
2
)
+ ds2(B) . (3.57)

Indeed, imposing that this metric is Ricci flat implies that the Ricci tensor on B satis-

fies (3.56). As was noted in [62] this local metric is singular over the discriminant locus of

the elliptic fibration.
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To exhibit the Calabi-Yau condition, we construct the Kähler form and holomorphic

three-form of the Calabi-Yau threefold from the corresponding quantities of the base, which

define an SU(3) structure. Let the vielbein on the fibration be

e1 =
1√
τ2
(dx+ τ1dy) , e2 =

√
τ2dy , (3.58)

then

JY3 = e12 + JB , ΩY3 = (e1 + ie2) ∧ ΩB . (3.59)

With this frame on the elliptic fibration and giving indices 3, 4, 5, 6 to the base, some

relevant components of the spin connection which are useful later on are

ω1
2 = Q, ω3

4 + ω5
6 = −Q , ω4

5 + ω3
6 = 0 , ω3

5 − ω4
6 = 0 . (3.60)

The Calabi-Yau condition in terms of this SU(3) structure is equivalent to

dJY3 = 0 , dΩY3 = 0 . (3.61)

Upon using dJB = 0 it follows trivially that dJY3 = 0. Consider instead dΩY3 = 0; we have

dΩY3 =

(
− 1

2τ2
dτ2 − iQ

)
∧ ΩY3 +

1

τ2
dτ ∧ dy ∧ ΩB

=
i

2τ2
dτ ∧ ΩY3 +

1

τ2
dτ ∧ dy ∧ ΩB , (3.62)

where we have used (3.51) in the first line. Upon using the holomorphicity of τ and that it

depends only on the base coordinates this is identically zero. This shows that (3.51) and

therefore also (3.54) and (3.56) are equivalent to B being the base of an elliptically fibered

Calabi-Yau threefold.

The Type IIB equations of motion follow immediately from supersymmetry. The

equation of motion for F , dF = 0, follows immediately from (3.50). Moreover one may

rewrite (3.56) as

Rmn = 2P(mP ∗
n) , (3.63)

which is precisely the form in which τ appears in the Einstein equation (3.8). With the

explicit form of F it is easy to show that indeed the Einstein equation is also satisfied.

In summary, the solution
Eτ

↓
AdS3 × S3× B

(3.64)

where the elliptic fibration over B gives rise to a Calabi-Yau threefold, is thus given by14

ds2 = e2A
(
ds2(AdS3) +

1

4m2

(
σ2
1 + σ2

2 + σ2
3

)
+

1

m2
B

ds2(B)

)
, (3.65)

F = −(1 + ∗)2me4A

m2
B

JB ∧ dvol(AdS3) , (3.66)

P =
i

2τ2
dτ , (3.67)

14Of course, the one-forms σi can be taken to be either σi,L or σi,R.
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where JB is the Kähler form on the base of the elliptically fibered Calabi-Yau threefold, and

τ varies holomorphically over B. Here, 1/mB is the length scale associated to the base B.

The possible base manifolds of an elliptically fibered Calabi-Yau threefold were de-

termined in [14, 15] and found to be one of the following: P
2, Hirzebruch surfaces Fm,

blow-ups thereof, and Enriques surfaces. In the case where the elliptic fibration is trivial

then the base itself must be a Calabi-Yau two-fold, which is either a K3 surface or T 4.

This is precisely the solution obtained in [36] which results in (4, 4) supersymmetry, and is

the dual to the classic D1-D5 system [75].

At this point it is perhaps timely to recall that our description is valid away from the

singular loci of τ .15 As explained earlier, we will allow for singularities in τ , given by for

instance by (2.7), which have a characterisation in terms of Kodaira singular fibers. The

Ricci-flatness condition then takes the form

KB = −
∑

i

aiDi , (3.68)

where Di are the Cartan divisors of the resolution of the singularity and ai depend on the

Kodaira type of the singular fiber [2, 3].

For the case of an elliptically fibered K3 surface with 24 I1 singularities, a semi-Ricci-

flat metric was constructed in [63]. The metric in the neighborhood of each I1 fiber is

given by the Ooguri-Vafa metric [76]. The semi-flat metric was constructed by gluing the

Ooguri-Vafa metric to the metric constructed in [62] around the 24 points where the fiber

becomes singular. It was shown in [63] that in the limit vol(Eτ ) → 0 the semi-flat metric

reduced to a singular metric on P
1, the base of the elliptic K3, where the singularities are

exactly at the points where the fiber is singular. In [45, 46] the metric in [62] was used to

give some estimate of the curvature singularity, and it was argued that in the large N limit,

the gravity approximation can still be trusted. One expects in higher dimensions that the

metric on the base is also singular in the F-theory limit. However, as we shall discuss

in section 4, one is still able to compute quantities of the dual CFT using this solution.

It would be interesting to estimate the curvature singularities in these higher-dimensional

cases, to support these findings.

In the next subsection we shall describe a supersymmetry preserving ZM quotient of

these solutions. This will be important for identifying the superconformal R-symmetry of

the dual (0, 4) SCFT in the IR, and furthermore will be a key ingredient in performing the

duality to 11d supergravity in section 5.

3.5 Lens space solution

Manifest in the solution is an S3 which has isometry group SO(4) ≃ SU(2)L × SU(2)R, a

subgroup of which realises the R-symmetry of the dual SCFT geometrically. The Killing

15This manifests itself e.g. by noting that since c1(B) = 2πR we would have c1(B) ∧ c1(B) = 0, contra-

dicting the global property that
∫
B

c1(B) ∧ c1(B) = 10− h1,1(B) .
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spinors transform non-trivially under the R-symmetry but are singlets under flavour sym-

metries. We shall find that the Killing spinors of this solution are only charged under one

of the SU(2)s, which identifies the small N = (0, 4) superconformal R-symmetry. Further-

more, by inspection of the Killing spinors it is apparent that one can extend the solution

found above by quotienting the S3 by a discrete group Γ ⊂ SU(2)L and still preserve the

same amount of supersymmetry. This generalises the solution described in section 3.4 to

the class

AdS3 × S3/Γ×B . (3.69)

We will focus on the case that Γ = ZM , where the quotient has the effect of changing the

period of ψ, the coordinate of the Hopf fiber, so that ψ ∼ ψ + 4π/M rather than being 4π

periodic. We shall show that the Killing spinors we obtain are SU(2)L singlets, and in par-

ticular independent of ψ, therefore quotienting by ZM does not break any supersymmetry.

It suffices to compute the Killing spinors in Einstein frame as this will not affect

the above analysis. Moreover, as we have taken the Killing spinors to be a direct prod-

uct as in (3.18) we need only consider solving the seven-dimensional Killing spinor equa-

tions (3.20)–(3.22). The Killing spinor equation obtained by restricting (3.22) to the base

of the elliptically fibered Calabi-Yau is

∇mξ − i

2
Qmξ = 0 . (3.70)

This follows by restricting the covariantly constant Killing spinor equation of the elliptically

fibered Calabi-Yau to the base by using the results for the spin connection in (3.60).

Equivalently, one can notice that this is precisely the canonical spinc Killing spinor equation

on a Kähler manifold where −Q is the Ricci one-form potential, as shown in the previous

subsection.16 One may take the Killing spinor on the base of an elliptically fibered Calabi-

Yau manifold to be constant if one imposes suitable projection conditions. Using the

relations for the spin-connection of an elliptically fibered Calabi-Yau, as computed in (3.60),

one finds that the projection conditions are

γ34ξ = γ56ξ = −iξ , (3.71)

where the indices are flat. In conclusion, to solve the Killing spinor equation on the base

we need only to consider a constant spinor satisfying the projection conditions (3.71). Note

that (3.21) is automatically satisfied thanks to (3.71) and (3.41). Moreover, holomorphicity

of τ and (3.71) imply that (3.20) is also satisfied. One therefore needs only solve (3.22) for

the S3 indices.

One may use the explicit form of the flux (3.41) to reduce (3.22) on the S3 to

∇âξ =
im

2
γâξ . (3.72)

With the vielbein

e1(S3) = − 1

2m
σ1,R , e2(S3) = − 1

2m
σ2,R , e3(S3) = − 1

2m
σ3,R , (3.73)

16Recall that this is a local equation as Q and the metric on B are singular.
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where σi,R are right-invariant one-forms, one finds that the constant spinor solves this final

set of conditions. The Killing spinor is therefore a constant spinor subject to the projection

conditions (3.71), and therefore has four real components consistent with preserving (0, 4)

supersymmetry. As the solution is constant in ψ, there is no ambiguity in the definition

of the spinor if we quotient the S3 by ZM . We may therefore replace the S3 factor in the

solution by the Lens spaces S3/ZM without breaking supersymmetry and still satisfying

all equations of motion and Bianchi identities. We shall give a physical interpretation of

this quotient in section 3.7.

Having computed the Killing spinors we may now determine the R-symmetry. On the

S3 there are six Killing vectors corresponding to the six generators of SO(4) ≃ SU(2)L ×
SU(2)R. These are the three dual to the left-invariant one-forms

k(1) = ∂ψ , k(2) = − cosψ cot θ∂ψ − sinψ∂θ +
cosψ

sin θ
∂ϕ ,

k(3) = − sinψ cot θ∂ψ + cosψ∂θ +
sinψ

sin θ
∂ϕ ,

(3.74)

and the three dual to the right-invariant one-forms

k(4)=
sinϕ

sinθ
∂ψ+cosϕ∂θ−cotθsinϕ∂ϕ, k(5)=−cosϕ

sinθ
∂ψ+sinϕ∂θ+cotθcosϕ∂ϕ, k(6)=∂ϕ, (3.75)

with each set satisfying the SU(2) Lie algebra. The spinorial Lie-derivative along a Killing

direction, K, is defined to be

LKǫ =

(
Kµ∇µ +

1

8
(dK)ν1ν2γ

ν1ν2

)
ǫ . (3.76)

In order to ascertain along which directions the Killing spinor is charged one computes

the spinorial Lie derivative along these directions. We find that the Killing spinor is

invariant under the left-invariant Killing vectors and charged under the right-invariant

Killing vectors. This implies that we can take the quotient by Γ ⊂ SU(2)L, preserving

the same amount of supersymmetry. Moreover, as discussed above this means that we

can identify SU(2)R with the SU(2)r R-symmetry of the dual SCFT. We note that the

spinorial Lie derivative is frame independent (subject to preserving the same orientation,

which is correlated with the choice of SU(2) under which the Killing spinors are charged)

and therefore this result is non-ambiguous.

It is a well known fact in the literature that performing a T-duality along a Killing

direction with vanishing spinorial Lie-derivative for the Killing spinor along the Killing

vector leads to a Killing spinor in the dual solution. It is clear from the results above that

one may dualize along the Hopf fiber without breaking supersymmetry, which will be used

later on to determine the dual M-theory solution.

3.6 Flux quantisation

To complete the solution, we need to ensure that the five-form field strength, F , is properly

quantized through all the integral five-cycles in the 7d manifold transverse to AdS3. We
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impose that17

n(Mα) =
1

(2πls)4

∫

Mα

F ∈ Z (3.77)

for all Mα ∈ H5(M7,Z). The five cycles which contribute are of the form S3 × C, where C
is any two-cycle in the base B of the Calabi-Yau. We therefore find18

n(Mα) = −e4Avol(S3/ZM )

(2πls)44m2m2
B

∫

Y3

ω0 ∧ π∗JB ∧ ωα

= −e4Avol(S3/ZM )

(2πls)44m2m2
B

∫

Cα

JB ,

(3.78)

where the Cα form a basis of cycles in H2(B,Z).

The possible bases B for an elliptic Calabi-Yau threefold, as listed earlier, are projec-

tive, and therefore also Hodge manifolds [66], and moreover they admit an integral Kähler

form. As JB is dual to a curve, we in fact have that B is not only a Hodge manifold, but

we in fact pick the Hodge metric on it. This implies that we can take

∫

Cα

JB = kα ∈ Z
+ . (3.79)

Using (3.79) we find that n(Mα) are integer if we impose

N =
e4Avol(S3/ZM )

4m2m2
B(2πls)

4
∈ Z . (3.80)

3.7 Brane solutions and the interpretation of the quotient

In this subsection we shall give an interpretation of the ZM quotient performed in sec-

tion 3.5. To do so we shall construct smeared brane solutions whose near-horizon geometry

is19

ds2 = ds2(AdS3) +
1

4m2
ds2(S3/ZM ) +

1

m2
B

ds2(B) . (3.81)

We shall need to combine various D3-brane solutions, employing the harmonic function

rule (see [77] for a review).

We shall use this strategy to obtain a UV completion of the AdS3 solution that we

have in Type IIB in the near-horizon limit, which we refer to as the “pre near-horizon

limit”. In fact, as we will show below, we can construct two distinct such solutions, both

flowing to the same near-horizon geometry. We wish to consider N D3-branes wrapping

R
1,1 × C where C is the curve in the base of Y3, Poincaré dual to the Kähler form of the

base. We shall first consider a solution in the background of M KK-monopoles and later

in the background R
4. To realise the D3-branes extended along the curve Poincaré dual

to J = e12 + e34, with ds2(B) = e21 + · · · + e24 we shall formally view this as two stacks of

17In the following we will set gs = 1.
18We have defined dvol(S3/ZM ) = σ1,R ∧ σ2,R ∧ σ3,R which gives vol(S3/ZM ) = 16π2

M
. Notice that this

is not the volume form of the unit radius Lens space S3/ZM .
19For simplicity we set the warp factor, A, to 0 in this section.
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D3-branes [23]. The first stack will extend along R
1,2 × C12, where C12 is the curve dual

to e12, and the second stack along R
1,2 × C34 each with the same number of branes, N .

We begin by briefly recalling the metric for M KK-monopoles and give a few comments

that will be useful for later discussion. The metric is

ds2 = −dt2 + dx21 + · · ·+ dx25 + ds2TNM
, (3.82)

where ds2TNM
is the Taub-NUT metric20

m2
Bds

2
TNM

=

(
1 +

M

r

)(
dr2 + r2(dθ2 + sin2 θdϕ2)

)
+

(
1 +

M

r

)−1

(dψ +M cos θdϕ)2 .

(3.83)

This metric is well-known to be hyper-Kähler and hence Ricci-flat.

This metric approaches the singular (for M > 1) metric on R
4/ZM as r → 0, whilst

asymptotically, as r → ∞, it approaches the cylinder R
3 × S1. One can set M = 0 in

the metric, obtaining exactly the flat metric on R
3 × S1. Moreover, choosing as harmonic

function H(r) = 1 + M
r → M

r , a simple change of coordinates shows that this is exactly

the metric on R
4/ZM . This can be interpreted as saying that in the “near-horizon” limit

the Taub-NUT metric approaches the latter.

Let us first write the Type IIB solution corresponding to N D3-branes wrapping R
1,2×

C12,

m2
Bds

2(D3, 12) = H−1/2(r)(−dt2 + dx2 + e21 + e22) +H1/2(r)(ds2TN + e23 + e24) ,

C(4) =
1

m2
B

(
1− 1

H(r)

)
dt ∧ dx ∧ e12 .

(3.84)

To wrap R
1,2 × C34 we simply relabel 12 ↔ 34. We have inserted the D3-branes into

the background of M KK-monopoles. In particular, as remarked above, we shall smear

the D3-branes completely along the 34 directions in the manifold B, this has the affect of

making the function H(r) harmonic on Taub-NUT and not the overall transverse space to

the stack of D3s. If we now use the harmonic function rule on these two configurations we

obtain the solution

m2
Bds

2 = H(r)−1(−dt2 + dx2) +H(r)ds2TN + ds2(B)

C(4) =
1

m2
B

(
1− 1

H(r)

)
dt ∧ dx ∧ JB (3.85)

As commented above H must be harmonic on Taub-NUT, as such we may take

H(r) = 1 +
qN
r

, with qN ≡ (2πℓs)
4Nm4

B

16π2
, (3.86)

20Strictly speaking, the Taub-NUT metric has M = 1 and this is non singular near to r → 0. The metric

with M > 1 has an R
4/ZM singularity in the interior, and this can be resolved by replacing the single

center metric with a Gibbons-Hawking multi-center metric, where near to each center the metric looks like

R
4. This metric develops M − 1 two-cycles, that collapse to zero size in the single center singular metric.
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and N the number of D3-branes. The metric takes the form

m2
Bds

2 =
r

r + qN
(−dt2 + dx2) +

r + qN
r

ds2TN + ds2(B) . (3.87)

We recall that B is the base of an elliptically fibered Calabi-Yau threefold and as such this

necessarily requires τ to vary in the solution. This is an Einstein-frame solution to Type

IIB supergravity with D3-branes and varying τ .

Let us now take the near-horizon limit, r → 0. We have

m2
Bds

2
r→0 =

r

qN
(−dt2+dx2)+ds2(B)+

qNM

r2
(
dr2+r2ds2(S2)

)
+
qN
M

(dψ+M cosθdφ)2

=
r

qN
(−dt2+dx2)+qNM

dr2

r2
+ds2(B)+qNM(ds2(S3/ZM )). (3.88)

If we make the redefinition MqN = m2
B(4m

2)−1 and the change of coordinate r = 4q2NMρ2

we obtain

ds2 =
1

m2

(
ρ2(−dt2 + dx2) +

dρ2

ρ2

)
+

1

4m2
ds2(S3/ZM ) +

1

m2
B

ds2(B) , (3.89)

whilst the five-form becomes

F = (1 + ∗) 2m
m2

B

dvol(AdS3) ∧ JB , (3.90)

which recovers exactly the AdS3 solution. We have done this by insertingM KK-monopoles

into the background of N D3-branes wrapping a curve, C dual to JB, on the base of an

elliptically fibered Calabi-Yau threefold.

Let us now consider a different pre near-horizon limit of the AdS3 solution. This will

be obtained by replacing the Taub-NUT metric in the Type IIB solution by the flat space

quotient R
4/ZM . We shall see that the near-horizon solution agrees with the Taub-NUT

solution. We may use the previous results to immediately write down the metric21

m2
Bds

2 = H(R)−1(−dt2 + dx2) +H(R)

(
dR2 +

R2

4
((dψ + cos θdϕ)2 + dθ2 + sin2 θdϕ2)

)

+ds2(B) (3.91)

where now H(R) is a harmonic function on R
4 and we take

H(R) = 1 +
q̃N
R2

with q̃N ≡ (2πℓs)
4MNm4

B

4π2
. (3.92)

This harmonic function should be contrasted with (3.86) in the Taub-NUT case. The

self-dual five-form flux takes the form

F = (1 + ∗) 1

m4
B

dH(R)−1 ∧ dt ∧ dx ∧ JB . (3.93)

21Of course here we can simply take ψ to have period 4π/M .
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Taking the near-horizon limit, R → 0 we obtain

m2
Bds

2 =
R2

q̃N
(−dt2 + dx2) +

q̃N
R2

dR2 +
q̃N
4
ds2(S3/ZM ) + ds2(B) . (3.94)

After rescaling R as R → q̃NR and identifying the inverse radius of AdS3 to be q̃N =
m2

B

m2

one recovers precisely the AdS3 × S3/ZM solution

m2
Bds

2 =
R2

m2
(−dt2 + dx2) +

1

m2R2
dR2 +

1

4m2
ds2(S3/ZM ) + ds2(B) (3.95)

in perfect agreement with (3.65). The flux becomes

F = (1 + ∗) 2m
m2

B

dvol(AdS3) ∧ JB , (3.96)

in agreement with (3.66).

We have constructed two different UV completions of the Type IIB AdS3 solution

that is our main interest. To do so, we needed to make some technical simplifications,

regarding smearing of the branes and the application of the harmonic sum rule. The

resulting solutions are therefore not the fully localized brane solutions, before taking the

near-horizon limit, which are typically very difficult to construct. However these solutions

will still be useful in our discussion. Moreover, we should also keep in mind that the metric

on B and τ were singular in the near-horizon limit and this feature will remain.

Notice that for any N and any M , asymptotically the metric (3.87) goes to R
1,1 ×

R
3 × S1 × B. This is the metric far away from the N D3-branes. On the other hand, the

metric (3.91) asymptotically goes to R
1,1 ×R

4/ZM ×B. So these are clearly two different

UV completions of the near-horizon geometry. This becomes particularly instructive in

the case of M = 1: in this case both asymptotic spaces are smooth, however the solution

in the presence of 1 KK-monopole comprises an asymptotic R
3 × S1 geometry, whilst the

solution with no KK-monopoles comprises an asymptotic R4 geometry. However, they flow

to exactly the same AdS3 × S3 solution in the IR.

The interpretation of this fact is that in the IR the field theories constructed from the

two different UV setups, flow to the “same” SCFT in the large N limit. This means that

in this limit for example the two theories must have the same central charges, in the large

N limit. However, sub-leading corrections to the central charges may be possible.

Notice that one may set M = 0 without any immediate problem in (3.87), obtaining

the metric

m2
Bds

2 =
r

r + qN
(−dt2 + dx2) + ds2(B) +

r + qN
r

(
dr2 + r2(dθ2 + sin2 θdϕ2) + dψ2

)
.

(3.97)

Notice that the Calabi-Yau base is a direct product with the remaining six-dimensional

metric. Computing the curvature invariants of the six-dimensional metric, we find

R = 0 ,

RABR
AB =

3q4N
2r2(qN + r)6

(3.98)

RABCDR
ABCD =

q2N (11q2N + 32qNr + 48r2)

2r2(qN + r)6
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and therefore the metric is singular at r = 0. In fact, upon taking the near-horizon limit

there is no longer an AdS3 factor. In other words, putting the D3-branes transverse to the

space R
3 × S1 gives rise to a solution that does not contain an AdS3 factor in the IR, and

in fact has a curvature singularity as r → 0.

4 F-theory holographic central charges

In this section we compute the central charges for the solution derived in section 3.4. As

was noted previously, the metric on the base B, which is induced from the Calabi-Yau

metric is singular. We shall circumvent potential problems arising with singular metrics,

by carrying out our computations in the smooth Calabi-Yau threefold.

4.1 Leading order central charges

The leading order term for the central charges is given by the Brown-Henneaux formula [78]

as summarised in appendix D.1. Evaluating (D.6) for the solution we find the leading order

central charges to be

(cIIBL )(2) = (cIIBR )(2) = cIIBsugra =
3eAvol(M7)

2mG
(10)
N

= N2 3vol(S
3/ZM )vol(B)32π2

vol(S3/ZM )2

= 6N2Mvol(B) .

(4.1)

We denote by c(a) the O(Na) contribution to the central charge.

In a smooth geometry we would compute the volume of the base B using the metric.

However, as we emphasised repeatedly, the metric of this space is singular. There is a

smooth Ricci-flat metric on the putative elliptically fibered Calabi-Yau Y3. The way we

will work around the absence of a smooth metric on B is to compute the volume in the

elliptic Calabi-Yau as follows. The (1, 1)-form dual to B is ω0, and the volume of the

divisor can be computed by

vol(B) =
1

2

∫

Y3

ω0 ∧ π∗JB ∧ π∗JB =
1

2

∫

B
JB ∧ JB . (4.2)

Furthermore the latter integral can be evaluated by first using the fact that the curve

wrapped by the D3-branes, C, is Poincaré dual to the Kähler form JB and then using

intersection theory to write

vol(B) =
1

2

∫

C
J =

1

2
C · C . (4.3)

Using this identification we can rewrite the central charge in terms of the self-intersection

of the curve C in B as

(cIIBL )(2) = (cIIBR )(2) = cIIBsugra = 3N2M C · C . (4.4)

Since vol(B) > 0 the curve wrapped by the D3-branes must have positive self-intersection

in B. Using the adjunction formula (2.16) one can express the constraint C · C > 0 as

C · C = 2(g − 1) + c1(B) · C > 0 . (4.5)
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At this point we should comment about the relation of our setup to the strings in min-

imal 6d SCFTs, also known as non-Higgsable clusters (NHCs) [10], whose central charges

were computed in [7]. The geometric condition for the NHCs is that the base of the Calabi-

Yau threefold is locally O(−n) → P
1. The curve that is wrapped by the D3-brane is the

base CNHC = P
1, which has self-intersection

CNHC · CNHC = −n < 0 , n = 3, 4, 6, 8, 12 , (4.6)

and can be collapsed. This singular limit corresponds to the conformal point. In ap-

pendix E.2 the geometry of these NHCs is briefly discussed. The negative self-intersection

implies that CNHC is not ample, and consequently that these 2d NHC strings do not directly

fit into the framework discussed in this paper.

4.2 cIIB
L

− cIIB
R

at sub-leading order from anomaly inflow

The sub-leading contribution is obtained using anomaly inflow [47]. The difference of

the left and right central charges appears as the coefficient in front of the gravitational

Chern-Simons term in the bulk action [79]

SCS(ΓAdS3) =
cIIBL − cIIBR

96π

∫

AdS3

ωCS(ΓAdS3) . (4.7)

To determine this coefficient we consider the three dimensional terms which arise from the

dimensional reduction of the Chern-Simons terms in the worldvolume action of 7-branes.

The Chern-Simons terms for a D7-brane were computed in [80] and are given in terms of

the curvature two-forms of the tangent and normal bundles of the brane worldvolume, RT

and RN , respectively,

µ7

∫

W8

C(4) ∧
√

Â(4π2ℓs
2RT )

Â(4π2ℓs
2RN )

Tr
(
e2πℓs

2F
)
⊂ SD7 , (4.8)

where

µ7 =
1

(2π)7ℓs
8 , (4.9)

is the charge of a single D7-brane, C4 is the potential of the five-form flux and F is the

gauge invariant field strength of the gauge fields on the D7-brane. The trace is performed

in the fundamental representation of the gauge group. For the computation of the O(N)

corrections to the central charges we will only be interested in the terms coming from the

tangent bundle of the D7-brane. Thus below we simply write R ≡ RT . Up to the required

order the A-roof genus Â is given by

Â(R) = 1 +
1

12(4π)2
Tr(R∧R) . (4.10)

As we consider only I1 singularities our set-up consists of single 7-branes wrapped on

curves Cx in the base.22 Note that not all of these 7-branes can be transformed into D7-

branes under an SL(2,Z) transformation. Imposing that the elliptic fibration is Calabi-Yau

22This can be easily generalised to other 7-brane singularities, by including suitable normalisations to the

trace appearing in (4.8).
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results in the constraint

[∆] = 12c1(B) =
∑

x

ωx , (4.11)

where ωx are the two-forms dual to the curves Cx wrapped by the 7-branes.

Consider a single D7-brane whose world-volume extends along W8 = AdS3×S3/ZM ×
Cx. From the D7-brane Wess-Zumino term we obtain the 3d Chern-Simons term

SCS(ΓAdS3) =
µ7π

2ℓs
4

24

∫

W8

C(4) ∧ Tr(R∧R)

= −µ7π
2ℓs

4

24

∫

W8

F ∧ ωCS

=
µ7e

4Aπ2ℓs
4vol(S3/ZM )

24(2m)2m2
B

∫

Cx

JB

∫

AdS3

ωCS(ΓAdS3)

=
N

192π

∫

B
JB ∧ ωx

∫

AdS3

ωCS(ΓAdS3) , (4.12)

where we have used the fact the trace over the fundamental representation of the gauge

group is 1 as only one D7-brane is wrapped on Cx.

As C(4) is invariant under SL(2,Z) transformations, each 7-brane gives rise to the

same contribution to the 3d Chern-Simons term [47]. To obtain the total contribution we

therefore sum the terms arising from each 7-brane

SCS(ΓAdS3) =
N

192π

∑

x

∫

B
JB ∧ ωx

∫

AdS3

ωCS(ΓAdS3)

=
N

16π

∫

B
JB ∧ c1(B)

∫

AdS3

ωCS(ΓAdS3) .

(4.13)

We evaluate the integral over the base by pulling back to the smooth Calabi-Yau

∫

Y3

ω0 ∧ π∗JB ∧ π∗c1(B) =

∫

B
JB ∧ c1(B) = c1(B) · C . (4.14)

Using this relation we determine from the coefficient of (4.13) the difference of the left and

right central charges to be

(cIIBL )(1) − (cIIBR )(1) = 6Nc1(B) · C . (4.15)

4.3 Level of the superconformal R-symmetry

In this section we compute the level kr of the superconformal R-symmetry. The relation

cR = 6kr and (4.4) imply that the leading order contribution to the level is given by

k(2)r =
1

2
N2MC · C . (4.16)

To compute the sub-leading order term we restrict to the case of M = 1 and proceed by

gauging the SO(4)T isometry of the S3 in the supergravity solution. The procedure for
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computing the level follows [81, 82], where one first deforms the metric on the S3 to contain

connections, which depend on AdS3

ds2S3 → (dxp −Apqxq)(dxp −Aprxr) , (4.17)

where
∑4

p=1(x
p)2 = 1. These connections Apq = −Aqp are one-forms on AdS3 and are

identified with the SO(4)T ≃ SU(2)L × SU(2)R gauge fields for the superconformal R-

symmetry SU(2)R and the flavour symmetry SU(2)L. The deformed five-form flux is [81]

F ′
5|M=1 = −4π2e4A

m2m2
B

(1 + ∗) ((e3 − χ3) ∧ JB) , (4.18)

where e3 is the volume form on the sphere bundle satisfying
∫
S3 e3 = 1 and de3 = χ4, χ4

being the Euler class of the sphere bundle. The additional term χ3, a three-form on AdS3
satisfying dχ3 = χ4, is required for dF ′

5|M=1 = 0.

The reduction of the Chern-Simons term for D7-branes wrapped on this deformed

metric gives rise to Chern-Simons terms for the SO(4)T gauge fields. Upon inserting the

deformed flux (4.18) into the D7-brane Chern-Simons term and summing over all 7-branes

as above one finds, in addition to the gravitational Chern-Simons term,

SCS(AT )|M=1 =
N

8π
c1(B) · C

∫

AdS3

(ωCS(AR) + ωCS(AL)) , (4.19)

where the additional factor of 2 arises from expressing the trace over the fundamental

representation of SU(2)R and SU(2)L instead of the vector representation of SO(4)T . The

level of the superconformal SU(2)r R-symmetry can be extracted from the coefficient of

Chern-Simons term after multiplication by 4π, namely

SCS(A) =
kr
4π

∫

AdS3

ωCS(A) , (4.20)

where A = iAaσa/2. From the coefficient of ωCS(AR) the sub-leading order term in the

level of the superconformal R-symmetry can be extracted and found to be

k(1)r |M=1 =
1

2
Nc1(B) · C . (4.21)

For the cases with M > 1, the isometry group of the solution is broken to SU(2)R ×
U(1)L. Naively, to compute the level of the superconformal R-symmetry one should still

gauge the SU(2)R by introducing gauge fields for this isometry, analogous to the M = 1

case. Formally, this gives exactly the same result as (4.21); however this is not the complete

contribution, as one would have to take into account the effects of the M KK-monopoles.

As we shall see in section 6.3, on the 11d supergravity side this will be captured by gauging

the SU(2)11d isometry of an S2, which arises from the base of the S3/ZM Hopf fibration.

However, it should be noted that SU(2)R is different from SU(2)11d, and one can check

explicitly that in fact the latter is not an isometry of the Type IIB solution.
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4.4 Summary: central charges from F-theory

From the computations carried out in this section the central charges in Type IIB super-

gravity for M = 1 are given by

cIIBR |M=1 = 3N2C · C + 3Nc1(B) · C ,

cIIBL |M=1 = 3N2C · C + 9Nc1(B) · C .
(4.22)

In this section we have only computed these central charges to sub-leading order in N . We

expect O(1) corrections to arise from one loop computations and will comment on these

in section 7.4, where we compare the central charges computed via anomaly inflow and

supergravity solutions. We further point out that the superconformal algebra mandates

that the right-moving central charge belongs to 6Z. To see this explicitly we make use of

the adjunction formula (2.16) and rewrite it as

cIIBR |M=1 = 6N2(g − 1) + 3N(N + 1)c1(B) · C , (4.23)

which exhibits manifestly that the expression is a multiple of six, generalising to any N

the property of the N = 1 right central charge, observed in (2.19).

For M > 1 we obtain

cIIBR |M>1 = 3MN2C · C + δcIIBR

cIIBL |M>1 = 3MN2C · C + δcIIBL + 6Nc1(B) · C .
(4.24)

As explained in the previous section, the computation of the level of the superconformal

R-symmetry for M > 1 is troublesome. Instead, we uplift our Type IIB solution to 11d

supergravity in the next section. In doing so we will be able to compute the O(N) contri-

butions to the M > 1 central charges, as well as O(1) corrections.

5 M/F-duality and AdS3 solutions in M-theory

The solution found above in Type IIB supergravity is singular at the loci above which τ

degenerates. We circumnavigated this problem by computing the central charges of the

solutions in terms of the volume of the base B in the smooth Calabi-Yau, where it is well-

defined. To substantiate this we can utilize M/F-duality: by T-dualizing and uplifting to

M-theory, the elliptically fibered Calabi-Yau threefold becomes manifest in the geometry.

Assuming that there are only I1 fibers, the elliptic Calabi-Yau threefold is smooth, as can

be seen by direct computation. There exists a smooth Ricci-flat metric on this space by

Yau’s theorem [83] and we may use this metric to compute the central charge.

5.1 Dual 11d supergravity solution

In this subsection we shall perform a T-duality along the Hopf fiber of the S3/ZM to Type

IIA and then perform the uplift to 11d supergravity. As noted in section 3.5 this will

preserve all supersymmetries of the original solution.
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Recall that the Type IIB solution in string frame takes the form

ds2(MIIB) =
e2A√
τ2

[
ds2(AdS3) +

1

m2
B

ds2(B) +
1

4m2
(σ2

1,L + σ2
2,L + σ2

3,L)

]
, (5.1)

F = − 2m

m2
B

e4AJB ∧ dvol(AdS3)−
e4A

4m2m2
B

JB ∧ σ1,L ∧ σ2,L ∧ σ3,L , (5.2)

τ = τ1 + iτ2 = C(0) + ie−φ . (5.3)

The metric defined by 1
4(σ

2
1,L + σ2

2,L + σ2
3,L) is that of the round, unit radius Lens space,

S3/ZM . This is obtained by quotienting the Hopf fiber, σ3,L in our conventions, by the

discrete group ZM which has the effect of reducing the period of ψ from 4π to 4π/M .

Recall that M corresponds to the number of KK-monopoles in the solution before going

to the near-horizon limit, as was discussed in section 3.7.

Before performing the T-duality along the Killing vector ∂ψ we shall absorb the factor

of 4m2 into the definition of ψ by making the change of coordinates

y =
mB

2m
ψ , (5.4)

where y now has period 2πmB

Mm . If we now perform the T-duality along ∂y we obtain the

Type IIA solution

ds2(MIIA) =
e2A√
τ2

[
ds2(AdS3) +

1

m2
B

ds2(B) +
1

4m2
(dθ2 + sin2 θdϕ2)

]
+

e−2A√τ2

m2
B

dy2 ,

C(1) = τ1dy ,

e−φ̂ = τ
3/4
2 eA , (5.5)

BIIA = − cos θ

2mmB
dy ∧ dϕ ,

F IIA
4 =

e4A

2mm2
B

dvol(S2) ∧ JB .

Uplifting to 11d supergravity and performing a redefinition of the torus coordinates we have

ds2(M11) = e
8A
3

(
ds2(AdS3)+

ds2(S2)

4m2
+

1

m2
B

[
ds2(B)+

1

τ2
(dx̃+τ1dỹ)

2+τ2dỹ
2

])
(5.6)

G4 =
e4A

2mm2
B

dvol(S2)∧(JB+dx̃∧dỹ), (5.7)

where JB is the Kähler form on the base. We have redefined the torus coordinates to be

x̃ = e−2Ax , ỹ = e−2Ay . (5.8)

The periods of the two coordinates are given by

Rỹ =
e−2Al2s
RIIB

, Rx̃ =
e−2Al2s
RIIB

, (5.9)

where RIIB = 1
Mm is the radius of the S1 in Type IIB which we have T-dualised along,

whose coordinate has been normalised to give the canonical 2π period.
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As remarked earlier, the Type IIB solution is singular over the discriminant locus

where the fiber degenerates. As such the 11d supergravity metric we obtain from the

explicit T-duality and uplift is only valid away from the singular loci. To make progress,

we exploit the fact that the algebraic variety Eτ →֒ Y3 → B, with only I1 singular fibers,23

is smooth and compact, and has c1(Y3) = 0, thus, by Yau’s theorem, there exists a global

non-singular Ricci-flat metric, of which (3.57) is an approximation valid only away from

the singularities. The 11d supergravity solution is therefore given by

ds2(M11) = e
8A
3

(
ds2(AdS3) +

1

4m2
(dθ2 + sin2 θdϕ2) +

1

m2
B

ds2(Y3)

)
(5.10)

G4 =
e4A

2mm2
B

dvol(S2) ∧ JY3 . (5.11)

This solution falls within the classification of [18], specialised to elliptically fibered Calabi-

Yau threefolds. Despite the fact that we do not know this metric explicitly, we will be able

to compute the central charges for this solution as we discuss in section 6.

As commented in [18], this solution agrees locally with the geometry discussed in [20].

The M5-branes therefore wrap the 4-cycle Poincaré dual to the Kähler form JY3 , which is

an ample divisor in the Calabi-Yau. Using the expansion (2.8) we see that this divisor is

a linear combination of B and Ĉα, which are divisors arising from pullbacks of curves in

the base. As we only consider I1 singularities in the fiber there are no Cartan divisors Di.

The presence of M5s wrapping the base of the Calabi-Yau is consistent with the M KK-

monopoles in the Type IIB supergravity solution described in section 3.7. The sequence

of dualities relating these two supergravity solutions is described in detail in [23]. The T-

duality of M KK-monopoles in Type IIB gives rise to M NS5-branes along AdS3×B, which

uplift to M M5-branes wrapped on the base. The D3-branes wrapped on the curve C in the

base are uplifted to M5-branes wrapped on the elliptic surface Ĉ as described in section 2.3.

As noted in [23], these two stacks of M5-branes can be deformed into one stack wrapped

on a linear combination of B and Ĉ provided the curve C is sufficiently ample in the base.

5.2 M5-brane solutions

Analogous to the discussion conducted in subsection 3.7 we shall construct the explicit

smeared brane solution which gives (5.6) in the near-horizon limit. To construct this

solution one may either T-dualize the “pre near-horizon” solution obtained in (3.87) along

the Hopf fiber and then uplift or use the brane smearing techniques employed previously

to combine N M5-branes wrapping R
1,1 × Ĉ and M M5-branes wrapping R

1,1 ×B, in the

background R
1,1 × R

3 × Y3 with M > 0. Both methods result in the same solution given

23As has been previously stated if Y3 contains singularities then one can construct the smooth and

compact resolution of the singularities of Y3 and the following analysis generalises.
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by24

m2
Bds

2(M11) =

(
r + qN
r + qM

)− 2
3
(

1

τ2
(dy + τ1dψ)

2 + τ2dψ
2

)
(5.12)

+

(
r + qN
r + qM

) 1
3
(
(r + qN )(r + qM )

r2
(dr2 + r2(dθ2 + sin2 θdϕ2))

)

+

(
r + qN
r + qM

) 1
3
(

r

r + qN
(−dt2 + dx2) + ds2(B)

)

G4 =
1

m3
B

dvol(S2) ∧ (qNJB + qMdvol(Eτ )) , (5.13)

where

qN = 2π2ℓp
3m3

BN and qM =
2π2ℓp

3m3
BM

vol(Eτ )
. (5.14)

Of course, as already mentioned, this solution has singularities arising from B and also

τ . Notice that the Calabi-Yau metric is now warped and we are unable to resolve these

singularities as in the previous subsection. However here we are interested in understanding

the behaviour in the radial direction r and so we shall not discuss this issue further.

Taking the near-horizon limit one obtains the metric

m2
Bds

2(M11)r→0 =

(
qN
qM

) 1
3
[
r

qN
(−dt2 + dx2) +

qNqM
r2

dr2 + qNqM (dθ2 + sin2 θdφ2)

+ds2(B) +
qM
qN

(
1

τ2
(dy + τ1dψ)

2 + τ2dψ
2

)]
. (5.15)

Upon identifying the warp factor to be e8A = qN
qM

, the inverse radius squared of AdS3 to be
m2

B

m2 = 4qNqM and performing the change of coordinates r = 4qNqMρ2, y =
√

qN
qM

ỹ, and ψ =
√

qN
qM

ψ̃ one recovers (5.6) exactly and therefore an unwarped Calabi-Yau metric which may

now be resolved. One also finds that the flux matches exactly with (5.7). Asymptotically,

that is r → ∞, the metric approaches the space R
1,1 × R

3 × Y3, this is the space far away

from the M5-branes. We emphasise that this geometry arises from N M5-branes wrapped

on R
1,1 × Ĉ plus M M5-branes wrapped on R

1,1 × B, with B the base of Y3, the latter

M5-branes can be seen to arise from the initial M KK-monopoles in the Type IIB solution.

One may also consider the case of N M5-branes wrapping only R
1,1 × Ĉ in the back-

ground R
1,1 × R

3 × Y3. This is the formal definition of M = 0. The solution of this setup

24Note that qN is the same as the constant appearing in (3.86) upon using the relation ℓp
3 =

l4
s

RIIB

and

the fact that RIIB = 2
mB

for this T-duality and uplift. Recall that RIIB is the radius of the S1 in Type

IIB along which we have T-dualized with the S1 coordinate having the canonical 2π period.

– 32 –



J
H
E
P
0
8
(
2
0
1
7
)
0
4
3

obtained from brane smearing is

m2
Bds

2(M11)=

(
r+qN

r

)− 2
3
(

1

τ2
(dy+τ1dψ)

2+τ2dψ
2

)
+

(
r+qN

r

) 1
3

ds2(B)

+

(
r+qN

r

) 1
3
(

r

r+qN
(dx2−dt2)+

(r+qN )

r
(dr2+r2(dθ2+sin2θdϕ2))

)
,

G4=dvol(S2)∧qNJB ,

with qN as before. Notice that this agrees with taking the limit M → 0 in (5.12). Recall

that Ĉ is not an ample divisor and therefore the M5-branes do not wrap an ample divisor as

in the M 6= 0 case. Asymptotically the metric approaches R1,1×R
3×Y3 as before, however

the metric is singular at r = 0 now. To see this one computes the Ricci scalar to be25

R =
q2N

3r2/3(r + qN )10/3
, (5.16)

which clearly diverges at r = 0. Upon taking the near-horizon limit one does not obtain an

AdS factor, this of course matches with our previous analysis that we can only get an AdS3
solution if the divisor wrapped by the branes is ample. Note that this does not imply that

when N M5-branes wrap R
1,1× Ĉ, the dual 2d field theory does not flow to a SCFT in the

IR. It just means that the IR SCFT does not have an AdS3 gravity dual in 11d supergravity.

Recall, as discussed in section 3.7, that in Type IIB the M = 1 case has two UV

completions. One may consider either N D3-branes wrapping R
1,1×C in the presence of a

single KK-monopole or replacing the Taub-NUT space by flat space R
4/ZM . Applying T-

duality along the Hopf fiber of (3.91) and uplifting we obtain the 11d supergravity solution

ds2 = (R2+qN )1/3
(

R2

R2+qN
(−dt2+dx2)+

R2+qN
R2

(dR2+R2(dθ2+sin2θdϕ2))+ds2(B)

+
1

R2+qN

(
1

τ2
(dy+τ1dψ)

2+τ2dψ
2

))
, (5.17)

G4 = dvol(S2)∧
(qN

4
JB+qMdvol(Eτ )

)
, (5.18)

with qN and qM as before. Of course in the near-horizon limit we obtain (5.6), however

asymptotically the metric is now degenerate. This should be contrasted with the M KK-

monopoles solution which has a good UV completion.26

To summarise, in this section we have found the “pre near-horizon” solution to the 11d

supergravity AdS3 solution (5.6). One may obtain such a near-horizon solution from two

11d supergravity solutions, both can be seen as the solution arising from a T-duality along

a Hopf fiber and uplift of a Type IIB solution, (3.87) and (3.91) respectively. The solution

arising from M KK-monopoles has a good UV completion whilst the solution arising from

no KK-monopoles has a degenerate UV completion.

25For ease of reading we present the result of replacing Y3 with T 6 though the singularity persists if one

reinstates the Y3.
26One may, as before, consider R

4/ZM in place of R4, however similarly one obtains a degenerate UV

completion.
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5.3 Flux quantisation

For an 11d supergravity solution to be well-defined one must quantize the fluxes through

all integral cycles in the geometry. Following [84], the correct quantization condition to

impose is that for all Σ4 ∈ H4(M11,Z),

n(Σ4) =

∫

Σ4

[
1

(2πℓp)3
G4 −

p1
4

]
∈ Z , (5.19)

where ℓp is the eleven-dimensional Planck length and p1 is the first Pontryagin class of

M11 defined as

p1 = − 1

8π2
Tr[R2] . (5.20)

There are two types of integral four-cycles in M11 to consider: the divisors D in the Calabi-

Yau threefold Y3 as summarised in section 2.2, and the four-cycles S2 × Eτ and S2 × Cα

with Cα, as before, forming a basis of H2(B,Z).

We shall first consider the contributions from the p1/4 term and show that they are

all integral. As the metric is a product space we have

RM11 = RAdS3 +RS2 +RY3 . (5.21)

where Ra
b =

1
2R

a
bµνdx

µ∧dxν . In particular, p1 is non-trivial only on the Calabi-Yau, thus

p1(M11) = −2c2(Y3), which is given in (2.14). This implies that the p1/4 term integrated

over the four-cycles S2 × Eτ and S2 × Cα vanishes. On the other hand, the integral of

c2(Y3) over every divisor D is always divisible by two, as shown in (E.8),
∫

D
c2(Y3) = 2(h1,1(D)− 4h0,2(D) + 2h0,1(D)− 4) , (5.22)

therefore the flux quantization condition reduces simply to

n(Σ4) =
1

(2πℓp)3

∫

Σ4

G4 ∈ Z . (5.23)

The form of the G4-flux implies that the quantization over the divisors of Y3 is trivial,

n(D) = 0, and therefore the relevant four-cycles to perform the quantization over are

S2 × Eτ and S2 × Cα. Then we have

n(S2 × Cα) =
2πe4A

mm2
B(2πℓp)

3

∫

Cα

JY3 , (5.24)

where JY3 is given in (2.8). Recalling that
∫
Cα

JY3 = kα ∈ Z
+, we see that imposing the

condition

Z
+ ∋ Ñ =

2πe4A

mm2
B(2πℓp)

3
, (5.25)

guarantees that n(S2×Cα) is correctly quantized. For later, we shall also need the volume

of the elliptic fibration. This is constant over the base. We define the integer M̃ as

M̃ = Ñ

∫

Eτ

JY3 = Ñk0 , (5.26)
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that is vol(Eτ ) = M̃

Ñ
. We shall show that M̃ = M where the latter M is that arising in

Type IIB from the Lens space quotient. To see this we must use the periods of the elliptic

fiber coordinates arising from the Type IIB solution, (5.9). As the volume is constant over

the base we may compute it away from any singularity. We find

vol(Eτ ) = (2π)2Rx̃Rỹ = (2π)2mm2
BMe−4Aℓp

3 =
M

Ñ
, (5.27)

where we have used the relation

ℓp
3 =

l4s
RIIB

, (5.28)

which follows from the T-duality and uplift. Using this relation we may also show that the

N in Type IIB is the same as the Ñ in 11d supergravity. Observe that

N =
16π2e4A

4m2m2
BM(2πℓs)4

=
2πe4A

mm2
B(2πℓp)

3
= Ñ . (5.29)

We conclude that the two integers appearing in Type IIB and 11d supergravity solutions

can be identified, namely N = Ñ and M = M̃ . For notational clarity we shall drop the

tildes from now on as there is no confusion. We remark that in Type IIB M corresponds to

the number of KK-monopoles in the geometry whilst in 11d supergravity it is proportional

to the volume of the elliptic fibration.

6 Holographic central charges from M-theory

6.1 Leading order central charges

The gravitational central charge for the 11d supergravity solution AdS3 × S2 × Y3 was

computed in [85]. We reproduce it here for completeness using (D.6)

(c11L )(3) = (c11R )(3) = c11sugra =
3e12A

2mm2
B

25π2

(2πℓp)9

∫

M8

1

4m2m4
B

dvol(S2) ∧ dvol(Y3)

=
3π324e12A

((2πℓp)3mm2
B)

3

∫

Y3

1

6
JY3 ∧ JY3 ∧ JY3

= N3CIJKkIkJkK ,

(6.1)

where we have expanded the Kähler form in a basis of (1, 1)-forms on the Calabi-Yau

threefold as in (2.8) and CIJK are the triple intersection numbers as given in section 2.2,

with I = 0 included in this expansion. This result, as noted in [85], matches the original

field theory computation in [20] and [25].

The Kähler form is expanded as in (2.8), where the coefficient in front of the zero-

section ω0 is

k0 = vol(Eτ ) =
M

N
, (6.2)

– 35 –



J
H
E
P
0
8
(
2
0
1
7
)
0
4
3

the volume of the elliptic fiber. The central charge (6.1) can then be expanded into three

terms

(c11L )(3) = (c11R )(3) = N3

(
3k0kαkβ

∫

Y3

ω0 ∧ ωα ∧ ωβ + 3k20kα

∫

Y3

ω0 ∧ ω0 ∧ ωα + k30

∫

Y3

ω3
0

)

= N3

(
3k0kαkβ

∫

B
ωα ∧ ωβ − 3k20kα

∫

B
c1(B) ∧ ωα + k30

∫

B
c1(B)2

)

= 3N2MC · C − 3NM2c1(B) · C +M3(10− h1,1(B)) , (6.3)

where we have made use of (2.12).

6.2 Chern-Simons terms and c11
L

− c11
R

We now calculate c11L − c11R by using the eight derivative corrections as presented in [86].

The term that will be relevant for us is the Chern-Simons term [87]

SCS = −(4πκ11)
2/3

2κ211

∫

M11

C3 ∧X8 , (6.4)

where

X8 =
1

(2π)426 · 3

(
Tr[R4]− 1

4
(Tr[R2])2

)
. (6.5)

We wish to dimensionally reduce this to obtain Chern-Simons terms in the 3d action. From

the coefficient in front of the 3d Chern-Simons term one can extract c11L −c11R by using (D.7).

Using (5.21) one can see that Tr[R4] = 0. We wish to find the term proportional to (D.7)

and so we shall drop terms that do not contribute to this if necessary

SCS =
(4πκ11)

2/3

23κ211

1

(2π)426 · 3

∫

M11

C3 ∧ Tr[R2] ∧ Tr[R2]

=
(4πκ11)

2/3

23κ211

1

(2π)425 · 3

∫

M11

G4 ∧ Tr[R2] ∧ ωCS

=
π

(2πℓp)3mm2
B

e4A

(2π)427 · 3

∫

M11

dvol(S2) ∧ JY3 ∧ Tr[R2] ∧ ωCS

=
Nπ

24 · 3(2π)2
∫

Y3

JY3 ∧ c2(Y3)

∫

AdS3

ωCS(ΓAdS3) , (6.6)

from which we obtain

c11L − c11R =
N

2

∫

Y3

JY3 ∧ c2(Y3) , (6.7)

which is in agreement with [85].27

To evaluate (6.7) we use the expansion of the Kähler form in (2.8) and the form of

c2(Y3) as in (2.14). With this information we reduce the integrals in (6.7) to integrals over

the base of the fibration, namely28
∫

Y3

c2(Y3) ∧ ω0 =

∫

B
c2(B)− c1(B)2 = 2h1,1(B)− 8 . (6.8)

27Note that Tr[R2] = 16π2c2(Y3) which is valid for a Calabi-Yau threefold whilst working in real coordi-

nates with the normalisation as in [13].
28Note the integral

∫
Y3

can be translated into one over B by using the intersection ring relations, and

extracting the coefficient of σ2.
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For the remaining term, the Poincaré dual to ωα are divisors Dα = Ĉα which are pull-backs

of curves in the base. Thus the integral over Y3 is only non-vanishing for those terms in

c2(Y3), which have fiber components, i.e. the 12ω0 ∧ c1(B) term, which leads to

∫

Y3

c2(Y3) ∧ ωα = 12c1(B) · Cα . (6.9)

Combining these terms we find

c11L − c11R = 6Nc1(B) · C +M(h1,1(B)− 4) . (6.10)

6.3 Chern-Simons couplings from 11d supergravity

The 11d supergravity solution AdS3 × S2 × Y3 has dual SCFTs with small N = (0, 4)

superconformal symmetry. In order to determine the left and right central charges one must

also calculate the level kr of the superconformal SU(2)r R-symmetry at sub-leading order.

The leading and sub-leading corrections to the level kr were computed in [81, 85] to be

kr =
N3

6
CIJKkIkJkK +

N

12

∫

Y3

JY3 ∧ c2(Y3) . (6.11)

These terms are computed by deforming the metric on the two-sphere to contain connec-

tions which depend on AdS3 only

ds2S2 → (dxa −Aabxb)(dxa −Aacxc) , (6.12)

where
∑3

a=1(x
a)2 = 1. These connections are identified with the SO(3) gauge fields for the

R-symmetry.

The leading order term is computed from the 11d term

SAFF = − 1

12κ211

∫
A′

3 ∧G′
4 ∧G′

4 , (6.13)

where we have used the conventions of [86]. For the deformed metric the fluxes are corrected

by terms involving the R-symmetry gauge fields and are given by

A′
3 =

2πe4A

mm2
B

e
(0)
1 ∧ JY3

G′
4 =

2πe4A

mm2
B

e2 ∧ JY3 ,

(6.14)

where e2 is the unique two-form for the S2 bundle satisfying
∫
S2 e2 = 1 and de2 = 0.

The one-form e
(0)
1 is defined by de

(0)
1 = e2. The overall factors in G′

4 have been fixed

by requiring that the quantization pre-deformation is the same as that post-deformation.

Inserting these expressions into (6.13) we obtain

SAFF = − (2π)3e12A

12κ211m
3m6

B

∫

Y3

JY3 ∧ JY3 ∧ JY3

∫

AdS3×S2

e
(0)
1 ∧ e2 ∧ e2 . (6.15)
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To simplify this expression we make use of the formula derived in [81]
∫

AdS3×S2

e
(0)
1 ∧ e2 ∧ e2 = − 1

2(2π)2

∫

AdS3

ωCS(A) , (6.16)

which originates from [88]. Recalling the expression N = 2π
(2πlp)3mm2

B

we obtain

SAFF =
πe12A

12κ211m
3m6

B

∫

Y3

JY3 ∧ JY3 ∧ JY3

∫

AdS3

ωCS(A)

=
N3

24π
CIJKkIkJkK

∫

AdS3

ωCS(A) ,

(6.17)

The level kr is extracted from the coefficient of the Chern-Simons term from the definition

in (4.20). From this we obtain the leading order term in (6.11).

The sub-leading order term is found by computing SCS for the deformed metric, which

now contains a contribution from the R-symmetry gauge fields

SCS =
N

192π

∫

CY
JY3 ∧ c2(Y3)

(∫

AdS3

ωCS(ΓAdS3) + 4

∫

AdS3

ωCS(A)

)
, (6.18)

where the trace in ωCS(A) is taken over the fundamental representation of SU(2). The

factor of 4 appearing in the gauge Chern-Simons term arises from changing the trace from

over the vector representation of SO(3) to SU(2) fundamental. Comparing (6.18) to (4.20)

the sub-leading term indeed matches that in (6.11).

Using the results from section 6.2 the level can be expressed as

kr =
N3

6
CIJKkIkJkK +

N

12

∫

Y3

c2(Y3) ∧ JY3 (6.19)

=
1

2
N2MC · C +

N

2
(2−M2)c1(B) · C +

M3

6
(10− h1,1(B)) +

M

6
(h1,1(B)− 4) .

The left and right central charges can now be deduced by using the relation c11R = 6kr [89].

We obtain the central charges

c11R =3N2MC ·C+3N(2−M2)c1(B)·C+M3(10−h1,1(B))+M(h1,1(B)−4),

c11L =3N2MC ·C+3N(4−M2)c1(B)·C+M3(10−h1,1(B))+2M(h1,1(B)−4).
(6.20)

Interestingly, we note that the right-moving central charge c11R can be shown to be an

integer multiple of 6 as expected [70]. To see this we rewrite c11R as

c11R = 6N2M(g − 1) + (6N + 3NM(N −M)) c1(B) · C
+ 6M3 + (M − 1)M(M + 1)(4− h1,1(B)) .

(6.21)

It is an elementary exercise to show that each term in the expression above is indeed a

multiple of 6, for arbitrary values of N,M ∈ Z. We regard this as a non-trivial check on

the interpretation of c11R as the right-moving central charge of a (0, 4) SCFT with small

superconformal algebra.

In section 4 for M > 1 we were only able to determine the leading order central charge.

To the contrary here, we have the all order expression. It would be very interesting to ex-

tend the analysis in section 4.3 to includeM > 1 and to compare with the above expression.
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7 Central charges from anomalies and comparisons

In this section we shall determine the central charges of the 2d SCFTs microscopically, us-

ing a UV description in terms of world-volume theories on wrapped branes. To determine

these we will essentially need to compute only the anomaly polynomials of the correspond-

ing branes, although we will discuss some subtleties involved in these computations. This

complements and extends the central charge computation in section 2.3 from the dimen-

sional reduction of the abelian N = 4 SYM theory. Below we will invert the order of

presentation with respect to the previous sections as we find it more convenient to begin

with the M5-branes in the M-theory picture and address the D3-branes in the F-theory

picture after. We also include a section summarising the results of the computations in the

different setups and their comparison.

7.1 Anomalies from M5-branes

In this section we wish to determine the anomaly polynomial associated to the (0, 4) theory

on the worldvolume of the string in 5d arising from a stack of M5-branes wrapping a

compact 4-cycle in a Calabi-Yau threefold.

A single M5-brane has an anomaly [90] from the chiral modes living on the 6d world-

volume of the brane; this anomaly must be cancelled by anomaly inflow from the M-theory

bulk. In [91] a certain deformation of the cubic Chern-Simons term in M-theory was found

to cancel the anomaly from a single M5-brane, and this was generalised in [25] to compute

the total anomaly polynomial of the 6d worldvolume theory on a stack of N M5-branes.

The anomaly polynomial is

I8[N ] = NI8[1] +
1

24
(N3 −N)p2(N ) , (7.1)

where

I8[1] =
1

48

[
p2(N )− p2(W ) +

1

4
(p1(W )− p1(N ))2

]
, (7.2)

is the anomaly polynomial for the free abelian tensor multiplet that lives on the worldvol-

ume of a single M5-brane and W , N are respectively the 6d submanifold the M5-brane

wraps, and the normal, or SO(5) R-symmetry, bundle associated to the transverse direc-

tions of the M5-brane worldvolume in the 11d spacetime.

The theory living on the worldvolume of N M5-branes in flat space is the interacting

(2, 0) superconformal field theory of type AN−1 coupled to the free abelian tensor multiplet.

We can determine the anomaly polynomial of the AN−1 theory by subtracting off the

contribution from the latter,

I int8 [N ] = (N − 1)I8[1] +
1

24
(N3 −N)p2(N ) . (7.3)

This agrees with [92] where the anomaly polynomial of the 6d (2, 0) theories associated to

ADE Lie algebras was conjectured to be

I8(G) = r(G)I8[1] +
1

24
d(G)h∨(G)p2(N ) , (7.4)
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where r, d, and h∨ are the rank, dimension, and the dual Coxeter number of the ADE

group G, respectively.

Following [25] the anomaly polynomial I4 for the string arising from the M5-brane

wrapping a compact surface P inside a Calabi-Yau threefold,29 Y3, can be determined by

integrating the 6d anomaly polynomial over P . For such an M-theory setup the tangent

and normal bundles decompose as

TW = TP ⊕ TW2 ,

N = NP/Y3
⊕N3 ,

(7.5)

where W2 is the worldvolume of the string, NP/Y3
is the normal bundle of P inside of the

Calabi-Yau, and N3 is the bundle associated to the SO(3)T global symmetry from the rota-

tions of the 3 transverse directions to the string in 5d. Under these bundle decompositions

the Pontryagin classes decompose, via the splitting principle, to

p1(NP/Y3
⊕N3) = p1(NP/Y3

) + p1(N3)

p2(NP/Y3
⊕N3) = p2(NP/Y3

) + p2(N3) + p1(NP/Y3
)p1(N3) ,

(7.6)

and similarly for pi(W ).

First, let us consider the integration of the anomaly polynomial of a single M5-brane:

48

∫

P
I8[1] = 2p1(N3)

∫

P
p1(NP/Y3

)− 1

2
(p1(W2) + p1(N3))

∫

P
(p1(P ) + p1(NP/Y3

)) . (7.7)

We can use the adjunction formula

TY3 = TP ⊕NP/Y3
, (7.8)

to rewrite the last integrand as p1(Y3). Finally we can use the representation of the Pon-

tryagin classes in terms of the Chern classes,

p1(Y3) = −2c2(Y3) + c1(Y3)
2 , (7.9)

and the Calabi-Yau property of Y3, c1(Y3) = 0, to rewrite the two integrands in terms of the

Chern classes of P and Y3. In conclusion, the integral over the total anomaly polynomial

I8, combining both the free and interacting theories living on the M5-brane, is [25]

I4[N ] =

∫

P
I8[N ] = NI4[1] +

1

24
(N3 −N)P 3p1(N3) , (7.10)

where we have rewritten the integrals over P as integrals over Y3 using intersection notation,

and

I4[1] =

∫

P
I8[1] =

1

48

[
2P 3p1(N3) + c2(Y3) ·Y3 P (p1(W2) + p1(N3))

]
. (7.11)

29Note that the Calabi-Yau threefold does not, at this point, need to be elliptically fibered. Moreover, P

does not have to be a (very) ample divisor.
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The gravitational anomaly determines the difference between the left- and right-moving

central charges of the (0, 4) SCFT on the string, and can be read off from the anomaly

I4 ⊃
cL − cR

24
p1(W2) . (7.12)

Thus we immediately determine that

cL − cR =
1

2
Nc2(Y3) ·Y3 P . (7.13)

From the anomaly polynomial it is also possible to read off the level associated to the

SO(3)T global symmetry by studying the k3p1(N3)/4 term. We find

k3 =
1

6
N3P 3 +

1

12
Nc2(Y3) ·Y3 P . (7.14)

For future reference we also note that k3 can be expressed directly in terms of the Hodge

numbers of P . Using the expansion of the Chern numbers in terms of the Hodge numbers

we have
P 3 = 10h0,2(P )− 8h0,1(P )− h1,1(P ) + 10

c2(Y3) ·Y3 P = 2h1,1(P )− 8h0,2(P ) + 4h0,1(P )− 8 .
(7.15)

At this point we shall specialise to considering that Y3 is an elliptic fibration. From

the Shioda-Tate-Wazir theorem as described in section 2.2 we know the divisors in Y3 that

generate the Neron-Severi lattice, and we would like to compute these quantities, cL − cR
and k3, for representatives of certain linear systems of these divisors on Y3. Recall that we

are interested in elliptically fibered Calabi-Yau threefolds π : Y3 → B, with section, and

that the two types of basis divisors of principle interest are the base, B, and the pullbacks of

curves in the base, Ĉα = π∗Cα, such that the curve is not contained inside the discriminant

locus of the elliptic fibration.

Let us consider an M5-brane wrapping a smooth irreducible divisor in the linear system

D ∈ |MB +NĈ| , (7.16)

where Ĉ is a linear combination of the Ĉα, and compute the above quantities for P = D.

The cohomology class of D can be written as

[D] = M [B] +N [Ĉ] , (7.17)

and thus the first intersection number that must be computed is

[D]3 = M3[B]3 +N2[Ĉ]3 + 3M2N [B] ·Y3 [B] ·Y3 [Ĉ] + 3MN2[B] ·Y3 [Ĉ] ·Y3 [Ĉ]

= M3(10− h1,1(B)) + 3M2N(−c1(B) ·B C) + 3MN2C ·B C ,
(7.18)

where for the final two intersections we have used the triple intersection numbers for elliptic

Calabi-Yau varieties of section 2.2. Furthermore

1

2
c2(Y3) ·Y3 [D] =

1

2
Mc2(Y3) ·Y3 [B] +

1

2
Nc2(Y3) ·Y3 [Ĉ]

= M(h1,1(B)− 4) + 6Nc1(B) ·B C .
(7.19)
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Therefore we have determined that for an M5-brane wrapping an arbitrary divisor D

belonging to such a linear system

cL − cR = 6Nc1(B) · C +M(h1,1(B)− 4) , (7.20)

and

k3 =
1

2
MN2C · C +

1

2
N(2−M2)c1(B) · C

+
1

6

(
M3(10− h1,1(B)) +M(h1,1(B)− 4)

)
.

(7.21)

Note that to compute these coefficients we had to use the anomaly polynomial for a single

M5-brane, I4[1], as M and N may be coprime, however when either M or N vanishes we

see the correct result for multiple M5-branes wrapping a single divisor as in (7.10).30

At this point we have determined the difference in left- and right-moving central charges

and the anomaly coefficient for the SO(3)T normal bundle anomaly for an the 2d (0, 4)

theory on the worldvolume of the string from an M5-brane wrapping an arbitrary divisor

D in Y3. From [20] it is known that if D is a very ample divisor in Y3 then the computation

of k3 is a suitable substitute for the computation of kr, the level of the superconformal

SU(2)r R-symmetry in the IR, and thus one can compute the right-moving central charge

through the superconformal algebra relation

cR = 6kr . (7.22)

In fact, whenD is ample the existence of an 11d supergravity dual of the type AdS3×S2×Y3
guarantees that SO(3)T can be identified exactly31 with the SU(2)r R-symmetry rotating

the S2. Thus cR = 6kr = 6k3 is valid more generally for an ample divisor D.

From the information just described it is possible to compute the left- and right-moving

central charges for the (0, 4) SCFT living on the string from a stack of M5-branes wrap-

ping a compact complex surface inside a Calabi-Yau threefold, assuming that the surfaces

satisfy sufficient topological properties that the level associated to the superconformal R-

symmetry, kr, is the same as k3. For a divisor D inside the linear system that we are

interested in, |MB +NĈ|, a discussion of exactly when this divisor may be ample in Y3 is

contained in appendix E.2. A necessary condition for D to be an ample divisor is that

D · C = (N −M)C · C +M(2g − 2) > 0 , (7.23)

as pointed out in (E.16). It is clear that such an inequality cannot be satisfied for arbitrary

values of M , N , and g, however in the large N limit, where N ≫ M , and when C is ample

30For arbitrary values of M and N one can consider the anomaly of a single M5-brane wrapping either

the divisor D as in (7.11), or one can factor D as D = gcd(M,N)D′, and consider gcd(M,N) M5-branes

wrapping the divisor D′ as in (7.10), by computing I4[gcd(M,N)] for the divisor D′. It is straightforward

to verify that both approaches produce the same result.
31More specifically the SO(3)T acting on the fields of the interacting SCFT, is then exactly the SU(2)r

superconformal R-symmetry of that interacting SCFT. One can see directly from the spectrum that only

after the universal centre-of-mass hypermultiplet is separated out is the SO(3)T consistent with the super-

conformal algebra.
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in the base, this is always satisfied. For any ample D, which then satisfies this inequality,

we can use (7.20) and (7.21), to compute the right- and left-moving central charges on the

M5-brane wrapping D and we find

cR=3N2MC ·C+3N(2−M2)c1(B)·C+M3(10−h1,1(B))+M(h1,1(B)−4),

cL=3N2MC ·C+3N(4−M2)c1(B)·C+M3(10−h1,1(B))+2M(h1,1(B)−4).
(7.24)

To determine these central charges we have used that the level k3 of the SO(3)T
normal bundle anomaly is the same as the level of the superconformal R-symmetry anomaly,

however this only holds if D is ample in Y3, which is exactly the requirement for when a

supergravity dual of this 2d theory exists. From the field theory side we are justified in

considering a setup where M = 0 and we just have a stack of N M5-branes wrapping the

elliptic surface Ĉ. In appendix E.2 we show that Ĉ is never itself an ample divisor, but

in such a situation we would like to be able to determine a prescription for computing the

central charge of the (0, 4) theory for such a stack of M5-branes, applicable even when

the divisor wrapped by the M5-branes is not ample. This will correspond to the Type

IIB/D3-brane setup where there are no KK-monopoles. We postpone this discussion for

M5-branes until section 7.3, while we now turn to the F-theory picture for this setup.

7.2 Anomalies of 6d self-dual strings

A stack of N M5-branes wrapping an elliptic surface Ĉ inside an elliptic Calabi-Yau three-

fold is T-dual to a stack of N D3-branes wrapping a curve in the base of the elliptic Calabi-

Yau. Such D3-brane stacks give rise to self-dual strings in 6d, and the anomaly polynomial

for such strings was determined via inflow from the 6d theory in [93, 94] and extended

to include arbitrary genus curves in [9]. We will assume that the curve, C, on which the

D3-branes wrap has only transversal intersections with the discriminant locus of the elliptic

fibration. The (0, 4) worldvolume theory on the string has the global symmetry group

SU(2)R × SU(2)L × SU(2)I , (7.25)

where SO(4)T ∼= SU(2)R×SU(2)L is the rotation group to the non-compact directions trans-

verse to the string and SU(2)I is the R-symmetry group of the 6d theory. The SO(4)R UV

R-symmetry group for the (0, 4) theory on the worldvolume of the string is SU(2)R×SU(2)I .

In [93, 94] the anomaly polynomial for a self-dual string, of charges Qi with respect to

the two-form potentials Bi, with dBi self-dual, in a 6d N = (1, 0) theory was determined by

applying a similar analysis as that was introduced in [25], and which was used in section 7.3

for the anomaly polynomial on a stack of M5-branes. The translation of the charges Qi

of the strings into the curve classes from the interpretation of the strings as coming from

D3-branes wrapping the curve C was included in [9]. The final result for the anomaly

polynomial, I4, of the string in terms of the characteristic classes of the bundles associated

to the symmetry groups (7.25) is

I4 = c2(R)

[
1

2
N2C · C +

1

2
Nc1(B) · C

]
+ c2(L)

[
−1

2
N2C · C +

1

2
Nc1(B) · C

]

+ c2(I) [N ]− 1

24
p1(T ) [6Nc1(B) · C] ,

(7.26)
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where we have ignored contributions from any additional global (flavour) symmetries other

than those discussed above, and where we recall that the genus of the curve is contained

inside the above expressions implicitly via adjunction (2.16). First we can determine the dif-

ference between the left- and right-moving central charges from the gravitational anomaly

term

cL − cR = 6Nc1(B) · C . (7.27)

One can also read off from the anomaly polynomial the levels of the SU(2)R,L,I global

symmetries

kR =
1

2
N2C · C +

1

2
Nc1(B) · C

kL = −1

2
N2C · C +

1

2
Nc1(B) · C

kI = N .

(7.28)

Note that the SU(2)r superconformal R-symmetry can in principle be a mix [35] of the

two SU(2) factors in the SO(4)R UV R-symmetry. We observe from the spectrum for

N = 1 that the IR R-symmetry for the SCFT must be SU(2)R as this is the only factor

under which the bosons of all the hypermultiplets constituting the theory are uncharged.

Moreover, in the next subsection we will argue (using only the information on kL from this

section) that the correct R-symmetry in the IR should be simply SU(2)R for any N . Thus

there is no mixing with SU(2)I and we conclude that

cR = 6kR = 3N2C · C + 3Nc1(B) · C , (7.29)

and from (7.27) we also obtain

cL = 3N2C · C + 9Nc1(B) · C . (7.30)

7.3 Anomaly from M5-branes on Ĉ

Let us now return to the M5-brane anomaly inflow, in the case that the branes wrap the

elliptic surface Ĉ in Y3, which is not ample. We recall that in this instance there does not

exist an AdS3 dual, without three-form flux, because of the lack of ampleness of the divisor.

However, in this section, one shall see that it is still possible to determine the central

charges of the SCFT. We can immediately see from a study of the spectrum of a single M5-

brane [9] that k3 is not a suitable substitute computation for kr when the wrapped divisor

is not ample.32 Let us first consider an arbitrary divisor P inside an arbitrary Calabi-Yau

threefold. We can read off from the expressions in terms of Hodge numbers in (7.15) that

k3 = h0,2(P )− h0,1(P ) + 1 , (7.31)

but a direct computation of the right-moving central charge from the spectrum reveals that

kr = h0,2(P ) + 1 . (7.32)

32This puzzle was raised in [95, 96].
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This is consistent, as for P an ample divisor inside a Calabi-Yau threefold then h0,1(P ) = 0

by the Lefschetz hyperplane theorem.

Now, let us consider multiple (N) M5-branes wrapping the divisor P = Ĉ; henceM = 0

in the notation of section 7.1. Using standard mathematical results for the cohomologies

of elliptic surfaces

h0,2(Ĉ) =
1

2
(C · C + c1(B) · C) ,

h0,1(Ĉ) =
1

2
(C · C − c1(B) · C) + 1 = g ,

h1,1(Ĉ) = C · C + 9c1(B) · C + 2 ,

(7.33)

we can see that

Ĉ3 = 0 , c2(Y3) · Ĉ = 12c1(B) · C , (7.34)

and thus

k3 = Nc1(B) · C , (7.35)

for an M5-brane wrapping any elliptic surface embedded inside an elliptic Calabi-Yau as

discussed. Such a result of course also follows directly from the expression (7.21) for k3
when one sets M = 0.

When the divisor is not ample we follow the idea in [97] that k3 is really a substitute for

computing the anomaly associated with the diagonal of the superconformal R-symmetry,

kr, with an additional flavour symmetry that only emerges, from the M5-brane point of

view, in the IR

kr = k3 − kF , (7.36)

where kF is the level of the emergent SU(2)F flavour symmetry.

In order to make progress in determining this flavour symmetry, we go back to the

D3 brane setup in Type IIB. The reason why this is useful is that in the Type IIB side

a flavour (i.e. non-R) symmetry is realized geometrically,33 simply because the normal

bundle of the wrapped D3 branes is SO(4)T , while the normal bundle of the wrapped M5

branes is SO(3)T . Notice that while R-symmetries are ambiguous, because mixing an R-

symmetry with a flavour symmetry is still an R-symmetry, flavour symmetries do not have

this ambiguity.

From the self-dual string in 6d, as is discussed in section 7.2, we know exactly one

flavour symmetry, which is the SU(2)L arising from the transverse rotations to the string,

and further we can observe from the spectrum that the SO(3)T charges of the multiplets

from the M5-brane on Ĉ are the diagonal of the SU(2)R and SU(2)L charges of the multi-

plets from the D3-brane on C [9]. As it is the only flavour symmetry that we know is always

present, and since it combines with the superconformal R-symmetry in the correct way to

form SO(3)T we are justified in conjecturing that the flavour symmetry, SU(2)F , which we

do not observe the origin of in the M-theory, has level, kF , which we must subtract off to

compute the kr is none other than kL.

33Although the two setups are related by a T-duality, the symmetries on the two sides do not necessarily

match manifestly. This is also true at the level of isometries of supergravity solutions, although notice that

presently one of the two setups does not admit a supergravity description.
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From the analysis of the self-dual string we have that

kL = −1

2
N2C · C +

1

2
Nc1(B) · C , (7.37)

however, as discussed in [8], this anomaly coefficient is not quite identified with the level

of the SU(2)L symmetry on the combined theory. In the anomaly coefficient of the SU(2)L
anomaly there is a fictitious contribution from the centre-of-mass hypermultiplet. This

universal hypermultiplet is charged under the SU(2)L however there is no SU(2)L current

algebra acting on these modes. The level of the SU(2)L current algebra on the combined

theory is then determined by subtracting the contribution34 of kCoM
L = +1 from kL to find

that the level is

kL − 1 . (7.38)

This is then the level of the flavour symmetry of the combined theory including the centre

of mass which we then subtract from k3, which is the level of the SO(3)T normal bundle

anomaly of the combined theory, to determine the level of the superconformal R-symmetry

of the combined theory.

As such the right-moving central charge as determined via the M5-brane anomaly

inflow when M = 0 is

cR = 6(k3 − (kL − 1)) = 3N2C · C + 3Nc1(B) · C + 6 . (7.39)

We emphasise again that, as expected, this is the central charge for the combined theory,

i.e. the interacting theory together with the centre of mass. Further, we can observe that

this identifies the superconformal R-symmetry level as

kr = k3 − (kL − 1) = kR , (7.40)

demonstrating our statement in the previous subsection that the superconformal R-

symmetry is identified with SU(2)R for all N . In this analysis we are working under

the assumption that generically there is only one SU(2) flavour symmetry in the IR, and

that that flavour symmetry is SU(2)L. If there are additional flavour symmetries then

these could in principle also mix with the superconformal R-symmetry to form k3 and

these would need to be subtracted in addition.

7.4 Summary and comparison

Let us finally summarise and compare the results of all the computations (from anomalies

and holography) of central charges presented in this paper. The theory to which the

worldvolume theory on the string flows in the IR consists of a direct sum of two SCFTs;

the generically non-trivial and the centre-of-mass conformal field theories. We shall refer to

the former as the SCFT part. Depending on the method used we either compute properties

of the SCFT, or else of the combined theory. Generally speaking we shall be interested

in comparing the central charges of the SCFT, not including the centre of mass; these are

the quantities naturally computed by the AdS duals as the centre of mass decouples in the

near-horizon geometry.

34We note that there is a difference of an overall minus sign between here and [8].
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The spectrum. For a single D3-brane wrapping a curve C in the base of an elliptic

threefold, or equivalently for a single M5-brane wrapping the elliptic surface Ĉ, the massless

spectrum can be computed explicitly. The central charges as computed directly from the

UV spectrum are

Spectrum (N = 1) :
cR = 3C · C + 3c1(B) · C + 6 ,

cL = 3C · C + 9c1(B) · C + 6 .
(7.41)

These are the central charges for the combined theory, including the centre-of-mass modes.

The scalar fields parametrising the position of the string in the transverse 5d or 6d space are

contained inside of a single hypermultiplet, which is then referred to as the centre-of-mass

hypermultiplet, and contributes to the central charges

(cCoM
L , cCoM

R ) = (4, 6) . (7.42)

Subtracting off these modes gives the central charges for the IR SCFT on the worldvolume

of the string.

Anomaly polynomial of self-dual strings. In [94] the anomaly polynomial for the

self-dual string in 6d was written down, as we discussed in section 7.2. This is the anomaly

polynomial for the combined theory including both the centre-of-mass and SCFT sectors.

The combined theory on the string has a global symmetry group

SU(2)R × SU(2)L × SU(2)I , (7.43)

where SU(2)R × SU(2)L comes from the transverse rotations to the string in 6d, and

SU(2)R × SU(2)I is the UV R-symmetry of the worldvolume theory of the string. We are

interested in computing from this anomaly polynomial the central charges of the SCFT

in the IR. First one can determine the difference of the central charges of the combined

theory from the gravitational anomaly

cL − cR = 6Nc1(B) · C . (7.44)

To determine the right-moving central charge of the SCFT we need to know the level of

the superconformal SU(2)r R-symmetry, which should be one of the SU(2) factors inside

the SO(4) UV R-symmetry. Furthermore, identifying SU(2)R with the IR R-symmetry, as

discussed in the previous subsection, we have computed that

cR = 6kR = 3N2C · C + 3Nc1(B) · C . (7.45)

This matches the right-moving central charge computed for the SCFT from the spectrum

for N = 1, as expected. If we subtract the free hypermultiplet constituting the centre-of-

mass degree of freedom from the difference of the right- and left-moving central charges

then we can also determine the left-moving central charge for the SCFT as

cL = 3N2C · C + 9Nc1(B) · C + 2 . (7.46)

Again this matches the spectrum when N = 1 as expected.
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Type IIB supergravity. As discussed in section 4 we can also compute the central

charges for the same setup from the Type IIB supergravity dual. As such a supergravity

computation is necessarily in the near-horizon limit then the centre-of-mass modes are

decoupled and we compute directly only the central charges of the SCFT. We will first

consider the case without KK-monopoles, where in (4.22) we found that

cIIBR = 3N2C · C + 3Nc1(B) · C , (7.47)

which exactly matches the right-moving central charge of the theory from the spectrum

and the anomaly analyses discussed previously. This would lead us to conclude that the

Type IIB supergravity computation of cR is in fact exact, meaning that there would be no

quantum corrections, in this precise situation, as any sub-subleading correction would ruin

the precise matching with the result in (7.45).

In (4.22) we also determined the left-moving central charge to be

cIIBL = 3N2C · C + 9Nc1(B) · C , (7.48)

where we remind the reader that this result is only expected to be accurate to order

in O(N), and we expect from the alternate approaches to the computation of the same

quantity that the full result, including quantum corrections, should have an additional +2.

In principle, from the Type IIB supergravity one should be able to determine the

holographic central charges also for M ≥ 1, where there are in addition M KK-monopoles

in the system. However, as we discussed in section 4, in this case we can compute reliably

only the leading order, O(N2), coefficients. To determine the correct O(N) contributions

to the anomalies we would need to incorporate the effect of the KK-monopoles.

11d supergravity. In order for the 11d supergravity solution to exist it is necessary that

the divisor wrapped by the M5-brane is an ample divisor in the Calabi-Yau threefold, and

from appendix E.2 we can see that this generally requires that M > 0. In this section we

shall take M = 1 principally so as to compare with the majority of the different approaches,

and we will show a matching for M > 0 result at the end. For M = 1 (the 11d supergravity

setup dual to one KK-monopole in Type IIB) in section 6 we computed the central charges

to be
c11R = 3N2C · C + 3Nc1(B) · C + 6 ,

c11L = 3N2C · C + 9Nc1(B) · C + 2 + h1,1(B) .
(7.49)

These central charges are said to be exact in [79] as they can be determined from an

anomaly analysis. Since the exactness follows from an anomaly argument these central

charges should be the central charges for the full combined theory, including the centre-of-

mass degrees of freedom. Given that the centre-of-mass contribution should be universal,

regardless of the values of M , N , we can similarly subtract one universal hypermultiplet to

determine the central charges of the IR SCFT. We notice that the leading and sub-leading

terms are consistent with all other methods of computations for one or no KK-monopole.

As discussed in section 1, in the near-horizon limit there is no difference between the setup

with one or no KK-monopoles, and thus the leading contribution to the central charges
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must be identical. We find that the central charges match also at the subleading order,

and in fact the expression for cR matches the results obtained in the case without KK-

monopoles exactly, but it is not clear to us whether this is accidental or not. On the

other hand, it makes sense that both cR and cL do not both match exactly across the

configurations with one or no KK-monopole, as the difference cL − cR is a quantity that

can be computed purely in the UV, and in the UV the single KK-monopole is apparent.

The general result for all M > 0 was given in (6.20) and reads

c11R =3N2MC ·C+3N(2−M2)c1(B)·C+M3(10−h1,1(B))+M(h1,1(B)−4),

c11L =3N2MC ·C+3N(4−M2)c1(B)·C+M3(10−h1,1(B))+2M(h1,1(B)−4),
(7.50)

but as discussed previously, we have not determined these in the Type IIB picture, beyond

the leading O(N2) order. At this order we indeed find perfect agreement for any N and

M , see (4.24).

M5-brane anomaly inflow. Another M-theory approach that one can take to determine

the central charges involves computing the anomaly polynomial to the string via M5-brane

anomaly inflow as described in section 7.1. When the divisor wrapped by the M5-brane is

ample in the Calabi-Yau then this approach involves effectively the same computation as

was used to determine the central charges from 11d supergravity, and is also a computation

of the central charges of the combined theory. The results for the central charges for

M > 0 from the anomaly inflow are then the same as those given in (6.20) from the 11d

supergravity.

The inflow computation however is valid for any divisor D even if it is not ample in

the Calabi-Yau. As such, here we shall be mainly interested in the central charges for the

M = 0 case where the M5-brane wraps simply Ĉ. As described in section 7.3 this approach

does not directly compute the central charge, but instead computes the anomaly coefficient

associated to the SO(3)T normal bundle anomaly, and the gravitational anomaly which fixes

cL − cR = 6Nc1(B) · C . (7.51)

It is known that when the divisor wrapped is ample the computation of the anomaly

coefficient k3 is a suitable substitute computation for the anomaly coefficient of the

superconformal R-symmetry, kr. However when the wrapped divisor is not ample one

must subtract an emergent IR flavour symmetry from k3 to determine the superconformal

R-symmetry. As discussed in section 7.3 we can determine the flavour symmetry which

mixes with the superconformal R-symmetry and we can then compute

cR = 6(k3 − (kL − 1)) = 3N2C · C + 3Nc1(B) · C + 6 , (7.52)

which is the central charge of the combined theory. Further one can determine the

left-moving central charge of the combined theory as

cL = 3N2C · C + 9Nc1(B) · C + 6 . (7.53)

– 49 –



J
H
E
P
0
8
(
2
0
1
7
)
0
4
3

8 Conclusions and outlook

New holographic setups which allow for a controlled computational framework for both the

perturbative gauge theory as well as the dual gravitational/string theory, are difficult to

come by. In this paper we studied a new class of solutions of Type IIB supergravity, which

allow for a varying axio-dilaton τ , that is consistent with the SL(2,Z) duality, i.e. F-theory

solutions. In particular, we classified the AdS3 solutions in F-theory dual to 2d SCFTs with

(0, 4) supersymmetry, in the absence of three-form fluxes. The field theory duals arise from

D3-branes wrapped on curves in the base of elliptic Calabi-Yau threefold compactifications

studied in [8, 9]. The solutions that we have found to be the most general of this kind

are of the type AdS3 × S3/Γ×B, where B is the base of an elliptic Calabi-Yau threefold,

and the profile of the axio-dilaton is determined in terms of the complex structure of the

elliptic fiber.

Conceptually there are various points that make this duality more subtle than those

involving Type IIB solutions with constant τ . First of all the profile of the axio-dilaton

has to be such that τ is singular along curves in the base B. This in turn implies that the

metric on the base cannot be smooth everywhere, and thus some care needs to be taken in

order to reliably apply a supergravity analysis. This is in particular subtle in Type IIB as

the compactification manifold does not include the elliptic fiber, but only the base. Key

to corroborating the consistency of this solution is the duality to 11d supergravity, that

we can perform for the solutions with Γ = ZM . We showed that in 11d supergravity these

solutions are of the form AdS3 × S2 × Y3, where the elliptic Calabi-Yau threefold Y3 can

be resolved and has a smooth Ricci-flat Kähler metric.

Following up on this paper, there are numerous immediate questions of interest to

pursue: an obvious extension of the present results is to include three-form fluxes and

to potentially classify all (0, 4) AdS3 solutions in Type IIB supergravity. We presented

an example of such solution in appendix F. Based on this, and other examples in the

literature [98, 99], we expect that this class of solutions may be quite rich. Furthermore,

the classification obtained here can be applied to N = (2, 2) supersymmetry in 2d, and it

will be interesting to explore this class of solutions.

Another class of (0, 4) strings in F-theory compactifications to 6d are the so-called

non-Higgsable cluster strings. As we recalled earlier, these are obtained from D3-branes

wrapped on collapsed curves in Calabi-Yau threefolds, which have singular algebraic vari-

eties as base manifolds. In particular, these singularities can be thought of as arising from

the collapse of a curve CNHC ≃ P
1 in the local geometry of O(−n) → P

1, where the curve

has self-intersection CNHC ·CNHC = −n < 0. These can be embedded in a compact geome-

try by projectivizing, which results in the Hirzebruch surfaces Fn. It is then tantalizing to

speculate that our solutions might capture some features of the NHC strings by choosing

the Kähler base to be B = Fn, or their singular limits, i.e. the weighted projective spaces

P
(1,1,n). On the other hand, since CNHC is not ample, this simple setup cannot be found

within the class of solutions discussed in this paper. Our attempts to reproduce features of

the NHC strings in this holographic setup have not been successful, and it remains an open

problem to determine what the appropriate holographic duals of these SCFTs, if these

exist, are.
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In [9] a class of 2d (0, 2) theories were obtained, from D3-branes wrapped in the base

of elliptic Calabi-Yau four- and fivefolds. These are very closely related setups to the ones

studied here, and naturally finding AdS3 duals to these 2d SCFTs would be very interesting.

In relation to the solutions found here, the case of Calabi-Yau fivefolds is closely related

to our F-theory solutions with KK-monopole. The F-theory compactification space is

Y3×TNM , which is a special Calabi-Yau fivefold. F-theory on elliptic Calabi-Yau fivefolds

has only recently been investigated in [100, 101] and result in 2d (0,2) theories for generic

Calabi-Yau fivefolds. In view of this, it would be interesting to study our AdS3 solutions

with Γ = ZM in relation to the near horizon limits of D3-branes in Calabi-Yau fivefold

compactifications of the type Y3×TNM and determine the spectrum for general M as in [9].

Finally, the question of AdS5 solutions in F-theory arises, which would generalise the

solutions AdS5×S5/Γ of [45, 47, 102] to F-theory solutions35 with non-trivially varying τ .

In particular, this would be interesting in relation to dimensional reductions of the recently

obtained classification of 6d (1, 0) SCFTs in F-theory [104], which upon compactification

on curves yield 4d N = 1 SCFTs. These theories could arise also in terms of F-theory on

Calabi-Yau fourfolds and may have F-theoretic AdS5 duals.

We hope to return to these interesting questions in the near future [33].
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A Conventions for gamma matrices and spinors

We shall use the letters M,N, . . . for the 10d indices, a, b, . . . takes values 0, 1, 2 and are

used for the AdS3 indices and µ, ν, . . . ∈ {1, . . . , 7} for the indices for M7. Following [105]

35Such solutions were briefly alluded to in [103].
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we decompose the 10d Gamma matrices as

Γa = ρa ⊗ 1⊗ σ2 , (A.1)

Γµ = 1⊗ γµ ⊗ σ1 , (A.2)

where ρa generate Cliff(1,2) and γµ generate Cliff(7). Explicitly we shall take

ρ0 = i σ1 , ρ1 = σ2 , ρ2 = σ3 , (A.3)

with ρ012 = −1. For the Cliff(7) gamma matrices we shall take

γ1 = −σ1 ⊗ 1⊗ 1 , (A.4)

γ2 = σ3 ⊗ σ2 ⊗ 1 , (A.5)

γ3 = −σ2 ⊗ 1⊗ 1 , (A.6)

γ4 = σ3 ⊗ σ1 ⊗ 1 , (A.7)

γ5 = σ3 ⊗ σ3 ⊗ σ1 , (A.8)

γ6 = −σ3 ⊗ σ3 ⊗ σ2 , (A.9)

γ7 = −σ3 ⊗ σ3 ⊗ σ3 , (A.10)

and we have γ1...7 = −i1.With these conventions we have

Γ11 = 1⊗ 1⊗ σ3 . (A.11)

We follow the definitions in [106] for the various intertwiners. For the A intertwiner we have

A10ΓMA−1
10 = Γ†

M , (A.12)

A7γµA
−1
7 = γ†µ , (A.13)

A1,2ρaA
−1
1,2 = −ρ†a , (A.14)

A10 = A1,2 ⊗A7 ⊗ σ1 , (A.15)

A7 = 1 , (A.16)

A1,2 = σ1 . (A.17)

For the charge conjugation intertwiner C we take

C−1
10 ΓMC10 = −ΓT

M , (A.18)

C−1
7 γµC7 = −γTµ , (A.19)

C−1
1,2ρaC1,2 = −ρTa , (A.20)

C10 = C1,2 ⊗ C7 ⊗ σ1 , (A.21)

C7 = σ2 ⊗ σ1 ⊗ σ2 , (A.22)

C1,2 = σ2 . (A.23)

We have

CT
10 = −C10 , CT

7 = C7 , CT
1,2 = −C1,2 . (A.24)
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Finally the D intertwiner satisfies

D−1
10 ΓMD10 = Γ∗

M , (A.25)

D−1
7 γµD7 = −γ∗µ , (A.26)

D−1
1,2ρ

aD1,2 = ρ∗a , (A.27)

D10 = D1,2 ⊗D7 ⊗ σ3 , (A.28)

D7 = σ2 ⊗ σ1 ⊗ σ2 , (A.29)

D1,2 = −i σ3 (A.30)

They satisfy

D∗
10 = D−1

10 , D∗
7 = D−1

7 , D∗
1,2 = D−1

1,2 . (A.31)

We now wish to decompose a 10d Majorana-Weyl spinor consistent with these conventions.

We shall decompose the spinor, ǫ as ǫ = ψ⊗χ⊗θ where ψ is a two-component spinor, χ an

eight-component spinor and θ a two-component spinor. The chirality condition in 10d is

Γ11ǫ = −ǫ (A.32)

which is solved by

σ3θ = −θ . (A.33)

For the Majorana condition we impose that both χ and ψ are Majorana and also that θ

is purely imaginary. Type IIB supersymmetry is parametrised by two 10d Majorana-Weyl

spinors. We may complexify the two Majorana-Weyl spinors into

ǫ = ψ1 ⊗ ξ1 ⊗ θ (A.34)

where ξ = χ1 + iχ2 is a Dirac spinor. This will generically preserve (0, 2) supersymmetry

however we are also interested in finding the equations for preserving (0, 4) explicitly and

so the ansatz we use to accommodate both cases is

ǫ = ψ1 ⊗ eA/2ξ1 ⊗ θ + ψ2 ⊗ eA/2ξ2 ⊗ θ . (A.35)

The (0, 2) case is obtained by setting one of the ξ’s to zero. The warp factor appears

here for later convenience. Here the ψi are Killing spinors on AdS3 and satisfy the most

general Killing spinor equations for two Killing spinors on AdS3

∇aψi =
m

2

2∑

j=1

Wijρaψj . (A.36)

In appendix B we show that we may diagonalize W .

B Killing spinors of AdS3

In general two Killing spinors on AdS3 may satisfy an equation of the form

∇aψi =
m

2

2∑

j=1

Wijρaψj , (B.1)
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with W an arbitrary matrix with possible coordinate dependence. In this section we show

that W is in fact constant for our purposes and moreover may be diagonalised, allowing us

without loss of generality, to take the Killing spinors on AdS3 to satisfy

∇aψi = ±m

2
ρaψi (B.2)

which we have done in the main text.

We shall first show that Wij is necessarily a constant matrix and finally show that it

may be diagonalised. Observe that by multiplying (B.1) by ψ̄k one has the bilinear

ψ̄kρ
a∇aψi =

3m

2
Wijψ̄kψj . (B.3)

The Majorana condition and the antisymmetry of C12 imply ψ̄iψj = −ψ̄jψi and in partic-

ular ψ̄iψi = 0 (no sum). Observe that (B.3) gives four equations for the four components

of W :

ψ̄1 /∇ψ1 =
3m

2
W12ψ̄1ψ2 , (B.4)

ψ̄1 /∇ψ2 =
3m

2
W22ψ̄1ψ2 , (B.5)

ψ̄2 /∇ψ1 =
3m

2
W11ψ̄2ψ1 , (B.6)

ψ̄2 /∇ψ2 =
3m

2
W21ψ̄2ψ1 . (B.7)

As the left-hand side of all four equations and the spinors on AdS3 are independent of the in-

ternal manifold coordinates it follows that W is dependent only on the coordinates of AdS3.

As we wish to preserve the symmetry of AdS3 in the solution this requires that the com-

ponents of W must in fact be independent of the AdS3 coordinates and therefore constant.

As the components ofW are constant we are able to compute the integrability condition

for these spinors and commute the derivatives past the components of W . One has the

identity

[∇a1 ,∇a2 ]ψi =
1

4
R b1b2

a1a2 ρb1b2ψi . (B.8)

Explicitly computing this using (B.1) we find

[∇a1 ,∇a2 ]ψi =
m2

2
WijWjkρa1a2ψk . (B.9)

Upon equating the two expressions and contracting with ρa2 whilst recalling our normali-

sation of AdS3 we find

WijWjk = δik . (B.10)

It is therefore clear from this expression that the eigenvalues of W are ±1, and furthermore

that W is diagonalizable over R. Therefore there is no ambiguity in changing basis of the

Killing spinors on AdS3 to make W diagonal. We shall interpret the eigenvalues of W as

determining the preserved supersymmetry of the putative dual SCFT. After diagonalizing

W the Killing spinor equation on AdS3 is

∇aψ = ±m

2
ρaψ . (B.11)
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It can be seen that the two equations give Killing spinors of opposite chirality on the

boundary of AdS3. Let us take global coordinates on AdS3 in which the metric takes the

form

ds2(AdS3) = −r2m2 + 1

m2
dt2 + r2dφ2 +

1

m2r2 + 1
dr2 , (B.12)

and satisfies Rab = −2m2gab. First computing the Majorana Killing spinors on AdS3 for

the positive sign in (B.11), and using the gamma matrix conventions of appendix A, we

find

ψ+ = e−
i(t+φ)

2




√
r + 1

m

√
1 +m2r2

(
a− iei(t+φ)a∗

)

− 1

m
√

r+ 1
m

√
1+m2r2

(a+ iei(t+φ)a∗)


 , (B.13)

whilst for the negative sign in (B.11) we find the Killing spinor

ψ− = e−
i(t+φ)

2




− 1

m
√

r+ 1
m

√
1+m2r2

(beiφ − ib∗eit)

−
√
r + 1

m

√
1 +m2r2

(
beiφ + ib∗eit

)


 . (B.14)

Following [107] the divergent piece of each spinor in the limit as we go to the boundary

of AdS3 (r → ∞ in the coordinates we have chosen), becomes the 2d supersymmetry

parameter. In our conventions the chirality matrix in 2d is σ3 and therefore ψ+ gives rise

to a supersymmetry parameter in 2d with positive chirality, whilst ψ− gives rise to one

with negative chirality. We conclude that to preserve (0, 2) supersymmetry in the boundary

theory we must use a Killing spinor on AdS3 which solves (B.11) with positive sign in our

spinor ansatz (A.35), whilst to preserve (2, 0) we use one which solves (B.11) with negative

sign.

C Torsion conditions on spinor bilinears

In the following subsections we compute the torsion conditions of the spinor bilinears. We

shall keep the αi’s arbitrary in this appendix and specialise in the main text. Our notation

for the various spinor bilinears is given by

Sij ≡ ξ̄iξj (C.1)

Aij ≡ ξ̄ci ξj (C.2)

Kµ
ij ≡ ξ̄iγ

µξj (C.3)

Bµ
ij ≡ ξ̄ci γ

µξj (C.4)

Uµ1µ2
ij ≡ ξ̄iγ

µ1µ2ξj (C.5)

V µ1µ2
ij ≡ ξ̄ci γ

µ1µ2ξj (C.6)

Xµ1µ2µ3
ij ≡ ξ̄iγ

µ1µ2µ3ξj (C.7)

Y µ1µ2µ3
ij ≡ ξ̄ci γ

µ1µ2µ3ξj . (C.8)

Higher order bilinears are related to the ones presented above by Hodge duality.
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Using the representation of the Clifford algebra in appendix A we find that the spinor

bilinears have following symmetries

Aij = Aji , Bij = −Bji , Vij = −Vji , Yij = Yji . (C.9)

Furthermore, the following identities hold

ξ̄ci ξ
c
j = ξ̄jξi , (C.10)

ξ̄ci γ
µξcj = −ξ̄jγ

µξi , (C.11)

ξ̄ci γ
µνξcj = −ξ̄jγ

µνξi , (C.12)

ξ̄ci γ
µνρξcj = ξ̄jγ

µνρξi . (C.13)

C.1 Simplifying relations

Let η be a spinor (ξi or ξ
c
i ) and let γ be an arbitrary product of antisymmetrized gamma

matrices, from (3.21) we have the algebraic relations

η̄γ

(
1

2
∂µAγ

µ − iαjm

2
+

e−4A

8
/F
(2)

)
ξj = 0 , (C.14)

ξ̄i

(
1

2
∂µAγ

µ +
iαim

2
− e−4A

8
/F
(2)

)
γη = 0 , (C.15)

ξ̄ci

(
1

2
∂µAγ

µ +
iαim

2
+

e−4A

8
/F
(2)

)
γη = 0 , (C.16)

η̄γ

(
−1

2
∂µAγ

µ +
iαjm

2
+

e−4A

8
/F
(2)

)
ξcj = 0 . (C.17)

These relations are useful in simplifying the expressions obtained from computing the

torsion conditions and have been used extensively in deriving the formulae in the following

sections.

C.2 Algebraic equations

We begin by computing some algebraic equations that will be useful in our analysis. First

note, by taking the difference of (C.14) and (C.16) one can derive

(αi + αj)Aij = 0 . (C.18)

Notice this condition implies that the scalars A11 and A22 must vanish irrespective of the

value of αi. We can use the algebraic relations of section C.1 with γ = 1 to find

∂µAξ̄iγ
µξj =

im

2
(αj − αi)ξ̄iξj . (C.19)

Finally, we have two conditions involving the one-form P , which follow from (3.20)

Pµξ̄iγ
µξj = 0 , (C.20)

Pµξ̄
c
i γ

µξj = 0 . (C.21)
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C.3 Differential conditions: scalars

The torsion conditions for the scalars, Sij and Aij , take the form

dSij =
im

2
(αi − αj)Kij , (C.22)

e−2AD(e2AAij) = − im

2
(αi − αj)Bij . (C.23)

From (C.22) we observe that Sii are constants and so we choose to normalise them to have

unit norm.

Notice that our equations are invariant under GL(2,C) transformations of the spinors.

Furthermore, when α1 = α2 we find that S12 = ξ̄1ξ2 is also a constant. Let us consider this

constraint in more detail. By the Cauchy-Schwarz inequality we have

|ξ̄1ξ2|2 ≤ |ξ̄1ξ1||ξ̄2ξ2| = 1 . (C.24)

We separate the cases where this bound is saturated and when it is not and consider first

when the bound is not saturated, namely |ξ̄1ξ2| = x < 1. We may multiply ξ1 by a phase

to make ξ̄1ξ2 real. Now consider the following rotation on the spinors
(
ξ1

ξ2

)
→

(
ξ′1

ξ′2

)
=


 −1 0

− x√
1−x2

1√
1−x2




(
ξ1

ξ2

)
. (C.25)

This transformation preserves Sii = ξ̄′iξ
′
i = 1, where no sum is intended over the index i,

and sets |S12| = |ξ̄1ξ2| = 0. Now consider the case when the bound is saturated, one finds

ξ1 = λξ2 , (C.26)

where λ can be shown to be just a phase. This relation, however, reduces the amount of

supersymmetry preserved. Therefore, to preserve four supercharges, we set S12 = 0 when

α1 = α2.

C.4 Differential conditions: one-forms

The covariant derivative of the one-forms Kij is given by

∇µ1 ξ̄iγµ2ξj =
im

2
(αi+αj)ξ̄iγµ1µ2ξj−

im

2
(αi−αj)gµ1µ2 ξ̄iξj−

e−4A

4
Fν1ν2 ξ̄iγ

ν1ν2
µ1µ2

ξj . (C.27)

Symmetrizing, we find

∇(µ1
ξ̄iγµ2)ξj =

im

2
(αj − αi)gµ1µ2Sij , (C.28)

from which we observe that there are at least two Killing vectors when i = j. Notice that

if α1 = α2 there is an additional Killing vector, ξ̄1γ
(1)ξ2. For α1 6= α2 the existence of

a third Killing vector depends on whether the scalar S12 is vanishing or not. Note also

that (C.19) vanishes whenever (C.28) vanishes, which implies that the Lie derivative of the

warp factor along each Killing vector is vanishing.

The differential conditions on the one-forms read

e−4Ad
(
e4AKij

)
= −im(αi + αj)Uij − Sije

−4AF (2) , (C.29)

D(e2ABij) = 0 . (C.30)
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C.5 Differential conditions: higher forms

The differential conditions on higher degree forms are given by

e−4Ad(e4AUij) = − im

2
(αi − αj)Xij , (C.31)

e−6AD
(
e6AVij

)
= −3im

2
(αi − αj)Yij + e−4AF (2) ∧Bij , (C.32)

e−8Ad
(
e8AXij

)
= 2m(αi + αj) ∗Xij − e−4AF (2) ∧ Uij , (C.33)

e−6AD
(
e6AYij

)
= m(αi + αj) ∗ Yij , (C.34)

e−8Ad
(
e8A ∗Xij

)
= −3

2
im(αi − αj) ∗ Uij , (C.35)

e−10AD
(
e10A ∗ Yij

)
= −5im

2
(αi − αj) ∗ Vij − ie−4AF (2) ∧ Yij , (C.36)

e−6AD
(
e6A ∗ Yij

)
= − im

2
(αi − αj) ∗ Vij − e−4AAij ∗ F (2) , (C.37)

e−8Ad
(
e8A ∗ Uij

)
= im(αi + αj) ∗Kij , (C.38)

e−10AD
(
e10A ∗ Vij

)
= im(αi + αj) ∗Bij , (C.39)

e−12Ad
(
e12A ∗Kij

)
= −5im

2
(αi − αj)Sijdvol(M7) , (C.40)

e−10AD
(
e10A ∗Bij

)
= −3im

2
(αi − αj)Aijdvol(M7) . (C.41)

D Supergravity central charges

In this appendix we give details on the formulae used to compute the holographic central

charges in the paper.

D.1 Holographic central charges at leading order

The leading order term in the central charge is given by the Brown-Henneaux formula [78]

csugra =
3

2mG
(3)
N

, (D.1)

where G
(3)
N is the three dimensional Newton constant obtained by the reduction of the Type

IIB/11d supergravity action on the internal manifold. The relevant part of the action in

dimension d is

Sd =
1

16πG
(d)
N

∫

Md

∗dR(d) . (D.2)

We are interested in dimension D = 10/11 warped backgrounds of the form

ds2(MD) = e2Ads2(AdS3) + ds2(MD−3) , (D.3)

where A a function of the internal manifold only. In this background the action in (D.2)

can be expressed as

SD =
1

16πG
(D)
N

∫

MD−3

eA(∗D−31)

∫

AdS3

∗3(R(3) + . . .) . (D.4)
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This leading order piece is exactly the action (D.2) in three dimensions. From this we

identify the d = 3 Newton constant to be

1

G
(3)
N

=
1

G
(D)
N

∫

MD−3

eAdvol(MD−3) , (D.5)

and hence

csugra =
3

2mG
(D)
N

∫

MD−3

eAdvol(MD−3) . (D.6)

In 10d the Newton’s constant is G
(10)
N = 23π6ℓ8s, whilst in 11d it is given by G

(11)
N = 24π7ℓp

9.

D.2 Holographic central charges at sub-leading order

We may compute the sub-leading order terms in 11d supergravity by making use of the X8

anomaly inflow polynomial [86] and the relation

cL − cR = 96πβ ,

SCS = β

∫

AdS3

ωCS(Γ) ⊂ S3d , (D.7)

as found in [85]. We reduce the 11d Chern-Simons term

SCS = −(4πκ11)
2/3

2κ211

∫

M11

C3 ∧X8 (D.8)

on the internal space, with X8 given by

X8 =
1

(2π)426 · 3

(
Tr[R4]− 1

4
(Tr[R2])2

)
, (D.9)

and

Ra
b =

1

2
Ra

bµνdx
µ ∧ dxν ,

2κ211 = (2π)8ℓp
9 . (D.10)

Integrating (D.8) by parts we have

SCS =
(4πκ11)

2/3

2κ211

∫

M11

G4 ∧X7 , (D.11)

where X8 ≡ dX7. In our solution the internal eight-dimensional space is S2×Y3, and given

the form of the G4 flux (5.11), we have that X7 =
1

3(2π)427
ωCS(ΓAdS3)∧Tr[R2

Y3
] so that we

determine

β =
e4A

3(2πℓp)3m(2π)427

∫

Y3

JY3 ∧ Tr[R2
Y3
] . (D.12)

E Properties of Kähler and Calabi-Yau varieties

In this appendix we collect some essential theorems related to the elliptically fibered Calabi-

Yau threefolds that we consider as our compactification spaces throughout the body of this

paper.
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E.1 Useful relations

First let Y be a Kähler manifold with a given Kähler metric, gµν̄ . Then the Kähler form

associated to this metric is

J = igµν̄dz
µ ∧ dz̄ν̄ , (E.1)

which is a closed (1, 1)-form that is a representative of the cohomology class known as the

Kähler class; where it would be otherwise unambiguous we shall abuse notation and use J

to refer to both the explicit representative and the class. As J is formed from the Kähler

metric then it is real and positive. This means that

∫

C
J > 0 ,

∫

S
J ∧ J > 0 , · · · , (E.2)

where C is any curve in Y , S any surface, and so on. One can find a summary of this

standard information in, for example, [108]. Further, it is known that a compact complex

manifold admits an holomorphic embedding into projective space if and only if it admits

a Kähler metric whose associated Kähler form is an integral class [109]. As a corollary to

Yau’s theorem, any compact strict Calabi-Yau, Yn, of dimension n ≥ 3 can be embedded

as a complex submanifold of a complex projective space, and thus we can conclude that

any Calabi-Yau threefold permits an integral Kähler class.

After these introductory remarks we now collect several useful formulas. For this we

will specialise to the case of elliptically fibered Calabi-Yau threefolds as in section 2, with

base B, which is a Kähler surface. Various properties of the base B will feature in the

main text, in particular relations for topological invariants such as

3σ(B) + 2χ(B) =

∫

B
c1(B)2 , (E.3)

where σ(B) is the signature of the manifold and χ(B) is the Euler number. In terms of

the Hodge numbers of B these can be written as

χ(B) = 2− 4h0,1(B) + 2h0,2(B) + h1,1(B)

σ(B) = (2h0,2(B) + 1)− (h1,1(B)− 1) = b+2 − b−2 ,
(E.4)

where b±2 are the number of self-dual and anti-self-dual two-forms of B. So far we have

only assumed that B is a compact Kähler surface.

Now let us further suppose that B is the base of an elliptic fibration π : Y3 → B with

section. As explained in the main text this does restrict the type of Kähler surfaces that

can function as B. In particular, the existence of the section implies that

π1(B) = 0 =⇒ h0,1(B) = 0 . (E.5)

Furthermore the elliptic fibration must be Calabi-Yau which means that

h0,2(B) = 0 , (E.6)
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as otherwise any (0, 2) forms on B would give rise to (0, 3) forms on the Calabi-Yau.

Summarising, if B is the base of an elliptically fibered Calabi-Yau threefold then

∫

B
c1(B)2 = 3σ(B) + 2χ(B) = 10− h1,1(B) . (E.7)

This agrees with the results given in [13], and is a general result for any base B which may

support a non-trivial Calabi-Yau elliptic fibration over it.

We will require in the main text to determine the second Chern class of the Calabi-Yau

threefold when integrated over an arbitrary divisor P of Y3. We have that

∫

P
c2(Y3) =

∫

P
(c2(P )− c1(P )2) = 2(h1,1(P )− 4h0,2(P ) + 2h0,1(P )− 4) , (E.8)

where the first equality follows via adjunction. As we can see the integral over the second

Chern class over any divisor is always an even integer.

E.2 Ample divisors in elliptically fibered Calabi-Yau threefolds

We shall now collect results about the ampleness properties of divisors in an elliptically

fibered Calabi-Yau threefold. An M5-brane wrapping a divisor D will only have an AdS

dual when D is ample, as the divisor must be dual to a (1, 1)-form in the Kähler cone of

the Calabi-Yau, following from the 11d supergravity solution in section 5.

First we shall be general and consider Y any smooth algebraic variety, with D a divisor

on Y . The Nakai-Moishezon [110, 111] criterion for ampleness (see e.g. [112] for an in depth

discussion) is that

Ddim(X) ·X > 0 , (E.9)

for every closed subvariety X in Y . We remark that since the Nakai-Moishezon criterion

is just the intersection theory dual of the statement that

∫

X
ωdim(X) > 0 , (E.10)

where ω is the dual (1, 1)-form to the divisor D; in this way we can see that every ample

divisor is dual to a (1, 1)-form inside of the Kähler cone of Y .36

With this in hand we shall now specifically consider a smooth elliptically fibered Calabi-

Yau threefold, π : Y3 → B, and the ampleness of the divisors thereon. It was described

in section 2.2 that an elliptic fibration, with trivial Mordell-Weil group, has three distinct

classes of divisors which span the Néron-Severi lattice of divisors of Y3. These are the zero-

section, which provides a copy of B in the fiber, the pullbacks of the curves in the base,

Ĉα = π∗(Cα), and the Cartan divisors associated to the resolution of singularities, Di. We

will be interested in the triple intersection numbers of these divisors. The triple intersection

numbers that are of interest to us were determined in [13], and were recapped in (2.11).

36A subset of the ample divisors consists of the very ample divisors, which are those divisors which are

linearly equivalent to the hyperplane class of a projective embedding of Y [113].
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Let us first consider a smooth Weierstrass model Y3, where we recall that there are no

resolution divisors, we consider a divisor in the linear system

D ∈ |MB +NĈ| . (E.11)

We are interested in knowing for what values of M,N ≥ 0 is this divisor not ample. We

know from the Nakai-Moishezon criterion for ampleness that

D · Σ > 0 , (E.12)

for every curve Σ in Y3, which includes the curve C in B which Ĉ is the pullback of, i.e. Ĉ

is the elliptic surface obtained by restricting the fibration to C. We can then compute

D · C = MB · C +NĈ · C = MB ·B · Ĉ +NB · Ĉ · Ĉ , (E.13)

where in the final equality we have used that

C = B · Ĉ . (E.14)

Using the triple intersection numbers listed in (2.11), along with adjunction,

c1(B) · C = C · C + 2− 2g , (E.15)

we can see that there is the constraint

D · C = (N −M)C · C +M(2g − 2) > 0 . (E.16)

For N ≫ M , this is equivalent to the statement that D is not ample in Y3 if C is not

ample in B. It is also clear from this formula that, for example, when M = N we need we

consider an elliptic surface Ĉ, where the base curve C is such that

g ≥ 2 , (E.17)

and ampleness clearly implies a non-trivial interdependence between M , N , and g. Further

one would like to determine whether there are constraints on ampleness whenM = 0. While

the constraint (E.16) only requires that C must have a strictly positive self-intersection in

the base we further note that the Nakai-Moishezon criterion for ampleness requires also

that the triple-intersection of the divisor in Y3 be strictly positive. For an elliptic surface

we observe that

Ĉ · Ĉ · Ĉ = 0 , (E.18)

as was evidenced directly from the Hodge numbers in (7.34), and thus we determine that

when M = 0 the divisor cannot be ample.

For the case that is not a smooth Weierstrass model we can consider a divisor in the

linear system

D ∈ |MB +NĈ +MiDi| , (E.19)

and consider again D · C, however we should not include in this sum the Cartan divisor

associated to the affine node of the Dynkin diagram as it is not an independent divisor
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inside the Neron-Severi lattice, and so the M0 will not be a free parameter. We can see

again from the triple intersection numbers (2.11) that

Di ·B · Ĉ , (E.20)

is only non-zero when Di is precisely the divisor associated to the affine node, and so the

same conclusion on the constraints on M,N will hold as in the smooth Weierstrass case.

Finally one can study the case where C is a smooth rational curve of self-intersection

C · C = −n for n = 3, · · · , 12, excepting n = 9, 10, 11. These setups involve C not being

ample in B, and correspond to the non-Higgsable clusters [10]. The self-intersection of the

curve in the base is severe enough that it mandates a total space singularity above that

curve in the Weierstrass model, with a specific kind of singular fiber located above the

curve C depending on n. In such a setup one can again compute

D · C = (n− 2)M − nN > 0 , (E.21)

which, given that n is a positive integer generally requires that M > N , if the divisor D is

to be ample.

F AdS3 × S3
× S2

× P
1 solution with three-form fluxes

In this section we present an AdS3 solution of Type IIB supergravity, preserving (0, 4)

supersymmetry, that includes non-zero three-form flux G. This is obtained by reduction

and T-duality of an 11d supergravity solution constructed in [19]. Of course this does not

fit into the classification of this paper as it has three-form flux, however it can be derived

from the 11d supergravity of [19] exactly as the solutions in the main body of the paper.

We include it here as it may be interesting to explore this class of solutions in the future.

The 11d supergravity geometry in [19] has the form AdS3 × S2 × S2 × Y2, where Y2
is a K3 surface, with a particular four-form flux. Here we will assume that Y2 is again an

elliptically fibered Calabi-Yau and in keeping with the notation in the main body of the

paper, we shall denote the base of this fibration as B1 ≃ P
1. We shall call the vielbeins on

B1 e7 and e8. The solution of [19] can be shown to take the form

ds2 = ds2(AdS3) +R2
1(dθ

2
1 + sin2 θ1dϕ

2
1) +R2

2(dθ
2
2 + sin2 θ2dϕ

2
2) + ds2(Y2) , (F.1)

G4 = k1R1R2vol(S
2
1) ∧ vol(S2

2) +R1vol(S
2
1) ∧ JY2 +R2vol(S

2
2) ∧ Re[ΩY2 ] , (F.2)

where JY2 is the Kähler form of the Calabi-Yau two-fold Y2 and ΩY2 is the holomorphic

two-form. The constants k1 and m,37 are fixed in terms of the radii of the two S2’s to be

k1 =
√
R2

1 +R2
2 , m =

√
R2

1 +R2
2

2R1R2
. (F.3)

We then chose the Calabi-Yau two-fold to be elliptically fibered and we may then reduce on

one of the cycles of the torus and then T-dualize along the other, again we take the metric

ansatz for the fibration analogous to that given in (3.57) for the threefold. We present this

duality chain below first reducing on the x direction to Type IIA supergravity and then

T-dualizing along the y direction to Type IIB supergravity.

37As before m is the inverse radius of AdS3 and appears in the solution implicitly through ds2(AdS3).
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Type IIA supergravity solution from dimensional reduction. Reducing the 11d

supergravity solution along the x direction one obtains the solution

ds2 =
1√
τ2

(
ds2(AdS3)+R2

1(dθ
2
1+sin2θ1dϕ

2
1)+R2

2(dθ
2
2+sin2θ2dϕ

2
2)+ds2(B2)+τ2dy

2
)
,

dC(3) = k1R1R2vol(S
2
1)∧vol(S2

2)+R1vol(S
2
1)∧JB− τ2

R 2
vol(S2

2)∧e8∧dy, (F.4)

dC(1) = dτ1∧dy, (F.5)

BIIA = R1cosθ1dϕ1∧dy−
R2√
τ2

cosθ2dϕ2∧e7 , (F.6)

e−2ΦIIA = τ
3
2
2 . (F.7)

We may now perform the T-duality along y to obtain a Type IIB supergravity solution.

Type IIB supergravity solution from T-duality. The metric and fluxes in string

frame following from the T-duality are

ds2 =
1√
τ2

(
ds2(AdS3)+R2

1(dθ
2
1+sin2θ1dϕ

2
1)+R2

2(dθ
2
2+sin2θ2dϕ

2
2)+ds2(B2)

+(dy−R1cosθ1dϕ1)
2
)
, (F.8)

F = (1+∗)(k1R1R2vol(S
2
1)∧vol(S2

2)+R1vol(S
2
1)∧JB)∧(dy−R1cosθ1dϕ1), (F.9)

dC(2) = −√
τ2R2vol(S

2
2)∧e8 , (F.10)

H =
R2√
τ2
vol(S2

2)∧e7 , (F.11)

e−Φ = τ2 , (F.12)

C(0) = τ1 . (F.13)

We may now put this solution into Einstein frame and write the fluxes in the SU(1, 1)

formalism. Inserting into the definition of G,

G =
i√
τ2
(τdB − dC(2)) , (F.14)

equations (F.10) and (F.11) one obtains for the three-form flux

G = −R2vol(S
2
2) ∧ Ω̄B , (F.15)

and the metric in Einstein frame is

ds2 = ds2(AdS3) +R2
1(dθ

2
1 + sin2 θ1dϕ

2
1) +R2

2(dθ
2
2 + sin2 θ2dϕ

2
2) + ds2(B1)

+(dy −R1 cos θ1dϕ1)
2 , (F.16)

whilst the five-form flux remains the same. If one redefines the y coordinate as y → R1ψ

then one sees that this is just a Hopf fibration over S2
1 and the metric is AdS3×S3×S2×B1.

One finds that this solution preserves (0, 4) supersymmetry, after explicitly computing the

Killing spinors, and that this corresponds to the large superconformal algebra of the dual

SCFT [19].
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