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Genève 23, CH-1211 Switzerland
bTif Lab, Dipartimento di Fisica, Università di Milano and
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1 Introduction

The discovery of the Higgs boson at the CERN Large Hadron Collider (LHC) [1, 2] set an

important milestone for our understanding of fundamental interactions. So far, the prop-

erties of the new particle seem consistent with Standard Model predictions, which suggests

a simple electroweak symmetry breaking sector [3, 4]. A major goal of the LHC Run II

is establish whether the new particle is indeed the Higgs Boson of the Standard Model or

there are some deviations pointing towards new physics. In order to reach this goal, very

precise theoretical predictions for signal and background processes are mandatory.

The dependence of the cross-section on heavy quark masses is an interesting probe

of the properties of the Higgs boson both within and beyond the Standard Model, since

it gives access to the structure of the ggH coupling [5–10]. A particularly interesting

observable in this respect is the transverse momentum distribution, since it allows a study

of the ggH coupling at different energy scales and can then provide valuable information

on its structure.

Gluon fusion is the main Higgs production mechanism at the LHC. In this channel the

total production cross-section was recently computed to N3LO accuracy [11, 12]. Recently,

fully differential results for Higgs production in association with one hard jet have become
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available [13–15]. However, all these results have been obtained in the approximation in

which heavy quark masses are assumed to be very large, and the coupling of the Higgs

boson to gluons is then described using an effective theory.

At the inclusive level, this is just as well since the dependence on the heavy quark mass

is very weak and under good theoretical control at present collider energies [16]. On the

other hand, large effects are expected in the transverse momentum distribution. Indeed,

theoretical predictions for this observable in the full theory, which are only known at the

lowest nontrivial order [17], show large deviations from the effective theory as soon as pT
is comparable to the top quark mass. The fact that only the leading order is known is

particularly problematic since we know from the inclusive case that radiative corrections

are very large.

In ref. [18] some of us have shown that using high-energy resummation methods it is

possible to glean partial information on the heavy quark mass dependence at higher order,

at the level of the inclusive cross-section. These results were subsequently used to construct

an optimized approximation to the NNLO [16, 19, 20] and N3LO [21–24] inclusive cross-

section with full top mass dependence. The goal of this paper is to apply similar ideas to

transverse momentum distributions; this is possible thanks to the recent derivation [25] of

high-energy resummation for transverse momentum distributions.

High-energy resummation is available only at the leading logarithmic level: it pro-

vides us with information on the contribution to all orders in αs which carries the highest

logarithmic power of ln s
m2
h
. Still, this provides relevant insight on the heavy quark mass

dependence. Indeed, in the opposite kinematic limit, namely the threshold limit in which
m2
h
s → 1, all the dependence on the heavy quark mass can be absorbed in a factorized

Wilson coefficient which depends only on the strong coupling and the ratio of the heavy

quark to the Higgs mass, up to terms suppressed by powers of 1 − m2
h
s . On the contrary,

in the high-energy limit the behaviour of the total cross-section in the effective and full

theory are qualitatively different, as the former is double-logarithmic [26] and the latter

single-logarithm [18] (i.e. they are respectively a series in αs ln2 s
m2
h

and αs ln s
m2
h
).

In ref. [25], where a general resummation of transverse momentum distributions was

derived, a first application to Higgs production in gluon fusion in the effective field theory

limit was presented. Here, we will apply the same general formalism to the same observable,

but now retaining full heavy quark mass dependence. Besides studying the top mass

dependence in the boosted Higgs region, our results provide some insight on bottom logs

when both top and bottom mass dependence is retained. Indeed, in the region m2
b . p2T

bottom mass effects may become relevant. Of particular interest is the region m2
b < p2T <

m2
h, in which logarithmically enhanced, though mass-suppressed terms appear [27]. We

will be able to study these logs to all orders, albeit in the high-energy limit.

The paper is organized as follow: in section 2 we present the resummation of the

transverse momentum distribution for Higgs production in gluon fusion with complete

quark mass dependence. In section 3 we discuss the partonic resummed cross-section. We

check that its leading order truncation agrees with the high-energy limit of the exact result,

and that in the pointlike limit it reproduces the resummed result of ref. [25]. We study the
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first few orders of its perturbative expansion, and specifically we study the high-pT region

and compare the high-energy result expanded through NLO in the effective and full theory.

We use these result as a way to qualitatively estimate mass corrections beyond leading

order: we show that for high enough transverse momenta the high-energy approximation

provides a reasonable estimate of higher-order corrections while the effective field theory

fails completely. We also address to all orders the structure of the logarithmic dependence

on the bottom mass. In section 4 we discuss phenomenological implications: we repeat

the comparison of various approximations of section 3 but now at the level of hadronic

cross-sections and K-factors. We conclude that currently the best approximation in the

high pT & 200 GeV region is obtained by combining the exact LO result with a K-factor

determined in the high-energy approximation. We also compare our results to previous

estimates of finite mass effects based on matching to parton showers [28]. More accurate

approximations could be obtained by combining multiple resummations, as we discuss in

section 5 where conclusions are drawn and future developments are discussed.

2 Resummation

Leading-log high-energy resummation has been known for inclusive cross-sections [29, 30]

and rapidity distributions [31] since a long time. More recently, a framework for the resum-

mation of transverse-momentum spectra was developed by some of us [25]. In this section,

after a brief summary of notation and conventions, we apply it to the resummation of the

Higgs transverse momentum distribution in gluon fusion with finite top and bottom masses,

and then study its perturbative expansion, which will allow us to obtain the truncation of

the resummed result to any finite order.

2.1 Kinematics and definitions

In standard collinear factorization, the hadron-level transverse momentum distribution can

be written as

dσ

dξp
(τ, ξp, {yi}) =

∑
ij

∫ 1

τ(
√

1+ξp+
√
ξp)

2
dx1

∫ 1

τ(
√

1+ξp+
√
ξp)

2

x1

dx2

× dσ̄ij
dξp

(
τ

x1x2
, ξp, {yi}, αs(µ2R), µ2R, µ

2
F

)
fi
(
x1, µ

2
F

)
fj
(
x2, µ

2
F

)
, (2.1)

where fi(xi) are parton distributions and we parametrized the kinematics in terms of the

following dimensionless ratios

τ =
m2
h

s
; ξp =

p2T
m2
h

; yi =
m2
i

m2
h

(2.2)

where mh, mi are respectively the Higgs and the various heavy quark masses, pT is the

transverse momentum of the outgoing Higgs boson and s is the (hadronic) center-of-mass

energy.
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Equation (2.1) can be cast in the form of a standard convolution by an appropriate

choice of hard scale. To see this, we define

τ ′(τ, ξp) = τ
(√

1 + ξp +
√
ξp

)2
=
Q2

s
, (2.3)

thus identifying the threshold energy√
Q2 =

√
m2
H + p2T +

√
p2T (2.4)

with the physical scale of the process. Note that when pT � mH , τ ′ ≈ τ , while when

pT � mH , τ ′ ≈ 4p2T
s . If we now introduce the partonic equivalent of eq. (2.3)

x′ =
Q2

ŝ
, (2.5)

we can rewrite the hadronic cross-section as

dσ

dξp
(τ, ξp, {yi}) = τ ′

∑
ij

∫ 1

τ ′

dx′

x′
Lij
(
τ ′

x′
, µ2F

)[
1

x′
dσ̂ij
dξp

(
x′, ξp, {yi}, αs(µ2R), µ2R, µ

2
F

)]
, (2.6)

where the parton luminosity is defined in the usual way as

Lij
(
x, µ2F

)
=

∫ 1

x

dy

y
fi
(
y, µ2F

)
fj

(
x

y
, µ2F

)
, (2.7)

and

dσ̂ij
dξp

(
x′, ξp, {yi}, αs, µ2R, µ2F

)
=
dσ̄ij
dξp

(
x′(√

1 + ξp +
√
ξp
)2 , ξp, {yi}, αs, µ2R, µ2F

)
. (2.8)

That Q2 is a natural choice for the process is demonstrated by the fact that eq. (2.6) takes

the form of a convolution, and thus in particular it factorizes upon Mellin transformation.

In the following, we fix µ2R = µ2F = Q2 and drop for simplicity the dependencies on these

scales. The full scale dependence can be restored at any stage using renormalization group

arguments.

High-energy resummation is usually performed in Mellin (N) space. For the sake of

the determination of the leading-logarithmic (LLx) result, it is immaterial whether the

scale is chosen as Q2 eq. (2.4) (so the Mellin N variable is conjugate to τ ′ eq. (2.3)) or m2
H

(so Mellin N is conjugate to τ eq. (2.2)), because the choice of scale is a subleading ln x

effect. The LLx expression of the partonic cross-section can be expressed in terms of the

Mellin transform1

dσ̂ij
dξp

(N, ξp, {yi}, αs) =

∫ 1

0
dxxN−1

dσ̂ij
dξp

(x, ξp, {yi}, αs) (2.9)

1Note that with a slight abuse of notation we use the same notation for a function and its Mellin

transform.
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through an impact factor hpT :

dσ̂ij
dξp

(N, ξp, {yi}, αs) = hij,pT

(
0, γ

(αs
N

)
, γ
(αs
N

)
, ξp, {yi}

)
, (2.10)

where γ
(
αs
N

)
is the BFKL LLx resummed anomalous dimension [32–37]. The impact factor

for the gg channel is defined as

hgg,pT (N,M1,M2, ξp, {yi}) = hpT (N,M1,M2, ξp, {yi})

= M1M2R (M1)R (M2)

×
∫ ∞
0

dξ ξM1−1
∫ ∞
0

dξ̄ ξ̄M2−1CpT
(
N, ξ, ξ̄, ξp, {yi}

)
. (2.11)

Here the process-dependent coefficient function CpT describes the interaction of two hard

off-shell gluons with the Higgs boson (its computation will be described in the next sub-

section), the Mellin transforms in ξ and ξ̄ resum multiple high-energy gluon emission and

R(M) is a function which fixes the factorization scheme; the reader is referred to ref. [25]

for full derivations and details.

Due to the eikonal nature of high-energy gluon evolution, results for all other partonic

channels can be trivially obtained from eq. (2.11):

hqg,pT(N,M1,M2, ξp, {yi}) =
CF
CA

[
hpT(N,M1,M2, ξp, {yi})− hpT(N, 0,M2, ξp, {yi})

]
,

(2.12)

hqq′,pT(N,M1,M2, ξp, {yi}) =

(
CF
CA

)2 [
hpT(N,M1,M2, ξp, {yi})− hpT(N, 0,M2, ξp, {yi})+

− hpT(N,M1, 0, ξp, {yi})
]
, (2.13)

where q, q′ can be any quark or anti-quark. The subtraction terms in eq. (2.12) ensure

that at least one emission from the quark line is present, see ref. [25] for details; note

that subtraction of hpT(N, 0, 0, ξp, {yi}) is not necessary because this contribution vanishes

for pT 6= 0.

2.2 The impact factor

The computation of the coefficient function CpT which enters eq. (2.11) follows the proce-

dure outlined in refs. [18, 25]: CpT is closely related to the transverse momentum distribu-

tion for the process

g∗ (k1) + g∗ (k2)→ H (p) . (2.14)

Specifically, the off-shell gluon momenta can be parametrized in terms of longitudinal and

transverse components as

k1 = zp1 + kt,1

k2 = z̄p2 + kt,2 (2.15)
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with

p2i = 0, pi · kt,j = 0, i, j = 1, 2

k21 = k2t,1 = −ξm2
h < 0, k22 = k2t,2 = −ξ̄m2

h < 0 2p1 · p2 = ŝ,

kt,1 · kt,2 = −
√
ξξ̄m2

h cos θ .

The coefficient function CpT(N, ξ, ξ̄, ξp, {yi}) is then defined as the Mellin transform

CpT(N, ξ, ξ̄, ξp, {yi}) =

∫ 1

0
dxxN−1CpT(w, ξ, ξ̄, ξp, {yi}) (2.16)

where

x =
m2
h

ŝzz̄
. (2.17)

Note that Mellin transformation in eq. (2.16) is performed for simplicity with respect to

the standard pT-independent scaling variable eq. (2.17) as in the inclusive computation

of ref. [18]: as already mentioned, computing the Mellin transform with respect to the

variable x′ eq. (2.5) would lead to a result which differs by subleading terms, and thus to

the same final LLx answer.

The quantity CpT(x, ξ, ξ̄, ξp, {yi}) in eq. (2.16) is the transverse momentum distribution

CpT(x, ξ, ξ̄, ξp, {yi}) =

∫
1

2ŝzz̄
×

 1

256

∑
col,pol

|M(g∗g∗ → H)|2


× dP(k1 + k2 → ph)× δ
(
ξp − ξ − ξ̄ − 2

√
ξξ̄ cos θ

)
. (2.18)

In eq. (2.18) dP is the phase space factor

dP(k1 + k2 → ph) =
2π

m2
h

δ

(
1

x
− 1− ξ − ξ̄ − 2

√
ξξ̄ cos θ

)
dθ

2π
; (2.19)

the sum over off-shell gluon polarizations is performed using

∑
λ

εµλ(ki)ε
ν∗
λ (ki) = −2

kµt,ik
ν
t,i

k2t,i
; (2.20)

and the flux factor is determined on the surface orthogonal to p1,2.

After standard algebraic manipulations, CpT can be written as

CpT
(
N, ξ, ξ̄, ξp, {yi}

)
= 2σ0 ({yi})

∫ 1

0
dxxN−2

∫ 2π

0

dθ

2π
F̃
(
ξ, ξ̄, ξp, {yi}

)
δ

(
1

x
− 1− ξp

)
δ

(
ξp − ξ − ξ̄ − 2

√
ξξ̄ cos θ

)
, (2.21)
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where σ0 is the LO Higgs production cross-section

σ0 ({yi}) = σPL0

∣∣∣∣∣∣
∑
{yi}

K (yi)

∣∣∣∣∣∣
2

, (2.22)

σPL0 =
GF

√
2α2

s

576π
; (2.23)

K (y) = 6y

(
1− 1

4
(1− 4y) ln2

√
1− 4y − 1√
1− 4y + 1

)
. (2.24)

In eq. (2.23) (as well as in all the remaining Equations in this paper) the branch cut in

the logarithm should be handled by giving y a small negative imaginary part. The rather

lengthy explicit formula for the form factor F̃ is reported in appendix A, together with some

limiting cases. Note that the quark mass dependence is contained both in the Born cross-

section σ0 and in the form factor F̃ . Note also that if the exact quark mass dependence is

retained, the form factor F̃ vanishes in the ξ, ξ̄ →∞ limit, while it approaches a constant

(F̃ → cos2 θ) in the pointlike approximation. This fact leads to a qualitatively different

high-energy behaviour in the two cases, which we will discuss in detail in the next sections.

Inserting the expression eq. (2.21) for the coefficient function CpT in the impact factor

eq. (2.11) and using one delta function to perform the x Mellin integral we obtain

hpT (N,M1,M2, ξp, {yi}) =

σ0 ({yi})M1M2R (M1)R (M2)
ξM1+M2−1
p

(1 + ξp)
N

∫ ∞
0

dξ1 ξ
M1−1
1∫ ∞

0
dξ2 ξ

M2−1
2

∫ 1

−1

du√
1− u2

2

π
F (ξ1, ξ2, ξp, {yi}) δ

(
1− ξ1 − ξ2 − 2

√
ξ1ξ2 u

)
, (2.25)

where we have introduced

u = cos θ, ξ1 =
ξ

ξp
= −

k2t,1
p2T

, ξ2 =
ξ̄

ξp
= −

k2t,2
p2T

(2.26)

and defined

F (ξ1, ξ2, ξp, {yi}) = F̃
(
ξ, ξ̄, ξp, {yi}

)
. (2.27)

We have performed several checks on eq. (2.25). Using the expressions in appendix A

it is easy to see that in the yi →∞ limit eq. (2.25) correctly reproduces the pointlike result

of ref. [25]. Also, upon integration over ξp it reproduces the inclusive result of ref. [18].

Finally, it is clear from eq. (2.26) that the ξp → 0 limit at fixed ξ1,2 can be treated in

the eikonal approximation. As explained in ref. [25], in this limit the result with full

heavy quark mass dependence must reduce to that of the effective theory, up to a Wilson

loop prefactor, i.e., the impact factor eq. (2.25) reduces to the pointlike result, up to the

replacement of the Born cross-section eq. (2.22) with its pointlike form. Comparing to the

pointlike impact factor, as given in eqs. (4.3), (4.5) of ref. [25], this implies the consistency

condition

lim
ξp→0

F (ξ1, ξ2, ξp, yt) =

(
1− ξ1 − ξ2

2
√
ξ1ξ2

)2

(2.28)

which can be explicitly checked using the formulas in appendix A.
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2.3 Perturbative expansion

The perturbative expansion of the impact factor which leads to the resummed result can

now be obtained by performing the integrations in eq. (2.25). For the sake of extracting the

first several orders in the expansion of the cross-section in powers of αs we are interested

in, we need the expansion of the impact factor in powers of Mi. This task is not entirely

straightforward because of the 1/Mi collinear singularities coming from the ξMi−1
i terms.

Although the actual singularities are removed by the MiR(Mi) factorization terms, they

prevent a naive Taylor expansion in Mi. In ref. [25] this problem was circumvented by

analytically computing the impact factor for arbitrary values of Mi. In the present case,

however, an analytic computation does not appear viable because of the complexity of F

when the full quark mass dependence is retained.

In order to extract the desired coefficients in the expansion of the impact factor we

then proceed as follows. First, we note that because of the kinematics in the LLx limit

we cannot have collinear singularities in both ξ1 and ξ2 at the same time. This is because

the transverse momentum of the two incoming off-shell gluons must exactly balance the

Higgs transverse momentum, so we cannot have ξ1 = ξ2 = 0 and ξp 6= 0 at the same time.

This is made explicit by the delta constraint in eq. (2.25). It is then natural to split the

integration domain in two regions, one with ξ1 > ξ2 and another with ξ2 > ξ1. In the first

one, we define ξ2 = zξ1 and rewrite eq. (2.25) as

hIpT (N,M1,M2, ξp, {yi}) =

σ0 ({yi})M1M2R (M1)R (M2)
ξM1+M2−1
p

(1 + ξp)
N

∫ 1

0
dz zM2−1

∫ 1

−1

2du

π
√

1− u2

∫ ∞
0

dξ1 ξ
M1+M2−1
1 F (ξ1, zξ1, ξp, {yi}) δ

(
1− ξ1(1 + 2

√
z u+ z)

)
,

(2.29)

where we have denoted with hIpT the contribution from this first integration region.

We now use the delta function to perform the ξ1 integration to obtain

hIpT (N,M1,M2, ξp, {yi}) =

σ0 ({yi})M1M2R (M1)R (M2)
ξM1+M2−1
p

(1 + ξp)
N

∫ 1

0
dz zM2−1

∫ 1

−1

2du

π
√

1− u2

[
1

1 + 2
√
zu+ z

]M1+M2

F

(
1

1 + 2
√
zu+ z

,
z

1 + 2
√
zu+ z

, ξp, {yi}
)
.

(2.30)

Note that in eq. (2.30) the limit ξ1 → 0 is harmless and only the limit z → 0 is associated

with a collinear singularity. We compute it using the identity

zM−1 =
1

M
δ(z) +

∞∑
j=0

M j−1

(j − 1)!

[
lnj−1 z

z

]
+

, (2.31)
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where the plus distribution is defined as∫ 1

0
dz [f(z)]+ g(z) =

∫ 1

0
dzf(z) [g(z)− g(0)] . (2.32)

We then rewrite eq. (2.30) as

hIpT (N,M1,M2, ξp, {yi}) =

σ0 ({yi})M1M2R (M1)R (M2)
ξM1+M2−1
p

(1 + ξp)
N

∫ 1

−1

2du

π
√

1− u2

×
(

1

M2
F (1, 0, {yi}) +

∫ 1

0
dz
aM1+M2F (a, b, ξp, {yi})− F (1, 0, ξp, {yi})

z
zM2

)
(2.33)

where we have introduced the notation

a = a(z, u) =
1

1 + 2
√
zu+ z

, b = b(z, u) =
z

1 + 2
√
zu+ z

. (2.34)

In eq. (2.33) the collinear pole in M2 = 0 has been isolated explicitly, and the remainder

can be Taylor-expanded in Mi; eq. (2.33) only involves integrals over compact regions,

which can be easily performed numerically. Since F is symmetric under ξ1 ↔ ξ2 exchange,

the result for the second region ξ1 < ξ2 can now be obtained from the left hand side of

eq. (2.33) via M1 ↔M2 exchange.

Combining the contributions from the two regions, we find that the expansion of the

impact factor eq. (2.25) has the general structure

hpT (N,M1,M2, ξp, {yi}) =

σ0 ({yi})R (M1)R (M2)
ξM1+M2−1
p

(1 + ξp)
N

×

c0 (ξp, {yi}) (M1 +M2) +
∑
j≥k>0

cj,k (ξp, {yi})
(
Mk

1M
j
2 +M j

1M
k
2

) (2.35)

with

c0(ξp,{yi}) =

∫ 1

−1

2du

π
√

1− u2
F (0,1,ξp,{yi}) (2.36)

cj,k(ξp,{yi}) =
1

(j − 1)!(k − 1)!

1

1 + δjk

×
∫ 1

−1

2du

π
√

1− u2

∫ 1

0
dz

lnj−1alnk−1bF (a,b,ξp,{yi})− δj,1lnk−1zF (1,0,ξp,{yi})
z

+ (j ↔ k) (2.37)

and a, b defined in eq. (2.34). A relatively simple analytic expression for c0 is presented in

appendix A, see eqs. (A.13), (A.14).
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The expansion and resummation of the transverse momentum distribution in the MS

scheme are finally obtained by substituting the expansion eq. (2.35) of the impact factor

in eqs. (2.10), (2.11), (2.12), and then letting [37, 38]

M1 = M2 = γ
(αs
N

)
=
CA

π

αs
N

+O
(
α4
s

)
(2.38)

and

RMS

(αs
N

)
= 1 +O

(
α3
s

)
. (2.39)

Note that this means that at O (αs) (LO), only the coefficient c0 (ξp, {yi}) contributes

to the transverse momentum distribution while at O
(
α2
s

)
(NLO) we must also include

c1,1 (ξp, {yi}), and at O
(
α3
s

)
(NNLO) c2,1 (ξp, {yi}) (here and henceforth we count powers

of αs not including the overall α2
s factor from σ0).

In view of our main goal, which is to estimate finite quark mass effect, it is interesting

to compare our result eq. (2.35) with its pointlike counterpart, as obtained in ref. [25]. In

that reference, the impact factor was obtained in closed form:

hPLpT (N,M1,M2, ξp) = σPL0 R (M1)R (M2)
ξM1+M2−1
p

(1 + ξp)
N

×
[

Γ (1 +M1) Γ (1 +M2) Γ (2−M1 −M2)

Γ (2−M1) Γ (2−M2) Γ (M1 +M2)

(
1 +

2M1M2

1−M1 −M2

)]
(2.40)

which can be expanded in power of M1 and M2, with the result

hPLpT (N,M1,M2, ξp) = σPL0 R (M1)R (M2)
ξM1+M2−1
p

(1 + ξp)
N

×

cPL0 (M1 +M2) +
∑
j≥k>0

cPLj,k

(
M j

1M
k
2 +Mk

1M
j
2

) . (2.41)

Although eq. (2.35) and eq. (2.41) have the same formal structure, if the exact quark

mass dependence is retained, the coefficients cjk eq. (2.36) depend non-trivially on ξp,

while in the pointlike approximation they are just numbers. The pT independence of the

coefficients cPLj,k is a reflection of the collinear origin of high-energy radiation and of the

pointlike nature of the interaction, see [25]. Nevertheless, as we already mentioned, in the

ξp → 0 limit the pointlike result should be recovered up to an overall rescaling. This in

particular implies that

cj,k (ξp, {yi}) →
ξp→0

cPLj,k . (2.42)

Using eq. (2.36) and the explicit form of F in the ξp → 0 limit given in appendix A, it

is indeed straightforward to show that eq. (2.42) numerically holds for arbitrary j, k. The

situation is rather different in the opposite ξp → ∞ limit. Indeed, in this case it is clear

from eq. (2.41) that the pointlike impact factor behaves like hPLpT ∼ lnj ξp/ξp. On the other

hand, thanks to the presence of the form factor F in eq. (2.36) the impact factor in the

full theory vanishes at least as hpT ∼ lnj ξp/ξ
2
p , leading to a much softer high pT spectrum.
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3 Parton-level results

We now present and discuss results for the partonic cross-section in the gluon channel ob-

tained from the expansion eqs. (2.35)–(2.36) of the resummed results. We will specifically

include top and bottom masses, i.e. henceforth {yi} = {yt, yb}. We expect the coefficients

cj,k (ξp, {yi}) = cj,k (ξp, yt, yb) to depart from the pointlike limit when the transverse mo-

mentum starts resolving the top loop, for ξp ∼ yt, and also to show some smaller deviation

from the pointlike behaviour in the region ξp & yb in which the bottom mass effects are felt.

First, we compare the exact result, which as mentioned is only known at LO, to

our high-energy result, and to the pointlike limit. Then, we discuss the structure of the

first several perturbative expansion coefficients ci,j eq. (2.36), and specifically compare the

pointlike limit to the contributions of top, bottom and interference. Finally, we use our

result to address the issue the possible exponentiation of bottom logs in the intermediate

scale region mb < pT < mH which has been the object of some recent discussion [27, 39–42].

Here and in the rest of this paper we will show all results for mh = 125.09 GeV and

with heavy quark masses given as pole masses, with the values

mt = 173.07 GeV, yt = 1.914; (3.1)

mb = 4.179 GeV, yb = 0.00112. (3.2)

Note that the difference between pole and MS masses is NLLx, and thus for our LLx results

only the numerical value of the heavy quark mass matters. Similarly, different scale choices

only affect our predictions at NLLx. As explained in section 2, we set µR = Q eq. (2.4) for

the numerical results shown in this section.

3.1 Leading order: comparison to the exact result

At leading O(αs) our result reduces to

dσ̂LLx−LO

dξp
= σ0 (yb, yt) c0 (ξp, yt, yb)

2CAαs
π

1

ξp
, (3.3)

with σ0 given by eqs. (2.22), (2.24) and c0, eq. (2.36); note in particular that it does not

depend on x because the LLx cross section is proportional to σ0 α
k
s lnk−1 x, k > 0. The

coefficient c0 can be determined in fully analytic form, see eqs. (A.13), (A.14).

In figure 1 we compare the exact [17], high-energy and pointlike [43] LO results for

four different values of x′ eq. (2.5). Here and henceforth we only show predictions for

large enough pT > 30 GeV: at lower pT fixed-order predictions cease to be valid, and must

be improved through Sudakov resummation. The relation of the latter to the high-energy

approximation was recently discussed in ref. [44]. As expected, the pointlike approximation

breaks down for pT & mt where the finite-mass result drops rather faster; the deficit which is

seen in the pointlike result for pT < mt is due to the finite bottom mass. The high-energy

approximation appears to be very accurate for x′ . 0.1; for higher x′ values it starts

deteriorating and for large x′ ∼ 0.5 it is typically off by 20%. However, the accuracy of the

high-energy approximation does not depend on pT if pT & mH : the large-pT behaviour of

the high-energy approximation is qualitatively the same as that of the full result.
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Figure 1. The partonic leading order transverse momentum distribution in the high-energy limit

(blue, solid) compared to the exact result of ref. [17] (black, dotted). The leading order pointlike

result [43] is also shown for comparison (red, dot-dashed). Results are shown for three different

values of x′ eq. (2.5): x′ = 0.01 (top left), x′ = 0.1 (top right), x′ = 0.5 (bottom left), x′ = 0.9

(bottom right); in each case, the ratio to the exact result is also plotted.

The pointlike approximation instead departs from the exact result by an increasingly

large amount as pT grows: in fact, as pT → ∞, c0 (ξp, yt, yb) eq. (3.3) drops at least as
1
p2T

, while it is constant in the effective theory, so dσLLx−LO

dξp
∼

pT→∞

1

(p2T)
a with a = 2 in the

full theory, and a = 1 in the effective theory. In the opposite limit pT → 0 instead, as

discussed in section 2.3 (see eq. (2.42)), the high-energy limit becomes pointlike, up to an

overall rescaling: it is indeed clear from the plots that in the region x′ . 0.1 in which the

high-energy approximation holds, as pT → 0 the high-energy and pointlike results coincide.

An immediate consequence of this discussion is that in the large pT & mt region it is

generally rather more advantageous to rely on the high-energy approximation, than use

pure effective field theory results, as we will discuss in more detail in section. 4.

3.2 Expansion coefficients beyond the leading order

We now study the expansion coefficients of the impact factor eq. (2.35), which we compute

including both top and bottom mass, i.e. using eq. (2.36). As discussed in the end of

section 2.3, the LLx transverse momentum distribution up to NNLO is fully determined

from knowledge of the first three coefficients. Explicitly, using eq. (2.35) with eqs. (2.38)–
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(2.39) and inverting the Mellin transform eq. (2.9) we get

dσ

dξp
(x, ξp, yt, yb) = σ0 (yt, yb)

∞∑
k=1

Ck (ξp, yt, yb)α
k
s(−1)k+1 lnk−1 x

(k − 1)!
(3.4)

with

C1 (ξp, yt, yb) =
2CA

π

c0 (ξp, yt, yb)

ξp
(3.5a)

C2 (ξp, yt, yb) =
2C2

A

π2
2c0 (ξp, yt, yb) ln ξp + c1,1 (ξp, yt, yb)

ξp
(3.5b)

C3 (ξp, yt, yb) =
2C3

A

π3
2c0 (ξp, yt, yb) ln2 ξp + 2c1,1 (ξp, yt, yb) ln ξp + c2,1 (ξp, yt, yb)

ξp
. (3.5c)

Note that the leading power of ln ξp is always proportional to the lowest order coefficient c0.

The coefficients are shown in figure 2, and compared to their (constant) pointlike

counterparts [25]. As expected, the coefficients tend to the pointlike limit as ξp → 0, while

they vanish at large ξp, as required in order for the inclusive cross-section to be free of

spurious double energy logs, as discussed in ref. [25]. In the high-energy limit, the overall

power behaviour at large pT remains the same to all orders, and equal to that of the leading

order, which as we have seen above, coincides with that of the exact leading order. The

fact that the high-energy approximation holds as holds as x′ → 0, while in the opposite

x′ → 1 limit the high-pT power behaviour is also to all orders the same of the leading-order

result [45] suggests that the high-energy approximation reproduces the correct high-pT
behaviour of the full result to all orders.

As seen in section 3.1, the pointlike approximation breaks down for pT ∼ mt. In the

high-energy limit, one expects the departure from pointlike to become increasingly marked

as the perturbative order is raised, because with an increasingly large number of hard

emissions more energy flows into the loop which is less well approximated by a pointlike

interaction: so higher-order coefficients ci,j deviate more from their pointlike limit than

lower-order ones. On the other hand, the lower order coefficients are enhanced by higher

powers of ln ξp, see eqs. (3.4)–(3.5), so low-order coefficients dominate, and the shape of

the pT distribution remains similar as the perturbative order is increased, as we will also

discuss at the hadronic level in section 4.

Also as discussed in section 3.1, the effect of the bottom quark can be seen in the

departure of the coefficients from the pointlike value at small pT, even though the pointlike

limit is always recovered in the pT → 0 limit. It is interesting to assess the relative impact

of the bottom, top, and interference contributions. In order to do this, we write each

coefficient as

cj,k (ξp, yt, yb) = Rt (yt, yb) c
t
j,k (ξp, yt) +Rb (yt, yb) c

b
j,k (ξp, yb) +Ri (yt, yb) c

i
j,k (ξp, yt, yb) ,

(3.6)
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Figure 2. The first three coefficients ci,j eq. (2.36) in the expansion of the transverse-momentum

dependent impact factor eq. (2.35) with finite top and bottom masses, compared to the pointlike

result.
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where the normalization ratios

Rt (yt, yb) =
|K(yt)|2

|K(yt) +K(yb)|2
= 1.107 (3.7a)

Rb (yt, yb) =
|K(yb)|2

|K(yt) +K(yb)|2
= 0.008 (3.7b)

Ri (yt, yb) =
K(yb)

∗K(yt) +K(yb)K(yt)
∗

|K(yt) +K(yb)|2
= −0.115. (3.7c)

account for the mismatch in normalization between the Wilson coefficients K in the form

factor eq. (2.27) when both the top and bottom contributions are included.

The separate contributions are compared in figure 3 to each other and to their sums,

already shown in figure 2, both with and without the normalization coefficients eq. (3.7).

It is clear that while in each case the un-normalized coefficients ct, cb and ci are all of the

same order, after multiplying by the Wilson coefficients eqs. (3.7) the top contribution is

dominant, while the pure bottom contribution becomes entirely negligible. However, in the

region mb . pT . mt and even for somewhat larger pT values the interference contribution

provides a small but non-negligible correction. Figure 3 shows that this feature, well

known at LO, appears to persist also at higher orders. In this range of pT, the transverse

momentum spectrum acquires a dependence on ln
p2T
m2
b
, as we now discuss.

3.3 Bottom logs

The region in which mb . pT . mt is particularly intricate because the Higgs momentum

spectrum becomes a multi-scale problem. Indeed, it was pointed out in ref. [39] that in this

region finite bottom mass effect are visible in the spectrum, which thus deviates from the

prediction obtained using transverse momentum resummation. Specifically, in ref. [27] it

was shown that the cross-section contains contributions proportional to ln
p2T
m2
b

which can be

traced to non-factorized soft or collinear logs. This immediately raises the question whether

such behaviour persists at higher orders, perhaps requiring resummation [27, 40, 41]. The

resummation of these soft logs as recently discussed in ref. [42]; in the high energy limit

considered here we focus on the collinear ones instead.

It turns out in fact that, in the high-energy limit, collinear logs are present to all

perturbative orders, but not of increasingly high logarithmic order, at least at the LLx

level. To see this, we first consider our LO result eq. (3.3) when m2
b < p2T < m2

h [27], i.e.,

using dimensionless variables yb < ξp < 1. Collinear bottom mass logs are extracted by

performing the simultaneous limit yb
ξp
→ 0 and ξp → 0 [27]. We get

dσLO

dξp
(x, ξp, yb) ∼

yb→0

GF

√
2α2

s

256π2
2CAαs
πξp

y2b

∣∣∣∣ln2 ξp
yb
− ln2 (−yb) + 4

∣∣∣∣2 . (3.8)

But
ξp
yb

=
p2T
m2
b
, so this agrees with the conclusion of ref. [27] that the transverse momentum

spectrum contains a collinear contribution proportional to
m4
b

p2Tm
2
H

ln4 p2T
m2
b
.

– 15 –



J
H
E
P
0
8
(
2
0
1
6
)
1
5
0

0 100 200 300 400 500 600 700 800 900 1000

pT [GeV]

1.0

0.5

0.0

0.5

1.0

1.5
c 0

R t ct0

R b cb0

R i ci0

top+bottom

0 100 200 300 400 500 600 700 800 900 1000

pT [GeV]

1.0

0.5

0.0

0.5

1.0

1.5

c 0

ct0

cb0

ci0

top+bottom

0 100 200 300 400 500 600 700 800 900 1000

pT [GeV]

1.0

0.5

0.0

0.5

1.0

1.5

c 1
,1

R t ct1, 1

R b cb1, 1

R i ci1, 1

top+bottom

0 100 200 300 400 500 600 700 800 900 1000

pT [GeV]

1.0

0.5

0.0

0.5

1.0

1.5

c 1
,1

ct1, 1

cb1, 1

ci1, 1

top+bottom

0 100 200 300 400 500 600 700 800 900 1000

pT [GeV]

1.0

0.5

0.0

0.5

1.0

1.5

c 2
,1

R t ct2, 1

R b cb2, 1

R i ci2, 1

top+bottom

0 100 200 300 400 500 600 700 800 900 1000

pT [GeV]

1.0

0.5

0.0

0.5

1.0

1.5

c 2
,1

ct2, 1

cb2, 1

ci2, 1

top+bottom

Figure 3. Contribution from top (red, solid), bottom (green, dot-dashed) and interference (purple,

dashed) to the coefficients shown in figure 2, with their sum also shown as blue line: the three

coefficients c0, c1,1 and c2,1 are shown from top to bottom, including (left) or not including (right)

the normalization due to the Wilson coefficient eqs. (3.6)–(3.7).

The corresponding result at all orders can be obtained by performing the same limit

on the function F eq. (2.27), which contains all the ξp and yb dependence of the resummed

result. We get

F (ξ1, ξ2, ξp, yb) ∼
yb→0

[
p4 (ξ1, ξ2) ln4 ξp

yb
+ p3 (ξ1, ξ2) ln3 ξp

yb

+ p2 (ξ1, ξ2) ln2 ξp
yb

+ p1 (ξ1, ξ2) ln
ξp
yb

+ p0

]
, (3.9)
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where the coefficient of the highest log has the simple form

p4 (ξ1, ξ2) =
(1− ξ1 − ξ2)2

4ξ1ξ2
, (3.10)

and we omit the lengthy expressions of the other coefficients. Using eq. (3.10) in eq. (2.27)

the integrals over ξi in the expression of the coefficients can be performed analytically, and

we find that the leading contribution to the impact factor in the limit is

hpT (N,M1,M2, ξp, yb) ∼
yb→0

σPL0 R (M1)R (M2)
ξM1+M2−1
p

(1 + ξp)
NcPL0 (M1 +M2) +

∑
j>k>0

cPLj,k

(
M j

1M
k
2 +Mk

1M
j
2

) ln4 ξp
yb
,

(3.11)

where cPLi,y are the coefficients which appear in the expression of the impact factor in the

pointlike limit eq. (2.41).

Equation (3.11) thus indeed shows that at LLx level a collinear log appears to all

orders, but with a fixed power: to all orders at LLx the highest power of log is four. The

log originates from the dynamics of the quark loop, but it is to all orders proportional to

the pointlike result. Because the highest power of the ln p2T/m
2
b terms is fixed at LLx, from

our result we cannot exclude higher order logs and their exponentiation at the subleading

log-x level.

4 Phenomenology

We now turn to the phenomenological implications of our results. First, we repeat the

comparisons that were presented in the previous section at the hadronic level. In particular,

we validate the high-energy approximation at leading and next-to-leading order, and then

provide prediction for the transverse momentum distribution at NLO based on the high-

energy approximation.

As explained in section 3.1, the high-energy approximation is mostly relevant in the

region pT > mH , where the pointlike approximation fails, while for lower pT values the

high-energy result rapidly approaches its pointlike limit, and eventually, for low enough pT,

Sudakov resummation of transverse momentum logs becomes necessary. In the region of

interest for this study, as demonstrated in section 3.2, the contribution of the bottom quark

is entirely negligible. Therefore, in the remainder of this section we will only include the

top contribution. Furthermore, as previously mentioned, the LLx behaviour of all partonic

channels can be deduced from the gluon-gluon case, and will thus be included throughout

this section. All plots are produced with µ2R = µ2F = Q2 and with the PDF4LHC15 NNLO

set of parton distributions PDF4LHC15 nnlo 100 [46–52], for the LHC with
√
s = 13 TeV.

– 17 –



J
H
E
P
0
8
(
2
0
1
6
)
1
5
0

30 100 200 300 400 500 600 700 800 900 1000

pT [GeV]

0

2

4

6

8

10

d
σ

(0
) /
d
σ

(0
)

ex
a
ct

LO pointlike

LO exact

LO high energy

Figure 4. The ratio of the high-energy approximation (in solid blue) and of the effective theory

result (in dotted red) to the full result for the hadron-level transverse momentum distribution at

LO plotted as a function of pT (GeV) at the LHC 13 TeV.

4.1 Validation of the high-energy approximation

We have seen in section 3.1 that the pointlike approximation to the exact result of ref. [17]

deteriorates by an increasingly large amount as pT grows beyond pT & mH , while the high-

energy approximation has an accuracy which is essentially independent of pT for fixed value

of the partonic scaling variable x′ eq. (2.5). The partonic x′ is of course bounded by the

hadronic τ ′ eq. (2.3), which in turn depends on the scale Q2 eq. (2.4) which for large pT is

Q2 ∼ 4p2T
s . Because we have seen that the high-energy approximation is good for x′ . 0.5

and only deteriorates slowly for larger values of x′, noting that τ ′ = 0.5 corresponds to

pT ∼ 4.6 TeV for the LHC at 13 TeV, we expect the high-energy approximation to be

reasonably accurate up to large values of pT.

We define the NLO transverse momentum distribution

dσ

dξp

(
τ ′, ξp, yt, αs

)
= αs

dσ(0)

dξp
+ α2

s

dσ(1)

dξp
+O

(
α3
s

)
, (4.1)

and the K-factor

K = 1 +
dσ(1)/dξp

dσ(0)/dξp
. (4.2)

In figure 4 we compare the leading order contribution dσ(0)

dξp
computed in the high-energy

approximation to the exact result of ref. [17], and also with the effective-field theory result.

It is clear that, as expected, the high-energy approximation is most accurate for pT ∼ mH

but only slowly deteriorates for larger pT: in fact, for all 0.5 . pT . 1 TeV the high-energy

approximation is about 60% of the full theory LO result. The effective field theory result

instead is driven by the fact that at the parton level it has the wrong large-pT power

behaviour, and is off by an increasingly large factor: at pT ∼ 1 TeV it is in fact too large

by about one order of magnitude.
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Figure 5. The ratio of the high-energy approximation to the pointlike result for the hadron-level

transverse momentum distribution plotted as a function of pT (GeV) at the LHC 13 TeV for the

LO, on the left and for the NLO contribution, on the right.

Beyond leading order we do not have any exact result to compare to, as only the ef-

fective field theory result is available. We expect a similar pattern to hold, and we can

provide some evidence for this by studying the relation between the high-energy approx-

imation and the full result, both determined in the pointlike limit. This comparison is

shown in figure 5 (left) for the LO contribution dσ(0)

dξp
. It is apparent that the quality of the

high-energy approximation in the pointlike limit is quite similar to that in the full theory

discussed above. The NLO contribution dσ(1)

dξp
is also shown in figure 5 (right): we compare

the high-energy pointlike result of ref. [25] to the full result of ref. [53]. Again, in the

medium-high pT region we are interested in the pattern is quite similar to that seen at LO.

This suggests that the high-energy approximation might remain accurate in a relatively

wide kinematic region. In order to test this, we have repeated the comparison of the high-

energy to the full result for the NLO term dσ(1)

dξp
, both in the pointlike limit, shown in

figure 5, for a wide range of values of pT and the collider energy. Results are shown in

figure 6. As expected, the high-energy approximation becomes better as the center-of-

mass energy is increased at fixed pT. On the other hand, if pT is varied at fixed energy the

quality of the approximation remains constant in a wide range of transverse momenta, and

it only starts deteriorating when the transverse momentum is larger than say ∼ 20% of its

upper kinematic limit
√
s/2. This is expected because the high-energy limit holds when

√
s

is much larger than all other scales: for instance, at large pT there are ln pT contributions

which should be resummed to all orders [54], but are increasingly subleading in the high-

energy expansion. However, in this region the transverse momentum distribution is tiny, so

in practice the high-energy approximation is uniformly accurate throughout the physically

relevant region.

4.2 The mass-dependent spectrum beyond leading order

We now finally turn to the pT spectrum of the Higgs boson with finite top mass beyond

leading order. In this case the exact result is unknown, and thus we can only compare differ-

ent approximations. In figure 7 we compare three different determinations of the K-factor

eq. (4.2) in the high-pT region we are interested in: using the full pointlike NLO result,
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Figure 6. The ratio of the NLO contribution dσ(1)

dξp
in the high-energy approximation to exact

result, both computed in the pointlike limit, for the Higgs transverse momentum distribution at

a proton-proton collider plotted as a function of the transverse momentum pT (in GeV) and the

center-of-mass energy
√
s (in TeV).
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Figure 7. The NLO K-factor eq. (4.2) computed using the full result in the pointlike limit (red,

dashed), and the high-energy approximation, either with full mass dependence (blue, solid) or in

the pointlike limit (green, dotdashed). In each case, the LO cross-section is computed using the

same approximation as the NLO term.

the high-energy approximation to it (i.e. pointlike, and high-energy), and the high-energy

result, but with full mass dependence. In each case, both the LO and NLO contributions

are computed using the same approximation. This plot shows that for pT & 200 GeV all

these K-factors have a similar behaviour, and differ by comparable amounts.
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Figure 8. Various approximations to the NLO Higgs transverse momentum distribution. The

curves shown correspond (from top to bottom) to adding the pointlike approximation to the NLO

contribution to the full LO result (red, dashed), or to multiplying the full LO result by the K-factors

of figure 7 computed respectively in the high-energy approximation but with full mass dependence

(blue, solid) or in the pointlike approximation (green dot-dashed). The full LO result is also shown

for comparison (black, dotted). In the bottom plot all curves are shown as ratios to the exact LO

result.

This plot suggests two main conclusions. First, in the only case in which we can

compare the high-energy approximation to the full result, namely the pointlike limit, we

see that the high-energy approximation is quite good (red vs. green curve in figure 7), with

an accuracy of about 20% or better for all pT & 200 GeV, which does not deteriorate as

pT increases. Second, even though (recall section 3) the shape of the distribution at high

pT differs between the pointlike and massive case (a different power of pT) the K factors

are similar and approximately pT independent, at least in the only case in which we can

compare the pointlike and massive results, namely the high-energy limit (green and blue

curve).

These two observations, taken together, suggest that the best approximation to the

full NLO result can be obtained by combining the full LO result with a K-factor computed

in the high-energy approximation, namely, by multiplying the LO cross-section by the K

factor (blue curve) of figure 7, corresponding to the high-energy fully massive result. This

is our preferred approximation, and it is shown in figure 8, where it is also compared to

the LO exact result and to the NLO pointlike approximation; all results are also shown

as ratios to the LO. It is clear that the pointlike result has the wrong power behaviour at

large pT and thus fails for pT & 200 GeV.

The comparison of K-factors of figure 7 suggests that if one wishes to use the NLO

pointlike result, rather than the high-energy approximation, a better approximation can
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be obtained by using the pointlike NLO to compute the K factor (red curve of figure 7),

and using this K factor to rescale the full massive leading order. The quality of this

approximation is possibly comparable to that of our favorite approximation based on the

high-energy limit: indeed, as discussed in section 3.2 this approximation captures the

leading log contributions proportional to c0 in eq. (3.5). This curve is also shown in

figure 8: it is seen to be quite close to our favorite approximation in a wide range of pT
but it starts departing from it only at the largest pT where we expect the high-energy

approximation to be more accurate.

If our approximation to the K-factor based on the high-energy limit is used, it is

natural to ask what is the associated uncertainty. Having observed that, at the level of

K-factors, the difference between the pointlike and massive cases is somewhat smaller than

the difference between the high-energy and full results (see figure 8), we can conservatively

estimate the uncertainty on the high-energy approximation to be given by the percentage

discrepancy between high-energy and full results (both pointlike) shown in figure 6. Of

course, this is just the uncertainty related to the high-energy approximation, which will

then have to be supplemented with all other sources of uncertainty (missing higher orders,

αs, PDFs, etc.).

Before concluding, let us comment on different approaches that can be found in the

literature. So far studies of finite top mass effects have been performed by merging different

hard-jet multiplicities and parton showers [55] and, more recently, in ref. [56] and in the

context of jet veto analysis [27] and NNLO matching to parton showers [28].

In refs. [57, 58], finite top mass effects were evaluated using an asymptotic expansion in

inverse powers of the top mass. This expansion is accurate below 2mt and finite-top mass

corrections in this region were found to below 10%. Our approximation, which is valid in

the high-pT region, is therefore complementary and one would expect that a combination

of the two approaches, in analogy to what was done for the inclusive case [16, 20], will

provide a reliable approximation across a wide range of pT.

In ref. [55], top mass effects on the transverse momentum distribution were calculated

using a matched parton shower approach. This analysis is particularly interesting for us

because both the approach of ref. [55] and ours implicitly relies on the assumption that real

radiation provides the bulk of radiative corrections in the high pT region. Nevertheless, this

assumption is then used quite differently in the merged sample and high-energy approx-

imations. Indeed, in the former real emission diagrams are accounted for exactly, while

virtual corrections are dropped altogether. The final result is then affected by merging

ambiguities. In the high-energy approach instead real emission is only included in the LLx

approximation, accompanied however by a matching set of virtual corrections to ensure a

well-defined NLO result.

Despite these differences, both approaches are supposed to capture the bulk of NLO

corrections in the high pT region, where the dominance of real emission is a reasonable

assumption. As a consequence, a significant disagreement between our results and ref. [55]

would imply the presence of large out of control subleading effects, which would somewhat

hamper the phenomenological relevance of these analysis. Fortunately, it turns out that

the two approaches lead instead to the same conclusions. Indeed, in the high transverse
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momentum region we find that the K factor in the pointlike and exact theory are compa-

rable, and that the shape in pT of our NLO approximation closely follows the behaviour

of exact LO, in agreement with conclusion drawn with the analysis of ref. [55] (see for

example figure 4 of that reference).

5 Conclusion

In this paper, we have applied the high-energy resummation of transverse momentum

distributions of ref. [25] to Higgs production in gluon fusion with full dependence on heavy

quark masses. We have determined explicit expressions for the resummation coefficients of

the resummed results to all orders.

The all-order expression has enabled us to show that the collinear bottom mass logs

which are relevant in the region mb < pT < mH are present to all orders in the high-

energy limit, but with a fixed power of log. We have then studied the impact of finite

mass corrections in the first few orders. We have shown that the pointlike approximation

fails badly for pT & mt, while the high-energy approximation provides reasonably accurate

results for center-of-mass energies above a few TeV and for all pT. Its accuracy does not

deteriorate as pT grows, unless pT becomes a sizable fraction of the center-of-mass energy.

We have thus argued that the best approximation to the transverse momentum distri-

bution at past and future LHC energies for all pT & 200 GeV can be obtained by combining

the known exact leading order result with a K-factor computed in the high-energy approx-

imation. At the hadronic level, we have provided results to NLO; the partonic NNLO

results presented here suggest that it will be interesting to investigate the relative accuracy

of various approximations at NNLO and beyond. More accurate approximations to the full

result could be constructed by combining information on the pT distribution coming from

the high-energy limit with that from the opposite soft limit, in which resummed results are

also available [45]. All these developments are under investigation and will be the object

of forthcoming publications.
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A Form factors and perturbative coefficients

We give here the expressions used in the computation of the pT-impact factor presented

in section 2. We also provide analytic form of the first LO coefficient of the expansion in

power of αs of the pT-impact factor, discussed in section 3.1.
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The pT-impact factor is expressed in eq. (2.25) as a double integral over ξ1 and ξ2
of a function F (ξ1, ξ2, ξp, {yi}). This function is deduced from the off-shell form factor

F̃
(
ξ, ξ̄, ξp, {yi}

)
as

F (ξ1, ξ2, ξp, {yi}) = F̃ (ξp ξ1, ξp ξ2, ξp, {yi}) . (A.1)

This form factor is given by [18, 59]:

F̃
(
ξ, ξ̄, ξp, {yi}

)
=

2304π4

|
∑

iK (yi)|2

∣∣∣∣∣∑
i

yiA
(
ξ, ξ̄, ξp, yi

)∣∣∣∣∣
2

(A.2)

with the sum i which runs over the set {yi} of quarks circulating in the loop, and

A
(
ξ,ξ̄,ξp,y

)
=
C0

(
ξ,ξ̄,y

)√
ξξ̄[(

2y

∆3
+

6ξξ̄

∆2
3

)((
ξp − ξ − ξ̄

)(
1 + ξ + ξ̄

)
+ 4ξξ̄

)
− ξp − ξ − ξ̄

2
+ 2

ξξ̄(1− ξp)
∆3

]

− 1√
ξξ̄

[
B0

(
−ξ̄,y

)
−B0(1,y)

][
− ξ̄

∆3

(
ξp − ξ̄ + ξ

)
+

6ξξ̄

∆2
3

(1 + ξp)
(
1 + ξ − ξ̄

)]

− 1√
ξξ̄

[B0(−ξ,y)−B0(1,y)]

[
− ξ

∆3

(
ξp − ξ + ξ̄

)
+

6ξξ̄

∆2
3

(1 + ξp)
(
1 + ξ̄ − ξ

)]
+

1

4π2
1

∆3

1√
ξξ̄

((
ξp − ξ − ξ̄

)(
1 + ξ + ξ̄

)
+ ξξ̄

)
(A.3)

where ∆3 =
(
1 + ξ + ξ̄

)2 − 4ξξ̄ and

B0 (ρ, y) = − 1

16π2

√
ρ− 4y

ρ
ln

√
ρ−4y
ρ + 1√

ρ−4y
ρ − 1

(A.4)

C0

(
ξ, ξ̄, y

)
=

1

16π2
1√
∆3

[
ln (1− y−) ln

(
1− y−δ+1
1− y−δ−1

)

+ ln (1− x−) ln

(
1− x−δ+2
1− x−δ−2

)
+ ln (1− z−) ln

(
1− z−δ+3
1− z−δ−3

)
+ Li2

(
y+δ

+
1

)
+ Li2

(
y−δ

+
1

)
− Li2

(
y+δ

−
1

)
− Li2

(
y−δ

−
1

)
+ Li2

(
x+δ

+
2

)
+ Li2

(
x−δ

+
2

)
− Li2

(
x+δ

−
2

)
− Li2

(
x−δ

−
2

)
+ Li2

(
z+δ

+
3

)
+ Li2

(
z−δ

+
3

)
− Li2

(
z+δ

−
3

)
− Li2

(
z−δ

−
3

) ]
(A.5)

with

δ1 ≡
−ξ + ξ̄ − 1√

∆3
, δ2 ≡

ξ − ξ̄ − 1√
∆3

, δ3 ≡
ξ + ξ̄ + 1√

∆3
, (A.6)

δ±i ≡
1± δi

2
, (A.7)
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and

x± ≡ −
ξ̄

2y

(
1±

√
1 +

4y

ξ̄

)
, (A.8)

y± ≡ −
ξ

2y

(
1±

√
1 +

4y

ξ

)
, (A.9)

z± ≡
1

2y

(
1±

√
1− 4y

)
. (A.10)

The form factor A can be expressed in terms of standard one-loop scalar integrals [60] by

letting C0(ξ, ξ̄, yi) = m2
hI3(−ξm2

h,−ξ̄m2
h,m

2
h,m

2
i ,m

2
i ,m

2
i )/(16π2) and B0(ρ, y)−B0(1, y) =[

I2(ρm
2
h,m

2
i ,m

2
i )− I2(m2

h,m
2
i ,m

2
i )
]
/(16π2). As already stated in the main text, the an-

alytic continuation of the form factor has to be handled by giving y a small negative

imaginary part.

Using these expressions, we obtain the following limiting cases

lim
y→∞

F (ξ1, ξ2, ξp, y) =
(1− ξ1 − ξ2)2

4ξ1ξ2
(A.11)

lim
ξp→0

F (ξ1, ξ2, ξp, {yi}) =
(1− ξ1 − ξ2)2

4ξ1ξ2
. (A.12)

Finally, we provide an analytic expression for the first expansion coefficient c0 eq. (2.36)

of the perturbative expansion eq. (2.35):

c0 (ξp, {yi}) =
2304π4

|
∑

iK (yi)|2

∣∣∣∣∣∑
i

yiA (0, ξp, ξp, yi)

∣∣∣∣∣
2

(A.13)

with

A (0, ξp, ξp, y) =
1

32π2

4y − 1− ξp
(1 + ξp)

2

ln2

√
1− 4y − 1√
1− 4y + 1

− ln2

√
1 + 4y

ξp
− 1√

1 + 4y
ξp

+ 1



+
4ξp

(1 + ξp)
2

√1− 4y ln

√
1− 4y + 1√
1− 4y − 1

−

√
1 +

4y

ξp
ln

√
1 + 4y

ξp
+ 1√

1 + 4y
ξp
− 1



+
4

1 + ξp

 . (A.14)
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