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“bouncing” cosmology, where a pre-Big Bang contracting phase bounces smoothly to the

presently observed expanding universe. Perhaps the most natural arena for such branes to
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required for the consistency of the theory, but, in many cases, the exact spectrum of par-

ticle physics occurs at low energy. However, such theories have the additional constraint
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ize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not
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proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize

the results to N = 1 supergravity, opening the door to possible new cosmological scenarios
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1 Introduction

This paper is intended as a preliminary step to accomplish the following; first, to present a

method for extending the bosonic worldvolume theories of 3+1 dimensional probe branes

embedded in non-dynamical bulk spaces to flat N = 1 supersymmetry-both in superfields

and in the associated component fields, and second, once this has been accomplished, to

couple such worldvolume theories to N = 1 supergravity, thus allowing for curved space-

time as well as gravitational dynamics. Here, we will carry this out within the relatively

straightforward context of a three-brane embedded in a maximally symmetric AdS5 bulk

space. This 3+1 brane bosonic worldvolume theory is, as we will discuss below, already

known to produce the theory of conformal Galileons. Hence, in this work we will be ex-

plicitly computing the N = 1 supersymmetric extension of conformal Galileons in flat

superspace and then generalizing them to N = 1 supergravity.

The worldvolume action, and the associated dynamics, of a bosonic 3+1 brane embed-

ded in a background five-dimensional bulk space are of considerable interest [1]. To begin

with, the structure of the worldvolume theory itself has been shown to possess remarkable

topological and dynamical properties, depending on the symmetries of the bulk space. For

example, it was demonstrated in [2] that a probe three-brane embedded in an maximally
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symmetric AdS5 space led to the theory of relativistic DBI conformal Galileons which, in

the low momentum limit, reproduced the five conformal Galileons first discussed in [3].

This was generalized in [4, 5] to different maximally symmetric bulk spaces-including, M5

and dS5. These bosonic brane worldvolume actions were shown to contain new effective

field theory generalizations of Galileons, each reflecting the background symmetry groups

imposed on them. In addition to the novel 3+1 dimensional effective field theories discov-

ered in this manner, bosonic three-branes embedded in a higher dimensional bulk space can

lead to new and exotic theories of cosmology and the early universe. For example, it was

demonstrated in [6, 7] that the worldvolume theory of a three-brane moving relativistically

in an AdS5 background-that is, the DBI conformal Galileons– can, for an appropriate choice

of coupling parameters, admit a stable, Poincare invariant background that violates the

Null Energy Condition (NEC). This allows for a cosmological theory in which the Universe

begins as a non-singular flat geometry and then “expands” to the Universe that we observe-

so-called Galileon Genesis. The fact that bosonic brane worldvolume theories can, under

the appropriate circumstances, admit NEC violation, has also led to “bouncing” cosmolog-

ical scenarios [8–16]. In these, a contracting Friedman-Robinson-Walker (FRW) geometry

can bounce smoothly through the “Big Bang” to the present expanding spacetime.

Although these bosonic braneworld scenarios are interesting, the fact remains that

branes of varying dimensions embedded in higher-dimensional bulk spaces arise most nat-

urally within the context of supersymmetric string theory and M -theory. Furthermore,

whereas the spectrum and interactions of particle physics must simply be added in an ad

hoc manner to bosonic cosmological scenarios, it is well-known that the Standard Model

can arise as the spectrum of specific superstring vacua that simultaneously include vari-

ous types of branes. One very concrete example is the compactification of M -theory to

five-dimensions known as Heterotic M-Theory [17]. In this theory, the particles and in-

teractions of the Standard Model arise on the so-called “observable” wall [18–20] of an

S1/Z2 orbifold, whereas a “hidden sector” composed of unobserved particles occurs on a

second orbifold wall-separated from the first by a specific five-dimensional geometry [21].

Naturally embedded within this five-dimensional bulk space are 3+1 branes (five-branes

wrapped on a holomorphic curve), whose existence is required for anomaly cancellation

and, hence, consistency [22]. In addition to this natural setting for particle physics and

3+1 brane worldvolume theories, there is a second, very significant, new ingredient. That

is, these vacua, prior to possible spontaneous symmetry breaking, are all N = 1 super-

symmetric. These realistic vacua of supersymmetric three-branes embedded in heterotic

M -theory led to the postulation of the “Ekpyrotic” theory of early universe cosmology [23].

In this theory, a relativistic three-brane embedded in the five-dimensional bulk space is at-

tracted toward the observable wall via a potential energy, which arises from the exchange

of M -theory membranes. This potential was explicitly computed in [24] and found to be

a steep, negative exponential.1 Hence, in this phase, the universe is contracting. The

scalar fluctuations of the brane modulus evolving down this potential produce two-point

quantum fluctuations that are nearly scale invariant. As discussed in [26], under certain

1Within this context, the lowest order kinetic energy for the 3+ 1 brane position modulus was presented

in [25].
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conditions the NEC can be violated and the universe “bounces” to the expanding space-

time that we presently observe. Furthermore, it was shown in [27] that these fluctuations

can pass through the “bounce” with almost no distortion and, hence, are consistent with

observational data from the CMB. An effective field theory for the 3+1 brane modulus in

the exponential potential was constructed in [28]. However, the complete N = 1 super-

symmetric worldvolume action of the three-brane has never been explicitly constructed.

A first attempt to do this was carried out within the context of heterotic string theory

in [29, 30]. However, based on previous non-supersymmetric work [31, 32], this was done by

“modelling” the three-brane as a solitonic kink of a chiral superfield in the five-dimensional

bulk space. Although some of the geometric terms, and particularly a computation of their

coefficients, were found by these methods, the general theory of an N = 1 supersymmetric

three-brane worldvolume theory was far from complete. Given its potential importance in

cosmological theories of the early universe, it would seem prudent to try to create a for-

malism for computing supersymmetric worldvolume brane actions in complete generality.

In this paper, we begin the process of calculating these actions in a systematic fashion,

starting with the bosonic actions discussed above, then supersymmetrizing them in flat

superspace and then, finally, coupling them to gravitation by generalizing the worldvolume

actions to N = 1 supergravity. Specifically, we will do the following.

In section 2, we review the formalism presented in [4, 5] for computing the bosonic

worldvolume actions of 3+1 branes embedded in maximally symmetric bulk space geome-

tries. First, the generic form of the five-dimensional metric is introduced in a specific

coordinate system. We then present the general form of the worldvolume action composed

of terms with two special properties; 1) they are constructed from worldvolume geometric

tensors only and 2) they lead to second order equations of motion [33]. This restricts the

number of such Lagrangians to five. Using the specific metric, we give the general form for

four out of the five such Lagrangians-the fifth Lagrangian, L5, being very complicated and

unnecessary for the purposes of this paper. In section 3, again following [4, 5], we review

the four conformal DBI Lagrangians specifically associated with embedding the three-brane

in a maximally symmetric AdS5 bulk space. These Lagrangians are then expanded in a

derivative expansion and all terms with the same number of derivatives assembled into

their own sub-Lagrangians. Remarkably, as pointed out in [2, 4, 5], these turn out to be

the first four conformal Galileons.

Section 4 is devoted to extending these four conformal Galileons from bosonic theories

of a real scalar field φ to flat space N = 1 supersymmetry. This was previously discussed

in [34], where the superfield Lagrangians for four of the five conformal Galileons were

presented (the first conformal Galileon L1 was omitted). These four super-Lagrangians were

then expanded into their component fields, two real scalars φ and χ, a Weyl fermion ψ and

a complex auxiliary field F . However, this expansion was incomplete. In order to study the

behaviour of the original real scalar field φ, these super-Lagrangians were expanded to all

orders in φ but only to quadratic order in all other component fields. There were two reasons

for this. The first was to allow a discussion of some of the dynamics of the fermion field. The

second reason was to permit a simple analysis of the complex auxiliary field F , which, to this

order of expansion, does not contain higher-order terms in F such as (F ∗F )2. These terms,
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along with the usual quadratic F term, were previously discussed in a non-Galileon context

in [35]. The associated cubic F equation of motion was solved and a discussion given of

the three different “branches” of the Lagrangian that now emerged. This work also looked

into possible violation of the NEC and other “bouncing” properties in this context. Some

interesting physics arising from these new branches was also discussed in [36]. However, in

the present paper, we do something very different. Using the same superfield Lagrangian

presented in [34], we again expand into component fields-this time ignoring the fermion

entirely, but working to all orders in the scalar fields. This opens up three very important

new issues that will be presented and solved in this paper. The first arises due to the fact

that the L1 bosonic Galileon had been ignored in the analysis of [34]. In this paper, we

supersymmetrize L1, both in superfields and in component fields, and show that it leads to

a specific potential energy in the theory. The second issue has to do with the stability of the

two real scalar fields φ and χ. This has two parts. First, one has to show that the potential

energy so-derived, allows for stable solutions of the χ equation of motion. Related to this,

one must show under what conditions the associated kinetic energy terms are non ghost-like.

Both of these issues are discussed and solved in section 4. The final issue that arises when

one expands to all orders in the scalar component fields is, perhaps, the most important.

It turns out that supersymmetric L3, when expanded to all orders in the component scalar

fields, contains terms proportional to derivatives of the “auxiliary” field F -such as ∂µF and

∂F ∗∂F . Hence, it is no longer clear whether F should be treated as an auxiliary field or

as a dynamical degree of freedom. In this paper, we carefully discuss this issue and, within

the context of a derivative expansion and a specific solution for χ, solve for the F field to

leading, first and, finally, second order. To simplify the analysis, only the leading order

results are inserted back into the full Lagrangian and the associated physics discussed.

Having carefully discussed the flat space N = 1 supersymmetric conformal Galileons,

we then extend the first three super Lagrangians, that is, supersymmetric Li, i = 1, 2, 3, to

N = 1 supergravity in section 5. To do this, we expand upon the formalism previously dis-

cussed in [35, 37] as well as, within the context of new minimal supergravity, [38, 39]. This

is analytically a very tedious process. However, we carry it out completely in superfields

and then again expand each such supergravity Lagrangian into its component fields. As

previously, we ignore both the Weyl fermion associated with the Galileon supermultiplet as

well as the gravitino of supergravity. However, as above, we expand each such Lagrangian

to all orders in the Galileon supermultiplet scalar components, φ, χ, and auxiliary field

F , as well as to all orders in the supergravity multiplet scalars; that is, gµν with its aux-

iliary vector field bµ and complex auxiliary scalar M . Having written out the complete

expansion into scalar fields, we then show, in detail, that the equations of motion for the

supergravity auxiliary fields bµ and M can be explicitly solved for and present the results.

These solutions are then put back into the entire Lagrangian, thus producing the complete

N = 1 supergravitational Lagrangian for the first three conformal Galileons. We have also

extended the supersymmetric L4 conformal Galileon to N = 1 supergravity. However, due

to the complexity of the computation, this result will be presented elsewhere. However,

we will use several non-trivial results from this work at the end of this paper within the

context of low-energy, curved superspace Lagrangians.
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Finally, we point out that for the N = 1 supersymmetric Galileons presented in section 4

and for their N = 1 supergravity extensions given in section 5, we use some of the results

and follow the notation presented in [40].2

2 Co-dimension 1 brane action

In this section, we review the formalism [4, 5] for constructing the worldvolume action

of a 3-brane in a 4+1-dimensional bulk space. Denote the bulk space coordinates by

XA, A = 0, 1, 2, 3, 5 and the associated metric by GAB(X), where A = 0 is the time-like

direction. The coordinates XA have dimensions of length. We begin by defining a foliation

of the bulk space composed of time-like slices. Following [4, 5], one chooses coordinates XA

so that the leaves of the foliation are the surfaces associated with X5 =constant, where the

constant runs over a continuous range which depends on the choice of bulk space. It follows

that the coordinates on an arbitrary leaf of the foliation are given by Xµ, µ = 0, 1, 2, 3.

Note that we have denoted the four coordinate indices A = 0, 1, 2, 3 as µ = 0, 1, 2, 3 to

indicate that these are the coordinates on the leaves of a time-like foliation. Now, further

restrict the foliation so that it is 1) Gaussian normal with respect to the metric GAB(X)

and 2) the extrinsic curvature on each of the leaves of the foliation is proportional to the

induced metric. Under these circumstances, X5 is the transverse normal coordinate and

the metric takes the form

GAB(X)dXAdXB = (dX5)2 + f(X5)2gµν(X)dXµdXν , (2.1)

where gµν(X) is an arbitrary metric on the foliation and is a function of the four leaf

coordinates Xµ, µ = 0, 1, 2, 3 only. The function f(X5) and the intrinsic metric gµν(X) are

dimensionless and will depend on the specific bulk space and foliation geometries of interest.

It is important to notice that the coordinates XA satisfying the above conditions and, in

particular, the location of their origin, have not been uniquely specified. Although this

could be physically important in some contexts, for any bulk space of maximal symmetry,

such as the AdS5 geometry to be discussed in this paper, the origin of such a coordinate

system is completely arbitrary and carries no intrinsic information.

Now consider a physical 3+1 brane embedded in the bulk space. Denote a set of intrinsic

worldvolume coordinates of the brane by σµ, µ = 0, 1, 2, 3. The worldvolume coordinates

also have dimensions of length. The location of the brane in the bulk space is specified

by the five “embedding” functions XA(σ) for A = 0, 1, 2, 3, 5, where any given five-tuplet

(X(0)(σ), . . . X(5)(σ)) on the brane is a point in the bulk space written in XA coordinates.

The induced metric and extrinsic curvature on the brane worldvolume are then given by

ḡµν = eAµe
B
νGAB(X), Kµν = eAµe

B
ν∇AnB (2.2)

where eAµ = ∂XA

∂σµ are the tangent vectors to the brane and nA is the unit normal vector.

One expects the worldvolume action to be composed entirely of the geometrical tensors

2We note, however, that in [40] spacetime indices are denoted by Latin letters m,n, . . .. However, to be

compatible with much of the literature on higher-derivative supersymmetry and supergravity, in this work

we will denote spacetime indices by Greek letters µ, ν, . . .. It will be clear from the context when these refer

to spacetime, as opposed to spinorial, indices.
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associated with the embedding of the brane into the target space; that is, ḡµν and Kµν

defined in (2.2), as well as ∇̄µ and the curvature R̄αβµν constructed from ḡµν . It follows

that the worldvolume action must be of the form

S =

∫
d4σ L

(
ḡµν ,Kµν , ∇̄µ, R̄αµβν

)
=

∫
d4σ
√
−ḡF

(
ḡµν ,Kµν , ∇̄µ, R̄αµβν

)
, (2.3)

where F is a scalar function. Furthermore, the brane action, and, hence, F , must be

invariant under arbitrary diffeomorphisms of the worldvolume coordinates σµ. Infinitesimal

diffeomorphisms are of the form

δXA(σ) = ξµ∂µX
A(σ) (2.4)

for arbitrary local gauge parameters ξµ(σ). Although, naively, there would appear to be

five scalar degrees of freedom on the 3-brane worldvolume, it is straightforward to show

that one can use the gauge freedom (2.4) to set

Xµ(σ) = σµ , µ = 0, 1, 2, 3 . (2.5)

Inverting this expression, it is clear that the worldvolume coordinates σµ are, in this gauge,

fixed to be the bulk coordinates Xµ of the foliation. The function X5(σ), however, is

completely unconstrained by this gauge choice. Henceforth, we will always work in the

gauge specified by (2.5) and define

X5(σ) ≡ π(σ) = π(Xµ). (2.6)

That is, there is really only a single scalar function of the transverse foliation coordinates

Xµ, µ = 0, 1, 2, 3 that defines the location of the 3+1 brane relative to the choice of origin

of the XA coordinates. We reiterate that, although in some contexts the specific choice of

the coordinate origin could be physically important, in a bulk space of maximal symmetry,

such as AdS5 discussed in this paper, the location of the coordinate origin is completely

arbitrary and carries no intrinsic information. Note that π(Xµ) has dimensions of length.

For clarity, let us relate our notation to that which often appears in the literature [4, 5].

With this in mind, we will denote the four foliation coordinates and the transverse Gaussian

normal coordinate by Xµ ≡ xµ, µ = 0, 1, 2, 3 and X5 ≡ ρ respectively. It follows that the

generic bulk space metric appearing in (2.1) can now be written as

GAB(X)dXAdXB = dρ2 + f(ρ)2gµν(x)dxµdxν . (2.7)

Using (2.5)and (2.6), one notes that the scalar field specifying the 3+1 brane location

relative to a chosen origin can be expressed as ρ(x) = π(x). Therefore, the metric (2.7)

restricted to the brane worldvolume becomes

GAB(X)dXAdXB = dρ2 + f(π(x))2gµν(x)dxµdxν . (2.8)

It then follows that the induced metric and the extrinsic curvature on the brane are given by

ḡµν = f(π)2gµν +∇µπ∇νπ, Kµν = γ

(
−∇µ∇νπ + ff ′gµν + 2

f ′

f
∇µπ∇νπ

)
(2.9)
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respectively, where ′ = ∂/∂π and

γ =
1√

1 + 1
f2

(∇π)2
. (2.10)

An action of the form (2.3) will generically lead to equations of motion for the physical

scalar field π(x) that are higher than second order in derivatives and, hence, possibly

propagate extra ghost degrees of freedom. Remarkably, this can be avoided [2, 4, 5] if one

restricts the Lagrangian to be of the form

L = Σ5
i=1 ciLi, (2.11)

where the ci are constant real coefficients,

L1 =
√
−g
∫ π

dπ′f(π′)4,

L2 = −
√
−ḡ,

L3 =
√
−ḡ K,

L4 = −
√
−ḡ R̄,

L5 =
3

2

√
−ḡ KGB (2.12)

with K = ḡµνKµν , R̄ = ḡµνR̄αµαν and KGB is a Gauss-Bonnet boundary term given by

KGB = −1

3
K3 +K2

µνK −
2

3
K3
µν − 2

(
R̄µν −

1

2
R̄ḡµν

)
Kµν . (2.13)

All indices are raised and traces taken with respect to ḡµν . It has been shown [2, 4, 5]

that Lagrangian (2.11), for any choices of coefficients ci, leads to an equation of motion

for π(Xµ) that is only second order in derivatives. In this paper, we will assume that

both (2.3) and (2.11), (2.12) are satisfied.

Evaluating each of the Lagrangians in (2.12) for an arbitrary metric of the form (2.7)

is arduous and has been carried out in several papers [2, 4, 5]. The L5 term is particularly

long and not necessary for the work to be discussed here. Hence, we will ignore it in the

rest of this paper. The remaining four Lagrangians are found to be

L1 =
√
−g
∫ π

dπ′f4(π′)

L2 = −
√
−gf4

√
1 +

1

f2
(∇π)2

L3 =
√
−g
[
f3f ′(5− γ2)− f2[Π] + γ2[π3]

]
L4 = −

√
−g
{

1

γ
f2R− 2γRµν∇µπ∇νπ + γ

[
[Π]2 − [Π2] + 2γ2 1

f2

(
− [Π][π3] + [π4]

)]
+ 6

f3f ′′

γ
(−1 + γ2) + 2γff ′

[
− 4[Π] +

γ2

f2

(
f2[Π] + 4[π3]

)]
− 6

f2(f ′)2

γ
(1− 2γ2 + γ4)

}
(2.14)
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In these expressions, all covariant derivatives and curvatures are with respect to the foliation

metric gµν . We follow the notation common in the literature. Defining Πµν ≡ ∇µ∇νπ,

the bracket [Πn] denotes the trace of n-powers of [Π] with respect to gµν . For example,

[Π] = ∇µ∇µπ, [Π2] = ∇µ∇νπ∇µ∇νπ and so on. Similarly, we also define contractions

of powers of Π with ∇π using the notation [πn] ≡ ∇πΠn−2∇π. For example, [π2] =

∇µπ∇µπ, [π3] = ∇µπ∇µ∇νπ∇νπ and so on. Note that the Lagrangians L1,L2,L3 and L4

in (2.14) have mass dimensions −1, 0, 1 and 2 respectively. Hence, the constant coefficients

c1, c2, c3, c4 in action (2.11) have mass dimensions 5, 4, 3 and 2.

3 A flat 3-brane in AdS5: conformal Galileons

Henceforth, we will restrict our discussion to the case where the target space is the “max-

imally symmetric” 5-dimensional anti-de Sitter space AdS5 with isometry algebra so(4, 2)

and the foliation leaves are “flat”-that is, have Poincare isometry algebra p(3, 1).3 This ge-

ometry is easily shown to satisfy the above two assumptions that the foliations are Gaussian

normal with respect to the target space metric and the extrinsic curvature is proportional

to the induced metric. It then follows that the AdS5 metric written in the XA coordinates

subject to gauge choice (2.4) and definition (2.6) is of the form (2.8). More specifically,

if we denote the AdS5 radius of curvature by R(> 0), and denote the flat metric on the

foliations by ηµν , one finds that the target space metric is given by

GABdX
AdXB = dρ2 + f(π)2ηµνdx

µdxν , (3.1)

where

f(π) = e−
π
R . (3.2)

It follows that the four Lagrangians given in (2.14) become

L1 = −R
4
e−

4π
R

L2 = −e−
4π
R

√
1 + e

2π
R (∂π)2

L3 = γ2
[
π3
]
− e−

2π
R [Π] +

1

R
e−

4π
R
(
γ2 − 5

)
L4 = −γ

(
[Π]2 −

[
Π2
])
− 2γ3e

2π
R
([
π4
]
− [Π]

[
π3
])

+
6

R2
e−

4π
R

1

γ

(
2− 3γ2 + γ4

)
+

8

R
γ3
[
π3
]
− 2

R
e−

2π
R γ
(
4− γ2

)
[Π] (3.3)

respectively, where

γ =
1√

1 + e
2π
R (∂π)2

(3.4)

and [Πn], [πn] are defined as above with ∇ → ∂. These are precisely the conformal DBI

Galileons, first presented in [2, 4, 5]. It can be shown that each of the terms in (3.3) is

3The case of the 5-dimensional Poincare space, leading to the “Poincare” Galileons, and their extension

to supersymmetry has been discussed in [41].
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invariant, up to a total divergence, under the transformations

δπ = R− xµ∂µπ , δµπ = 2xµ +

(
Re

2π
R +

1

R
x2

)
∂µπ −

2

R
xµx

ν∂νπ . (3.5)

Defining the dimensionless field and the AdS5 mass scale by

π̂ =
π

R
, M = 1/R (3.6)

respectively, it is clear that each of the four conformal DBI Lagrangians in (3.3) admits

an expansion in powers of ( ∂
M)2. Performing this expansion and combining terms with the

same power of ( ∂
M)2 arising in different Lagrangians (3.3), one can, up to total derivatives,

re-express the action L = Σ4
i=1ciLi as

L = Σ4
i=1c̄iL̄i (3.7)

where

c̄1 =
c1

M
+ 4c2 + 16Mc3,

c̄2 =
c2

M2
+ 6

c3

M
+ 12c4,

c̄3 =
c3

M3
+ 6

c4

M2
,

c̄4 =
c4

M4
(3.8)

are real constants and

L̄1 = −1

4
e−4π̂

L̄2 = −1

2
e−2π̂

(
∂π̂

M

)2

L̄3 =
1

2

(
∂π̂

M

)2 �π̂
M2
− 1

4

(
∂π̂

M

)4

L̄4 = e−2π̂

(
∂π̂

M

)2
[
−1

2

(
�π̂
M2

)2

+
1

2

(
∂µ∂ν π̂

M2

)(
∂µ∂ν π̂

M2

)

−1

5

(
∂π̂

M

)2 �π̂
M2

+
1

5

(
∂µπ̂

M

)(
∂ν π̂

M

)(
∂µ∂ν π̂

M2

)
− 3

20

(
∂π̂

M

)4
]

(3.9)

We have chosen each Lagrangian in (3.9) to be dimensionless and, hence, each coefficient c̄i
has dimension 4. Note that (3.9) are precisely the first four conformal Galileons. Since the

original coefficients ci, i = 1 . . . 4 are arbitrary, it follows from (3.8) that the coefficients

c̄i, i = 1 . . . 4 are also unconstrained. We find from (3.5) and (3.6) that, in this expansion,

each Lagrangian in (3.9) is invariant under the conformal Galileon symmetry

δπ̂ = 1− xµ∂µπ̂, δµπ̂ = 2xµ + x2∂µπ̂ − 2xµx
ν∂ν π̂ . (3.10)
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We conclude that, expanded up to sixth-order in (∂/M), the worldvolume Lagrangian for

a flat 3-brane embedded in AdS5 is given by

L = Σ4
i=1c̄iL̄i , (3.11)

where each Lagrangian L̄i and each constant coefficient c̄i have mass dimensions 0 and

4 respectively. As discussed previously, we are, for simplicity, ignoring the fifth Galileon

which is eighth-order in (∂/M)-since it is not necessary in this paper. However, it can

easily be included without changing any of our results. Note that all terms of order greater

than 8 in the derivative expansion of the DBI conformal Galileons can be shown to be a

total divergence [3, 42] and, hence, do not contribute to the theory.4

4 Supersymmetric conformal Galileons

In a previous paper [34], the real scalar field π̂ and Lagrangians L̄i, i = 2 . . . 5 were extended

to flat space N = 1 supersymmetry. To do this, it was convenient to define a dimensionless

real scalar field

φ ≡ eπ̂ (4.1)

and set M = 1. Here, we will review this analysis, again neglecting L̄5, but with one

important new ingredient. That is, we now include the Lagrangian L̄1 given in (3.9). This

adds a potential energy term to the scalar Lagrangian and, hence, requires a non-vanishing

superpotential to appear in the superfield action. In turn, this necessitates a more subtle

discussion of the auxiliary F -field which occurs in the component field expansion of the

super-Lagrangian. In particular, we give a careful analysis of how it can be eliminated via

its equation of motion and what constraints, if any, that puts on the coefficients c̄i. In

this section, as well as in the next section on supergravity, we use results and follow the

notation presented in [40]

We begin by presenting L̄i, i = 1 . . . 4 in (3.9) in terms of the φ field defined in (4.1)

with M set to unity. The result is

L̄1 = − 1

4φ4

L̄2 = − 1

2φ4
(∂φ)2

L̄3 =
1

2φ3
�φ(∂φ)2 − 3

4φ4
(∂φ)4

4A more complete discussion of the ( ∂
M )2 expansion is the following. Unlike the discussion in this section,

let us here include the Lagrangian L5 in the sum L = Σ5
i=1 ciLi as in (2.11). Now perform the derivative

expansion of the Li for i = 1 . . . 5 to all orders in ( ∂
M )2. It is well-known [3, 42] that all terms with ( ∂

M )2p

for p > 4 form a total divergence and, hence, can be ignored in the action. Therefore, this expansion is

exact and does not require that one demand that ( ∂
M )2 � 1. This is unique to the case of the conformal

Galileons that we are discussing.
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L̄4 = − 1

2φ2
(∂φ)2(�φ)2 +

1

2φ2
(∂φ)2φ,µνφ,µν +

4

5φ3
(∂φ)4�φ

− 4

5φ3
(∂φ)2φ,µφ,νφ,µν −

3

20φ4
(∂φ)6

= − 1

4φ2
∂µ(∂φ)2∂µ(∂φ)2 +

1

φ2
�φφ,µφ,νφ,µν −

1

4φ3
(∂φ)4�φ , (4.2)

where the second versions of L̄4 follows from integration by parts.

Having presented the Galileon Lagrangians associated with the real scalar field φ,5 we

now embed φ in an N = 1 chiral superfield

Φ = (A,ψ, F ) . (4.3)

Here A = 1√
2
(φ+ iχ) is a complex field composed of two real scalar fields φ and χ, ψ is a

two-component Weyl spinor and F is a complex “auxiliary” field that can, for Lagrangians

with at most two derivatives on the scalar fields, be eliminated from the super-Lagrangian

using its equation of motion. Note that since scalars φ and, hence, χ are dimensionless,

and since the anticommuting superspace coordinate θ has mass dimension −1/2, then the

complex scalar A, the Weyl spinor ψ and the complex scalar F have dimensions 0, 1/2

and 1 respectively. The role of the F -field in higher-derivative Lagrangians without a

potential energy was discussed in [34]. In the present paper, however, we will carefully

re-examined the F -field, this time in the presence of a non-vanishing potential. Ignoring

L̄1, the supersymmetric extensions of L̄2, L̄3 and L̄4 were constructed in [34], both in

superfields and in their component field expansion-working, however, only to quadratic

order in all component fields except φ. In this paper, we present the same superfield

expressions as in [34]. However, unlike that paper, we will not display any component field

terms containing the fermion-since this is not of interest in this work. On the other hand,

we give the full component field expansion for all scalars φ, χ and F , since this will be

important for our discussion of the equation for F . The results are the following.

4.1 L̄2

Defining

K(Φ,Φ†) =
2

3(Φ + Φ†)2
, (4.4)

the complete supersymmetrized L̄2 action is given by

L̄SUSY
2 = K(Φ,Φ†)

∣∣∣
θθθ̄θ̄

= − 1

2φ4
(∂φ)2 − 1

2φ4
(∂χ)2 +

1

φ4
F ∗F . (4.5)

5We have written the conformal Galileons in (3.9) in terms of the field φ defined in (4.1) so as to

greatly simplify the extension to the supersymmetric case. By doing so, the −∞ < π̂ < +∞ range of the

field π̂ is changed to the 0 < φ < +∞ regime of field φ. Of course, the φ → 0 surface is equivalent to

π̂ → −∞ and, hence, φ can only approach zero, but never achieve it. Hence, nowhere in the range of φ

do the Lagrangians, or any other quantity in our derivation, diverge. It is equally possible to work directly

with the π̂ field, but the supersymmetrization, althought completely equivalent to that presented in this

paper, is far more complicated-both to construct and as mathematical expressions.
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Note that this matches the corresponding expression in (4.2) when χ = F = 0. For

specificity, it is useful to reintroduce the mass M = 1/R into (4.5). This dimensionless

Lagrangian then becomes

L̄SUSY
2 = − 1

2φ4

(
∂φ

M

)2

− 1

2φ4

(
∂χ

M

)2

+
1

φ4

F ∗F

M2
. (4.6)

It follows that the symbols ∂ and F in (4.5) stand for ∂
M and F

M respectively, where we

have, for simplicity, set M = 1. This will be the case for the remainder of this paper,

unless otherwise specified. Finally, we find it convenient to re-express (4.5) in terms of the

complex scalar field A = 1√
2
(φ + iχ) and the lowest component of the Kahler potential

defined in (4.4). We find that

L̄SUSY
2 = − ∂2K

∂A∂A∗
∂A · ∂A∗ +

∂2K

∂A∂A∗
FF ∗ (4.7)

4.2 L̄3

The complete supersymmetrized L̄3 action is given as a specific sum of two superfield

Lagrangians. These are[
1

(Φ+Φ†)
3

(
DΦDΦD̄2Φ†+h.c.

)]∣∣∣∣
θθθ̄θ̄

=
4

φ3
(∂φ)2�φ− 4

φ3
(∂χ)2�φ+

8

φ3
(∂φ·∂χ)�φ

−
(

8

φ3
�φ+

12

φ4
(∂φ)2+

12

φ4
(∂χ)2

)
F ∗F

+
8i

φ3
χ,µ (F ∗∂µF−F∂µF ∗)+

24

φ4
(F ∗F )2 (4.8)

and[
1

(Φ+Φ†)
4DΦDΦD̄Φ†D̄Φ†

]∣∣∣∣
θθθ̄θ̄

=
1

φ4
(∂φ)4+

1

φ4
(∂χ)4− 2

φ4
(∂φ)2 (∂χ)2+

4

φ4
(∂φ·∂χ)2

−
(

4

φ4
(∂φ)2+

4

φ4
(∂χ)2

)
F ∗F+

4

φ4
(F ∗F )2 (4.9)

respectively. Note that, as discussed above, we have dropped all terms containing the

fermion but have included all of the scalar fields to all orders. These can be combined to

give a supersymmetric extension of the L̄3 conformal Galileon Lagrangian

L̄SUSY
3 =

1

8

[
1

(Φ+Φ†)
3

(
DΦDΦD̄2Φ†+h.c.

)]∣∣∣∣
θθθ̄θ̄

− 3

4

[
1

(Φ+Φ†)
4DΦDΦD̄Φ†D̄Φ†

]∣∣∣∣
θθθ̄θ̄

=
1

2φ3
(∂φ)2�φ− 3

4φ4
(∂φ)4− 1

2φ3
(∂χ)2�φ− 3

4φ4
(∂χ)4

+
1

φ3
(∂φ·∂χ)�φ+

3

2φ4
(∂φ)2 (∂χ)2− 3

φ4
(∂φ·∂χ)2

+

(
− 1

φ3
�φ+

3

2φ4
(∂φ)2+

3

2φ4
(∂χ)2

)
F ∗F+

i

φ3
χ,µ (F ∗∂µF−F∂µF ∗) . (4.10)
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Note that (4.10) reduces to L̄3 in (4.2) when χ = F = 0, as it should. Furthermore, it is

important to note that the quartic term (F ∗F )2 has cancelled between the first and second

expressions, (4.8) and (4.9) respectively. This will play an important role in our discussion

of the F equation. Again, it is useful to re-express (4.10) in terms of the complex scalar

field A and the lowest component of the Kahler potential K. The result is

L̄SUSY
3 =

1

(A+A∗)3

[
2
(
∂A
)2
�A∗ + 2

(
∂A∗

)2
�A− 2F ∗F�(A+A∗)

+ 2F ∗∂F · ∂(A−A∗)− 2F∂F ∗ · ∂(A−A∗)
]

− 6

(A+A∗)4

[
2(∂A)2(∂A∗)2 + 6(∂A · ∂A∗)FF ∗

]
. (4.11)

4.3 L̄4

We now supersymmetrize L̄4. It is convenient to use the second expression for L̄4 in (4.2),

obtained using integrating by parts. This expression is simpler, consisting of only three

terms. We proceed by first constructing the supersymmetric extension for each of these

terms. For the first term, consider

L̄SUSY
4,1stterm =

1

64(Φ+Φ†)2
{D,D̄}(DΦDΦ){D,D̄}(D̄Φ†D̄Φ†)

∣∣∣∣
θθθ̄θ̄

=
1

4φ2
∂µ(∂φ)2∂µ(∂φ)2

− 1

2φ2
∂µ(∂φ)2∂µ(∂χ)2+

1

2φ2
∂µ(∂φ·∂χ)∂µ(∂φ·∂χ)+

1

4φ2
∂µ(∂χ)2∂µ(∂χ)2

− 1

φ2

(
φ,µνφ

,µν+χ,µνχ
,µν
)
FF ∗− 1

φ2

(
φ,µφ

,µν+χ,µχ
,µν
)(
F ∗∂µF+F∂µF

∗)
+

1

φ2

(
(∂φ)2+(∂χ)2

)
∂F ∗ ·∂F+

4

φ2
F ∗F

(
∂F ∗ ·∂F

)
(4.12)

where, in component fields, we have dropped all terms containing the fermion, but work

to all orders in the scalar fields φ, χ and F and used integration by parts. Note that

this reduces to the first term for L̄4 in (4.2) when χ = F = 0. The second term can be

supersymmetrized as

L̄SUSY
4, 2nd term =

−1

128(Φ + Φ†)2

(
{D, D̄}(Φ + Φ†){D, D̄}(DΦDΦ)D̄2Φ† + h.c.

) ∣∣∣∣
θθθ̄θ̄

= − 1

2φ2
φ,µ∂µ(∂φ)2�φ

+
1

2φ2
φ,µ∂µ(∂χ)2�φ+

1

φ2
φ,µ∂µ(∂φ · ∂χ)�χ

+

(
1

φ3
φ,µ∂µ

(
(∂φ)2 − (∂χ)2

)
+

2

φ3
χ,µχ

,µνφ,ν

− 2

φ2
χ,µνχ

,µν +
1

φ2
φ,µ�

(
φ,µ + χ,µ

))
FF ∗

– 13 –
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+

(
1

φ3
φ,µ(∂χ)2 − i

φ3
φ,µ(∂φ · ∂χ) +

1

2φ2
φ,µ�(φ+ χ)

− 1

4φ2

(
(∂φ)2 − (∂χ)2 + 2i∂φ · ∂χ

),µ
+

1

2φ2
χ,µν

(
χ,ν − iφ,ν

)
+

1

2φ2
φ,ν
(
φ,µν − iχ,µν

))
F ∗∂µF

+

(
1

φ3
φ,µ(∂χ)2 − i

φ3
φ,µ(∂φ · ∂χ) +

1

2φ2
φ,µ�(φ+ χ) (4.13)

− 1

4φ2

(
(∂φ)2 − (∂χ)2 + 2i∂φ · ∂χ

),µ
+

1

2φ2
χ,µν

(
χ,ν + iφ,ν

)
+

1

2φ2
φ,ν
(
φ,µν + iχ,µν

))
F∂µF

∗

+
1

φ2
φ,µφ,νF,µF

∗
ν +

i

2φ2

(
χ,µφ,ν − χ,νφ,µ

)
F ∗,µFν +

2

φ2
F ∗F∂µF ∗∂µF

+
1

φ3
F (F ∗)2(∂F · ∂φ) +

1

φ3
F ∗F 2(∂F ∗ · ∂φ) .

When χ = F = 0, this is simply the second term for L̄4 in (4.2). Finally, consider the third

term. As discussed in [34], there are two inequivalent ways of supersymmetrizing this term.

For simplicity, we will focus on the easiest such supersymmetrization. This is given by

L̄SUSY
4, 3rd term =

1

64(Φ + Φ†)3
DΦDΦD̄Φ†D̄Φ†{D, D̄}{D, D̄}(Φ + Φ†)

∣∣∣
θθθ̄θ̄

=
1

4φ3
(∂φ)4�φ

+
1

4φ3
(∂χ)4�φ− 1

2φ3
(∂φ)2(∂χ)2�φ+

1

φ3
(∂φ · ∂χ)2�φ

− 1

φ3

(
(∂φ)2�φ+ (∂χ)2�φ

)
FF ∗

+
1

φ3
(FF ∗)2�φ . (4.14)

For χ = F = 0, this gives the third term for L̄4 in (4.2). Note that in both (4.13) and (4.14),

the component field expressions have been obtained by dropping all terms containing the

fermion, but, as in the first term, working to all orders in the scalar fields φ, χ and F .

Putting these three terms together, we get a complete supersymmetrization of L̄4

in (4.2). This is given by

L̄SUSY
4 =

1

64(Φ+Φ†)2
{D,D̄}(DΦDΦ){D,D̄}(D̄Φ†D̄Φ†)

∣∣∣∣
θθθ̄θ̄

+
−1

128(Φ+Φ†)2

(
{D,D̄}(Φ+Φ†){D,D̄}(DΦDΦ)D̄2Φ†+h.c.

)∣∣∣∣
θθθ̄θ̄

+
1

64(Φ+Φ†)3
DΦDΦD̄Φ†D̄Φ†{D,D̄}{D,D̄}(Φ+Φ†)

∣∣∣
θθθ̄θ̄

=
1

4φ2
∂µ(∂φ)2∂µ(∂φ)2− 1

2φ2
φ,µ∂µ(∂φ)2�φ+

1

4φ3
(∂φ)4�φ
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− 1

2φ2
∂µ(∂φ)2∂µ(∂χ)2+

1

2φ2
∂µ(∂φ·∂χ)∂µ(∂φ·∂χ)+

1

4φ2
∂µ(∂χ)2∂µ(∂χ)2

+
1

2φ2
φ,µ∂µ(∂χ)2�φ+

1

φ2
φ,µ∂µ(∂φ·∂χ)�χ

+
1

4φ3
(∂χ)4�φ− 1

2φ3
(∂φ)2(∂χ)2�φ+

1

φ3
(∂φ·∂χ)2�φ

+

[
− 1

φ2
φ,µνφ

,µν− 3

φ2
χ,µνχ

,µν+
1

φ3
φ,µ∂µ

(
(∂φ)2−(∂χ)2

)
+

2

φ3
χ,µχ

,µνφ,ν

+
1

φ2
φ,µ�

(
φ,µ+χ,µ

)
− 1

φ3

(
(∂φ)2�φ+(∂χ)2�φ

)]
FF ∗

+

[
− 1

φ2

(
φ,µφ

,µν+χ,µχ
,µν
)
+

1

φ3
φ,µ(∂χ)2− i

φ3
φ,µ(∂φ·∂χ)+

1

2φ2
φ,µ�(φ+χ)

− 1

4φ2

(
(∂φ)2−(∂χ)2+2i∂φ·∂χ

),µ
+

1

2φ2
χ,µν

(
χ,ν−iφ,ν

)
+

1

2φ2
φ,ν
(
φ,µν−iχ,µν

)]
F ∗∂µF

+

[
− 1

φ2

(
φ,µφ

,µν+χ,µχ
,µν
)
+

1

φ3
φ,µ(∂χ)2− i

φ3
φ,µ(∂φ·∂χ)+

1

2φ2
φ,µ�(φ+χ)

− 1

4φ2

(
(∂φ)2−(∂χ)2+2i∂φ·∂χ

),µ
+

1

2φ2
χ,µν

(
χ,ν+iφ,ν

)
+

1

2φ2
φ,ν
(
φ,µν+iχ,µν

)]
F∂µF

∗

+
1

φ2

(
(∂φ)2+(∂χ)2

)
∂F ∗ ·∂F+

1

φ2
φ,µφ,ν∂µF∂νF

∗+
i

2φ2

(
χ,µφ,ν−χ,νφ,µ

)
∂µF

∗∂νF

+
6

φ2
F ∗F∂F ∗ ·∂F+

1

φ3
F (F ∗)2(∂F ·∂φ)+

1

φ3
F ∗F 2(∂F ∗ ·∂φ)+

1

φ3
�φ(FF ∗)2. (4.15)

Expressed in terms of the complex scalar field A = 1√
2
(φ+ iχ), this can be re-written as

L̄SUSY
4 =

1

(A+A∗)2

[
2∂µ(∂A)2∂µ(∂A∗)2−4|∂A|2|∂F |2+12|F |2|∂F |2

+

((
2∂µF�A+∂µ(∂A·∂F )

)
F ∗+

(
2∂µF ∗�A∗+∂µ(∂A∗ ·∂F ∗)

)
F

)
∂µ(A+A∗)

+
(
−6∂µ∂νA∂

µ∂νA∗+∂µ∂νA∂µ∂νA+∂µ∂νA∗∂µ∂νA
∗)|F |2

−∂µ((∂A)2)∂µFF
∗−∂µ((∂A∗)2)∂µF

∗F

−3
(
∂νA∂

ν∂µA∗(∂µF )F ∗+∂νA
∗∂ν∂µAF∂µF

∗)
−∂µ∂νA∂νA∂µFF ∗−∂µ∂νA∗∂νA∗∂µF ∗F

+

((
∂νF

∗∂ν∂µAF+∂νF
∗∂νA∂µF

)
+
(
∂νF∂

ν∂µA∗F ∗+∂νF∂
νA∗∂µF ∗

)
−∂µ(∂A)2�A∗−∂µ(∂A∗)2�A

)
∂µ(A+A∗)

]
+

2

(A+A∗)3

[((
∂µ(∂A)2+∂µ(∂A∗)2−2∂µFF ∗−2∂µF ∗F

)
|F |2

−(∂ν∂µAF+∂νA∂µF )F ∗+(∂ν∂µA∗F ∗+∂νA∗∂µF ∗)F

)
∂ν(A−A∗)∂µ(A+A∗)

+

(
(∂A)2(∂A∗)2−2(∂A·∂A∗)|F |2+|F |4

)
�(A+A∗)

]
(4.16)
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4.4 L̄1

In the preceding subsections, we have presented both the superfield and component field

expressions-ignoring the fermion-for the supersymmetrization of L̄2, L̄3 and L̄4 in (4.2).

However, there is also a pure potential term L̄1 in (4.2). How does one supersymmetrize

it? As is well known, this is accomplished by adding a superpotential W to the superfield

Lagrangian. W is a holomorphic function of the chiral superfield Φ introduced above. It

follows that its supersymmetric Lagrangian, which we denote by L̄SUSY
1 , is given by

L̄SUSY
1 = W |θθ +W †|θ̄θ̄ =

∂W

∂A
F +

∂W ∗

∂A∗
F ∗ . (4.17)

In the component field expression on the right-hand side, W = W (A) with A = 1√
2
(φ+iχ),

as defined above. Note that since we are taking L̄SUSY
1 and scalar field A to be dimension-

less, and since F (recall, really F
M) has dimension 0, it follows that the superpotential W

(really W
M3 ) must also have mass dimension 0.

Having introduced the superpotential term, we can now write the entire6 supersym-

metric Lagrangian for the worldvolume action of a 3-brane in AdS5 5-space with an M4

foliation. It is given by

LSUSY = Σ4
i=1c̄iL̄SUSY

i , (4.18)

where L̄SUSY
i , i = 1, 2, 3, 4 are given by expressions (4.17), (4.5), (4.10) and (4.15) re-

spectively. The constant coefficients c̄i are all real, each has dimension 4 but are other-

wise arbitrary.

4.5 The F -field terms in the Lagrangian

In this section, we will isolate and discuss only those terms in LSUSY that contain at least

one F -field. This will be denoted by LSUSY
F ⊂ LSUSY, and is given by

LSUSY
F = c̄1

∂W

∂A
F+c̄1

∂W ∗

∂A∗
F ∗+c̄2

1

φ4
F ∗F

+c̄3

(
− 1

φ3
�φ+

3

2φ4
(∂φ)2+

3

2φ4
(∂χ)2

)
F ∗F+c̄3

i

φ3
χ,µ (F ∗∂µF−F∂µF ∗)

+c̄4

[
− 1

φ2
φ,µνφ

,µν− 3

φ2
χ,µνχ

,µν+
1

φ3
φ,µ∂µ

(
(∂φ)2−(∂χ)2

)
+

2

φ3
χ,µχ

,µνφ,ν

+
1

φ2
φ,µ�

(
φ,µ+χ,µ

)
− 1

φ3

(
(∂φ)2�φ+(∂χ)2�φ

)]
FF ∗

+c̄4

[
− 1

φ2

(
φ,µφ

,µν+χ,µχ
,µν
)
+

1

φ3
φ,µ(∂χ)2− i

φ3
φ,µ(∂φ·∂χ)+

1

2φ2
φ,µ�(φ+χ)

− 1

4φ2

(
(∂φ)2−(∂χ)2+2i∂φ·∂χ

),µ
+

1

2φ2
χ,µν

(
χ,ν−iφ,ν

)
+

1

2φ2
φ,ν
(
φ,µν−iχ,µν

)]
F ∗∂µF

6Recall that we are ignoring, for simplicity, the L5 Galileon.
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+c̄4

[
− 1

φ2

(
φ,µφ

,µν+χ,µχ
,µν
)
+

1

φ3
φ,µ(∂χ)2+

i

φ3
φ,µ(∂φ·∂χ)+

1

2φ2
φ,µ�(φ+χ)

− 1

4φ2

(
(∂φ)2−(∂χ)2−2i∂φ·∂χ

),µ
+

1

2φ2
χ,µν

(
χ,ν+iφ,ν

)
+

1

2φ2
φ,ν
(
φ,µν+iχ,µν

)]
F∂µF

∗

+c̄4
1

φ2

(
(∂φ)2+(∂χ)2

)
∂F ∗ ·∂F+c̄4

1

φ2
φ,µφ,ν∂µF∂νF

∗

+c̄4
i

2φ2

(
χ,µφ,ν−χ,νφ,µ

)
∂µF

∗∂νF

+c̄4
6

φ2
F ∗F∂F ∗ ·∂F+c̄4

1

φ3
F (F ∗)2(∂F ·∂φ)+c̄4

1

φ3
F ∗F 2(∂F ∗ ·∂φ)

+c̄4
1

φ3
�φ(FF ∗)2 (4.19)

Clearly, the F -field is no longer a simple auxiliary field. There are two reasons for this.

The first is that, in addition to terms proportional to F , F ∗ and F ∗F , there are also terms

of order (F ∗F )2. Secondly, there are terms with both a single derivative ∂F or ∂F ∗, as

well as terms containing two derivatives such as ∂F ∗∂F . Assuming, for a moment, that

there are no terms with derivatives acting on F or F ∗, such Lagrangians would lead to a

cubic equation for F . This would have three inequivalent solutions and lead, for example,

to three different expressions when F is inserted back into the Lagrangian. For example,

these Lagrangians would have different potential energy functions. This has previously

been explored in several contexts in [35, 36]. Perhaps more intriguing is the second case

when the Lagrangian contains F terms with one or more derivatives acting on them. This

would imply that the F -field is dynamical and no longer a true auxiliary field. There

is nothing wrong with this from the point of view of supersymmetry representations-an

irreducible supermultiplet containing two dynamical complex scalars A and F , each paired

with a Weyl spinor, does exist. The dynamics of such theories, to our knowledge, has only

been discussed in the trivial case where the superpotential W is zero and, hence, one can

take F = 0 as the solution [12]. In the present paper, however, we will deal directly with

the issue of derivatives on the field F , and its elimination from the Lagrangian, in the

non-trivial case where the superpotential does not vanish. We do this as follows.

First, recall that we have obtained the conformal Galileons in (3.9) by doing an expan-

sion of the DBI conformal Galileons (3.3) in powers of ( ∂
M)2-where we have momentarily

restored the mass M = 1/R. Since terms in this expansion with ( ∂
M)2p where p > 4 are

a total divergence, it is not strictly necessary to assume that ( ∂
M)2 � 1. Be that as it

may, since we would like to ignore L̄5 in our calculations and, furthermore, simplify the

discussion of the F -field, we will henceforth assume(
∂

M

)2

� 1 . (4.20)

Additionally, note that the supersymmetric L̄SUSY
3 and L̄SUSY

4 Lagrangians in (4.10)

and (4.15) respectively contain term involving the field F and its derivatives. For ex-

ample, consider L̄3. By definition, this Lagrangian contains pure scalar terms with four
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powers of derivatives, such as 1
2φ3

(∂φ)2�φ. However, the same Lagrangian contains terms,

for example 3
2φ4

(∂φ)2F ∗F , which have two powers of derivatives acting on scalars multi-

plied by F ∗F . It is natural, and greatly simplifies our analysis, if we demand that all terms

in each of the L̄SUSY
i Lagrangians be of the same order of magnitude. Since the terms

involving derivatives satisfy (4.20), it follows that one must also choose∣∣∣∣ FM
∣∣∣∣2 � 1 , (4.21)

which we assume henceforth.

With this in mind, it is reasonable to solve the equation for F as an expansion in ( ∂
M)2

as well. To zeroth order in this expansion, the relevant part of Lagrangian (4.19) becomes

LSUSY(0)
F = c̄1

∂W

∂A
F (0) + c̄1

∂W ∗

∂A∗
F 0∗ + c̄2

1

φ4
F (0)∗F (0) . (4.22)

The equation of motion for F (0)∗ then implies that

F (0) = − c̄1

c̄2
φ4∂W

∗

∂A∗
. (4.23)

Putting this expression back into (4.22) yields

LSUSY(0)
F = − c̄

2
1

c̄2
φ4

∣∣∣∣∂W∂A
∣∣∣∣2 . (4.24)

Since W is a holomorphic function of the complex scalar field A = 1√
2
(φ + iχ), it follows

that the above expression is simply minus the potential energy

V =
c̄2

1

c̄2
φ4

∣∣∣∣∂W∂A
∣∣∣∣2 . (4.25)

One now must choose the form of W so that, when one sets χ = 0, the potential becomes

V = c̄1
4φ4

, as required by L̄SUSY
1 in (4.2). This is easily satisfied if one chooses

W =
1

2

√
c̄2

c̄1

1

12A3
. (4.26)

It follows from this and (4.25) that

V =
c̄1

4

φ4

(φ2 + χ2)4
. (4.27)

Hence, for χ = 0 this reproduces the potential in L̄SUSY
1 , as required. It is also of interest

to note that for this choice of W

F (0) = −1

2

√
c̄1

c̄2

φ4

(φ− iχ)4
. (4.28)

It follows that when χ = 0 the field F (0) is a constant.
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Figure 1. The potential energy V plotted over a region of φ-χ space.

Henceforth, in this paper, we would like to restrict ourselves to the subset of solution

space where

χ = ∂µχ = 0 . (4.29)

First, of course, one must show that such solutions are possible. We begin by considering

the form of potential (4.27). For positive values of coefficient c̄1, the potential is everywhere

positive and, for any fixed value of φ, it is minimized as χ→ ±∞. Furthermore, at χ = 0,

the mass m2
χ = ∂2V

∂χ2 |χ=0 = −2c̄1
φ6

< 0 for any value of φ. Hence, the solution χ = 0 to the

equations of motion would be fine-tuned and highly unstable. This unsatisfactory situation

can easily be corrected by simply imposing the condition that

c̄1 < 0 , (4.30)

which we do henceforth. Potential (4.27) then becomes everywhere negative-which, for

example, is required in bouncing universe cosmological scenarios. It follows that for any

value of φ the potential grows larger as χ→ ±∞ and

m2
χ =

∂2V

∂χ2 |χ=0 =
2|c̄1|
φ6

> 0 . (4.31)

The potential energy V in a range of φ-χ space is shown in figure 1. Therefore, if the

coefficients are chosen so that the kinetic energy term for χ is non-ghost like, which we will

impose below, then solutions where χ = ∂µχ = 0 are indeed possible. Note from (4.28)

that, in this case,

F (0) =
i

2

√
|c̄1|
c̄2

. (4.32)

Note that in order for F (0) to satisfy (4.21), then

F ∗(0)F (0) � 1 =⇒ c̄2 � |c̄1| . (4.33)
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Taking (4.30), and putting the constant F (0)-field (4.32) back into Lagrangian (4.19), we

find that LSUSY
F simplifies to

LSUSY
F = − c̄1

4φ4

+ c̄3

(
− 3

2φ4
(∂φ)2 +

3

2φ4
(∂χ)2

)
F (0)∗F (0)

+ c̄4

(
+

1

φ2
φ,µ� (φ,µ + χ,µ)− 3

φ4
(∂φ)4

)
F (0)∗F (0)

+ 3c̄4
1

φ4
(∂φ)2

(
F (0)∗F (0)

)2
. (4.34)

In deriving this expression, we have dropped all terms containing at least one power of

∂µF
(0), have kept the terms containing χ only where a) it would could contribute to the

lowest order χ kinetic energy term or b) is linear in χ and, hence, its variation does not

vanish in the χ equation of motion when one sets χ = ∂µχ = 0. Furthermore, we have

simplified the remaining expressions using integrating by parts, which we can do since

∂µF
(0) = 0. All other terms containing χ in LSUSY

F are quadratic in χ and would vanish in

both the φ and χ equations of motion and, hence, can be dropped from the Lagrangian.

The constraint (4.30) ensuring that the potential energy, for fixed φ, is minimized at

χ = 0 is not the only constraint that one might put on the coefficients c̄i. Depending on

the physical problem being analyzed, the coefficients of the two-derivative kinetic energy

terms for both φ and χ, which generically depend on c̄i and F (0), must be appropriately

chosen. Adding the first two terms of L̄SUSY
2 in (4.5) to the 1

φ4
(∂φ)2 and 1

φ4
(∂χ)2 terms in

LSUSY
F in (4.34) yields

− 1

2φ4
(∂φ)2

(
c̄2 + 3c̄3F

(0)∗F (0) − 6c̄4

(
F (0)∗F (0)

)2)
− 1

2φ4
(∂χ)2

(
c̄2 − 3c̄3F

(0)∗F (0)
)
. (4.35)

As discussed above, to obtain solutions of the χ equation of motion for which χ = ∂µχ = 0

requires that the χ kinetic energy be ghost free. It follows from the second term in (4.35)

that one must therefore impose

c̄2 − 3c̄3F
(0)∗F (0) > 0 . (4.36)

On the other hand, the sign and magnitude of the coefficient of the φ kinetic energy term

depends on the type of physics one is interested in. For example, if one wants the φ field

to develop a “ghost condensate”-one way in which the null energy condition (NEC) can

be violated-then it follows from the first term in (4.35) that the coefficients c̄i should be

chosen so that

c̄2 + 3c̄3F
(0)∗F (0) − 6c̄4

(
F (0)∗F (0)

)2
< 0 . (4.37)

However, it is well-known [7, 34] that Galileon Lagrangians can, for appropriate choices of

coefficients, violate the NEC without developing a ghost condensate. In such cases, one

can choose the coefficient of the φ kinetic energy to be positive.
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With this in mind, we now calculate the field F to first order in the derivative expansion.

Denoting

F ((0)+(1)) = F (0) + F (1) , (4.38)

where F (0) is computed from the zeroth order Lagrangian (4.22), the relevant part of LSUSY
F

then becomes

LSUSY((0)+(1))
F = c̄1

∂W

∂A
F ((0)+(1)) + c̄1

∂W ∗

∂A∗
F ∗((0)+(1)) + c̄2

1

φ4
F ∗((0)+(1))F ((0)+(1))

+ c̄3

(
− 1

φ3
�φ+

3

2φ4
(∂φ)2 +

3

2φ4
(∂χ)2

)
F ∗((0)+(1))F ((0)+(1))

+ c̄3
i

φ3
χ,µ

(
F ∗((0)+(1))∂µF ((0)+(1)) − F ((0)+(1))∂µF ∗((0)+(1))

)
. (4.39)

Now insert (4.38) into (4.39). Recalling that we are always choosing constraints (4.30)

and (4.36) so that χ = ∂µχ = 0, it follows that F (0) is given by the constant (4.32) and,

hence, ∂µF
(0) = 0. Dropping terms proportional to F ∗(1)F (1) (which are of second order

in the F expansion) and integrating the last term by parts using the fact that ∂µF
(0) = 0,

we find that

F (1) = − c̄3

c̄2
φ4F (0)

(
− 1

φ3
�φ+

3

2φ4
(∂φ)2 +

3

2φ4
(∂χ)2 + i

(
1

φ3
�χ− 3

1

φ4
∂µφ∂µχ

))
= − i

2

c̄3

c̄2

√
|c̄1|
c̄2

(
−φ�φ+

3

2
(∂φ)2 +

3

2
(∂χ)2 + i (φ�χ− 3∂µφ∂µχ)

)
. (4.40)

It follows that

F ((0)+(1)) = F (0)

(
1− c̄3

c̄2

(
−φ�φ+

3

2
(∂φ)2 +

3

2
(∂χ)2 + i (φ�χ− 3∂µφ∂µχ)

))
(4.41)

Clearly, the F (1) term in this expansion is small compared to the F (0) term, since we

are working in the limit where (∂)2 � 1. One can insert (4.41) back into the F -term

Lagrangian LSUSY
F in (4.19), as we did in the zeroth order case. However, as far as the

analysis in this paper is concerned, there is nothing to be gained from doing this-simply

more yet higher derivative terms. Hence, we will not do that here-contenting ourselves

with the zeroth order F -term Lagrangian given in (4.34).

It is clear, however, that one can consistently do a higher order expansion to completely

determine the perturbative solution for the F -field, up to and including terms arising in

L̄5. Here, we demonstrate this by computing the next order, F (2), in the (∂)2 expansion

of F . Denoting

F ((0)+(1)+(2)) = F (0) + F (1) + F (2) , (4.42)

where F (0) and F (1) are determined from (4.22) and (4.39) respectively, the relevant part

of LSUSY
F is given by the entire expression (4.19) with F replaced by F ((0)+(1)+(2)). Dif-

ferentiating this with respect to F ∗, where in terms involving ∂µF
∗ we use integration by

parts to remove a derivative, one arrives at the equation of motion for F ((0)+(1)+(2)). This

is solved for F (2) as follows. First recall that F (0) is given by (4.23). As discussed above,
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we will always choose constraints (4.30) and (4.36) so that χ = ∂µχ = 0. Hence, it follows

that F (0) is given by the constant (4.32) and, therefore, that ∂µF
(0) = 0. Second, recall

that the expression for F (1) is presented in (4.40). Insert (4.23), (4.32) and (4.40) into the

equation for F . Third, drop all terms in the F equation involving ∂n, n > 4. Finally, recall

that we have imposed (4.21) on the magnitude of the F field. Using this, it follows that

terms of the form, say, �φ |F (0)|2F (0) have the appropriate dimension whereas terms like

�φ |F (0)|2F (1) do not, even though this last term is proportional to ∂4. Putting everything

together, we find that

F (2) = F (0)−1(F (1))2 − 2c̄3

c̄2
φ∂µχ∂

µF (1)

+
c̄4

c̄2

(
φ2φ,µνφ

,µν + 3φ2χ,µνχ
,µν − φφ,µ∂µ

(
(∂φ)2 − (∂χ)2

)
− 2φχ,µχ

,µνφ,ν

− φ2φ,µ�
(
φ,µ + χ,µ

)
+ φ

(
(∂φ)2 + (∂χ)2

)
�φ

)
F (0)

− c̄4

c̄2

(
φ�φ+ 3(∂φ)2

)
|F (0)|2F (0) . (4.43)

There is one important caveat in arriving at (4.43). The expression for F (2) actually, in

addition to the above, contains a term which is φ4 times a total derivative. When inserted

back into the Lagrangian, this would be higher order in all terms proportional to c̄3 and c̄4

and, hence, can be ignored. However, it would have to be included in the terms proportional

to c̄1 and c̄2. However, inserting it into these terms, integrating by parts and recalling that

we will always solve the equations of motion so that χ = ∂µχ = 0, it follows that these

contributions exactly vanish. Hence, we have dropped this total derivative term from the

expression (4.43) for F (2).

5 Extension of conformal Galileons to N = 1 supergravity

In the previous section, we extended the flat space conformal Galileons of a single real

scalar field to N = 1 supersymmetry. We now further generalize these results by extending

them to curved N = 1 superspace and, hence, to N = 1 supergravity. This is accomplished

by using, and then greatly expanding upon, results on higher-derivative supergravitation

first presented in [35, 37–39]. Throughout this section we use results from, and follow the

notation of, the book “Supersymmetry and Supergravity” by Bagger and Wess [40].7

We begin with a purely chiral superfield Φ(x, θ, θ̄) in flat superspace. By definition,

this satisfies the constraint D̄α̇Φ = 0, where D̄ is the flat superspace differential operator.

Note that one can generically construct a Lagrangian that is invariant under global N = 1

supersymmetry by integrating this chiral superfield, or any chiral function F (Φ) of multiple

7However, our index labelling convention differs from [40] in the following way. Tangent space bosonic

and spinor indices are chosen from the start of the Latin and Greek alphabet respectively —- e.g. a, b and

α, α̇. Spacetime bosonic indices are taken from the middle of the Greek alphabet–e.g. µ, ν. We will not

deal with spacetime spinor indices in this section.
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chiral superfields-such as the superpotential W -over half of superspace. That is,

L =

∫
d2θF (Φi(x, θ, θ̄)) + h.c. , (5.1)

where we have made the Lagrangian manifestly real by adding the hermitian conjugate.

For a more general function of both chiral and anti-chiral superfields, O(Φ,Φ†), one can

continue to get an N = 1 supersymmetric invariant Lagrangian by first applying the chiral

projector −1
4D̄

2 to the function-hence turning it into a chiral superfield-before integrating

over half of superspace,

L = −1

4

∫
d2θD̄2O(Φ,Φ†) + h.c. . (5.2)

We now use similar methods to construct a Lagrangian that is invariant under local

N = 1 supersymmetry; that is, N = 1 supergravity. To do this, one replaces the measure

d2θ with d2Θ2E , where the Θα are the covariant theta variables defined in [40], and E is a

chiral density whose lowest component is the determinant of the vierbein e a
µ . A function

of purely chiral superfields then yields the invariant Lagrangian

L =

∫
d2Θ2EF (Φ) + h.c. . (5.3)

Once again, we can integrate over a more general function O(Φ,Φ†) by using the chiral

projector. To do this, one must first replace the flat-space differential operator D̄2 by the

covariant operator D̄2. However, it turn out that this, by itself, is insufficient. One must

also introduce a new term proportional to the chiral superfield R, which contains the Ricci

scalar R in the highest component of its Θ expansion. Note that this quantity should not

be confused with the AdS5 radius of curvature, also denoted by R, which will not appear

explicitly in our supergravity expressions. The chiral projector in curved superspace is

then given by −1
4(D̄2 − 8R), and equation (5.2) has as its supergravity analogue

L = −1

4

∫
d2Θ2E(D̄2 − 8R)O(Φ,Φ†) + h.c. . (5.4)

5.1 The N=1 supergravity Galileons

We are now ready to give the N = 1 supergravity extension of the first three conformal

Galileons. They are

L̄1 =

∫
d2Θ2EW (Φ) + h.c. , (5.5)

L̄2 = M2
P

∫
d2Θ2E

[
− 3

8
(D2 − 8R)e−K(Φ,Φ†)/3M2

P

]
+ h.c. , (5.6)

L̄3 =
1

8
L̄3,I −

3

4
L̄3,II , (5.7)
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where

K(Φ,Φ†) =
2

3

M4

(Φ + Φ†)2
, (5.8)

L̄3, I = −1

4

∫
d2Θ2E(D2 − 8R)

[
(Φ + Φ†)−3DΦDΦD2Φ†

]
+ h.c. , (5.9)

L̄3, II = −1

8

∫
d2Θ2E(D2 − 8R)

[
(Φ + Φ†)−4DΦDΦDΦ†DΦ†

]
+ h.c. . (5.10)

Note that we have now restored canonical dimensions to the chiral superfields with respect

to the mass scaleM = 1/R of the AdS5 bulk space. Specifically, A has mass dimension 1, F

has dimension 2, and the superpotential W has dimension 3. In addition to the AdS5 scale

M, we have introduced the gravitational reduced Planck mass in four dimensions, denoted

by M2
P = 1/(8πGN ). All fields in the N = 1 gravity supermultiplet, that is, the vielbein

eaµ, the gravitino ψαµ and the auxiliary fields bµ and M also have their mass dimensions

specified with respect to M. These are of dimension 0, 3/2, 1 and 1 respectively. At the

end of this section, we will demonstrate how, for momenta much smaller than MP , one can

return to the conventions of the previous section. We also note that the expression given

in (5.9) and (5.10) have previously been evaluated in [12] - see also [43]. Finally, recall that

the metric gµν = eaµeνa and is dimensionless.

In component fields, we find

1

e
L̄1 = −WM∗ −W ∗M +

∂W

∂A
F +

∂W ∗

∂A∗
F ∗ , (5.11)

1

e
L̄2 = M2

P e
− 1

3
K

M2
P

(
−1

2
R− 1

3
MM∗ +

1

3
bµbµ

)
+ 3M2

P

∂2e
− 1

3
K

M2
P

∂A∂A∗
(∂A · ∂A− FF ∗)

+ iM2
P b

µ

∂µA∂e−
1
3
K

M2
P

∂A
− ∂µA∗

∂e
− 1

3
K

M2
P

∂A∗

 (5.12)

+M2
P

MF
∂e
− 1

3
K

M2
P

∂A
+M∗F ∗

∂e
− 1

3
K

M2
P

∂A∗

 ,

1

e
L̄3 =

1

(A+A∗)3

[
(∂A)2

(
2gµνDµ∂νA∗ +

4

3
ibµ∂µA

∗ − 2

3
F ∗M∗

)
+ (∂A∗)2

(
2gµνDµ∂νA−

4

3
ibµ∂µA−

2

3
FM

)
− 2F 2F ∗M − 2F ∗2FM∗ + 4F ∗(∂F · ∂A) + 4F (∂F ∗ · ∂A∗) (5.13)

+
1

3
iFF ∗bµ(∂µA− ∂µA∗)

]
− 6

(A+A∗)4

[
2(∂A)2(∂A∗)2 + 8 (∂A · ∂A∗)FF ∗ +

(
(∂A)2 + (∂A∗)2

)
FF ∗

]
,

where e on the left-hand side of these expressions is the determinant of the vierbein e a
µ -not

to be confused with Euler’s constant e which will always appear raised to some exponent.

As in the preceding sections, we have continued to omit any terms containing the fermion
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ψ of the chiral superfield. In addition, we also omit all interactions involving the gravitino

ψ α
µ . However, we carefully analyze all terms containing the auxiliary fields; that is, F

which arises from the chiral superfield Φ and two new auxiliary fields. These are bµ, a

four-vector, and M , a complex scalar. These supergravity auxiliary fields arise in the Θ

expansions of E and R. Details on how one arrives at the expressions in (5.11), (5.12)

and (5.13) from equations (5.5) to (5.10) are given in the appendices. Note that each of

the above Lagrangians has mass dimension 4.

We can once again write out the total Lagrangian8 as the sum of the individual terms

given above,

L̄ = c̄1L̄1 + c̄2L̄2 + c̄3L̄3 , (5.14)

where the c̄i’s are now dimensionless constants. In order to restore the non-linear sigma

model kinetic term in (5.6), we perform the following Weyl rescaling

e a
µ → e a

µ e
1
6
K

M2
P . (5.15)

This induces the following transformations:

e→ e e
2
3
K

M2
P , gµν → gµνe

1
3
K

M2
P ,

Γλµν → Γλµν +
1

6M2
P

[
∂K

∂A

(
δλ(ν∂µ)A+ gµν∂

λA
)

+ hc.

]
. (5.16)

For example, using (5.16), we find that the gµνDµ∂νA term in Lagrangian (5.13) trans-

forms as

gµνDµ∂νA→ e
− 1

3
K

M2
P gµνDµ∂νA+ 2e

− 1
2
K

M2
P ∂µe

1
6
K

M2
P ∂νA . (5.17)

We will denote the rescaled Lagrangian as L̄′, but continue to write the rescaled metric

and vierbein as gµν and e a
µ respectively. The Weyl rescaling restores the canonical Ricci

scalar term −1
2eM

2
PR, but also introduces a total derivative term which depends on the

rescaling factor. However, since this total divergence is inside of an integral in the action,

we will drop it henceforth.

We now integrate out the auxiliary fields of supergravity. We begin by first isolating

the terms in the rescaled Lagrangian containing bµ. These are

1

e
L̄′b =

1

3
c̄2M

2
P b

µbµ + c̄2M
2
P b

µjµ + c̄3b
µhµ , (5.18)

where

jµ = − i

3M2
P

(
∂K

∂A
∂µA−

∂K

∂A∗
∂µA

∗
)
, (5.19)

hµ =
i

3 (A+A∗)3

(
4∂µA

∗ (∂A)2 + e
1
3
K

M2
P ∂µAFF

∗ − 4∂µA (∂A∗)2 − e
1
3
K

M2
P ∂µA

∗FF ∗
)
.

8This time limited to L̄i, i = 1, 2, 3 only.
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Here, we have taken care to distinguish the “usual” two-derivative terms from L̄2 (collected

in jµ) from the higher derivative terms (denoted by hµ) arising from L̄3. Solving the

equation of motion for bµ gives us

bµ = −3

2

(
jµ +

1

M2
P

c̄3

c̄2
hµ

)
. (5.20)

Inserting this result back into Lagrangian (5.18), we find

1

e
L̄′b = −1

3
c̄2M

2
P b

µbµ

= −3

4
c̄2M

2
P

(
jµjµ +

c̄3

c̄2

2

M2
P

jµhµ +
c̄2

3

c̄2
2

1

M4
P

hµhµ

)
. (5.21)

We now turn to the auxiliary field M , whose Lagrangian, after Weyl rescaling, is found

to be

1

e
L̄′M = −c̄1e

2
3
K

M2
P

(
WM∗ +W ∗M

)
− 1

3
c̄2e

1
3
K

M2
P MF

∂K

∂A
− 1

3
c̄2e

1
3
K

M2
P M∗F ∗

∂K

∂A∗
− 1

3
c̄2M

2
P e

1
3
K

M2
P MM∗

− c̄3
1

(A+A∗)3

(
2

3
e

1
3
K

M2
P (∂A)2F ∗M∗ + 2e

2
3
K

M2
P F 2F ∗M

+
2

3
e

1
3
K

M2
P (∂A∗)2FM + 2e

2
3
K

M2
P (F ∗)2FM∗

)
. (5.22)

As in ordinary supergravity, we eliminate M and M∗ by first re-writing the Lagrangian in

terms of N = M + 1
M2
P

∂K
∂A∗F

∗ and its complex conjugate N∗ = M∗+ 1
M2
P

∂K
∂AF . This allows

one to express

L̄′M = L̄′N + L̄′NF , (5.23)

where L̄′NF contains terms that depend on F, F ∗ only. We find that

1

e
L̄′N = −1

3
c̄2M

2
P e

1
3
K

M2
P NN∗ +NX∗ +N∗X , (5.24)

1

e
L̄′NF = c̄1e

2
3
K

M2
P

(
1

M2
P

∂K

∂A
WF +

1

M2
P

∂K

∂A∗
W ∗F ∗

)
+ c̄2

1

3M2
P

e
1
3
K

M2
P
∂K

∂A

∂K

∂A∗
FF ∗

+ c̄3
1

(A+A∗)3

1

M2
P

[
2

3
e

1
3
K

M2
P
∂K

∂A
(∂A)2 FF ∗ + 2e

2
3
K

M2
P
∂K

∂A∗
(FF ∗)2

+
2

3
e

1
3
K

M2
P
∂K

∂A∗
(∂A∗)2 FF ∗ + 2e

2
3
K

M2
P
∂K

∂A
(FF ∗)2

]
, (5.25)

where

X = −c̄1e
2
3
K

M2
P W − c̄3

1

(A+A∗)3

[
2

3
e

1
3
K

M2
P (∂A)2F ∗ + 2e

2
3
K

M2
P (F ∗)2F

]
. (5.26)

The equation of motion for N is straightforward to solve. The solution is

N =
1

c̄2

3

M2
P

e
− 1

3
K

M2
P X . (5.27)
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Substituting this result into (5.24), we find

1

e
L̄′N =

1

3
c̄2M

2
P e
− 1

3
K

M2
P NN∗

=
3

M2
P

[
c̄ 2

1

c̄2
e
K

M2
P WW ∗

+
c̄1c̄3

c̄2

1

(A+A∗)3

(
2

3
e

2
3
K

M2
P

[
(∂A∗)2FW + (∂A)2F ∗W ∗

]
+ 2e

K

M2
P

[
F 2F ∗W + (F ∗)2FW ∗

])
+
c̄ 2

3

c̄2

1

(A+A∗)6

(
4

9
e

1
3
K

M2
P (∂A)2(∂A∗)2F ∗F

+
4

3
e

2
3
K

M2
P

[
(∂A)2 + (∂A∗)2

]
(F ∗F )2 + 4e

K

M2
P (F ∗F )3

)]
(5.28)

Combining L̄′b , L̄′N and L̄′NF with the remaining terms in L̄′, we arrive at the complete

Lagrangian. It is given by

1

e
L̄′= c̄1e

2
3

K

M2
P

(
∂W

∂A
F+

∂W ∗

∂A∗
F ∗+

1

M2
P

∂K

∂A
WF+

1

M2
P

∂K

∂A∗
W ∗F ∗

)
+
c̄2
1

c̄2

3

M2
P

e
K

M2
P WW ∗ (5.29)

−c̄2
M2
P

2
R−c̄2

∂2K

∂A∂A∗
∂A·∂A∗+c̄2e

1
3

K

M2
P

∂2K

∂A∂A∗
FF ∗

− 3

4
M2
P e

2
3

K

M2
P

(
c̄3
c̄2

2

M2
P

jµhµ+
c̄2
3

c̄2
2

1

M4
P

hµhµ

)
+c̄3

1

(A+A∗)
3

(
(∂A)

2

(
2gµνDµ∂νA∗+

1

3M2
P

(
∂K

∂A
∂A·∂A∗+ ∂K

∂A
(∂A∗)

2

))
+(∂A∗)

2

(
2gµνDµ∂νA+

1

3M2
P

(
∂K

∂A
(∂A)2+

∂K

∂A
∂A∗ ·∂A

))
+4e

1
3

K

M2
P F ∗(∂F ·∂A)+4e

1
3

K

M2
P F (∂F ∗ ·∂A∗)

)
−c̄3

6

(A+A∗)
4

(
2(∂A)

2
(∂A∗)

2
+8e

1
3

K

M2
P (∂A·∂A∗)FF ∗+e

1
3

K

M2
P

(
(∂A)

2
+(∂A∗)

2
)
FF ∗

)
+
c̄1c̄3
c̄2

1

(A+A∗)
3

3

M2
P

(
2

3
e

2
3

K

M2
P

[
(∂A∗)

2
FW+(∂A)

2
F ∗W ∗

]
+2e

K

M2
P

[
F 2F ∗W+(F ∗)

2
FW ∗

])
+
c̄2
3

c̄2

1

(A+A∗)
6

3

M2
P

(
4

9
e

1
3

K

M2
P (∂A)

2
(∂A∗)

2
F ∗F+

4

3
e

2
3

K

M2
P

[
(∂A)

2
+(∂A∗)

2
]

(F ∗F )
2
+4e

K

M2
P (F ∗F )

3

)
+c̄3

1

(A+A∗)
3

1

M2
P

(
2

3
e

1
3

K

M2
P

(
∂K

∂A
(∂A)

2
+
∂K

∂A∗
(∂A∗)

2

)
F ∗F+2e

2
3

K

M2
P

(
∂K

∂A
+
∂K

∂A∗

)
(F ∗F )

2

)
,

where

jµhµ =
1

(A+A∗)3

1

9M2
P

[
4
∂K

∂A
(∂A·∂A∗)(∂A)2−4

∂K

∂A
(∂A)2(∂A∗)2

−4
∂K

∂A∗
(∂A∗)2(∂A)2+4

∂K

∂A∗
(∂A·∂A∗)(∂A∗)2

+e
1
3
K

M2
P
∂K

∂A
(∂A)2FF ∗−e

1
3
K

M2
P
∂K

∂A
(∂A·∂A∗)FF ∗

−e
1
3
K

M2
P
∂K

∂A∗
(∂A∗ ·∂A)FF ∗+e

1
3
K

M2
P
∂K

∂A∗
(∂A∗)2FF ∗

]
, (5.30)
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hµhµ =
−1

9(A+A∗)6

[
16(∂A∗)2(∂A)4−32∂A·∂A∗(∂A)2(∂A∗)2+16(∂A)2(∂A∗)4

+16e
1
3
K

M2
P (∂A∗ ·∂A)(∂A)2FF ∗−16e

1
3
K

M2
P (∂A∗)2(∂A)2FF ∗ (5.31)

+e
2
3
K

M2
P (∂A)2(FF ∗)2−2e

2
3
K

M2
P ∂A·∂A∗(FF ∗)2+e

2
3
K

M2
P (∂A∗)2(FF ∗)2

]
,

and

K = K(A,A∗) =
2

3

M4

(A+A∗)2
. (5.32)

We want to emphasize that the final result (5.29) is exact, and has not used the ∂2, F � 1

limit employed in the previous section.

As an important check on our supergravitational expression for L̄′ in (5.29), let us take

the flat superspace limit. To do this, we let M2
P →∞ and gµν → ηµν , e→ 1. We find that

L̄′= c̄1

(
∂W

∂A
F+

∂W ∗

∂A∗
F ∗
)
−c̄2

∂2K

∂A∂A∗
∂A·∂A∗+c̄2

∂2K

∂A∂A∗
FF ∗

+c̄3
1

(A+A∗)3

[
2(∂A)2�A∗+2(∂A∗)2�A+4F ∗(∂F ·∂A)+4F (∂F ∗ ·∂A∗)

]
−c̄3

6

(A+A∗)4

[
2(∂A)2(∂A∗)2+8(∂A·∂A∗)FF ∗+

(
(∂A)2+(∂A∗)2

)
FF ∗

]
. (5.33)

After the following integration by parts,

2

(A+A∗)3

(
F ∗∂F ·∂A+F∂F ∗ ·∂A∗

)
=− 2

(A+A∗)3

(
F ∗F�(A+A∗)+F∂F ∗∂A+F ∗∂F∂A∗

)
+

6

(A+A∗)4

(
(∂A)2+(∂A∗)2+∂A·∂A∗

)
F ∗F , (5.34)

equation (5.33) is the sum of the flat superspace conformal Galileons of the previous section-

now, however, written in terms of A = 1√
2
(φ + iχ) and expressed in the canonical mass

scale conventions defined near the beginning of this section. To return to the field normal-

ization conventions used in the previous section of the paper, we implement the following

procedure. We use the mass scaleM to set A→MA, F →MF , W →M3W and restore

the dimensions in the constants by letting c̄i → c̄i/M4. For example,

−c̄2
4M4

(A+A∗)4
∂A·∂A∗→− c̄2

M4

4M4

M4(A+A∗)4
M2∂A·∂A∗=−c̄2

4

(A+A∗)4

(
∂A

M

)
·
(
∂A∗

M

)
,

(5.35)

where A is now dimensionless while c̄2 has dimension 4. Similarly, one finds

c̄1
∂W

∂A
F → c̄1

M4

M3∂W

M∂A
MF = c̄1

∂W

∂A

F

M
(5.36)

c̄3
1

(A+A∗)3
2(∂A)2�A∗→ c̄3

M4

1

M3(A+A∗)3
2M3(∂A)2�A∗= c̄3

1

(A+A∗)3
2

(
∂A

M

)2�A∗

M2
,

where W has mass dimension 0, F has dimension 1, and c̄1, c̄3 have dimension 4. Contin-

uing this procedure and again setting M = 1, the flat superspace limit of (5.29) yields,
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as expected,

L̄′ = c̄1

(
∂W

∂A
F +

∂W ∗

∂A∗
F ∗
)

+ c̄2

(
− ∂2K

∂A∂A∗
∂A · ∂A∗ +

∂2K

∂A∂A∗
FF ∗

)
+ c̄3

[
1

(A+A∗)3

[
2
(
∂A
)2
�A∗ + 2

(
∂A∗

)2
�A− 2F ∗F�(A+A∗)

+ 2F ∗∂F · ∂(A−A∗)− 2F∂F ∗ · ∂(A−A∗)
]

− 6

(A+A∗)4

[
2(∂A)2(∂A∗)2 + 6(∂A · ∂A∗)FF ∗

]]
. (5.37)

This is precisely the sum of the dimensionless flat superspace conformal Galileons defined

in equations (4.17), (4.7), and (4.11) written in terms of A = 1√
2
(φ+ iχ).

5.2 The low momentum, curved spacetime limit

As mentioned above, expression (5.29) is exact and is valid for any momentum or magnitude

of F . However, one important application of (5.29) is in a cosmological context where 1)

M�MP , 2) although spacetime can be curved and dynamical, its curvature R �M2
P and

3) the momentum and auxiliary field F of chiral matter also satisfy ∂2, F �M2
P . Be this as

it may, 4) it is not necessary for ∂2 or F to be smaller thanM2. In this “cosmological” limit,

the expression (5.29) greatly simplifies. Neglecting all terms-with the notable exception of
M2
P

2 R-that depend explicitly on MP , the action associated with (5.29) becomes

S =

∫ √
−detg L̄′cosmo (5.38)

where

L̄′cosmo =−c̄2
M2
P

2
R+c̄1

(
∂W

∂A
F+

∂W ∗

∂A∗
F ∗
)

+c̄2

(
− ∂2K

∂A∂A∗
∇A·∇A∗+ ∂2K

∂A∂A∗
FF ∗

)
+c̄3

[
1

(A+A∗)3

[
2
(
∇A

)2∇2A∗+2
(
∇A∗

)2∇2A−2F ∗F∇2(A+A∗)

+2F ∗∇F ·∇(A−A∗)−2F∇F ∗ ·∇(A−A∗)
]

− 6

(A+A∗)4

[
2(∇A)2(∇A∗)2+6(∇A·∇A∗)FF ∗

]]
. (5.39)

All indices in this expression are contracted with respect to a curved spacetime metric gµν
and ∇ is the associated covariant derivative.

5.3 Low momentum, curved spacetime limit-including L̄SUSY
4

Similarly to the above discussion of L̄SUGRA3 , we have also carried out a complete calculation

of the supergravity Lagrangian L̄SUGRA4 . This is a complicated and detailed analysis and

will be presented elsewhere. However, the results of that calculation that concern the low-

energy “cosmological” limit defined above are relatively straightforward. We find that, as

for L̄SUGRA3 , in this limit all terms in the expression (4.16) contribute to the low-energy

curved superspce Lagrangian –however, with the modification that one replaces the flat
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metric ηµν with the curved spacetime metric gµν and each derivative with the covariant

derivative with respect to gµν . It follows that to (5.39) one must add the term

c̄4

[
1

(A+A∗)2

[
2∇µ(∇A)2∇µ(∇A∗)2−4|∇A|2|∇F |2+12|F |2|∇F |2

+

((
2∇µF∇2A+∇µ(∇A·∇F )

)
F ∗+

(
2∇µF ∗∇2A∗+∇µ(∇A∗ ·∇F ∗)

)
F

)
∇µ(A+A∗)

+
(
−6∇µ∇νA∇µ∇νA∗+∇µ∇νA∇µ∇νA+∇µ∇νA∗∇µ∇νA∗

)
|F |2

−∇µ((∇A)2)∇µFF ∗−∇µ((∇A∗)2)∇µF ∗F

−3
(
∇νA∇ν∇µA∗(∇µF )F ∗+∇νA∗∇ν∇µAF∇µF ∗

)
−∇µ∇νA∇νA∇µFF ∗−∇µ∇νA∗∇νA∗∇µF ∗F (5.40)

+

((
∇νF ∗∇ν∇µAF+∇νF ∗∇νA∇µF

)
+
(
∇νF∇ν∇µA∗F ∗+∇νF∇νA∗∇µF ∗

)
−∇µ(∇A)2∇2A∗−∇µ(∇A∗)2∇2A

)
∇µ(A+A∗)

]
+

2

(A+A∗)3

[((
∇µ(∇A)2+∇µ(∇A∗)2−2∇µFF ∗−2∇µF ∗F

)
|F |2

−(∇ν∇µAF+∇νA∇µF )F ∗+(∇ν∇µA∗F ∗+∇νA∗∇µF ∗)F
)
∇ν(A−A∗)∇µ(A+A∗)

+

(
(∇A)2(∇A∗)2−2(∇A·∇A∗)|F |2+|F |4

)
∇2(A+A∗)

]]
However, unlike the case of L̄SUGRA3 , there are several other terms involving the curva-

ture tensor that also enter the “cosmological” limit of L̄SUGRA4 . The origin of these terms

is less straightforward and, in this paper, we will simply state the results. We find that in,

addition to (5.40), one needs to add the terms

c̄4

[
1

128(A+A∗)2

(
34R∇µ(A+A∗)∇µ(A+A∗)−9Rµν∇µ(A+A∗)∇ν(A+A∗)

)
|F |2

]
(5.41)

to L̄′cosmo in (5.39). R and Rµν are the spacetime curvature scalar and Ricci tensor respec-

tively. Note that all contractions in (5.40) and (5.41) are with respect to the curved metric

gµν . Here, we will simply point out that these new terms arise from commuting certain

derivatives in the supergravity extension of L̄SUSY
4, 2nd term in (4.13).

Finally, we note that various powers of F and ∂F occur in L̄′cosmo given as the sum

of (5.39), (5.40) and (5.41). The field F can be replaced by F = F (0) + F (1) + F (2) in

the terms proportional to c̄1, c̄2, by F = F (0) + F (1) in the c̄3 terms and by F (0) in the

terms proportional to c̄4. The expressions for F (0), F (1) and F (2) are given in (4.32), (4.40)

and (4.43) respectively.
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A constructing higher-derivative SUGRA Lagrangians

We give a brief explanation of how the supergravity Lagrangians in (5.5)–(5.10), which are

written in terms of superfields, can be expressed in component fields. The formalism used

here is based on work presented in [35, 37–39] and [40]. Recall that a chiral superfield Φ

has the following Θ expansion

Φ = A+
√

2Θψ + ΘΘF . (A.1)

The components of Φ can be obtained by acting with D and then taking the lowest com-

ponent, which we denote by “
∣∣”. For example,

F = −1

4
D2Φ

∣∣, (A.2)

is the Θ2 component of Φ.

Within the context of N = 1 supergravity, we are interested in constructing invariant

superfield Lagrangians. This can be accomplished as follows. An integral over chiral

superspace,
∫
d2Θ EX, requires the integrand X to be a chiral superfield. Multiplication by

the chiral density E means that under local supersymmetry, the entire integral transforms

into a total space derivative. The product EX continues to be chiral and has an exact

expansion in the local superspace coordinate Θα. As explained above, we can construct a

chiral superfield X out of any Lorentz scalar O by acting on it with the chiral projector

D2− 8R. The integral
∫
d2ΘEX then projects out the Θ2 component of EX. However, we

have seen in (A.2) that the Θ2 component of a chiral superfield can be obtained by first

acting with −1
4D

2 and then taking the lowest component. Choosing X = (D2 − 8R)O, it

follows that ∫
d2Θ E(D2 − 8R)O = −1

4
D2
(
E(D2 − 8R)O

)∣∣ .
(A.3)

Under the assumption that we ignore all fermions, including the gravitino, this can be

written as∫
d2Θ E(D2 − 8R)O = −1

4
E
∣∣ D2

(
(D2 − 8R)O

) ∣∣− 1

4
D2E

∣∣ ((D2 − 8R)O
)∣∣

= −1

4
E
∣∣ D2

(
(D2 − 8R)O

)∣∣+ E
∣∣
Θ2 (D2 − 8R)O

)∣∣ , (A.4)
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where

R = −1

6
M + Θ2

(
1

12
R− 1

9
MM∗ − 1

18
bµbµ +

1

6
ie µ
a Dµba

)
E =

1

2
e− 1

2
Θ2eM∗ (A.5)

It follows that one can compute the component field expansion of a supergravity Lagrangian

by evaluating the following terms,

D2D2O
∣∣ ,−8D2(RO)

∣∣ ,D2O
∣∣ ,−8RO

∣∣ . (A.6)

As an example, consider the first term (5.9) in the curved superspace L̄3 conformal

Galileon. It was constructed using the formalism just described. That is, one begins with

the higher-derivative superfield expression

OI = (Φ + Φ†)−3DΦDΦD2Φ† . (A.7)

Then, the associated Lagrangian is obtained by the appropriate chiral projection and su-

perspace integration. For OI, which is not hermitian, one writes

L̄3,I = −1

4

∫
d2Θ 2E(D2 − 8R)OI + h.c. (A.8)

Having obtained the superfield expression for the L̄3,I Lagrangian, we now apply the pre-

ceding formalism to express it in terms of component fields. It follows from the above that

one must evaluate the four lowest component terms in (A.6). To exhibit our methods, let

us compute D2O
∣∣.

D2
(
(Φ + Φ†)−3DΦDΦD2Φ†

)∣∣ = D2
(
(Φ + Φ†)−3

)∣∣ DΦDΦD2Φ†
∣∣

+ 2Dα
(
(Φ + Φ†)−3

)∣∣ Dα(DΦDΦD2Φ†
)∣∣

+ (Φ + Φ†)−3
∣∣ D2

(
DΦDΦD2Φ†

)∣∣ . (A.9)

We calculate these terms by distributing the Dα and Dα̇ operators appropriately, and

commuting them until we are able to apply the defining expressions for chiral and anti-

chiral fields

Dα̇Φ = 0 , DαΦ† = 0 . (A.10)

Many terms that arise in the intermediate stages of the calculation involve fermions. For

example, expressions which contain DαΦ
∣∣ =
√

2ψα are fermionic. In keeping with the thesis

of this paper, all such terms will be dropped. However, the essential difficulty involved in

the computation is the presence of curvature and torsion in supergravity. Hence, anti-

commutators of the D,D operators now give rise to terms which would not have been

present in the global supersymmetric case. Explicitly, we have(
DCDB − (−)bcDBDC

)
V A = (−)d(c+b)V DR A

CBD − T D
CB DDV A

=
(
V eR A

CBe + (−)(c+b)V δR A
CBδ + (−)(c+b)Vδ̇R

δ̇A
CB

)
−
(
T e
CBDeV A + T δ

CBDδV A + TCBδ̇D
δ̇V A

)
, (A.11)
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where the A,B,C,D indices can be a, α, α̇, and the exponents b, c, d take the values 0 or

1 when the indices B,C,D are bosonic or fermionic respectively. R A
CBD and T D

CB are

superfields which respectively contain components of the curvature and torsion. For N = 1

supergravity, these superfields and their component expansions are given, for example,

in [40], chapter 15.

Using these results, we determine that the first two terms in (A.9) are fermionic and,

hence, are taken to vanish. The third term is given by

(Φ + Φ†)−3
∣∣ D2

(
DΦDΦD2Φ†

)∣∣ = (A+A∗)−3 D2
(
DΦDΦD2Φ†

)∣∣ . (A.12)

We compute the lowest component term on the right-hand-side as follows.

D2
(
DΦDΦD2Φ†

)∣∣ = εβ̇α̇Dβ̇Dα̇(DΦDΦD2Φ†)
∣∣

=
(
Dα̇DΦ

∣∣ Dβ̇DΦ
∣∣ D2Φ†

∣∣ −Dβ̇DΦ
∣∣ Dα̇DΦ

∣∣ D2Φ†
∣∣ )

= εβ̇α̇εβα
(
Dα̇DαΦ

∣∣ Dβ̇DβΦ
∣∣ −Dβ̇DαΦ

∣∣ Dα̇DβΦ
∣∣ )D2Φ†

∣∣
= εβ̇α̇εβα

(
(−2iσaαα̇e

µ
a ∂µA)(−2iσb

ββ̇
e ν
b ∂νA)

− (−2iσa
αβ̇
e µ
a ∂µA)(−2iσbβα̇e

ν
b ∂νA)

)
(−4F ∗)

= 16εβ̇α̇εβα
(
σaαα̇σ

b
ββ̇
− σa

αβ̇
σbβα̇

)
e µ
a e

ν
b ∂µA∂νAF

∗

= 16
(
σaβ̇βσb

ββ̇
+ σaα̇βσbβα̇

)
e µ
a e

ν
b ∂µA∂νAF

∗

= 16
(
−2ηab − 2ηab

)
e µ
a e

ν
b ∂µA∂νAF

∗

= −64 (∂A)2 F ∗

Putting this back into (A.12) and then inserting in (A.9) yields

D2
(
(Φ + Φ†)−3DΦDΦD2Φ†

)∣∣ = −64
1

(A+A∗)3
(∂A)2 F ∗ . (A.13)

The remaining three terms in (A.6) can be evaluated using similar methods. Putting these

four component field terms together, and eliminating the bµ and M auxiliary fields of

supergravity , yields the L̄3,I contribution to (5.13).

B Useful supergravity identities

Here we present a non-exhaustive list of identities necessary for the computations described

in appendix A and used throughout the paper.
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The purely superfield results of interest are

DαDβDγΦ =
1

3
({Dα,Dβ}Dγ−{Dα,Dγ}Dβ)Φ (B.1)

DαDβ̇Dγ̇Φ†=Dε̇Φ†R ε̇
αβ̇ γ̇
−2iσe

αβ̇
DeDγ̇Φ†−2iσeαγ̇

(
T a
β̇e
DaΦ†+T ε

β̇e
DεΦ†+Dε̇Φ†T ε̇

β̇e

)
(B.2)

DαDβDα̇DφΦ =DαDβ{Dα̇,Dφ}Φ (B.3)

DαDα̇Dβ̇DφΦ = 2iσa
φβ̇
Dα
(
T ε
α̇a DεΦ

)
(B.4)

DαDα̇Dγ̇Dδ̇Φ
†= {Dα,Dα̇}Dγ̇Dδ̇Φ

†−Dα̇{Dα,Dγ̇}Dδ̇Φ
†+Dα̇Dγ̇{Dα,Dδ̇}Φ

† . (B.5)

When calculating the lowest component of a superfield expression-indicated by “
∣∣ ”-we

drop all fermions and present the purely bosonic result. The lowest component expressions

for the relevant superfields are given by

DαΦ
∣∣ = 0 ,Dα̇Φ†

∣∣ = 0 (B.6)

DαDβΦ
∣∣ = −2εαβF, D2Φ

∣∣ = −4F (B.7)

Dα̇Dβ̇Φ†
∣∣ = 2εα̇β̇F

∗, D2Φ†
∣∣ = −4F ∗ (B.8)

Dα̇DαΦ
∣∣ = −T a

αα̇ DaΦ
∣∣ = −2iσaαα̇e

µ
a ∂µA (B.9)

DαDα̇Φ†
∣∣ = −2iσaαα̇e

µ
a ∂µA

∗ (B.10)

DαDα̇Dβ̇Φ†
∣∣ = 0 (B.11)

D2D2Φ†
∣∣ = 16e µ

a DµD̂aA∗ +
32

3
ibaD̂aA∗ +

32

3
M∗F ∗ (B.12)

D2D2Φ†
∣∣ = εα̇β̇εγ̇δ̇Dα̇Dβ̇Dγ̇Dδ̇Φ

†∣∣ =
16

3
F ∗M (B.13)

DαDβDα̇DφΦ
∣∣ = −2iσaφα̇

(
− T ε

βa

∣∣DαDεΦ∣∣+DaDαDβΦ
∣∣)

= 8iσaφα̇e
µ
a ∂µF −

2

3
Fσaφα̇ba (B.14)

DαDα̇Dβ̇DφΦ
∣∣ =

2

3
MFσa

φβ̇
σaαα̇ (B.15)

Additionally, we find that

D2D2
(
DΦDΦD2Φ†

)∣∣ = −2Dβ̇DΦ
∣∣ Dβ̇DΦ

∣∣ D2D2Φ†
∣∣

− 4Dβ̇DΦ
∣∣ DαDΦ

∣∣ DαDβ̇Φ†
∣∣

+ 4DβDΦ
∣∣ Dα̇DΦ

∣∣ DβDα̇D2Φ†
∣∣

− 2DβDΦ
∣∣ DβDΦ

∣∣ D2D2Φ†
∣∣

− 2D2Dα̇DΦ
∣∣ Dα̇DΦ

∣∣ D2Φ†
∣∣

− 2Dα̇DΦ
∣∣ D2Dα̇DΦ

∣∣ D2Φ†
∣∣ (B.16)
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and

D2D2
(
DΦDΦDΦ†DΦ†)

∣∣ = 4Dβ̇DΦ
∣∣ Dβ̇DΦ

∣∣ DαDΦ†
∣∣ DαDΦ†

∣∣
− 4Dβ̇DΦ

∣∣ DαDΦ
∣∣ Dβ̇DΦ†

∣∣ DαDΦ†
∣∣

+ 4DαDΦ
∣∣ Dβ̇DΦ

∣∣ Dβ̇DΦ†
∣∣ DαDΦ†

∣∣
− 4DαDΦ

∣∣ Dβ̇DΦ
∣∣ DαDΦ†

∣∣ Dβ̇DΦ†
∣∣

+ 4DαDΦ
∣∣ DαDΦ

∣∣ Dβ̇DΦ†
∣∣ Dβ̇DΦ†

∣∣ . (B.17)
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