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1 Introduction

The study of supersymmetric gauge theories was revolutionized by Seiberg and collabora-

tors in the nineties through the use of holomorphicity, symmetries as well as asymptotics

(weak coupling behavior) [1]. Building up on these developments, Seiberg and Witten

realized [2, 3] that by adding electromagnetic duality (S-duality) to the game, one can
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obtain the low energy BPS spectrum of N = 2 gauge theories by deriving a holomor-

phic algebraic curve, the so-called Seiberg-Witten (SW) curve, that incorporates all the

symmetries (including S-duality) and weak coupling behavior. Soon after, Intriligator and

Seiberg [4] obtained the first examples of algebraic curves that compute the low energy

coupling constants in the abelian Coulomb phase for N = 1 theories.

In the last decade, the most modern developments in the field are based on the deep

connection of S-duality in 4D gauge theory with 2D modular invariance. In the prototypical

example of the maximally supersymmetric N = 4 super Yang-Mills (SYM), the Montonen-

Olive SL(2,Z) duality can be geometrically realized as the modular group of a torus by

compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D N = 2

superconformal field theories (SCFTs)s, referred to as class S [6, 7], can be obtained via

compactification of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus

g and with n punctures. The parameter space of the exactly marginal gauge couplings

is identified with the complex structure moduli space of the Riemann surface. What is

more, the partition function of the 4D N = 2 theories on a four sphere1 [9] are equal

to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10, 11],

which is the core of the celebrated AGT(W) correspondence. The 4D/2D interplay was

originally discovered for the N = 2 class S theories in [6] by studying the SW curves

and realizing that they arise from the compactification of M5-branes on Riemann surfaces

decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much

mileage we can get for theories with only N = 1 supersymmetry. We begin by recalling

that it is not uncommon to find exactly marginal couplings also in N = 1 supersymmetric

theories [14, 15], with the AdS/CFT correspondence offering a natural route to several ex-

amples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of 4D N = 1

SCFTs, naturally called SΓ [18, 19], arise from M5-branes probing the C2/Γ ADE singu-

larity. Their study was originated in [20], with the Sk class arising after compactification

of Zk orbifolds of the (2,0) theory, see also [21, 22] and [18, 23–27]. The SW curves for the

class Sk theories were derived and studied in [28], using Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2

supersymmetry and more specifically the SU(2)R relates the holomorphic superpotential

to the non-holomorphic (in N = 1 superspace) Kähler part and thus we can obtain the

full prepotential. For theories with only N = 1 supersymmetry, we can only hope to fix

the holomorphic superpotential part. However, there are N = 1 examples for which also

the Kähler part can be fixed, see for example [30, 31]. From a field theory point of view

this should be a consequence of an extra global symmetry. For the theories in class SΓ, we

expect more, than for generic N = 1theories, due to their rich global symmetries inherited

from the orbifold construction.2

1Technically [8], on an ellipsoid with deformation parameter b2 = ε1
ε2

, where the εi are the Ω-background

deformation parameters entering the Nekrasov partition functions.
2As explained in [20, 28], the SU(2)R is broken by the orbifold, but a diagonal U(1)R remains. Moreover,

instead of the U(1)r of N = 2, a global symmetry U(1)×U(1)k−1 ×U(1)k−1 remains, heavily constraining

the theory.
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The purpose of this article is to begin the search for the 2D conformal field theories

(CFT), whose correlation functions reproduce the partition functions of the 4D N = 1

SCFTs of class Sk and in general of class SΓ. In principle, there is no reason to expect

that such a 4D/2D relation exists for N = 1 theories. We adopt here a conservative

approach - if such a relation exists, then the SW curve of the Sk theories knows about it

and will illuminate the path leading to the symmetry algebra/representations underlying

the 2D CFT. Following the N = 2 class S paradigm [10, 32, 33], we first compare the

meromorphic differentials φ` of the SW curves derived in [28] with the weighted current

correlation functions3 〈〈 J`(t) 〉〉 computed on the CFT side

lim
εi→0
〈〈 J`(t) 〉〉 = φ`(t) (1.1)

with the εi being the Ω-background deformation parameters. Since the CFT primary fields

enter in the computation of 〈〈 J`(t) 〉〉, the above identification dictates to us their quantum

numbers. In particular, we can learn the form of the CFT representations that the primary

fields live in.

We discover that the spectral curves of the 4D SU(N) gauge theories of class Sk can be

reproduced from the 2D CFT weighted current correlation functions of the WNk algebra

with non-unitary primary fields. This is based on the observation that the SW curves

of SU(N) class Sk theories can be obtained from the N = 2 SU(Nk) curves by tuning

the mass/Coulomb branch parameters appropriately. On the CFT side, one then simply

computes the conformal/W-blocks for WNk with Nk = 2, 3, 4, . . . and sets the parameters

to appropriate values. In addition, we use the known AGT correspondence for the N = 2

SU(Nk) theories to derive a conjecture for the N = 1 class Sk instanton partition functions.

This article is structured as follows. We begin in section 2 by reviewing the construction

of the SW curves for the class Sk theories. We introduce some of their properties and

discuss the weak coupling limit and the Gaiotto curve. The next section 3 is concerned

with recapitulating some aspects of the AGT correspondence that are essential for our

work such as the identifications of the parameters on both sides of the duality and the

relationships between the 2D CFT blocks and the 4D instanton partition functions. Since

this is a review section, the readers familiar with the AGT correspondence can move directly

to the next section 4 in which we present our main results concerning the structures of the

CFT representations, the comparisons with the Sk SW curves and the investigation of

the (orbifold) Nekrasov instanton partition functions. We conclude in section 5 where we

also overview some potential directions of future research that our article suggests. Most

technical computations as well as bulky formulas are stored in the appendices.

3We define the 〈〈 J`(t) 〉〉 in section 3.4. For now, it suffices to point out that for the simplest case of

three fields they can be computed as a ratio of correlation function

〈〈 J`(t) 〉〉3 =
〈 J`(t)V1(x1)V2(x2)V3(x3) 〉
〈V1(x1)V2(x2)V3(x3) 〉 ,

with the Vi being primary fields.

– 3 –
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Figure 1. Type IIA brane configuration for the 4D N = 1 theories of class Sk. The Ak−1 orbifold

acts on the 45 and 78 coordinates.

2 The curves

The starting point of our work is the SW curves. By comparing them to the 2D CFT 3

and 4-point blocks, we will discover the algebra and the representations that underly the

2D theory we are looking for. In this section we present the SW curves and provide a short

review of their derivation as well as of the important information they contain.

Review of the type IIA/M-theory construction. The class Sk SW curves (with

k = 1, 2, . . .) were derived in [28] following Witten’s [29] M-theory construction in which

the implementation of the orbifold is very simple. The main points of it we outline here.

The SW curves were originally introduced as auxiliary algebraic curves [2, 3]. Using type

IIA string theory, N = 2 gauge theories can be realized as world volume theories on D4-

branes, which are suspended between NS5-branes. Uplifting this brane setup to M-theory,

all the branes can be seen as one single M5-brane with a non-trivial topology. The geometry

of this M5-brane is encoded in the SW curve. Therefore, the SW curve can also be derived

by studying the minimal surface of the M5-brane [29].

The theories in class Sk can be realized through the type IIA string theory brane setup

of table 1, which was originally considered in [34, 35]. For k = 1 there is no orbifold and

one obtains the N = 2 theories of class S [6]. The SU(2)R R-symmetry of the N = 2

theories corresponds to the rotation symmetry of the coordinates x7, x8 and x9 which is

broken by the orbifold to the U(1)R symmetry of x7, x8 rotations. The rotation on the x4,

x5 plane corresponds to the U(1)r symmetry of the N = 2 theories and is also lost [6]. The

SW curves are derived by uplifting IIA string theory to M-theory and they are functions

of the holomorphic coordinates

v ≡ x4 + ix5 , s ≡ x6 + ix10 and t ≡ e−
s

R10 (2.1)

where R10 is the M-theory circle. We follow the conventions of [36]. The orbifold action is

imposed via the identification

v ∼ e
2πi
k v . (2.2)

The mass parameters mL, i and mR, i are given by the asymptotic position of the M5 branes

as t → 0 and t → ∞, while the coupling constant q enters the setup via the asymptotic

position of the M5 branes for v →∞, see figure 2 for an illustration.
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Figure 2. This figure illustrates the position of the branes (horizontal D4s and vertical NS5s)

for the case of the N = 2 SU(3) gauge theory. In the N = 1 case, one needs to introduce an

orbifold and image branes as reviewed in [28]. From the equation for the curve (2.3), we see that for

t→ 0/∞ the solutions of the curve are v = mL, i/mR, i, while for v →∞ the solutions are t = 1, q.

The SCQCD curves. The spectral curve that describes the Coulomb branch of the Zk
orbifold daughter of N = 2 SU(N) SCQCD (SCQCDk) is given by the equation

t2
N∏
i=1

(
vk −mk

L, i

)
+ t

(
−(1 + q)vNk +

N∑
l=1

ulkv
(N−l)k

)
+ q

N∏
i=1

(
vk −mk

R, i

)
= 0 . (2.3)

It is sometimes convenient to group the masses as mi = mL, i and mN+i = mR, i for

i = 1, . . . N . We can rescale the variable v as v = xt and normalize the coefficient of the

highest power in x to one.4 Thus, we can write the equation for the curve as

N∑
`=0

φ
(4)
k` (t)xk(N−`) = 0 , (2.4)

where the coefficients are given by φ
(4)
0 (t) = 1 and

φ
(4)
k` (t) =

(−1)` c
(`,k)
L t2 + uk`t+ (−1)` c

(`,k)
R q

tk`(t− 1)(t− q)
for ` = 1, . . . , N . (2.5)

In the above, we have used the formula
∏N
i=1(vk−mk

i ) =
∑N

s=0(−1)s c(s,k) vk(N−s) with the

Casimirs (let use set for simplicity c(s) ≡ c(s,1)) defined as:

c(s,k) =
N∑

i1<···<is=1

mk
i1 · · ·m

k
is , c(0,k) = 1 . (2.6)

For generic values of the masses, the Casimirs {c(s,k)}N`=1 are algebraically independent of

each other.

Let us now make two remarks.

• One can perform an SL(2,Z) transformation t → az+b
cz+d , x → (cz + d)2x on the

curve (2.3) and set z1 = −d
c , z2 = −b−d

a−c , z3 = −b−dq
a−cq and z4 = −b

a . This sends the

singularities at ∞, 1, q and 0 to the generic points z1, z2, z3 and z4 respectively.

4The Seiberg-Witten differential in these coordinates is given by λSW = xdt.
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Figure 3. The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively

4-punctured spheres. The full punctures are depicted by � and placed at t = 0 and t = ∞, while

the simple punctures • are at t = 1 and at t = q.

• The Coulomb moduli ukl are implicitly functions of the coupling q, of the masses and

of the brane positions ai, see figure 2. They can be computed from the SW curve

by evaluating certain period integrals, as we review for the N = 2 SU(2) case in

appendix F.

The free trinion curves. As explained in [28], the free C(k)
0,3 trinion curve can be obtained

from the SCQCDk one by going to the weak coupling regime q → 0 and identifying the

Coulomb parameters u` appropriately with the masses. The resulting equation for the

curve reads

t

N∏
i=1

(
vk −mk

L, i

)
−

N∏
i=1

(
vk −mk

R, i

)
= 0 . (2.7)

As before, we can rescale v = xt and write the curve as
∑N

`=1 φ
(3)
k` (t)xk(N−`) = 0, with the

curve coefficients (see (2.6) for the definition of the Casimirs) φ
(3)
0 = 1 and

φ
(3)
k` (t) = (−1)`

c
(`,k)
L t− c

(`,k)
R

tk`(t− 1)
for ` = 1, . . . , N . (2.8)

The above coefficients can be directly obtained by taking the limit q → 0 in (2.5) and

setting

uk`(q = 0) −→ (−1)`+1 c
(`,k)
R . (2.9)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted

in figure 3. They are three and respectively four punctured5 spheres with the punctures

at t = 0 and t = ∞ being full punctures �, while those at t = 1 and t = q are simple

punctures •, see [28].

Gaiotto shifts in x for k = 1. Due to the orbifold relation (2.2), we are allowed to

shift the variable x for k = 1, but not for k > 1. This shift is the consequence of the

additional U(1) degrees of freedom that are present for k = 1 but, as we shall see more

in detail later, disappear for k > 1. For k = 1, if we go from an equation
∑N

i=0 x
iφi to

5The UV curves are characterized by the meromorphic differentials φ
(n)
s that have only poles and no

branch cuts. The additional punctures F discussed in [28] will not be relevant for our purposes here.

– 6 –



J
H
E
P
0
8
(
2
0
1
7
)
0
0
9

∑N
i=0 x

iφ′i by making the tranformation x→ x− κφ1, then we find

φ′` =

N∑
j=N−`

(
j

N − `

)
φN−j(−κφ1)j+i−N =

∑̀
j=0

(
N − j
N − `

)
φj(−κφ1)`−j . (2.10)

We remind that φ0 = 1 before and after the transformation. It is clear that the shift leaves

the 2-form Ω2 = dλSW = dx∧ dt unchanged, however the structure of the poles of λSW on

the various sheets of the curve does change, see [28]. If we put the shift parameter κ equal

to 1
N , then the coefficient φ′1 vanishes - the resulting curve is known as the Gaiotto curve.

Let us denote the curve coefficients for the Gaiotto curve by φ̃
(n)
` :

φ̃
(n)
` =

∑̀
j=0

(
N − j
N − `

)
(−1)`−j

(
φ

(n)
1

N

)`−j
φ

(n)
j =⇒ φ̃

(n)
1 = 0 . (2.11)

As we shall review later, their expansion around the poles in t gives the charges of the WN

algebra. One easily computes

φ̃
(3)
` (t) =

−
(
N
`

)
`−1
N` (ML −MR)`

(t− 1)`
+ · · · ,

φ̃
(4)
` (t) =

−
(
N
`

)
`−1
N` M

`
L

(t− 1)`
+ · · · , φ̃

(4)
` (t) =

−
(
N
`

)
`−1
N` (−MR)`

(t− q)`
+ · · · .

(2.12)

In the above, we have introduced the left and right center of masses

ML =

N∑
i=1

mL, i = c
(1)
L , MR =

N∑
i=1

mR, i = c
(1)
R . (2.13)

It is useful to furthermore introduce the SU(N) masses

m̃L, i = mL, i −
ML

N
, m̃R, i = mR, i −

MR

N
, (2.14)

which obey
∑N

i=1 m̃i = 0. The corresponding Casimirs with the replacement m → m̃ are

denoted by c̃(`). Expanding the curve coefficients around t = 0 and t =∞ and using (A.2),

we find that

φ̃
(n)
` (t) =

(−1)`c̃
(`)
R

t`
+ · · · , (2.15)

for n = 3, 4. Performing the SL(2,Z) transformation is t → −1
t , we can compute the

expansion around t =∞ and we get for φ̃
(n)
` a pole of order ` with coefficient c̃

(`)
L .

3 Review of some aspects of the AGT correspondence

In this section, we wish to review the essentials of the AGT correspondence and especially

of the elements that we shall need in the rest of the article. The essential elements are

summarized in table 1.

– 7 –
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Gauge theory Toda CFT Relations

Ω deformation parameters ε1, ε2 Coupling b b =
√

ε1
ε2

ε ≡ ε1 + ε2 Q = b+ b−1 Q = ε√
ε1ε2

Masses mi Charges of the external states α1, . . . ,αn (3.17)–(3.20)

Coulomb moduli u` Charges of the intermediate states w (3.44), (3.46)

Coulomb branch parameters a(`) Casimirs of the intermediate state α (3.21) (3.22)

Full punctures �, see figure 3 Primary fields V� (3.7), (3.17)

Simple punctures •, see figure 3 Primary fields V• (3.7), (3.19)

Shift x→ x− κφ1 in the curve (2.10) Redefinitions of the currents (3.40)

Instanton partition functions Z inst (3.31) W-blocks B (3.25) (3.32)

SW coefficients curve φ
(n)
` (2.4) Ratios of W-blocks 〈〈 J 〉〉n (3.35) (3.13), (3.41)

S4 partition function Full correlation function (3.23)

Table 1. This table presents an overview of the elements of the AGT correspondence that we need

as well as the equations where the identifications appear.

We begin with a short introduction of the Toda CFT and its symmetries. We then

relate the charges of the Toda currents to the curves of the previous section and thus match

the parameters. Following this, we explain how to recover the complete curve coefficients

from the CFTs as ratios of conformal/W-blocks and relate the blocks to the instanton

partition functions of the gauge theory.

3.1 The Toda CFT

We refer to the appendix B of [37] for our conventions regarding the SU(N) weights hi,

simple roots ei, fundamental weights ωi, Weyl vector ρ and scalar product (·, ·).
The action (see [38]) of the SU(N) Toda theory in our normalizations reads (we define

the ϕ fields below)

SToda =

∫  1

8π
ĝmn (∂mϕ, ∂nϕ) +

(Q,ϕ)

4π
R̂+ µ

N−1∑
j=1

eb(ej ,ϕ)

√ĝ d2x , (3.1)

where ĝmn is the background metric and R̂ is the corresponding scalar curvature coupling

to the background charge Q. One defines Q = Qρ and relates Q to the coupling b via

Q = b + b−1 so that the theory is conformal. The cosmological constant µ is not particu-

larly important and only enters the game through the overall normalization of the 3-point

structure constants in the quantum theory. The central charge c of the Toda CFT is

given by

c = N − 1 + 12 (Q,Q) = (N − 1)
(
1 +N(N + 1)Q2

)
, (3.2)

so that c = N − 1 for Q = 0. We still have to explain the N − 1 component field ϕ.

In order to introduce some notation for later, we start (in the formal free case where the

cosmological constant µ is zero) with the N free fields {ϕj}Nj=1 with the OPE ϕi(z)ϕj(w) ∼

– 8 –
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−δij log |z − w|2. Next, we define the SU(N) field ϕ

ϕ =

N−1∑
j=1

ωjϕ̃j =

N−1∑
j=1

ωj(ϕj − ϕj+1) =

N−1∑
i=1

hi(ϕi − ϕN ) , (3.3)

with ωj being the SU(N) fundamental weights. The above implies that ϕ̃i(z)ϕ̃j(w) ∼
−carij log |z − w|2, where carij = 2 if i = j, −1 if |i − j| = 1 and zero otherwise is the

SU(N) Cartan matrix. The U(1) free field that decouples from the rest of the Toda action

is λ = 1√
N

∑N
j=1 ϕj with the free field OPE λ(z)λ(w) ∼ − log |z−w|2. The original ϕj fields

can be written as ϕj = 1√
N
λ+ (hj ,ϕ). Using the field ϕ in the free limit is straightforward

since we have the OPE

(α,ϕ)(z)(β,ϕ)(w) ∼ −(α,β) log |z − w|2 , (3.4)

which follows from the identity (A.4).

The quantum Miura transform (see for example [39, 40]) relates the currents of the

WN algebra for the Toda theory in terms of the N − 1 free fields ϕ. One roughly speaking

sets µ = 0 in (3.1) and expands the Lax operator R̃N as

R̃N =:
N∏
j=1

(Q∂z + (hj , ∂ϕ(z))) :=
N∑
s=0

Ws(z)(Q∂z)
N−s , (3.5)

where :: denotes normal-ordering. Note that the Ws coming from the quantum Miura

transform are for s > 2 in general not conformal primaries. They differ from the WN

currents Ws by terms proportional to Q and hence agree (up to a convention dependent

normalization that for us is set to one) for Q = 0. We remind that the OPEs of the WN

currents with a primary field Vα are

Ws(z1)Vα(z2, z̄2) ∼ ws(α)

(z1 − z2)s
Vα(z2, z̄2) +

s−1∑
n=1

Ws,−nVα(z2, z̄2)

(z1 − z2)s−n
. (3.6)

Here the Ws,−n denote the lowering modes of the Ws current. We parametrize the primary

fields/ vertex operators in terms of SU(N) weights α as6

Vα(z) = e(α,ϕ)(z) . (3.7)

From this parametrization of the primary fields, using (hj , ∂ϕ)(z)Vα(w) ∼ − (hj ,α)
z−w Vα(w)

as well as the general relation (u and dj are arbitrary complex parameters)

N∏
j=1

(
u∂z +

dj
z

)
=

N∑
s=0

1

zs

[
N∑

i1<i2<···<is=1

s∏
m=1

(
dim − u(k −m)

)]
(u∂z)

N−s , (3.8)

6The primary fields V also carry a λ dependent part as we write later in (3.42), but we can ignore that

part for now.

– 9 –
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we derive the charges of the Ws,0 modes to be (see also [41])

∆(α) = w′2(α) =
N∑

i<j=1

(hi,α) (hj ,α) +Q
N∑
j=2

(j − 1) (hj ,α) =
(2Q−α,α)

2
,

w′s(α) = (−1)s
N∑

i1<i2<···<is=1

s∏
j=1

((
hij ,α

)
+Q(s− j)

)
,

(3.9)

where we have used (A.4) and Q = Qρ with ρ =
∑N

j=2(j − 1)hj . The charges of the

primary Ws fields with modes Ws,0 with s > 2 differ from the above. For example w3(α) =

w′3(α) +Q(N − 2)w′2(α), which can be rewritten as

w3(α) = −
3∑

i1<i2<i3=1

3∏
s=1

(α−Q, his) , (3.10)

see also [42] for more details.

The limit Q → 0 is referred to as the “semi-classical” limit7 and it is defined by the

substitution Q∂z −→ x in (3.5). This limit is called semi-classical because it replaces

the pair (Q∂z, z) that satisfies the Heisenberg commutation relations with the commuting

variables (x, z).8 In that limit, we have Ws =Ws and hence

Ws =
∑

1≤j1<j2<···<js≤N
(hj1 , ∂ϕ) · · · (hjs , ∂ϕ) =⇒ T = −(∂ϕ, ∂ϕ)

2
,

lim
Q→0

ws(α) = lim
Q→0

w′s(α) = (−1)s
∑

1≤j1<j2<···<js≤N
(hj1 ,α) · · · (hjs ,α) .

(3.11)

One of the consequences of the AGT correspondence is that the semi-classical limit of the

Lax operator reproduces the Seiberg-Witten curve after an x shift to the Gaiotto curve

〈〈
R̃(x)

〉〉
=

N∑
`=0

xN−` 〈〈Ws(t) 〉〉 =
N∑
`=0

xN−`φ̃`(t) = 0 , (3.12)

since as we shall review in section 3.4,

lim
Q→0
〈〈Ws(t) 〉〉 = φ̃`(t) . (3.13)

We refer to (2.10) and its surrounding paragraph for the definition of the curve coefficients

φ̃`(t). We shall also see that (3.12) can be made to work also for the case without the shift

in x. This requires the reintroduction of the decoupled U(1) degrees of freedom that on

the CFT side are contained in the free boson field λ.

7This is different from the semi-classical limit b→∞ of the Toda CFT considered for example in [38].
8In order to relate the curve to the CFT, we also need to take the limit ~ =

√
ε1ε2 → 0, as we will

describe in the next section.
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3.2 Identification of the parameters

In order to make (3.13) precise, we need to first relate the Toda CFT charges α of the

primary fields (3.7) with the mass and Coulomb parameters appearing in the curves. We

first observe, that the curve contains only parameters with units of mass, while the CFT

parameters are massless. In order to resolve the discrepancy, we introduce the parameter

~ via

~ =
√
ε1ε2 , (3.14)

and use it to rescale the curve parameters. Specifically, in all the formulas relating the

curve data to the CFT data, one has to make the transformation

m→ m

~
(3.15)

for all the quantities (mL, i,mR, i, ai, ε = ε1 + ε2) with units of mass. Since this rescaling

is, beyond making the units of mass work, not important for the main arguments of this

article, it will be omitted from the formulas and reintroduced only at the essential points.

We begin the identification of the parameters by looking at the CFT coupling. It is related

to the Ω-background parameters via

b =
ε1
~

=⇒ Q =
ε1 + ε2

~
. (3.16)

From the curves, we have 2N mass parameter mL, i and mR, i with i = 1, . . . , N . We

defined in (2.14) the SU(N) masses m̃L, i and m̃R, i as well as the centers of mass ML

and MR. After the rescaling (3.15), the masses are related to the weights α� of the full

punctures V� via

m̃L, i = −
(
α�,L −Q, hi

)
, m̃R, i =

(
α�,R −Q, hi

)
,

α�,L =

N−1∑
i=1

(−m̃L, i + m̃L, i+1 +Q)ωi , α�,R =

N−1∑
i=1

(m̃R, i − m̃R, i+1 +Q)ωi . (3.17)

Thus, for the case of three points, m̃L, i = − (α1 −Q, hi) and m̃R, i = (α3 −Q, hi), while

for the case of four points the parametrization becomes m̃L, i = − (α1 −Q, hi) and m̃R, i =

(α4 −Q, hi). Equation (3.17) and (3.9) imply for Q = 0 that the Ws charges of the full

punctures V� are equal to

ws(α�,L) = c̃
(s)
L , ws(α�,R) = (−1)sc̃

(s)
R . (3.18)

On the other hand, the weights of the simple punctures V• are parametrized as9

α• = −κωN−1 , (3.19)

where κ depends on the puncture. For the three points case, the middle puncture α2 = α•,2
is simple and we have α2 = −(ML −MR)ωN−1. For the four point case, the two middle

punctures α2 and α3 are simple and we have α2 = −(ML − a(1))ωN−1 and α3 = (MR −
a(1))ωN−1. The Casimir a(1) =

∑N
i=1 ai comes from the intermediate field in the 4-point

– 11 –
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Figure 4. This figure illustrates the parametrization of the primary fields of the Toda CFT for the

3 and 4-point case. It indicates in particular which fields are full and which are simple punctures.

block, see (3.22) below, as well as figure 2. The parametrization of the primary fields is

also summarized in figure 4. It follows from (3.19) that the corresponding WN charges for

Q = 0 are given by

ws(α•) = κs
N∑

i1<···<is=1

(ωN−1, hi1) · · · (ωN−1, his)

= κs
 N−1∑
i1<···<is=1

1

N s
+

N−1∑
i1<···<is−1=1

1

N s−1

1−N
N


=

κs

N s

(
N − 1

s

)(
1 +

(1−N)s

N − s

)
= −

(
N

s

)
(s− 1)κs

N s
,

(3.20)

where we have used (ωN−1, hj) = 1
N for j < N and (ωN−1, hN ) = 1−N

N .

The last parametrization that we need to discuss is that of the Coulomb moduli u` of

the curves that are related to the intermediate state α in the 4-point block introduced in

the next section 3.3, see also figure 4. Similarly to the case of the full punctures (3.17),

we put

α =

N−1∑
i=1

(ai − ai+1 +Q)ωi ⇐⇒ ai = (α−Q, hi) . (3.21)

It is useful to define the Casimirs for the parameters ai as in (2.6), i.e.

a(s,k) =

N∑
i1<···<is=1

aki1 · · · a
k
is , a(0,k) = 1 , (3.22)

where again a(s) ≡ a(s,1). As we shall see in section 3.4, the Coulomb moduli u` are

expressed via the Casimirs cL, cR and (3.22). We also define for k = 1 the Casimirs ã(s)

obtained by applying the definition (3.22) to the ãi = ai − 1
N

∑N
j=1 aj . From (3.18) we see

that for Q = 0 the WN charges of the intermediate state are ws(α) = (−1)sã(s).

3.3 The W-blocks and the instanton partition functions

Overview of the blocks. In any CFT, knowledge of the correlation functions of two

(i.e. of the conformal dimensions ∆) and three point functions (i.e. of the structure con-

stants Cijk) completely determines the higher point functions. For ordinary CFTs, it is

9These types of weights give rise to semi-degenerate representations of the WN algebra.
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enough to know the three-point functions of the Virasoro primary fields - the ones involving

descendant field being then automatically determined. On the other hand, WN symmetry

for N > 2, while stronger than Virasoro, is not sufficient to determine the correlation func-

tions of all descendant fields just from the knowledge of the correlation functions of the

WN primaries. Thankfully, for the cases that we consider here, some of the primary fields

are short which imposes a sufficient number of extra conditions allowing for the derivation

of the 3-point functions and then of the W-blocks.

Once the 2 and 3-point functions are known, the n-point functions can be determined

by expanding in conformal/ W-blocks (see for example [43] for a review). The blocks B
are purely kinematic/symmetry quantities that are theory independent - they depend only

on the charges w of the fields (both the external n ones as well as the intermediate ones)

on the positions q1, . . . , qn−3 that are not fixed by conformal symmetry and on the central

charge c. The whole theory dependent information is contained in the 3-point structure

constants Cijk.

Let us review the 4-point W2 case of Liouville theory for simplicity. Putting the points

z1, . . . , z4 to ∞, 1, q, 0 respectively, the full 4-point correlation function10 can be expanded

(in the s-channel) as

〈V1(∞)V2(1)V3(q, q̄)V4(0) 〉=
∫
dα(C12αH

−1
ααCα34)

∣∣q∆α−∆3−∆4B∆α(∆1,∆2,∆3,∆4|q)
∣∣2 ,

(3.24)

where α labels11 the intermediate state in the OPE decomposition, and the integral is

done over the space of physical Virasoro fields: α ∈ Q
2 + iR with ∆α = α(Q − α). The

Hαβ = 〈Vα |Vβ〉 is an orthonormalization constant that is zero if α 6= β and that can be

absorbed in the normalization of the primary fieds.

Having introduced the decomposition of the full 4-point correlation function in terms

of blocks in the Liouville case, we now want to concentrate on the blocks B and to consider

them for the general WN case. They can be expanded in a power series in q as

Bw(w1,w2,w3,w4|q) =
∑

Y,Y′,|Y|=|Y′|

q|Y|γ12w(Y)Q−1
w (Y,Y′)γ̄w;34(Y′) . (3.25)

In order to understand the above, we need to introduce all the ingredients (namely the

charges w, the 3-point blocks/vertices γ12w and γ̄w;34 as well as the Shapovalov form Qw)

which requires some work. We start by reminding that the currents of the WN algebra are

the {Ws(z)}Ns=2. The currents are expanded in modes as Ws(z) =
∑∞

n=−∞ z
−n−sWs,n. We

often write Ln ≡W2,n as well as sometimes Wn ≡W3,n if confusion can be avoided. Then

we can straightforwardly define the elements needed for the blocks (3.25):

10Recall that the AGT correspondence identifies that full correlation function with the S4 partition

function:

〈V1(∞)V2(1)V3(q, q̄)V4(0) 〉 ∝ ZS
4

, (3.23)

where the proportionality constant is not important here. For the correlation function (3.24), it is the

partition function of the SU(2) SCQCD theory with NF = 4.
11For N = 2 one sets α = 2αω1. In general, the physical Toda fields obey Re(α) = Q.
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• A highest weight Verma module of the WN algebra is spanned by the vectors

W−YVw, where

w
def
= {∆, w3, w4, . . . , wN} (3.26)

are the Vw charges of the Wn,0 generators and Vw is annihilated by all the positive

mode generators. We use the symbol Vw both for the state in the Hilbert space and

for the vertex operator that corresponds to it. The descendant states are labeled

by a set Y = {Y2;Y3, . . . , YN} with each Ys = {Ys,1, Ys,2, . . .} a partition of integers

(arranged as Ys,i ≤ Ys,i+1). The state W−YVw is explicitly written as

W−YVw =
(
W2,−Y2,1W2,−Y2,2 · · ·

)
×
(
W3,−Y3,1W3,−Y3,2 · · ·

)
· · ·
(
WN,−YN,1WN,−YN,2 · · ·

)
Vw . (3.27)

For example, for N = 3, W−{{1,1,2};{2}}Vw = L2
−1L−2W−2Vw. The conformal dimen-

sion of the state W−YVw is equal to ∆ + |Y| with |Y| =
∑N

s=2 |Ys|. The action of

the other zero modes Ws,0 on the descendant states is in general not diagonal.

• The Shapovalov form Q is the scalar product of vectors in the Verma module

Qw(Y,Y′) =
〈
W−YVw |W−Y′Vw

〉
, (3.28)

where we demand that the scalar product obeys 〈Ws,−nV1 |V2〉 = 〈V1 |Ws,nV2〉.

• An important object is the 3-point W-block/vertex γ12w(Y). For our purposes, it is

defined as the ratio of a 3-point function of two primary fields and one descendant

W−YVw to the 3-point function of just the primary fields:

γ12w(Y) =
〈V1(∞)V2(1) (W−YVw) (0) 〉
〈V1(∞)V2(1)Vw(0) 〉

. (3.29)

Of course, it is possible to consider the cases in which V1 or V2 are not primary, but

we do not need them here.

• A similar object to γ is the vertex

γ̄w;34(Y) =
〈W−YVw |V3(1)V4(0)〉
〈Vw |V3(1)V4(0)〉

, (3.30)

i.e. the normalized scalar product of a state with the product of two primary fields

inserted at 1 and at 0. While for the Virasoro case, there is no need to introduce the

γ̄ since γ̄∆;34 = γ43∆ (see the recursion relations (D.8)), this is not true anymore for

the general WN algebra.

• It is important to note that all the building blocks Q, γ, γ̄ and B are implicitly

dependent on the central charge c. Furthermore, while for the Liouville case of W2

the dependence on c starts appearing only at order q2 in the four-point block B, for

the algebras WN with N > 2, the central charge appears already at linear order in q.

One can depict the 3 and 4-point blocks graphically as sketched in 5.
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Figure 5. This figure depicts the three and four point W-blocks. Using conformal symmetry, for

three points, we set z1 = ∞, z2 = 1 and z3 = 0, while for four points, we put z1 = ∞, z2 = 1,

z3 = q and z4 = 0. The dashed lines indicate descendant fields.

The instanton partition functions and the blocks. The AGT correspondence iden-

tifies the Nekrasov instanton partition function Zinst to the W-blocks, after an appropriate

factor has been removed. In the case that we are dealing with, namely for the N = 2

SU(N) SCQCD with NF = 2N , the instanton partition function reads

Zinst =
∑
Y

q|Y|Zvec(a,Y)

N∏
i=1

Zantifund(a,Y;−mL, i)

N∏
j=1

Zfund(a,Y;mR, j) , (3.31)

where a = (a1, . . . , aN ) and Y = {Y1, . . . , YN} is a set of N Young diagrams and the

building blocks of Zinst are defined in appendix E. The partition function is related to the

W-blocks as

Zinst = BU(1)Bw(w1,w2,w3,w4|q) . (3.32)

We remark that to relate the CFT data to the 4D Nekrasov partition functions, one should

rescale on the CFT side all parameters with dimension of mass as in (3.15).

The WN algebra charges wi are obtained by using the parametrization for αi in

section 3.2 and using the identities (3.9), (3.10). The U(1) contribution, the 4-point block

BU(1), is given by the formula (D.3) derived in appendix D.1

BU(1) = (1− q)p2p3 = (1− q)
(ML−a(1))(MR−a(1) −Nε)

Nε1ε2 (3.33)

with the charges p2 = −iML−a(1)√
Nε1ε2

and p3 = iMR−a(1)−Nε√
Nε1ε2

(compare with (3.45)). In the

above, we have used
∑N

i=1 ai = a(1), see (3.22).

3.4 Comparisons of the curves with the blocks

We now want to compare the curve coefficients φ` with the WN blocks, for three and for

four points. In order to connect the blocks with the curve, we need to introduce yet another

object, namely the 3-point W-block with the insertion of an arbitrary current J(t) at point

t. We write it as

γ12w(J(t); Y)
def
=
〈V1(∞)V2(1)J(t) (W−YVw) (0) 〉

〈V1(∞)V2(1)Vw(0) 〉
. (3.34)

The numerator of the above quantity is strictly speaking a 4-point function, but since J(t)

is a symmetry current and not an arbitrary object, the dependence of t can be obtained by
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expanding J(t) in modes and using the blocks γ12w(Y). Thus, we refer to γ12w(J(t); Y)

as a 3-point block with an insertion of a current.

Armed with that definition, we define the weighted current correlation functions

〈〈 J(t) 〉〉 as the following ratio of blocks:

〈〈 J(t) 〉〉n
def
=
n-point W-block with insertion of J(t)

n-point W-block
, (3.35)

where the n-point W-block are computed with for n primary fields. In the cases that

concern us, two of the primary fields are full punctures V� placed at z1 and zn and the

remainig n − 2 ones are simple punctures V• at the points z2, . . . , zn−1. By a conformal

transformation, we place z1 = ∞, z2 = 1 and zn = 0. In particular, for three points, we

have for three primary fields

〈〈 J(t) 〉〉3 =
γ123(J(t); ∅)
γ123(∅)

= γ123(J(t); ∅) =
〈V1(∞)V2(1)J(t)Vw(0) 〉
〈V1(∞)V2(1)Vw(0) 〉

. (3.36)

For four points, we have to specify the representation flowing in the middle with the label

w. Labeling the point z3 by q, the quantity 〈〈 J(t) 〉〉4 can be written as a power series

expansion in q as

〈〈 J(t) 〉〉4 =

∑
Y,Y′,|Y|=|Y′| q

|Y|γ12w(J(t); Y)Q−1
w (Y,Y′)γ̄w;34(Y′)∑

Y,Y′,|Y|=|Y′| q
|Y|γ12w(Y)Q−1

w (Y,Y′)γ̄w;34(Y′)
. (3.37)

We note that in the above, if J(t) is a spin s current, the sum over the partitions Y =

{Y2, . . . , YN} contains only those Y with Ys+1 = · · · = YN = ∅.
We now want to illustrate how the 〈〈 Js 〉〉n reproduce (see (1.1)) the curve coefficients

φ
(n)
s for a few select cases. The comparisons with the curve coefficients in the rest of this

section are all done in the limit εi → 0.

The U(1) current. Before we can make (1.1) precise, we need to discuss how the U(1)

degrees of freedom contained in the free boson λ, defined in section 3.1, affect the iden-

tification. For k = 1, i.e. for the N = 2 theories, we are allowed to shift x → x − κφ1

in the curve. The Gaiotto curve with coefficients φ̃s is obtained for κ = 1
N and for that

curve we have the identification (3.12) between the ratios of blocks with insertions of the

Toda currents Ws and the curve coefficients φ̃s. We can of course now perform the inverse

shift x → x + 1
N φ1. One might then ask how the currents should be modified in order

for the ratio of blocks to give φs. The answer lies in bringing back to the game the free

boson λ. We define J1 = i∂λ be the spin 1 free boson current. We demand that in our

normalizations

〈〈 J1(t) 〉〉n
!

= −i
√
Nφ

(n)
1 (t) . (3.38)

Since λ is completely decoupled from the Toda action, we can simply shift x→ x− i 1√
N
J1

in (3.12) and get for the Lax operator (remember that Q→ 0)

R(x) = R̃(x− i 1√
N
J1) =

N∏
j=1

(
x+

1√
N
∂λ+ (hj , ∂ϕ)

)
=

N∏
j=1

(x+ ∂ϕj) , (3.39)
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where we have used 1√
N
λ+ (hj ,ϕ) = ϕj . The currents Js are given by expanding the Lax

operator12 R(x). We get

Js =
s∑
`=0

(
N − `
N − s

)
W`

(
−i√
N
J1

)s−`
, (3.40)

with W0 = 1 and W1 = 0. In particular, one has J1 = − i√
N
J1 for the normalized spin one

current. One can of course derive the expressions for the currents Js for general values of

the shift κ, but we don’t need them in what follows. The relation between the currents Js
and the curve coefficients reads

〈〈 Js(t) 〉〉n = φ(n)
s (t) . (3.41)

In order to have (3.38), the primary fields have to also carry a J1 charge p as

V� = e

(
α�,ϕ

)
e
p�λ , V• = e(α•,ϕ)ep•λ . (3.42)

We can now compare 〈〈 J1(t) 〉〉n with the SW curve coefficient φ
(n)
1 to fix the charges p�

and p•. Let us consider the 4-point case. From (2.5) we get for k = 1 and any N

φ
(4)
1 (t) =

qMR −MLt
2 + tu1(q)

(t− 1)t(t− q)
. (3.43)

In order to make the coefficients of the highest order poles in t independent of q, we need

to set

u1(q) = q(ML +MR) + a(1)(1− q) , (3.44)

for a(1) defined in (3.22), which leads to φ
(4)
1 (t) = a(1)−ML

t−1 + − a(1) +MR
t−q − MR

t . The U(1)

blocks needed for the computation of 〈〈 J1 〉〉4 are found in appendix D.1. The comparison

with (D.5) tells us that (3.38) is satisfied if we set the momenta of the vertex operators

and intermediate state to

p1 = i
ML√
N
, p2 = − iML − a(1)

√
N

, p3 = i
MR − a(1)

√
N

,

p4 = − iMR√
N
, p = − i a

(1)

√
N
. (3.45)

The above agrees with (3.33) after the usual rescaling (3.15) and in the limit Q → 0. In

the 3-point case, we have p1 = iML√
N

, p2 = −iML−MR√
N

and p3 = −iMR√
N

.

Comparisons with the curves. We refer to appendix D for the computations of the

W2 and W3 blocks relevant for the comparison with the curve coefficients and to [43] for

an overview of the techniques needed for these computations.

12The Toda action (3.1) can be referred to as the SU(N) Toda CFT and the algebra WN as the SU(N)

W-algebra. Adding the decoupled free boson λ brings us to the U(N) Toda CFT and the currents (3.40)

generate the U(N) W-algebra.
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For the stress-energy tensor, we compute 〈〈T (t) 〉〉3 in (D.7) and 〈〈T (t) 〉〉4 to quadratic

order in q in (D.14). Comparing them with φ̃
(n)
2 = φ

(n)
2 − N−1

2N (φ
(n)
1 )2, with the φ

(n)
s

from (2.5), (2.8), leads to a perfect agreement if one sets the Coulomb branch parameter

u2 to be equal to13

u2(q) = − a(2) +
q

ã(2)

[
−

c
(2)
L c

(2)
R

2
+

(N − 1) a(1)(ML c
(2)
R + c

(2)
L MR)

2N

− a(2)

(
N − 1

N
MLMR +

c
(2)
L

2
+

c
(2)
R

2

)
(3.46)

+
(N − 1) a(1) a(2)(ML +MR)

2N
+ a(2)

(
a(2)

2
− N − 1

2N
(a(1))2

)]
+O(q2) .

For simplicity, we have truncated the expansion to linear order in q. For the Liouville case,

the central charge c makes an appearance at order q2. Since it is possible to compute u2(q)

from the curve alone,14 as we do in appendix F, one might think that this gives one a way

to fix the CFT central charge from the SW curve. However, we show in that appendix

that we cannot fix the central charge from the curve because we need to also take the limit

~→ 0, in which case u2 becomes insensitive to c.

In a similar fashion, 〈〈W3(t) 〉〉3 is to be found in (D.18) and 〈〈W3(t) 〉〉4 can be com-

puted to linear order in q with the tools provided in appendix D.3. We compare them with

φ̃
(n)
3 , where

φ̃
(n)
3 = φ

(n)
3 − (N − 2)

N
φ

(n)
1 φ

(n)
2 +

(N − 2)(N − 1)

3N2
(φ

(n)
1 )3 . (3.47)

The comparison works perfectly if we use the parameter identification of section 3.2 and if

we express u3 as a function of q, of the a(s) and of the mass parameters, just like we did

for u2 in (3.46). One can even perform the comparison for W4, see [44] for the relevant

commutation relations, but the computations become very tedious and we omit them.

4 The AGT correspondence for the Sk theories

Having reviewed in the last section some essential elements of the AGT correspondence, we

can now apply them to the Sk theories. The main principle guiding us is the observation

that the class Sk curves for SU(N) can be obtained from the N = 2 S curves for SU(Nk).

In order to see that, we introduce a map that takes the SU(Nk) curve and sets the

mass/Coulomb parameters to special values. Let us write this map as πN,k and define its

action on the SU(Nk) masses and Coulomb parameters as follows

m
SU(Nk)
L, j+Ns 7−→ mL, j e

2πi
k
s , m

SU(Nk)
R, j+Ns 7−→ mR, j e

2πi
k
s , a

SU(Nk)
j+Ns 7−→ aj e

2πi
k
s , (4.1)

where the indices run as j = 1, . . . , N , s = 0, . . . , k − 1. The parameters on the right hand

side of (4.1) are those of the class Sk SU(N) theory. Since
∏k−1
s=0

(
v−m e

2πi
k
s
)

= vk −mk,

13Observe that the transition from the SCQCD curve to the free trinion one makes us set ai = mR, i,

which puts u`(q = 0) = (−1)`+1 c
(`)
R , see (2.9), (3.44) and (3.46).

14Using the so-called inverse mirror map.
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it is clear from the curve equations (2.3) and (2.7) that πN,k maps the N = 2 SU(Nk)

curve with k = 1 to the N = 1 Sk SU(N) curve. Furthermore, it is clear that πN,k maps

the sums of all the left/right masses to zero. This generalizes to the following action on

the Casimirs:

πN,k

(
c(k`),SU(Nk)

)
= (−1)`(k+1) c(`,k) . (4.2)

and πN,k
(
c(s),SU(Nk)

)
= 0 if s 6= k`. The above is proved in appendix A, see equation (A.5).

The action (4.2) together with the expression for the u` as functions of the Casimirs (for

example (3.44) and (3.46)) implies that for Q = 0 we have

uSU(Nk)
s 7−→

{
us if s mod k = 0

0 otherwise
with s = 1, . . . , Nk . (4.3)

Our guiding principle can now be stated as follows: since the map (4.1) sends

theN = 2 SU(Nk) curve to theN = 1 SU(N) class Sk curve, we can expect that πN,k would

preserve the aspects of the AGT correspondence of section 3, namely the identification of

blocks and instanton partition functions as well as the correspondence between the curves

and the ratios of the blocks with current insertions.

In this section, we shall study the consequences of this principle. We begin with some

WN representation theory and show in particular that the simple punctures are mapped

by πN,k to non-unitary representations. Following that, we look at the structure of the

corresponding 3 and 4-point blocks and study the Ward identities. Finally, we compute

the corresponding 〈〈Ws 〉〉n in the limit Q → 0 and recover the Sk curves (2.5) and (2.8),

thus providing a check of the proposal. We remark that, as illustrated in appendix F, the

curve gives no information on the CFT central charge. For now, following the principle

stated in the preceding paragraph and since πN,k does not act on the εi, we assume that

the central charges of the putative Sk SU(N) CFTs are given by the central charges of the

class S SU(kN) CFTs. In particular, for the Q = 0 case, this implies c = kN − 1. Since

our computations lead to a conjecture for the Sk instanton partition functions, a direct

computation of these instantons will lead to a computation of the central charge.

4.1 The structure of the punctures

Let us now study the consequences of the map (4.1) on the punctures. For k = 1, the full

punctures V� are generic WN representations with no special properties, while the simple

ones V• are representations with (N−2)(N−1)
2 null vectors, which allows us to compute

the three and four point W-blocks. Both the simple and the full punctures are unitary

representations of WN .

The simple punctures. For k > 1, all the charges of the simple punctures vanish,

i.e. w• = {0, . . . , 0}. This follows from the fact that, see (3.19), the parameter κ deter-

mining α• is given by the sum of all the left/right masses which are mapped by πN,k to

zero. However, the V• are still different from the identity field I! The first and most im-

portant difference is that L−1I = 0 but L−1V• 6= 0, because otherwise, the W-block would

not depend on the insertion point of the simple puncture, which would prevent us from
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Figure 6. Structure of the first 3 levels of the simple puncture for N = 1 and k = 3 which

implies ∆ = w = 0. For c = 2, one quotients out the submodule (shaded in red) generated by

W−1V•. For c 6= 2, i.e. for Q 6= 0, one should quotient out the submodule generated by the vector

(W−1 + Q
2 L−1)V• instead. We remark that the singular vector L−1V• generates an indecomposable

submodule, shaded in blue, whose elements all have zero norm. If we were to quotient out the zero

norm states as well, then we would obtain the identity representation. The color and type of the

of the arrows indicates which generators are acting, as depicted in the legend.

recovering the curve coefficients from 〈〈Ws 〉〉n. Of course, the norm of the state L−1V•
for k > 1 must be zero, since 〈L−1V• |L−1V•〉 = 2∆• 〈V• |V•〉 and ∆• is zero. Since we

have non-zero states with zero norm, the CFT that we need to consider for the Sk AGT

correspondence is non-unitary. One should not conflate non-vanishing null vectors with

non-unitarity. While the former implies the latter, the converse is not true. Unitarity plays

no role in the usual N = 2 AGT correspondence, for which the CFT is only unitary if Q

is real.15 The difference here is that non-unitarity seems unavoidable, since the simple

punctures have to be present.

We can now look at the null states in the simple punctures. First, let us consider the

case Q = 0, which allows us to learn from the Seiberg-Witten curve. We see that the curve

coefficients (2.5) have only simple poles at t = 1 and t = q. For k = 1, this is due to the

presence of the U(1) factors. In that case, we can shift x→ x− 1
N φ1 and then obtain curve

coefficients φ̃` that have poles of order ` at t = 1 and t = q whose coefficients are related

to the action of the modes W`,−n by (3.6). For k > 1, we are not allowed to shift in x

anymore16 and therefore, we have to conclude that

Ws,−nV• = 0 for n = 0, 1, . . . , s− 2 , (4.4)

for all s = 2, . . . , Nk. This of course confirms that the charges w of the simple puncture

vanish and implies there are

Nk∑
s=2

(s− 2) =
(Nk − 2)(Nk − 1)

2
(4.5)

15We remark that the Liouville CFT with c ≤ 1 (known also as “timelike” Liouville theory in the

literature) also has a field of zero conformal dimension that is not the identity, see [45].
16By (3.45) the U(1) charges are zero since π(a(1)) = π(ML) = π(MR) = 0. Hence the U(1) contribution

is zero and is not responsible for the fact that the poles at the simple puncture are only first order.
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V• V�

∆ for k = 2 0 N(4N2−1)
12 Q2 −

∑N
i=1m

2
i

∆ for k > 2 0 Nk((Nk)2−1)
24 Q2

Higher charges 0 6= 0

Null states for Q = 0 Ws,−nV• = 0 for n = 0, 1, . . . , s− 2 and s = 2, . . . , Nk None

Table 2. This table contains an overview of the main properties of the punctures for the SU(N)

Sk theory for k > 1.

null vectors. Hence, the number of null vectors for the simple punctures of the SU(N)

Sk theories is the same as for the N = 2 SU(Nk) theories. Hence we conjecture that the

null vectors are inherited from the N = 2 theory, i.e. obtained from it by mapping the

parameters with πN,k. Let us check this for the case Nk = 3, where we write for simplicity

Wn ≡ W3,n for the modes. For general Q and k, we can use (3.9), (3.10) and (3.19) to

compute for the simple puncture ∆• = 1
3κ(3Q−κ), w• = − 1

27κ(3Q−κ)(3Q−2κ). Hence,

the null vector is(
W−1 −

3w•
2∆•

L−1

)
V• =

(
W−1 +

3Q− 2κ
6

L−1

)
V• = 0 . (4.6)

For k > 1, πN,k maps the parameter κ to zero and we have ∆• = w• = 0. By (4.6) the limit

κ → 0 of the ratio w•
∆•

is non-zero, leading to the null vector
(
W−1 + Q

2 L−1

)
V• = 0. For

Q = 0, this gives (just like the curves do, see (4.4)) the condition W−1V• = 0, confirming

the conjecture that the null vectors are inherited from the N = 2 case.

Let us now show the structure of the simple puncture V• in more detail, again taking

the W3 algebra case for simplicity. For further simplicity, we set Q = 0 so that the null

vector is W−1V•. The structure of the first three levels of the representation is depicted

in figure 6. It is important to remark that the structure shown in figure 6 holds only for

c = 2, i.e. for Q = 0. Otherwise, there are generators that act on the states like W 2
−1V•,

that have to be set to zero, but don’t give zero, meaning that the quotient is only well

defined if c = 2, i.e. for Q = 0. This is to be expected, since the null vector for Q 6= 0 is(
W−1 + Q

2 L−1

)
V•. We remark that, unlike for generic WN Verma modules, the action of

the Ws,0 modes with s > 2 on the simple punctures will not be diagonalizable.

The full punctures. For k > 1 and Q = 0, the curve coefficients (2.5) imply that some

of the charges of the full punctures V� become zero as well. Specifically, only the wk`
with ` = 1, . . . , N are non-zero. For k > 2, this implies that for Q = 0 the conformal

dimension of the full punctures vanishes, i.e. ∆� = 0. However, we do not want the full

punctures to become the identity field and hence, as for the simple punctures, we require

that L−1V� 6= 0. Thus, they generically correspond to non-unitary representations as

well, only without null-states. The main properties of the punctures are summarized for

the reader’s convenience in table 2.

We wish to finish this section with a remark. In the Toda theory, the primary fields,

both those corresponding to the full punctures as well as those corresponding to the simple
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ones are obtained as V = e(α,ϕ) for some appropriate α. In the CFTs that ought to be

dual to the N = 1 class Sk theories, this is still true for the full punctures, but cannot be

true for the simple ones since for them the exponent is mapped by πN,k to zero and e0 = I

is the identity field. It is unclear whether it is possible to write the simple punctures by

using the Toda fields ϕ at all.

4.2 The 3-point blocks with one simple puncture

Let us now take the general considerations of the previous subsections and use them to

compute the 3-point W-blocks. We perform the computations in the limit Q → 0 that is

needed for the comparison with the curves. Let us denote by V̂w an arbitrary descendant

of the primary Vw. We compute using standard CFT techniques the recursion relations

(each contour integral comes equipped with a factor of 1
2πi that we omit)〈

V1(∞)V2(1)(Ws,−nV̂w)(0)
〉

=

∮
0

dz

zn−s+1

〈
V1(∞)V2(1)Ws(z)V̂w(0)

〉
=−

∞∑
k=−∞

∮
1

dz

zn−s+1(z − 1)k+s

〈
V1(∞)(Ws,kV2)(1)V̂w(0)

〉
+ (−1)s

∞∑
k=−∞

∮
∞
dz

zk−s

zn−s+1

〈
(Ws,kV1)(∞)V2(1)V̂w(0)

〉
,

(4.7)

where in the last line we have used (for a primary field) the relation Ws(z
−1) =

(−z−2)sWs(z) and also the fact that the contour had to be oriented the other way. Com-

puting the residues, we find for n ≥ 0〈
V1(∞)V2(1)(Ws,−nV̂w)(0)

〉
=(−1)s

〈
(Ws,nV1)(∞)V2(1)V̂w(0)

〉
−
〈
V1(∞)(Ws,−s+1V2)(1)V̂w(0)

〉
−
(
−n+ s− 1

s− 1

)〈
V1(∞)(Ws,0V2)(1)V̂w(0)

〉
,

(4.8)

where we have used (4.4) following from the fact that V2 is a simple puncture. At this

point, there is a distinction between the case k = 1 (i.e. for N = 2 gauge theories) in

which Ws,−nV2 can be expressed through the L−mV2 and the case k > 1 (i.e. N = 1

gauge theories) in which Ws,−nV2 = 0. We only consider the latter case here and write the

recursion relations for k = 1 and N = 2, 3 in appendix D. Plugging n = 0 in (4.8), we find

the relation〈
V1(∞)(Ws,−s+1V2)(1)V̂w(0)

〉
=
(
(−1)sws;1 − ws;2

) 〈
V1(∞)V2(1)V̂w(0)

〉
−
〈
V1(∞)V2(1)(Ws,0V̂w)(0)

〉
.

(4.9)

In the above, we denote by ws;i the charge of Ws when acting on the primary Vi. Remark

that the action of Ws,0 on descendant states does not need to be diagonal, unlike the action
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of L0. Plugging (4.9) into (4.8), we obtain for n > 1 the expression〈
V1(∞)V2(1)(Ws,−nV̂w)(0)

〉
=
〈
V1(∞)V2(1)(Ws,0V̂w)(0)

〉
+

[(
1−

(
−n+ s− 1

s− 1

))
ws;2 − (−1)sws;1

]
×
〈
V1(∞)V2(1)V̂w(0)

〉
.

(4.10)

For the computation of 4-point blocks, we also need the recursion relations for the γ̄ vertices.

Using the same tools, we can derive the following relation for n > 1〈
Ws,−nV̂ |V3(1)V4(0)

〉
=
〈
Ws,0V̂ |V3(1)V4(0)

〉
+

[((
n+ s− 1

s− 1

)
− 1

)
ws;3 − ws;4

]〈
V̂ |V3(1)V4(0)

〉
.

(4.11)

The action of Ws,0 on descendant fields needs to be computed using the appropriate W-

algebra commutation relation, which then together with (4.11) allows us to compute the γ̄

vertices.

Finally, for two full and one simple puncture (hence with ws;2 = 0), we can use (4.10)

and obtain the W-block with insertion of the current

γ12w(Ws(t); ∅) =

0∑
n=−∞

t−n−s
〈V1(∞)V2(1)(Ws;nVw)(0) 〉
〈V1(∞)V2(1)Vw(0) 〉

= t−sws;w +

∞∑
n=1

(ws;w − (−1)sws;1)tn−s =
(−1)sws;1t− ws;w

ts(t− 1)
.

(4.12)

We can immediately compare the above with the curve coefficients17 φ
(3)
s of (2.8). We

see that for s = k`, we have to have ws;1 = (−1)`(k+1) c
(`,k)
L and ws;w = (−1)` c

(`,k)
R ,

while for s 6= k` the charges have to vanish. This is in complete agreement with the

parametrization (3.18) (we can omit the tilde, since the sum of the left/right masses is zero

for k > 1) of the SU(Nk) theory with the action (4.2) of the projection on the Casimirs.

Hence, we conclude that the 3-point blocks of two full and one simple puncture with

insertion of the Ws current do reproduce the curve coefficients of the orbifold gauge theories

if one uses the punctures of section 4.1, i.e. the punctures inherited from the SU(Nk) theory

that have been acted upon by the projection πN,k.

Ward identities. We can recover the formula (4.12) also using Ward identities. For a

current Ws of spin sl, we have the following Ward identities

n∑
i=1

(
Ws,0;i

(t− zi)s
+

Ws,−1;i

(t− zi)s−1
+ · · ·Ws,−s+1;i

t− zi

)
× 〈V1(z1) . . .Vn(zn) 〉 = 〈Ws(t)V1(z1) . . .Vn(zn) 〉 ,

(4.13)

17Remember that for k > 1, we cannot do a shift in x, φ1 = 0 and hence there is no difference between

φs and φ̃s.
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where Ws,−m;i is the mode Ws,m acting on the ith field. Since we demand that Ws(t) goes

like t−2s at infinity, multiplying (4.13) with tj with j = 0, . . . , 2s− 2 and doing a contour

integral around the insertion points of all the primary fields gives us 2s − 1 global Ward

identities. We note that the Ws,0;i act diagonally on the vertex operators, i.e. they just

give the charges ws;i. Let us summarize the counting of unknowns and constraints:

1. We have 2s− 1 independent Ward identities for an n-point function. The number is

the same for any n.

2. For an n-point function, we have n(s−1) unknowns that we need to determine in order

to compute the ratio 〈W (t) · · · 〉 / 〈 · · · 〉 from (4.13). Each unknown corresponds to

an insertion of a lowering operator Ws,−m at the point zi in the correlation function,

where i ∈ {1, 2, . . . , n} and m = 1, . . . , s− 1.

3. Since for the n-point function will have n−2 simple punctures, this gives through (4.4)

exactly (n− 2)(s− 2) conditions.

In total, for an n-point function, we are left with

n(s− 1)− (2s− 1)− (n− 2)(s− 2) = n− 3 (4.14)

unknowns. Thus, for n = 3, we can compute the weighted correlation function with an

insertion of the current just by using the Ward identities. We just need to insert the

solutions for the unknowns in (4.13). Doing so, we obtain the same result as (4.12):

〈V1(∞)V2(1)Ws(t)Vw(0) 〉
〈V1(∞)V2(1)Vw(0) 〉

= γ12w(Ws(t); ∅) . (4.15)

Thus, the comparison between the free trinion curve and the CFT data is trivial - it follows

only from the assumptions for the full/simple punctures, their charges and the existence of

the currents of appropriate spin. The appropriate form of the algebra becomes noticeable

only at four points.

4.3 Four point blocks and the instanton partition functions

Having seen that the proposal we introduced at the beginning of the current section for

the relationship between the CFT blocks and the orbifold Sk curves works wonderfully for

the case of three points, we now want to turn to the 4-point blocks.

In the present section, we shall check our proposal by computing 〈〈T (t) 〉〉4 ≡
〈〈W2(t) 〉〉4 for quadratic order in q and 〈〈W (t) 〉〉4 ≡ 〈〈W3(t) 〉〉4 to linear order in q

for k ≥ 2 and comparing to the curves.

4.3.1 The four point blocks

In this section, we use (3.37) to compute 〈〈Ws(t) 〉〉4. The relevant γ and γ̄ vertices are

given either in the previous subsection 4.2 or in appendix D.
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The stress-energy tensor. Let us consider first the case of the spin two current and

compute 〈〈T (t) 〉〉4 for the theories with k ≥ 2. For k = 2, we can simply take the general

computation (D.14) done in the appendix and set (use (3.18), α• = 0 and (4.2))

∆1 = − c
(1,2)
L = −

N∑
i=1

m2
L, i , ∆2 = ∆3 = 0 ,

∆4 = − c
(1,2)
R = −

N∑
i=1

m2
R, i , ∆ = − a(1,2) = −

N∑
i=1

a2
i . (4.16)

Plugging this in (D.14), we get the cumbersome expression for 〈〈T (t) 〉〉4 up to quadratic

order in q

〈〈T (t) 〉〉4 =
a(1,2)−t c(1,2)

L

(t− 1)t2
− q

(a(1,2)− c
(1,2)
R )((t− 2) a(1,2) +t c

(1,2)
L )

2(t− 1)t3 a(1,2)

− q2 a(1,2)− c
(1,2)
R

(t− 1)t4(2 a(1,2))2
(
c(1− 2 a(1,2)) + 2 a(1,2)(8 a(1,2) +5)

)
×
{
c
[
− (a(1,2))2

(
4t c

(1,2)
L +t2 c

(1,2)
R −2t+ 4

)
+ t a(1,2) c

(1,2)
L (t c

(1,2)
L +2)−

(
t2 + 4t− 8

)
(a(1,2))3 + t2(c

(1,2)
L )2 c

(1,2)
R

]
+ 2 a(1,2)

[
(a(1,2))2

(
t2(−2 c

(1,2)
L + c

(1,2)
R +2) + 2t(8 c

(1,2)
L +5)− 20

)
− t a(1,2) c

(1,2)
L (t(c

(1,2)
L +6 c

(1,2)
R +2)− 10) +

(
3t2 + 16t− 32

)
(a(1,2))3

+ 5t2(c
(1,2)
L )2 c

(1,2)
R

]}
+O

(
q3
)
, (4.17)

where c = 2N − 1 is the central charge of the SU(2N) theory for Q = 0. Comparing with

φ
(4)
2 (t) (for k = 2 and N general) of (2.5), we get a perfect agreement if the Coulomb

modulus u2(q) takes the form

u2(q) = a(1,2) +
q

2

[
c
(1,2)
L c

(1,2)
R

a(1,2)
+ (c

(1,2)
L + c

(1,2)
R )− a(1,2)

]
+O(q2) . (4.18)

Compare this result for u2(q) with the k = 1 case of (3.46), while keeping the action (4.2)

in mind. In the above calculation, we computed 〈〈T (t) 〉〉4 by doing the computation in

the SU(2N) theory and then projecting using πN,2. Alternatively, we can straightforwardly

use the tools of the previous subsection 4.2 and obtain the same result.

Since our proposal reproduces the curves, we are given hope that the blocks would

give the Sk instanton partition functions, even for Q 6= 0. In particular, for N = 1, the full

algebra of the theory is W2 and hence (D.15) gives the full 4-point block. To first order in

q, this reads

B∆(∆1,∆2,∆3,∆4|q) = 1− q
2(a2 −M2

L)(a2 −M2
R)

4a2 −Q2
+O(q2) , (4.19)
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since for N = 1 we have ∆ = −a2 + Q2

4 , ∆1 = −M2
L + Q2

4 and ∆4 = −M2
R + Q2

4 , compare

with table 2.

Computing 〈〈T (t) 〉〉4 in the case k > 2 is slightly trickier since for Q = 0, the conformal

dimension ∆ of the exchanged operator vanishes and one would need to divide by zero

to compute the blocks. Hence, the correct approach is to perform the computation for

Q 6= 0 such that ∆ = Nk((Nk)2−1)
24 Q2 (see table 2) and to then take the limit Q→ 0. This

computation is well defined and it is straightforward to then check that limQ→0 〈〈T (t) 〉〉4 =

0 = φ
(4)
2 (t), in agreement with (2.5).

The spin three current. The case of the W3 current is straightforward too. For k = 3

and N general, the recursion relations of section 4.2 give us after some straightforward

computations

γ12w(W (t); {∅, ∅}) =
−w1t− ww

(t− 1)t3
, γ12w(W (t); {{1}, ∅}) =

(t− 3)ww − 2tw1

(t− 1)t4
,

γ12w(W (t); {∅, {1}}) = −(ww + w1)(tw1 + ww)

(t− 1)t3
.

(4.20)

Combined with γ̄12w({{1}; ∅}) = 0, γ̄12w({∅; {1}}) = ww−w4 and (B.2) with ∆w = ∆i = 0,

we can calculate 〈〈W (t) 〉〉4 to linear order in q. Since w1 = c
(1,3)
L , ww = − a(1,3) and

w4 = − c
(1,3)
R , we find

〈〈W (t) 〉〉4 =
1

1 + 0 · q

[
− c

(1,3)
L t+ a(1,3)

(t− 1)t3

+ q
1

−3 a(1,3)

(3− t) a(1,3)−2t c
(1,3)
L

(t− 1)t4
(− a(1,3) + c

(1,3)
R )

]
+O(q2) .

(4.21)

The above agrees perfectly with the curve coefficient φ
(4)
3 (t) in (2.5) for k = 3 if we set the

Coulomb modulus to the value

u3(q) = a(1,3) +
q

3

[
2 c

(1,3)
L c

(1,3)
R

a(1,3)
+ (c

(1,3)
L + c

(1,3)
R )− a(1,3)

]
+O(q2) . (4.22)

Hence, our proposal agrees with the first non-trivial S3 curve coefficient.

We can also compute (for N = 1 and k = 3) the 4-point block B for general Q. The

non-trivial W3 charges are w1 = {Q2,M3
L}, w4 = {Q2,−M3

R} and w = {Q2,−a3} for the

intermediate state. From (B.2), we find after putting c = 2(1 + 12Q2) for the first level

Shapovalov form

Q
(1)
w =

(
2Q2 −3a3

−3a3 −Q4

6

)
. (4.23)

Since γ12w({{1}; ∅}) = ∆+∆2−∆1 = Q2−Q2 = 0 and (see (D.19)) γ12w({∅; {1}}) = w1 +

ww = −a3 +M3
L. Similarly, see (4.11), γ̄12w({{1}; ∅}) = 0 and γ̄12w({∅; {1}}) = −a3 +M3

R.
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Hence, inverting (4.23), we find that the W3 block up to level 1 is

Bw(w1,w2,w3,w4|q) = 1 + q

(
− 6Q2

27a6 +Q6

)
(−a3 +M3

L)(−a3 +M3
R) +O(q2)

= 1− q
6Q2(a3 −M3

L)(a3 −M3
R)

27a6 +Q6
+O(q2) .

(4.24)

In addition to the computations for 〈〈W2 〉〉 and 〈〈W3 〉〉 that we have shown here, we

have performed additional checks - for 〈〈W4 〉〉 and for higher orders in q.

4.3.2 The instanton partition function of the orbifold theories

Having checked in the previous subsection that our proposal reproduces the curves, we

now want to investigate the instanton partition functions. Since the AGT correspondence

holds in N = 2 case, it is trivial that the correspondence between the four-point blocks B
of section 4.3.1 will agree with the Nekrasov partition functions projected with πN,k. Still,

it is worth looking at the way the projection πN,k acts to see what we can learn from it

about the class Sk theories.

The image of the Nekrasov instanton partition function Z(Nk,1)
inst of the SU(Nk) N =

2 SCQCD (3.31) under the map πN,k can be easily obtained. We can use
∏k−1
r=0

(
a −

m e
2πi
k r ) = ak −mk to write

Z(N,k)
inst = πN,k(Z

(Nk,1)
inst )

def
=

∑
Y={Y1,...,YNk}

q|Y|z̃
(N,k)
inst (Y)

=
∑

Y={Y1,...,YNk}

q|Y|
N∏
u=1

N∏
i=1

k−1∏
r=0

∏
(µ,ν)∈Yi+Nr

[(
ε− ai e

2πi
k r −ε1µ− ε2ν

)k
−mk

L, u

]

×
N∏
u=1

N∏
i=1

k−1∏
r=0

∏
(µ,ν)∈Yi+Nr

[(
ai e

2πi
k r +ε1µ+ ε2ν

)k
−mk

R, u

]

×

{
N∏

i,j=1

k−1∏
r,s=0

∏
(µ,ν)∈Yi+Nr

[
ai e

2πi
k r −aj e

2πi
k s−ε1LYj+Ns(µ, ν)

+ ε2
(
AYi+Nr(µ, ν) + 1

) ]
×

∏
(µ′,ν′)∈Yj+Ns

[
ε+ ai e

2πi
k r −aj e

2πi
k s +ε1LYi+Nr(µ

′, ν ′)

− ε2
(
AYj+Ns(µ

′, ν ′) + 1
) ]}−1

.

(4.25)

The resulting sum is still full of phases which lead to many cancellations when the sums

over the partitions are performed. It is useful to split the sum over the partitions Y into

orbits of the orbifold group ZN , where the action of that group on Y is defined via the

– 27 –



J
H
E
P
0
8
(
2
0
1
7
)
0
0
9

elementary cyclic shift

{Y1, . . . , YN , YN+1, . . . , Y2N , . . . , Y(k−1)N+1, . . . , YkN} 7−→
7−→ {Y(k−1)N+1, . . . , YkN , Y1, . . . , YN , . . . , Y(k−2)N+1, . . . , Y(k−1)N} . (4.26)

Thus, we can rewrite the instanton partition function with the summands expressed as

sums over the cyclic permutations:

Z(N,k)
inst =

∑
Y={Y1,...,YNk}

q|Y|z̃
(N,k)
inst (Y) =

∑
[Y]∈{Y1,...,YNk}/Zk

q|Y|
∑
σ∈Zk

z̃
(N,k)
inst (σ ·Y)

︸ ︷︷ ︸
def
= z

(N,k)
inst ([Y])

.

(4.27)

It seems quite non-trivial to obtain closed analytic expressions for the z
(N,k)
inst ([Y]) for general

N , k and equivalence class [Y]. For the simplest case of N = 1 and k general, one finds

for the first non-trivial equivalence class [{{1}, ∅, . . . , ∅}] the result

z
(1,k)
inst

(
[{{1}, ∅, . . . , ∅}]

)
= −

ε
(
ak −Mk

L

)
ε1ε2kak−1

k−1∑
s=0

e
2πi
k
s

(
ε+ a e

2πi
k
s
)k
−Mk

R(
ε+ a e

2πi
k
s
)k
− ak

. (4.28)

The first few cases of z
(1,k)
inst ≡ z

(1,k)
inst

(
[{{1}, ∅, . . . , ∅}]

)
with k > 1 can be simplified to

z
(1,2)
inst = −

2
(
a2 −M2

L

) (
a2 −M2

R

)
ε1ε2(4a2 − ε2)

,

z
(1,3)
inst = −

6ε2
(
a3 −M3

L

) (
a3 −M3

R

)
ε1ε2(27a6 + ε6)

, (4.29)

z
(1,4)
inst =

20ε2
(
a4 −M4

L

) (
a4 −M4

R

)
ε1ε2(−64a8 − 12a4ε4 + ε8)

,

z
(1,5)
inst = −

10ε2
(
125a10 + 7ε10

) (
a5 −M5

L

) (
a5 −M5

R

)
ε1ε2(3125a20 + 625a10ε10 + ε20)

. (4.30)

The above clearly agrees with (4.19) and (4.24). We have checked for higher k that for

k > 1 equation (4.28) is equal to 1
ε1ε2

Pk(ε,a)
P ′k(ε,a)

(
ak −Mk

L

) (
ak −Mk

R

)
, where Pk and P ′k are

homogeneous polynomials in ε and a with degP ′k − degPk = 2(k − 1).

In conclusion, we see that the Nekrasov partition function (4.27) does indeed reproduce

the CFT blocks with non-unitary fields. It still remains to determine closed formulas for

the summands z
(N,k)
inst ([Y]) that do not depend on the phases introduced by πN,k.

5 Conclusion and outlook

In this article, we showed that the Seiberg-Witten curves of the SU(N) class Sk gauge

theories derived in [28] can be obtained from the weighted current correlation functions

〈〈Ws(t) 〉〉 of the WNk algebra once the mass parameters of the SU(Nk) theory have been

properly identified under the Zk orbifold condition. To do this, we first found the quantum
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numbers of the vertex operators V� and V• of the full and the simple punctures respectively,

and observed that in general the punctures correspond to non-unitary representations of

WNk. We then argued that the null vectors of the simple punctures are inherited from

the SU(Nk) and spelled out consequences of our conjecture by computing 〈〈Ws(t) 〉〉n
for s = 2, 3 and both n = 3 and n = 4 points and comparing with the meromorphic

differentials of the Seiberg-Witten curve. We furthermore conjectured that the SU(Nk)

Nekrasov instanton partition functions with the orbifold values of the masses and the

Coulomb branch parameters (4.25) give the instanton contributions of the SU(N) class Sk
gauge theories. Moreover, it is natural to further conjecture that the algebra, the blocks

and the instanton partition functions of any theory in class SΓ is also obtained in this

way, with the masses and the Coulomb branch parameters identified under the Γ ∈ADE

orbifold condition.

It seems natural to think that the full extend of the AGT correspondence applies to

the class SΓ gauge theories. A necessary first step involves the computation of the full

3-point functions of two full and one simple puncture, which can then be used through

a block decomposition à la (3.24) to compute the full 4-point CFT correlation function.

This correlation function should correspond to the S4 partition function of the SU(N)

class Sk theories. For the 3-point functions of two full punctures and one simple one, the

appropriate 4D theory is a free one, namely the orbifold of the free trinion:

ZS4

free trinion =
〈
V�(∞)V•(1)V�(0)

〉
. (5.1)

Since we are dealing with a free theory, the S4 partition function can be straightforwardly

computed by counting the eigenvalues of Dirac and Laplace operators. This is work in

progress [46]. Once these 3-point correlation functions have been computed, one also needs

to check that the 4-point function satisfies the CFT crossing relations.

For N = 2 gauge theories in 4D, the S4 partition function is not scheme indepen-

dent [47] and the scheme dependence is understood as transformations of the Kähler po-

tential of the conformal manifold. For theories with only N = 1 supersymmetry, the ability

to control this ambiguity is lost18 [47]. However, for theories in the class SΓ at the orbifold

point we expect that to not be the case. Our expectations stem from the AdS/CFT corre-

spondence, the inheritance arguments of [50, 51] and our large experience from the study

of N = 2 orbifold daughters of N = 4 SYM [52–58]. When all the coupling constants

are equal to each other (i.e. at the orbifold point), certain observables in the untwisted

sector are equal to the N = 4 ones. Since, the theories in class Sk are also orbifolds of

N = 4 SYM, the inheritance arguments apply to them. In addition, they are by definition

orbifolds of the N = 2 class S theories and we are studying the case with all the coupling

constants equal. Hence, we expect certain observables to be equal to the corresponding

N = 2 ones as well and conjecture that the partition function on S4 is well defined.

Our results so far suggest, with a bit of optimism, that for any supersymmetric theory

with a Lagrangian description and an abelian Coulomb phase, we should be able to guess

18Despite these ambiguities, the partition functions still contain well defined physical information. For

example, certain derivatives of the free energy are scheme independent [48, 49].
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the dual 2D CFT, just by knowing: 1) the Seiberg-Witten curve from which one extracts

the symmetry algebra, the representations and then the instanton partition functions and

2) the free trinion partition function. Once these two are known, it should be possible to

compute the complete 3-point functions and to check that the 4-point function satisfies the

crossing equations.

Beyond this point, there are still many questions left open. Some of them concern

exploring the nature of the CFTs dual to the N = 1 class Sk theories and, in particular,

their marginal deformations. In a work in progress [59], the SW curves away from the

orbifold point are investigated. It would be very important to find the 2D CFT operation

that is dual to adding a marginal deformation to the orbifold point Lagrangian.

In addition, it would be instructive to try to repeat for the N = 1 theories of class SΓ

the strategy of [60], who starting from the (2,0) theory in 6D where able to obtain a direct

derivation of the AGT correspondence. In particular, it would be interesting to see what is

the orbifolded version of the intermediate complex Chern-Simons theory in this approach.

Since we conjectured in section 4 that the instanton partition functions of the class

Sk theories are obtained from the N = 2 ones after specializing the parameters, it would

be very important to compute these instanton contributions from first principles follow-

ing [61]. Alternatively, one could try to adapt Nekrasov localization techniques [62, 63] and

especially their most modern incarnation [64]. The comparison of these direct instanton

computations with our conjecture would allow one to fix the 2D CFT central charge.

In this article, we studied the effect of performing a Zk orbifold on the transverse

directions of the M5 branes that breaks the supersymmetry of the gauge theory down to

N = 1. This should be distinguished from quotienting out a Zr on space time directions

and considering the N = 2 theory on R4/Zr. In the latter case, the dual CFT is a coset

model (parafermionic Toda CFTs) and the correspondence has been studied in [65–71]

among others. It would be interesting to do both quotients, i.e. to investigate the AGT

correspondence for the class Sk theories on R4/Zr.
One is also interested in more general correlation and partition functions. For the N =

2 theories, the free trinion partition function only gives the 3-point correlation functions

(i.e. the 3-point structure constants) with one simple puncture, which is a semi-degenerate

field. In order to compute the correlation functions of three generic fields, dual to the

partition function of the full trinion TN , we used the refined topological string vertex

in [37, 72, 73]. It would be important to develop the refined topological vertex for D-brane

configurations subjected to the orbifold identification (2.2), for it would give us a path

towards the 3-point correlation functions of arbitrary primary fields.

Another potential direction of investigation concerns supersymmetric line and surface

operators/defects. It would be important to classify them for the class SΓ gauge theories

and to understand precisely how they are realized in the 2D CFT side, following closely the

work of [74] for the N = 2 case. See also the more recent reviews [75, 76] and references

therein. It seems very possible that the results of the present paper will immediately apply.

Furthermore, it would be important to make contact with the recent works of [77–79] based

on the superconformal index.

Lastly, we would like to state that the existence of a dual CFT whose correlation

functions reproduce the partition functions gives one hope that a generalization of Pestun’s
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localization to some N = 1 theories on S4 or the ellipsoid should be possible. This is

currently being researched [80].
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A Summation identities

The Casimirs are defined as (We write c(s) ≡ c(s,1))

c(s,k) =

N∑
i1<···<is=1

mk
i1 · · ·m

k
is , c(0,k) = 1 . (A.1)

For k = 1, they obey the important identity allowing to express the Casimirs of SU(N) in

terms of the U(N) ones:

i∑
j=0

(−1)i−j

N i−j

(
N − j
N − i

)
c(j)(c(1))i−j = c(i)∣∣ma→m̃a def

= c̃(i) . (A.2)

We remind that m̃a = ma − M
N with M = c(1) =

∑N
a=1ma. It is clear from the definition

that c̃(1) = 0.

We have (carij is the SU(N) Cartan matrix) the following formulas for contractions

involving the Cartan matrix and the fundamental weights

N−1∑
i1,i2=1

(ωi1 , ωi2)cari1,i2 = N − 1 ,
N−1∑

i1,i2,i3,i4=1

(ωi1 , ωi2)(ωi3 , ωi4)cari1,i3cari2,i4 = N − 1 .

(A.3)

The second identity follows from the first one if we also apply the first of the formulas

N−1∑
i,j=1

(α, ωi)(β, ωj)cari,j = (α,β) ,

N∑
i<j=1

(α, hi)(β, hj) = −1

2
(α,β) . (A.4)

Finally, we have the following summation identity

∑
(i1,n1)<···<(i`,n`)

mi1e
2πin1
k · · ·mi`e

2πin`
k = (−1)(k+1)s

N∑
i1<···<is=1

mk
i1 · · ·m

k
is , (A.5)

if ` = ks with s = 0, 1, . . . and is zero otherwise. In the sum, the indices ij run over

1, . . . , N and nj over 1, . . . , k with the inequality (i, h) < (i′, n′) iff i < i′ or i = i′
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and n < n′. Equation (A.5) is proven by expanding the left hand side of the identity∏k
n=1

(
x− e

2πin
k

)
= xk − 1 in powers of x, which leads to the formula

k∑
n1<n2<···<nl

e
2πi
k

(n1+···+nl) =

{
0 if l 6= k

(−1)k+1 if l = k
. (A.6)

It hence follows that in the sum of (A.5) only those terms remain for which the ij ’s clump

into bunches of size k for which the sum over the n’s gives a factor of (−1)k+1. This

completes the proof of (A.5).

B Shapovalov forms

The Virasoro case. The Shapovalov form for the first 3 levels reads Q
(0)
∆ = (1), Q

(1)
∆ =

(2∆) as well as

Q
(2)
∆ =

(
1
2(c+ 8∆) 6∆

6∆ 4∆(2∆ + 1)

)
,

Q
(3)
∆ =

 2(c+ 3∆) 2(c+ 8∆) 24∆

2(c+ 8∆) c(∆ + 2) + 2∆(4∆ + 17) 36∆(∆ + 1)

24∆ 36∆(∆ + 1) 24∆
(
2∆2 + 3∆ + 1

)
 .

(B.1)

The last matrix is wrt. to the basis {3}, {1, 2}, {1, 1, 1}, where {1, 2} stands for

L−1L−2V∆. We remind that the generators in the algebra are ordered as Lm1
−n1
· · ·Lms−nsV∆

with ni < ni+1.

The W3 case. For the W3, using the commutation relations of appendix C, the first

non-trivial Shapovalov form reads

Q
(1)
∆,w =

(
2∆ 3w

3w 1
48(c− 32∆− 2)∆

)
, (B.2)

in the basis {{1}; ∅} ≡ L−1V∆,w and {∅; {1}} ≡W−1V∆,w. Similarly, in the basis {{2}; ∅},
{{1, 1}; ∅}, {∅; {2}} {∅; {1, 1}}, {{1}; {1}} we find at level 2

Q
(2)
∆,w =


1
2(c+ 8∆) 6∆ 6w

6∆ 4∆(2∆ + 1) 12w

6w 12w −1
6∆(c+ 8∆ + 6)

5
48(c− 32∆− 2)∆ 18w2 + 1

8∆(c− 32∆− 2) −1
8w(c+ 48∆ + 14)

9w 6(2∆w + w) 1
12(c− 32∆− 2)∆

5
48(c− 32∆− 2)∆ 9w

18w2 + 1
8∆(c− 32∆− 2) 6(2∆w + w)

−1
8w(c+ 48∆ + 14) 1

12(c− 32∆− 2)∆
(c−32∆−2)∆(−64∆2+2(c−34)∆+c−34)−27648w2

2304
1
16w(c− 32∆− 2)(2∆ + 3)

1
16w(c− 32∆− 2)(2∆ + 3) 1

24

(
216w2 + ∆(∆ + 1)(c− 32∆− 2)

)

 .

(B.3)

– 32 –



J
H
E
P
0
8
(
2
0
1
7
)
0
0
9

C The W3 algebra

We have c = 2(1 + 12Q2) and introduce the parameter β = 16
22+5c = 2

4+15Q2 . The commu-

tation relations of the modes are

[Lm , Ln] =
c

12
m(m2 − 1)δm+n,0 + (m− n)Lm+n

[Lm , Wn] = (2m− n)Wm+n

[Wm , Wn] = − 1

3β

c

3 · 5!
m(m2 − 1)(m2 − 4)δm+n,0

− (m− n)

3β

(
(m+ n+ 3)(m+ n+ 2)

15
− (m+ 2)(n+ 2)

6

)
Lm+n

− (m− n)

3
Λm+n ,

(C.1)

where the spin four field Λ(z) = (TT )(z)− 3
10∂

2T has the mode expansion

Λm =

−2∑
p=−∞

LpLm−p +

∞∑
p=−1

Lm−pLp −
3

10
(m+ 2)(m+ 3)Lm . (C.2)

Compared to the commutation relations given in [81], we have rescaled W → iW . The

conformal dimension and w charge are given by in terms of SU(3) weights through

∆(α) =
(2Q−α,α)

2
, w(α) = − (α−Q, h1) (α−Q, h2) (α−Q, h3) . (C.3)

D Blocks computations

In this appendix, we summarize the essentials for the computations of the U(1), W2 and

W3 3 and 4-point blocks as well as for the calculations of the blocks with insertions of

the currents.

D.1 The U(1) blocks

We can define U(1) blocks in a fashion similar to the W algebra case. The charge conserva-

tion seems built into the system. The current is J1(z) = i∂λ, which has a mode expansion

J1(z) =

∞∑
n=−∞

z−n−1an , with [an , am] = nδn+m,0 . (D.1)

The modes an form the û1 affine algebra. We create representations by starting with Vp
annihilated by all an with n > 0 that obeys a0Vp = pVp. We are as generally in this

article, denoting the vertex operator and the state it creates by the same symbol. Using

the standard rule for the adjoint, we can define a Shapovalov form and find that the norm

of the state an1
−1 . . . a

nm
−mVp is given by

∏m
j=1 nj !j

nj . The numbers nj are related to the

Young diagram Y = {Y1, . . . , Ys} as follows: the number Yj is the number of boxes of the

jth row (drawn from the bottom upwards) of the Young diagram Y , while nr is number of
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rows in Y of exactly r boxes. For example, for Y = {1, 1, 2, 4} we have n1 = 2, n2 = 1,

n3 = 0 and n4 = 1.

We can compute as usual the recursion relations for the 3-point blocks〈
V1(∞)V2(1)(a−nV̂p)(0)

〉
= − (δn,0p1 + p2)

〈
V1(∞)V2(1)V̂p(0)

〉
,〈

a−nV̂p |V3(1)V4(0)
〉

= (p3 + δn,0p4)
〈
V̂p |V3(1)V4(0)

〉
,

(D.2)

where n ≥ 0. We remark that setting n = 0 in the above, we obtain the charge conser-

vation relations p = −p1 − p2 for the first correlator and p = p3 + p4 for the second. In

general, we find that the 3-point blocks are given by γ12p(a
n1
−1 . . . a

nm
−mVp) = (−p2)n1+···+nm

and γ̄p;34(an1
−1 . . . a

nm
−mVp) = pn1+···+nm

3 . It follows from the above discussion that the com-

putation of the 4-point blocks factorizes leading to

BU(1) ≡ Bp(p1, p2, p3, p4|q) =
∞∑

n1,n2,...=0

q
∑∞
j=1 jnj

(−p2p3)
∑∞
r=1 nr∏∞

s=1 ns!s
ns

=

∞∏
j=1

∞∑
n=0

qjn(−p2p3)n

n!jn
=

∞∏
j=1

e
− p2p3q

j

j = elog(1−q)p2p3 = (1− q)p2p3 .
(D.3)

We can now compute some conformal blocks with insertions of the current J1. We obtain

after a short computation

γ12p(J1(t); an1
−1 · · · a

nm
−mVp) =

{
p2

t− 1
+
p

t
−

m∑
r=1

rnr
p2

1

tr+1

}
(−p2)n1+···+nm . (D.4)

After some computations, one finds from (3.37) the formula

〈〈 J1(t) 〉〉4 =
p2

t− 1
+
p

t
− 1

p2

(−p2p3)q

t(t− q)
=

p2

t− 1
+

p3

t− q
+
p4

t

=
〈 J1(t)Vp1(∞)Vp2(1)Vp3(q)Vp4(0) 〉
〈Vp1(∞)Vp2(1)Vp3(q)Vp4(0) 〉

, (D.5)

where we remind that p = p3 + p4. We remark that 〈〈 J1(t) 〉〉4 is equal to the ratio of

the full correlation functions only for the U(1) case because in that case we have charge

conservation! This means that only one primary propagates in the four point function and

therefore the structure constants cancel in the ratio.

D.2 The Virasoro blocks

Three points. The case of the 3-point W-blocks is almost trivial since the 〈〈Ws 〉〉3 are

completely fixed by the WN Ward identities and the shortening properties of the simple

punctures. For the Liouville case, since (we ignore the anti-holomorphic pieces),

〈V1(z1)V2(z2)V3(z3) 〉 = z∆3−∆1−∆2
12 z∆2−∆1−∆3

13 z∆1−∆2−∆3
23 ,

〈T (t)V1(z1)V2(z2)V3(z3) 〉 =

3∑
i=1

(
∆i

(t− zi)2
+

∂zi
t− zi

)
〈V1(z1)V2(z2)V3(z3) 〉 ,

(D.6)
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we find after setting z1 →∞, z2 → 1, z3 → 0

γ123(T (t); ∅) = 〈〈T (t) 〉〉3 =
〈T (t)V1(z1)V2(z2)V3(z3) 〉
〈V1(z1)V2(z2)V3(z3) 〉

=
∆1t(t− 1) + ∆2t+ ∆3(1− t)

t2(t− 1)2
.

(D.7)

In general, we have the recursion relations〈
V1(∞)V2(1)(L−nV̂∆)(0)

〉
= (∆ + n∆2 − (1− δn,0)∆1)

〈
V1(∞)V2(1)V̂∆(0)

〉
,〈

L−nV̂∆ |V3(1)V4(0)
〉

= (∆ + n∆3 − (1− δn,0)∆4)
〈
V̂∆ |V3(1)V4(0)

〉
.

(D.8)

We also occasionally need the relations〈
V1(∞)(L−1V2)(1)V̂∆(0)

〉
= (∆1 −∆2 −∆)

〈
V1(∞)V2(1)V̂∆(0)

〉
〈
V̂∆ | (L−1V3)(1)V4(0)

〉
= (∆−∆3 −∆4)

〈
V̂ |V3(1)V4(0)

〉
.

(D.9)

Four points. Let us compute 〈〈T (t) 〉〉4 up to quadratic order in q. In the formula (3.34),

we have Y = {Y }. If Y is the empty partition, we reproduce (D.7) by using (D.8)

γ12∆(T (t); ∅) =
1

〈V1(∞)V2(1)V∆(0) 〉

0∑
n=−∞

t−n−2 〈V1(∞)V2(1)(LnV∆)(0) 〉

= t−2∆ +
∞∑
n=1

tn−2 (∆ + n∆2 −∆1) =
∆1(t− 1)t+ ∆2t−∆(t− 1)

(t− 1)2t2
,

(D.10)

where we have made use of (D.8). Similarly, we compute

γ12∆(T (t); {1}) =
1

〈V1(∞)V2(1)V∆(0) 〉

1∑
n=−∞

t−n−2 〈V1(∞)V2(1)(LnL−1V∆)(0) 〉

= t−32∆ + t−2(1 + ∆)
〈V1(∞)V2(1)(L−1V∆)(0) 〉
〈V1(∞)V2(1)V∆(0) 〉

+

∞∑
n=1

tn−2 〈V1(∞)V2(1)(L−nL−1V∆)(0) 〉
〈V1(∞)V2(1)V∆(0) 〉

=
2∆

t3
+

(∆ + 1)(∆−∆1 + ∆2)

t2

+
∆2(∆−∆1 + ∆2)

(t− 1)2
+

(∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1)

t

− (∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1)

t− 1
.

(D.11)

In the above we have used the commutation relations [Ln , Lm] = (n−m)Ln+m+ c
12n(n2−

1)δn+m,0. We compute in a similar fashion

γ12∆(T (t); {2}) =
c+ 8∆

2t4
+

3(∆−∆1 + ∆2)

t3
+

(∆ + 2)(∆−∆1 + 2∆2)

t2

+
∆2(∆−∆1 + 2∆2)

(t− 1)2
+

(∆−∆1 + ∆2 + 2)(∆−∆1 + 2∆2)

t

− (∆−∆1 + ∆2 + 2)(∆−∆1 + 2∆2)

t− 1
,

(D.12)
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as well as

γ12∆(T (t); {1, 1}) =
6∆

t4
+

2(2∆ + 1)(∆−∆1 + ∆2)

t3

+
(∆ + 2)(∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1)

t2

+
∆2(∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1)

(t− 1)2

+
(∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1)(∆−∆1 + ∆2 + 2)

t

− (∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1)(∆−∆1 + ∆2 + 2)

t− 1
.

(D.13)

Putting everything together, we get

〈〈T (t) 〉〉4 =
1

B∆(∆1,∆2,∆3,∆4|q)

[
γ12∆(T (t); ∅) + qγ12∆(T (t); {1})(Q(1)

∆ )−1γ̄α;34({1})

+ q2
(
γ12∆(T (t); {2}),γ12∆(T (t); {2})

)
(Q

(2)
∆ )−1

(
γ̄α;34({2})
γ̄α;34({1, 1})

)]
+O(q3) ,

(D.14)

where the Shapovalov form is to be found in (B.1). Comparison of (D.14) with the curve

coefficient φ̃
(4)
2 (see (2.5) and (2.10)) for N > 2 shows a perfect agreement if the parameter

identifications of section 3.2 are taken into account. The block in the denominator is easily

computed by taking the definition (3.25) and using (D.8). It reads

B∆(∆1,∆2,∆3,∆4|q)

= 1 +
q(∆−∆1 + ∆2)(∆ + ∆3 −∆4)

2∆

+ q2

[
(∆+∆3−∆4)(∆+∆3−∆4+1)

((
c
2 + 4∆

)
(∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1)

4c∆2 + 2c∆ + 32∆3 − 20∆2

− 6∆(∆−∆1 + 2∆2)

4c∆2 + 2c∆ + 32∆3 − 20∆2

)

+ (∆ + 2∆3 −∆4)

((
4∆2 + 2

(
2∆2 + 2∆

))
(∆−∆1 + 2∆2)

4c∆2 + 2c∆ + 32∆3 − 20∆2

− 6∆(∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1)

4c∆2 + 2c∆ + 32∆3 − 20∆2

)]
+O(q3) .

(D.15)

D.3 The W3-blocks

Ward identities. In the W3 case, we have to use the shortening condition for V2 in order

to use the Ward identities to compute the 3-point block with an insertion of W3(t) ≡W (t).
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The Ward identity that we want to use is (see 2.4 of [38])

〈W (t)V1(z1) · · ·Vn(zn) 〉 =

n∑
k=1

(
wk

(t− zk)3
+

W−1;k

(t− zk)2
+
W−2;k

t− zk

)
〈V1(z1) · · ·Vn(zn) 〉 ,

(D.16)

where wk ≡ w3(αk) with the charge w3(α) defined in (C.3). The action of W−1 and W−2

cannot in general be expressed via simple differential operators. Taking (D.16), multiplying

with zm, m = 0, . . . , 4, integrating in z over a contour encircling all the insertion points

and using the fact that W (t) ∝ 1
t6

for t → ∞ gives five global Ward identities (see for

example [81] starting from eq. (2.18) there). Thus, for the 3-point function, we have 5

identities and 6 unknowns, namely the correlation functions 〈W−1V1V2V3 〉 〈V1W−1V2V3 〉,
〈V1V2W−1V3 〉 and similarly another three with insertions of W−2 instead. We can thus

solve for all of them except for 〈V1W−1V2V3 〉. We can then get rid of 〈V1W−1V2V3 〉 by

using the fact that the primary field V2 is semi-degenerate and that it has the null-vector(
W−1 − 3w(α2)

2∆(α2)L−1

)
V2 = 0, so that

〈〈V1(z1)(W−1V2)(z2)V3(z3) 〉〉 =
3w2

2∆2

∂

∂z2
log[〈V1(z1)V2(z2)V3(z3) 〉]

−→ 3w2(∆1 −∆2 −∆3)

2∆2
,

(D.17)

after setting z1, z2, z3 to ∞, 1, 0. Therefore using the Ward identities, (D.16) and the null

vector, we find

〈〈W (t) 〉〉3 =
w3

t3
+

2∆2(w1 + w3) + w2(3∆1 −∆2 − 3∆3)

2∆2t2

+
∆2(w1 + w3) + w2(3∆1 − 2∆2 − 3∆3)

∆2t

+
w2(2∆2 + 3∆3 − 3∆1)−∆2(w1 + w3)

∆2(t− 1)
− 3w2(∆2 + ∆3 −∆1)

2∆2(t− 1)2
+

w2

(t− 1)3
.

(D.18)

3-point blocks. We can derive recursion relations like (4.10) for more general simple

punctures with W−1V2 = uL−1V2 for some parameter u. We find for n > 0 the identity〈
V1(∞)V2(1)(W−nV̂w)(0)

〉
=
〈
V1(∞)V2(1)(W0V̂w)(0)

〉
+

[
w1 −

n(n− 3)

2
w2 + nu(∆1 −∆2 −∆w)

]
×
〈
V1(∞)V2(1)V̂w(0)

〉
.

(D.19)

The last element that we need are the γ̄ vertices. They can be computed through the

following general relation for n > 0〈
W−nV̂w |V3(1)V4(0)

〉
=

(
n(n+ 3)

2
w3 − w4

)〈
V̂w |V3(1)V4(0)

〉
+
〈
W0V̂w |V3(1)V4(0)

〉
+ n

〈
V̂w | (W−1V3)(1)V4(0)

〉
.

(D.20)
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If V3 is a special puncture, we can use W−1V3 = 3w3
2∆3

L−1V3 and the relation (D.9) to

compute the γ̄ vertices iteratively.

The blocks with insertion of currents can be computed with the recursion rela-

tions (D.19) and (D.20). If V̂w = V3 is a primary field (a full puncture for the 3-point case)

and if u = 3w2
2∆2

(i.e. if V2 is the standard simple puncture), we find by using (D.19) for the

3-point W3-block with an insertion of the current W (z) the expression

γ123(W (t); ∅) =
∞∑
n=0

tn−3 〈V1(∞)V2(1)(W−nV3)(0) 〉
〈V1(∞)V2(1)V3(0) 〉

= 〈〈W (t) 〉〉3 (D.21)

where 〈〈W (t) 〉〉3 was computed via the Ward identities in (D.18).

Four points. Let us compute the first few order of 〈〈W (t) 〉〉4 ≡ 〈〈W3(t) 〉〉4. The W3 al-

gebra is presented in appendix C. Together with the recursion relations it is straightforward

to use a computer algebra program to compute

γ12w(W (t); {∅, {1}})

=
∆2

t4
+

2∆∆2(∆−∆1 + ∆2) + 2∆2w
2 + w(2∆2w1 − w2(3∆− 3∆1 + ∆2))

2∆2t3

+
1

4∆2
2t

2

[
4∆2

2

(
∆(∆−∆1 + ∆2) + (w + w1)2

)
− 2∆2w2(w + w1)(6∆− 6∆1 + 2∆2 + 3)

+ w2
2(3∆− 3∆1 + ∆2)(3∆− 3∆1 + ∆2 + 3)

]
+

1

2∆2
2t

[
2∆2

2

(
∆(∆−∆1 + ∆2) + (w + w1)2

)
−∆2w2(w + w1)(9∆− 9∆1 + 5∆2 + 6)

+ w2
2(3∆− 3∆1 + ∆2)(3∆− 3∆1 + 2∆2 + 3)

]
(D.22)

+
1

2∆2
2(t− 1)

[
− 2∆2

2

(
∆(∆−∆1 + ∆2) + (w + w1)2

)
+ ∆2w2(w + w1)(9∆− 9∆1 + 5∆2 + 6)

− w2
2(3∆− 3∆1 + ∆2)(3∆− 3∆1 + 2∆2 + 3)

]
+

3w2(∆−∆1 + ∆2 + 1)(w2(3∆− 3∆1 + ∆2)− 2∆2(w + w1))

4∆2
2(t− 1)2

− w2(w2(3∆− 3∆1 + ∆2)− 2∆2(w + w1))

2∆2(t− 1)3
,

as well as

γ12w(W (t); {{1}, ∅}) =
3∆

t4
+

∆2(∆(∆−∆1 + ∆2 + 2) + 2w1)− w2(3∆− 3∆1 + ∆2)

∆2t3

+
2∆2(∆ + w1)(∆−∆1 + ∆2 + 2)− w2

(
∆2(4∆− 4∆1 + 5) + 3(∆−∆1)(∆−∆1 + 3) + ∆2

2

)
2∆2t2
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+
(∆−∆1 + ∆2 + 2)(∆2(∆ + w1) + w2(−3∆ + 3∆1 − 2∆2))

∆2t
+
w2(∆−∆1 + ∆2)

(t− 1)3

+
(∆−∆1 + ∆2 + 2)(w2(3∆− 3∆1 + 2∆2)−∆2(w + w1))

∆2(t− 1)

− 3w2(∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1)

2∆2(t− 1)2
. (D.23)

In (D.22) and (D.23), we have put for simplicity Q = 0 from which follows c = 2 and β = 1
2 .

The four point block B to linear order in q (for Q 6= 0) can be obtained quite straight-

forwardly by inverting (B.2) and using γ12w({{1}, ∅}) = ∆ − ∆1 + ∆2, γ12w({∅, {1}}) =

w + w1 + 3w2(−∆+∆1−∆2)
2∆2

+ w2, γ̄w;34({{1}, ∅}) = ∆ + ∆3 − ∆4, γ̄w;34({∅, {1}}) =

w + 3w3(∆−∆3−∆4)
2∆3

+ 2w3 − w4. Thus, the 4-point W3-block reads

Bw(w1,w2,w3,w4|q) = 1 +
q

2∆2∆3 (∆2(−c+ 32∆ + 2) + 216w2)
×

×
{

∆2

[
∆(∆3(−c+ 32∆ + 2)(∆−∆1 + ∆2)(∆ + ∆3 −∆4)

− 48w1(w3(3∆ + ∆3 − 3∆4)− 2∆3w4))

+ 48∆3w
2(4∆− 3(∆1 −∆2 −∆3 + ∆4))

+ 24w(2∆3(w1(∆ + 3∆3 − 3∆4)− w4(∆− 3∆1 + 3∆2))

+ w3(∆− 3∆1 + 3∆2)(3∆ + ∆3 − 3∆4))
]

+ 24w2(3∆− 3∆1 + ∆2)(∆w3(3∆ + ∆3 − 3∆4)

−∆3(w(∆ + 3∆3 − 3∆4) + 2∆w4))
}

+O(q2) .

(D.24)

We remark that ∆2,∆3, w2 and w3 all also depend on the central charge via

∆2,3 = − 1

12
κ2,3

(√
6
√
c− 2 + 4κ2,3

)
,

w2,3 = − 1

432
κ2,3

(√
6
√
c− 2 + 4κ2,3

)(√
6
√
c− 2 + 8κ2,3

)
, (D.25)

with κ2 = (ML − a(1)) and κ3 = −(MR − a(1)), see section 3.2 for more details.

The higher orders corrections in q of B are computed similarly. Combining the block

B with (D.22) and (D.23), one can easily compute 〈〈W (t) 〉〉4 to linear order in q.

E Nekrasov instanton partition functions

For the N = 2, SU(N) Nekrasov instanton partition functions, we define19 ε = ε1 + ε2 and

consider first the matter contributions to the instanton partition function:

Zfund(a,Y;m) =

N∏
s=1

∏
(i,j)∈Ys

[
as + ε1i+ ε2j −m

]
,

19See [82] for a review. Our definition of the antifundamental partition function differs by a sign.
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Zantifund(a,Y;m) =

N∏
s=1

∏
(i,j)∈Ys

[
ε−m− as − ε1i− ε2j

]
,

Zbifund(a,Y; a′,Y′;m) =

N∏
s,s′=1

∏
(i,j)∈Ys

[
as−a′s′−ε1LY ′

s′
(i, j)+ε2 (AYs(i, j) + 1)−m

]
×

∏
(i′,j′)∈Y ′

s′

[
ε+as−a′s′+ε1LYs(i′, j′)−ε2

(
AY ′

s′
(i′, j′) + 1

)
−m

]
,

(E.1)

where we define the arm and leg lengths as

AY (i, j) = Yi − j , LY (i, j) = Y t
j − i . (E.2)

Finally, we have the vector multiplet contribution

Zvec(a,Y) =
1

Zbifund(a,Y; a,Y; 0)
. (E.3)

Specializations of the bifundamental contribution lead to the following identities

Zbifund(a,Y; b,∅;m) =
N∏
s=1

Zfund(a,Y;m+ bs) ,

Zbifund(b,∅; a,Y;m) =
N∏
s=1

Zantifund(a,Y;m− bs) .

(E.4)

F The inverse mirror map

In this appendix, we show how to compute the inverse mirror map u2(a) for the N = 2

case with gauge group SU(2) and four flavors. We use [32] as our guide and detail our

computations for the reader’s convenience.20 Our strategy in this appendix goes as follows.

We first introduce two auxiliary ingredients: we explain how to perform a specific contour

integral that we need for the computation of the inverse mirror map u2(a) and we introduce

a cubic polynomial that simplifies some expressions. Once this is done, we apply these two

ingredients directly to the computation of u2(a) from the SW curve.

The α-cycle integral. First, let us show how to perform an α-cycle integral. In general,

let P4(t) =
∏4
i=1(t − ri) be a normalized quartic polynomial. Let C be the contour that

encircles in a counterclockwise fashion the points r1 and r2. We want to compute the

contour integral
∮
C

dt√
P4(t)

, where the square root has been defined so that the branch cuts

lie between the roots r1 and r2 on the one side and between r3 and r4 on the other. We

use a Möbius transformation f(t) to map r1, . . . , r4 to 0, λ, 1,∞, where λ = r12r34
r13r24

with

rij = ri − rj . Specifically, f(t) = at+b
ct+d with ad− bc = 1 and

r1 = −b

a
, r2 = −b− dλ

a− cλ
, r3 = −b− d

a− c
, r4 = −d

c
. (F.1)

20We are grateful to Sara Pasquetti for giving us her Mathematica files on this computation.
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Then, setting t = f−1(z), we find (setting the branch cuts appropriately)∮
C

dt√
P4(t)

=

∮
f(C)

dz

(a− cz)2

1√
P4(f−1(z))

= −2i

∫ λ

0

dz
√
r13r24

√
z
√
z − λ

√
1− z

= −4i
K(λ)
√
r13r24

,

(F.2)

where K(m) is the complete elliptic integral of the first kind. Going from the second to

the third step, we have used

f−1(z)− r =
1

a− cz
×

{
−(b + ar) if d + cr = 0

(d + cr)(z − f(r)) if d + cr 6= 0
, (F.3)

as well as (d + cr1)(d + cr2)(d + cr3)(−b− r4a) = 1
a c(a−c)(a−cλ) = −r13r24.

An auxiliary polynomial for the roots. Now we come to a construction involving an

auxiliary polynomial Q3. Its purpose is to give us a simple way of expressing the cross-ratios

of the roots of P4 in terms of the coefficients of P4. Normally, we are not given directly

the roots ri of the quartic polynomial P4(t) but rather its coefficients and the expressions

relating them can be cumbersome. Let us write P (t) = t4 − s1t
3 + s2t

2 − s3t+ s4, so that

the coefficients sa are expressed using the roots as sa =
∑4

j1<···<ja=1 rj1 · · · rja . We want

to find convenient expressions for λ and r13r24 in term of the sa. Define first the following

linear combinations of the roots

t1 =
1

2
(r1 + r2 + r3 + r4) , t2 =

1

2
(r1 − r2 + r3 − r4) ,

t3 =
1

2
(r1 + r2 − r3 − r4) , t4 =

1

2
(r1 − r2 − r3 + r4) , (F.4)

as well as the auxiliary cubic polynomial Q3(y) = (y − t22)(y − t23)(y − t24). We easily check

that Q3(y) = y3 + c2y
2 + c1y + c0 with

c2 = 2s2 −
3s2

1

4
, c1 =

3s4
1

16
− s2

1s2 + s1s3 + s2
2 − 4s4 ,

c0 = − s6
1

64
+
s4

1s2

8
− s3

1s3

4
− s2

1s
2
2

4
+ s1s2s3 − s2

3 . (F.5)

Hence, we have an auxiliary cubic polynomial Q3(y) with coefficients ca easily expressed

from the original coefficients sa. The roots of Q3(y) are easily computed. They are the

t22, t23 and t24 and we find λ =
t22−t24
t23−t24

as well as r13r24 = t23 − t24. There is an S3 ambiguity

in ordering the roots of Q3 as t22, t
2
3, t

2
4. Under this permutation group, the cross-ratio of

the roots λ goes over the values
{
λ, λ

λ−1 ,
1
λ ,

1
1−λ ,

λ−1
λ , 1− λ

}
. This ambiguity is related to

the ambiguity of choosing a canonical set of cycles on the SW curve and we solve it by

choosing the one solution that can be expanded for small q.
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The inverse mirror map. Let us now apply all this machinery to the computation of

a α-cycle integral for the N = 2 theory with gauge group SU(2) and four flavors. The SW

differential21 λSW = xdt is explicitly given by

λSW =
m1 −m2

2

√
P4(t)

t(t− 1)(t− q)
dt , (F.6)

where P4(t) = t4 − s1t
3 + s2t

2 − s3t+ s4 with (we use m1 = mL, 1,m2 = mL, 2,m3 = mR, 1

and m4 = mR, 2)

s1 =
2
(
q
[
m2

1 +m2
2 + (m1 +m2)(m3 +m4)

]
− 2m1m2 + 2u2

)
(m1 −m2)2

,

s2 =
q
[
q(m1+m2+m3+m4)2 + 2((m1+m2)(m3+m4)−2m1m2−2m3m4)

]
+4(q+1)u2

(m1 −m2)2
,

s3 =
2q
(
q
[
m2

3 +m2
4 + (m1 +m2)(m3 +m4)

]
− 2m3m4 + 2u2

)
(m1 −m2)2

s4 =
q2(m3 −m4)2

(m1 −m2)2
.

(F.7)

Since A ≡ a1 − a2 = 2a = 1
2πi

∮
r1,r2

λSW, it follows that

dA

du2
=

1

2πi

∮
r1,r2

dλSW

du2
=

1

2πi

∮
r1,r2

2

n0

dt√
P4(t)

= − 4

πn0

K(λ)
√
r13r24

. (F.8)

We have to assign the roots of the cubic polynomial in such a way that t22 − t24 vanishes

when q = 0. We thus have an expansion t22 − t23 = qN1 + q2N2 + · · · and t23 − t24 =

D0 + qD1 + q2D2 + · · · which we plug into (F.8). The coefficients Na and Da are rather

complicated functions of the sa. We now make a substitution u2 = v2

4 from which follows
dA
du2

= 2
v
dA
dv . It follows that one obtains (thanks to a computer algebra program) the rather

simple expression

dA

dv
= − 1 + q

[
− 12(m1m2m3m4)

v4
+

∑4
i1<i2=1mi1mi2

v2
− 1

4

]
+ q2

[
− 420 (m1m2m3m4)2

v8

+
15

v6

(
4∑

i1<i2<i3=1

m2
i1m

2
i2m

2
i3 + 4m1m2m3m4

4∑
i1<i2=1

mi1mi2

)
(F.9)

− 3

4v4

( ∑
i1<i2

m2
i1m

2
i2 + 2

( ∑
i1<i2

mi1mi2

)2

− 4m1m2m3m4

)

+
−2
∑4

i=1m
2
i + 8

∑4
i1<i2=1mi1mi2

32v2
− 9

64

]
+O

(
q3
)
.

21With x2 = −φ̃(4)
2 (t), see (2.5) and (2.10) with κ = 1

2
. Furthermore, u1 is given by (3.44) and we have

set a(1) = a1 + a2 = 0 for simplicity.
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Integrating the above (the integration constant is zero) we get after inverting the expression

a formula for v as a function of A. Putting this formula in u2 = v2

4 and replacing A = 2a

leads to the inverse mirror map:

u2 = a2 + q

[
m1m2m3m4

2a2
− 1

2

4∑
i1<i2=1

mi1mi2 −
a2

2

]
+ q2

[
5(m1m2m3m4)2

32a6

−
3
∑4

i1<i2<i3=1m
2
i1
m2
i2
m2
i3

32a4
+

∑4
i1<i2=1m

2
i1
m2
i2

32a2
+

∑4
i=1m

2
i

32
− 3a2

32

]
+O

(
q3
)
.

(F.10)

From the curve/block comparison on the other hand, we get22

u2 = a2 + q

[
m1m2m3m4

2a2
− 1

2

4∑
i1<i2=1

mi1mi2 −
a2

2

]

+ q2 1

4a4 (16a4 − 2a2(c− 5) + c)

[
− 6a10 + a8

[
c+ 2

(
4∑
i=1

m2
i − 2

)]

+ 2a6

(
4∑
i=1

m2
i +

4∑
i1<i2=1

m2
i1m

2
i2

)

− a4

[
c
(
m2

1m
2
2 +m2

3m
2
4

)
+
(
m2

1 +m2
2

) (
m2

3 +m2
4

)
+ 6

4∑
i1<i2<i3=1

m2
i1m

2
i2m

2
i3

]

+ 10a2m2
1m

2
2m

2
3m

2
4 + cm2

1m
2
2m

2
3m

2
4

]
+O

(
q3
)

(F.11)

and the quadratic terms in q do not agree for any value of c. Specifically, we see that the

q2 term of (F.10) has a Laurent expansion in a that terminates, while (F.11) does not.

Furthermore, all the terms in (F.10) are homogeneous of degree 2 under the rescaling of

all parameters with units of mass. However, if we rescale, both in (F.10) and in (F.11),

all parameters with units of mass as m→ m/~ and take the limit ~→ 0, then the leading

order terms (scaling like ~−2) agree. The central charge c = 1 + 6Q2 = 1 (since Q = 0)

does not scale at all with ~ and cannot be seen in that limit.

Hence, we conclude that the agreement between the curve and the blocks is only fully

valid for ε1 + ε2 = 0 and
√
ε1ε2 = ~ → 0. Furthermore, we see that we cannot determine

the CFT central charge from the curve.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

22We have taken (F.11) from the same computation that led to (3.46) and we remind that we have put

N = 2 and set for simplicity a1 = a and a2 = −a.
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