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1 Introduction

The exploit of the gauge/gravity correspondence [1–3] in studying strongly correlated sys-

tems resulted, among others, in establishing the lower bound ~/4π on the ratio of the

shear viscosity ηs to entropy density s in holographic fluid [4]. This interesting result has

contributed to the deeper understanding of the state of strongly interacting quark-gluon

plasma obtained at RHIC [5–7]. Related studies based on the gauge/gravity duality [8]

have also triggered the shear viscosity measurements in the ultracold Fermi gases [9], and

more recently in the condensed matter systems such as graphene [10, 11] and strongly

correlated oxide [12]. The comprehensive discussion of this novel set of experiments is

given in [13].

The desire to understand the long wave-length particle behavior via hydrodynamic

analogy has a long history. It goes back to the Madelung’s hydrodynamic formulation

of quantum mechanics [14], which later has been applied to many different condensed

matter systems including quantum wires [15], two-dimensional weakly [16] and strongly [17]

interacting electron gas in magnetic field and even nanoscale conductors [18]. The early

proposal in the field of elementary particle physics [19, 20] due to Landau, suggesting such

description of hadronic fireballs also has to be mentioned in this context.

Recently, there has been a great resurgence of interest in the description of viscosity

components in fluids by means of quantum theory [21–23] or gauge/gravity duality [24–41,

43–51]. The problem was elaborated from various points of view including the universality

of the conjectured lower bound on the ratio ηs/s and its measurements in an interacting gas

of fermions near the unitarity limit [9]. Various hydrodynamic response functions have been

probed using AdS/CFT approach [52]–[54]. Among them the antisymmetric part of the

viscosity tensor, the so-called Hall viscosity analogous to Hall conductivity has attracted

a lot of attention. The Hall viscosity being non-dissipative viscosity coefficient does not
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contribute to the entropy production of the fluid. In quantum fluids, at zero temperature,

the dissipative shear and bulk viscosities disappear. On the contrary, non-dissipative Hall

viscosity can remain nonzero in systems with broken parity or time-reversal symmetry [43].

There is, however a problem with this component of the viscosity related to the the question

of how to measure it in condensed matter systems [55].

The gauge/gravity correspondence offers quite a deep insight into the problem of un-

derstanding the dynamics of strongly interacting systems. However, one has to remember

that in the hydrodynamic description the universal ratio [27–35], strictly speaking, is valid

for all gauge theories with Einstein gravity in the limit N → ∞ and λ → ∞, where

N is the numbers of colors, while λ stands for t’Hooft coupling. The division of the ηs
by entropy density allows to get rid of the number of degrees of freedom and obtain the

universal bound. On the other hand, it turns out that in higher derivatives theories the

aforementioned bound is not universal [36]. The anisotropic theories also allow the bound

violation [38–40]. The violation of the viscosity bound has also been predicted in mas-

sive [41, 42] and in the quadratic Gauss-Bonnet gravity [37]. In the later work it has been

noted that the field excitations in the dual field theory enable the superluminal propagation

velocities for the Gauss-Bonnet coupling constant greater than 9/100.

The techniques developed in the AdS/CFT correspondence enable studies of parity

violating effects in hydrodynamical systems at strong coupling [43–51]. In general the sys-

tems with parity violations acquire additional response parameter/transport coefficient in

the long wave-length limit. As it is well known from classic physics the asymmetric compo-

nent of the viscosity appears at the same order as the shear viscosity in the hydrodynamical

derivative expansion. It is subject to the parity or time reversal violation. In condensed

matter physics it is called Hall viscosity [21] and we adopt this name in the following.

The holographic model of Hall viscosity in (2+1)-dimensional system was given in [43],

where the dynamical Chern-Simons term was used in the calculations. The further gener-

alizations, both analytical and numerical, in the model with Chern-Simons and Maxwell

terms [44], as well as, the Born-Infeld black branes [45] were presented. The Hall and shear

viscosities, in the model with dynamical Chern-Simons terms, were elaborated in [46, 47].

The spontaneously generated angular momentum in models with gauge and Chern-Simons

terms were studied in [48, 50]. Moreover, recently it was reported that the ratio between

Hall viscosity and angular momentum density is a constant, at least near the critical

regime [51]. It was envisaged in the holographic px + ipy model, which is different from

the Chern-Simons one studied before. The ground state breaks spatial parity by locking

it to non-Abelian gauge parity, which in turn is broken by the appearance of non-Abelian

gauge connection, the only source of the Hall viscosity, angular momentum density and

Hall conductivity.

The studies of hydrodynamic response via gauge/gravity duality is of interest per se.

The additional motivation behind our work here is related to the widely debated issue of

the invisible component of the matter in the Universe, the so called dark matter and its

experimental detection. In the previous studies [56–60] we have analyzed the properties of

holographic superconductors and vortices with the hope to find such modifications of their

properties which will allow the detection of the dark matter. The effect of dark matter on

the properties of superconductors has also been discussed in [61, 62].
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Here we extend the previous work to the analysis of a fluid response. To this end

we adopt the simple holographic realization of (2 + 1)-dimensional isotropic holographic

fluid with spontaneously broken parity and additionally supplemented by the dark matter

sector. The dark matter sector will be represented by the U(1)-gauge field which is coupled

to the ordinary Maxwell one.

As was mentioned, the motivation standing behind our studies is to elucidate the im-

print of the dark matter on physical phenomena, which detailed analysis would in turn allow

to detect dark matter and thus answer one of the most tantalizing questions of the con-

temporary physics. The present paper is a continuation and extension of the efforts aiming

at elucidation of the effect of dark matter on the properties of condensed systems [56–62].

The existing literature on the subject reports numerous theoretical and observational ev-

idences supporting the existence of dark matter and its role as a possible source of the

observed anomalies [63, 64, 67–79]. Here we are interested in its influence on the viscosity

of holographic fluids. In view of the laboratory experiments [9–12] which outcomes seem to

agree with the predictions of theories based on gauge/gravity duality we hope that future

obsevations will find imprints of dark matter on the properties of quantum fluids.

The paper is organized as follows. In section 2 we describe the main features of the

model under inspection with two U(1)-gauge fields coupled together. As already mentioned

one of them is the ordinary Maxwell field and the other is responsible for the dark matter

sector. General setup and the equations of motion are derived in section 3, while their

solution to lowest order are presented in section 3.1. The effect of dark matter sector on

shear and Hall viscosities is analyzed in section 4, while the subsection 4.1 is devoted to

the analysis of the temperature dependence of the Hall viscosity. We end up the paper

with summary and conclusions (section 5).

2 Holographic model

The gravitational background for the holographic model of viscosities constitutes the four-

dimensional deformation of the general relativity, the so-called Chern-Simons gravity, in

the formulation proposed in [81]. Chern-Simons modified gravity authorizes the effec-

tive extension of Einstein theory taking into account gravitational parity violation. The

aforementioned extension is motivated by anomaly cancelation in string theory and par-

ticle physics. There were proposed some astrophysical tests of Chern-Simons modified

gravity including Solar system, binary pulsars, galactic rotation curves and gravitational

wave experiments, as well as, the possible explanation of cosmological matter-anti matter

asymmetry (for the contemporary review of the various aspects of the theory see [82]).

Moreover, it turns out that the static solution of equation of motion in dynamical Chern-

Simons gravity with U(1)-gauge field is diffeomorphic to an open set of Reissner-Nordström

non-extremal solution with electric charge [83].

The gravitational action in (3+1) dimensions is taken in the form

Sg =

∫ √−g d4x

(

R− 2
Λ

L2
− 1

2
∇µθ∇µθ − V (θ)− λ

4
θ ∗R R

)

, (2.1)
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where θ is the pseudo scalar field, Λ = −3 stands for the cosmological constant, L the

radius of the AdS space-time, which from now on is taken as L=1. The Pontryagin density

term and dual Riemann tensor are provided by

∗R R = ∗Rα
β
γδ Rβ

αγδ,
∗Rα

β
γδ =

1

2
ǫγδηψ Rα

βηψ. (2.2)

λ is a coupling constant. The field θ, sometimes called Chern-Simons coupling field, being a

function of spacetime coordinates, serves as a deformation function. One can observe that

when θ = 0 and V (θ) = 0, the above modification of gravity reduces to the Einstein theory.

As was mentioned we treat θ as a pseudo scalar [44], so the gravitational Chern-Simons

term does not break the parity. But the pseudo scalar term violates parity spontaneously,

as well as, enables to receive a pseudo scalar condensate at the boundary.

The potential V (θ) assumes standard Ginzburg-Landau form of the Mexican hat type

for m2 < 0 and c > 0,

V (θ) =
1

2
m2 θ2 +

1

4
c θ4. (2.3)

As was found in [84, 85] scalar field can develop an instability if its mass square violates

the near horizon AdS Breitenlohner-Freedman bound. When the adequate condition is

received, the scalar field will be stable at infinity but will condense near the event horizon

of black brane. It happens that the condensed solution will comprise nontrivial radial

profile for scalar field. Namely, at low temperatures the field in question, explores extreme

values of its potential. Therefore the non-linearities in the potential connected with scalar

field will be of a great importance.

At zero temperature, one expects that the θ field condenses until the value of it at the

black brane event horizon reaches some point near the bottom of the Mexican hat potential.

At the aforementioned point the effective AdS-mass will fulfill the AdS Breitenlohner-

Freedman bound and the condensation will stop. The condensation is expected to persist

up to some finite temperature Tc, below which θ condensates. m2 is the effective mass near

the point θ = 0. It ought to satisfy the Breitenlohner-Freedman condition.

The matter field is composed of the Abelian-Higgs sector coupled to the second U(1)-

gauge field which in our theory describes the dark matter sector [86]. The action incorpo-

rating dark matter is provided by

Sm =

∫ √−g d4x

(

− 1

4
FµνF

µν − 1

4
BµνB

µν − α

4
FµνB

µν

)

, (2.4)

where Fµν = 2∇[µAν] stands for the ordinary Maxwell field strength tensor, while the

second U(1)-gauge field Bµν is given by Bµν = 2∇[µBν].

It can be observed that the bulk action Sg+Sm conserves parity, so a pseudo scalar θ, in

the last term of the equation (2.1), is of a key importance to introduce the parity violation

in the boundary theory via θ-condensation.

Let us comment on the motivation for introduction a dark matter sector in the form of

equation (2.4). In our previous works dedicated to the subject of the dark matter influence

on holographic s-wave and p-wave superconductors we have established that the α-coupling

constant of Maxwell and U(1)-gauge dark matter fields influence the various characteristics
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of the superconductors. If one treats the AdS/CFT correspondence as a kind of method

enabling us insight into the properties of strongly correlated systems, these changes may

be treated as the guideline in future experiments detecting dark matter.

Of course, the action (2.4) can be rewritten in the form

Sm =

∫

d4x
√−g

(

− 1

4
F̃µνF̃

µν − 1

4
B′
µνB

′µν

)

, (2.5)

where we defined

Aµ = Ãµ −
α

2
Bµ, (2.6)

B′
µν =

√

1− α2

4
Bµν , (2.7)

F̃µν = ∇[µÃν]. (2.8)

The other form of the action in question can be obtained when the ordinary Maxwell field

is multiplied by a coefficient. It implies

Sm =

∫

d4x
√−g

(

− 1

4
F ′

µνF
′µν − 1

4
B̃µνB̃

µν

)

, (2.9)

where one defines the following:

Bµ = B̃µ −
α

2
Aµ, (2.10)

F ′
µν =

√

1− α2

4
Fµν , (2.11)

B̃µν = ∇[µB̃ν]. (2.12)

It turns out in section 4, that in order to envisage the influence of dark matter sector on the

Hall viscosity, we should take into account the effects of dark matter backreaction on the

metric. To do this we expand all the adequate quantities in series in α-coupling constant

and calculate the backreaction up to the linear order.

Therefore, in what follows we shall use the action (2.4), where one has the explicit

dependence on α-coupling constant The equations of motion obtained from the variation

of the action S = Sg + Sm with respect to the metric, the scalar field and gauge fields are

given by

Gµν + Λ gµν − λ Cµν = Tµν(θ) + Tµν(F ) + Tµν(B) + α Tµν(F, B), (2.13)

∇µ∇µθ − ∂V

∂θ
=

λ

4
∗R R, (2.14)

∇µF
µν +

α

2
∇µB

µν = 0, (2.15)

∇µB
µν +

α

2
∇µF

µν = 0. (2.16)
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The contributions to the energy momentum tensors are given by

Tµν(θ) =
1

2
∇µθ∇νθ −

1

4
gµν ∇δθ∇δθ − 1

2
gµν V (θ), (2.17)

Tµν(F ) =
1

2
FµδFν

δ − 1

8
gµν FαβF

αβ , (2.18)

Tµν(B) =
1

2
BµδBν

δ − 1

8
gµν BαβB

αβ , (2.19)

Tµν(F, B) =
1

2
FµδBν

δ − 1

8
gµν FαβB

αβ . (2.20)

The above system of equations can be reduced to the following relations:

Rµν + 3 gµν − λ Cµν = tµν(θ) + Tµν(F ) + Tµν(B) + α Tµν(F, B), (2.21)

where we have denoted

tµν(θ) =
1

2
∇µθ∇νθ +

1

2
gµν V (θ), (2.22)

Cµν = ∇γθ ǫγκδ(µ ∇δRκ
ν) +∇γ∇δθ

∗Rδ(µν)γ . (2.23)

In order to find the Hall viscosity we have to compute its contribution to the hydro-

dynamics flow of the boundary field theory. Therefore, it is important to write the stress

tensor connected with the action of the considered theory, as we have to keep the fields

fixed at the boundary. The general procedure is similar to that of finding the boundary

Gibbons-Hawking term in general relativity. Namely, the variation of the boundary term

spoils the principle leading to Einstein equations because of the fact that it contains the

contribution proportional to the extrinsic curvature of the boundary. Thus, the variation

will constitute two terms, a bulk piece that vanishes when the equations of motion are ful-

filled and a boundary term. The situation can be cured by adding to the action a counter

term canceling the boundary one.

In the case of Chern-Simons theory, it can be shown that if θ pseudo scalar field vanishes

asymptotically for any solutions of the equations of motion derived from the action in the

theory in question, the stress energy tensor is the same as of an asymptotically AdS4 space-

time. Namely, taking variations of the Chern-Simons gravity action we obtain [43, 87, 88]

δSCS = −λ

4

∫

d4x
√−g θ ∗R R = −λ δS1 − λ δS2 + λ δS3, (2.24)

where the explicit forms are given by

δS1 =

∫

d4x
√−g δgαβ ∇λ∇γ(θ

∗Rλαγβ), (2.25)

δS2 =

∫

d4x
√−g ∇α(θ

∗Rβ γλ
ξ δΓξβλ), (2.26)

δS3 =

∫

d4x
√−g ∇β

[

δgλγ ∇ξ(θ
∗Rβλξγ)

]

. (2.27)

It can be proved that

δS1 =

∫

d4x
√−g δgαβ Cαβ , (2.28)

– 6 –
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whereas the term δS2 can be cast in the form of a variation of the extrinsic curvature plus

the term containing dual curvature term multiplied by the variation of the second kind of

Christofel symbol. Using the Gaussian normal coordinates

ds2 = dη2 + gijdx
idxj , (2.29)

and the Codazzi equation, as well as having in mind the fact that in the spacetime with

negative cosmological constant, solutions of Einstein equations admit the expansion (the

so-called Fefferman-Graham expansion [89]) provided by

gij = e2η g
(0)
ij + g

(2)
ij + e−2η g

(4)
ij + . . . (2.30)

one may find that the term under consideration, i.e. δS2, vanishes as
∫

∂M
d3x θ ∼ 0.

We can think about the boundary as being situated at η → ∞, with the metric tensor

conformal to g
(0)
ij .

In the case of δS3, with a help of Bianchi indentity, it can be envisaged that its

boundary behavior is of the form ǫαβγλ ∇αθ ∇γK
ξ
λ δgξβ → 0. Thus, the only relevant

term to the variation of the action is the conventional Gibbons-Hawking one. On the other

hand, the only counter term will be a boundary cosmological constant renormalization,

because of the fact that the boundary under consideration is flat. Then, the stress tensor

will be provided by

δS =
1

2

∫

d3x

√

g
(0)
ij T ij δg

(0)
ij , (2.31)

where g
(0)
ij is the metric on the conformal boundary.

3 Equations of motion for the perturbed system

In this section we shall consider the boosted black brane solution in Einstein-Maxwell-dark

matter gravity in AdS four-dimensional spacetime. To derive the hydrodynamic equations

and response parameters we have to perturb the velocity field, black brane temperature

and charge in the bulk. Such perturbations back-react on the metric and thus change

the background. We shall calculate the back-reaction perturbatively by expanding the

relevant functions up to the linear order in derivatives. In the present theory these functions

additionally depend on the coupling to the dark matter. To capture this dependence

analytically we shall assume small value of α and expand all relevant functions with respect

to it. Thus we are dealing with two expansions and in this paper we limit the calculations

to the linear order in the coupling to the dark matter sector and the perturbing fields.

In order to solve the equations of motion perturbatively, order by order, we write

the line element expanded up to the first order in the boundary derivatives around the

coordinates origin, xν = 0. Having obtained the metric solution near the origin one can

extend it to the whole manifold iteratively [90, 91].

– 7 –
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It turns out that the line element satisfying the equations of motion can be written as

ds2 = −2H(r, T,Q)uαdx
αdr−r2F (r, T,Q)uαuβdx

αdxβ+r2(ηαβ+uαuβ)dx
αdxβ, (3.1)

A = A(r, T, Q)uαdx
α, (3.2)

B = B(r, T, Q)uαdx
α, (3.3)

θ = θ(r, T, Q). (3.4)

By T and Q, we have denoted the Hawking temperature and the charge of the boosted

black brane. This background geometry describes hydrodynamics in (2 + 1)-dimensional

spacetime at thermal equilibrium at the boundary. The velocity is given by

uν =
1

√

1− β2
(1, βi). (3.5)

If one allows the constant quantities like T, Q, Aµ, Bµ, θ to be slowly varying functions

of the boundary coordinates than the expansions near the coordinate origin, given to the

first order, provided by

F (r, T,Q) = F (r) +
∂F

∂T
xµ∂µT +

∂F

∂Q
xµ∂µQ = F (r) + δF, (3.6)

H(r, T,Q) = Q(r) +
∂H

∂T
xµ∂µT +

∂H

∂Q
xµ∂µQ = H(r) + δH, (3.7)

A(r,Q, T ) = A(r) +
∂A

∂T
xµ∂µT +

∂A

∂Q
xµ∂µQ = A(r) + δA, (3.8)

B(r,Q, T ) = B(r) +
∂B

∂T
xµ∂µT +

∂B

∂Q
xµ∂µQ = B(r) + δB, (3.9)

θ(r,Q, T ) = θ(r) +
∂θ

∂T
xµ∂µT +

∂θ

∂Q
xµ∂µQ = θ(r) + δθ, (3.10)

uα = (1, xγ∂γβ
i), (3.11)

T = T0 + xµ∂µT, (3.12)

Q = Q0 + xµ∂µQ, (3.13)

are sufficient to calculate the viscosities. As we have already mentioned, the above func-

tions do depend on α, but this will be discussed later on. In agreement with previous

studies [36, 43–45] we perform the entire analysis in the comoving frame, where the fluid

velocity equals zero at the boundary. The resulting inhomogenous background line element

and the gauge fields yield

ds2 = 2 H(r) dv dr − r2 F (r) dv2 + r2 dxµ dxµ+ (3.14)

+ ǫ

[

2 δH dv dr−2 H(r)xα∂αβγdx
γdr−r2 δF dv2+2 r2(F (r)− 1)xµ∂µβγ dv dx

γ

]

,

θ = θ(r) + ǫ δθ, (3.15)

A = −A(r) dv + ǫ

[

A(r) xγ∂γβζ dxζ
]

, (3.16)

B = −B(r) dv + ǫ

[

B(r) xγ∂γβζ dxζ
]

, (3.17)
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where the small parameter ǫ serves as bookkeeping device, which power denotes the number

of the derivatives taken into account along the boundary.

It is important to notice, that with parameters depending on the boundary coordinates,

the ansatz (3.14) of the background line element does not satisfy the equations of motion

for the underlying theory. Thus the next step is to correct the line element order by

order in ǫ, to make the metric tensor, the gauge fields and the pseudo scalar θ fulfill

equations (2.13)–(2.16), order by order in the perturbation series. The correction to the

line element is taken in the following form

ds(1)2corr = ǫ

[

k(r)

r2
dv2 + 2 p(r) dvdr − r2 p(r) dxidx

i +
2

r
wi(r) dvdx

i+ (3.18)

+ r2 αij(r) dx
idxj

]

,

θcorr = ǫ θ, (3.19)

Acorr = ǫ (ãv(r)dv + ãm(r)dx
m), (3.20)

Bcorr = ǫ (b̃v(r)dv + b̃m(r)dx
m), (3.21)

where αij is symmetric and traceless.

3.1 Zeroth order equations

From the equation (3.14) we read off the zeroth order line element which is provided by

ds2 = 2 H(r) dv dr − r2 F (r) dv2 + r2 (dx2 + dy2), (3.22)

and find the following equations of motion:

F
′′

(r) +

(

6

r
− H ′(r)

H(r)

)

F ′(r) +
2

r

(

3

r
− H ′(r)

H(r)

)

F (r) (3.23)

− 1

r2
(6− V (θ))H2(r) =

A′(r)2

2 r2
+

B′(r)2

2 r2
+ α

A′(r) B′(r)

r2
,

F ′(r) +

(

3

r
− H ′(r)

H(r)

)

F (r)− 1

2r
[6− V (θ)]H2(r)+ (3.24)

+
A′(r)2

4 r
+

B′(r)2

4 r
+ α

A′(r) B′(r)

4 r
= 0,

H ′(r)

H(r)
=

r

4
θ′(r)2, (3.25)

A
′′

(r) +A′(r)

(

2

r
− H ′(r)

H(r)

)

+
α

2

[

B′(r)

(

2

r
− H ′(r)

H(r)

)

+B
′′

(r)

]

= 0, (3.26)

B
′′

(r) +B′(r)

(

2

r
− H ′(r)

H(r)

)

+
α

2

[

A′(r)

(

2

r
− H ′(r)

H(r)

)

+A
′′

(r)

]

= 0, (3.27)

θ
′′

(r) + θ′(r)

(

4

r
+

F ′(r)

F (r)
− H ′(r)

H(r)

)

− H2(r)

r2 F (r)

∂V

∂θ
= 0, (3.28)

where the prime denotes derivation with respect to r-coordinate.
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Having in mind equation for θ field, one remarks that its asymptotic behavior is of

the form

θ =
O−

r∆−

+
O+

r∆+
+ . . . , (3.29)

where ∆± = 3/2 ±
√

9/4 +m2. In the following, we turn off the mode O− and the

mode O+ is identified with the condensate at the boundary. It turns out that [92] for

−9/4 < m2 < −5/2, both O− and O+ are renormalizable and one can point either one as

a source and the other as a condensate.

In the neutral Hall viscosity case [43], O− can be turned off only if c < −3
4 , which in

turn violates the positive energy condition [93] and makes the solution in question unstable.

In the considered case of V (θ) being a Mexican hat type potential, the θ4 term engenders

that the solution is regular at the event horizon of charged black brane.

To proceed further let us note that the symmetry of equations (3.26) and (3.27) is such

that both A(r) and B(r) independently of each other have to fulfill the equations (3.31)

and (3.32) below. For future convenience we rewrite the whole set of equations as

F ′(r) + F (r) C(r) +D(r) + E(α, r) = 0, (3.30)

A′′(r) +A′(r)

(

2

r
− r

4
θ′(r)2

)

= 0, (3.31)

B′′(r) +B′(r)

(

2

r
− r

4
θ′(r)2

)

= 0, (3.32)

θ
′′

(r) + θ′(r)

(

4

r
+

F ′(r)

F (r)

)

− r

4
θ′(r)3 − H2(r)

r2 F (r)

∂V

∂θ
= 0, (3.33)

H ′(r)

H(r)
=

r

4
θ′(r)2, (3.34)

where we have set

C(r) =
3

r
− r

4
θ′(r)2, (3.35)

D(r) = −3
H2(r)

r
+

V (θ) H2(r)

2 r
+

A′(r)2

4 r
+

B′(r)2

4 r
, (3.36)

E(α, r) = α
A′(r) B′(r)

4 r
. (3.37)

We are interested in the effect of dark matter on the viscosities. Even though α enters

equations only via E(α, r) above, other functions implicitly depend on it. To access this

dependence in an analytic form we expand all functions to the lowest, linear order

F (r) = F (0)(r) + α f(r) +O(αn≥2), (3.38)

H(r) = H(0)(r) + α h(r) +O(αn≥2), (3.39)

A(r) = A(0)(r) + α a(r) +O(αn≥2), (3.40)

B(r) = B(0)(r) + α b(r) +O(αn≥2), (3.41)

θ(r) = θ(0)(r) + α ζ(r) +O(αn≥2). (3.42)
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We note in passing that to expect all functions to depend in a linear manner on α is not

obvious, but it is natural to expect linear dependence due to the fact that only the first

power of α enters the system of equations to be solved.

The α0-order equations are given by

F (0)′(r) + F (0)(r) C(0)(r) +D(0)(r) = 0, (3.43)

H(0)′(r)

H(0)(r)
=

r

4
θ(0)

′2(r), (3.44)

A(0)′′(r) +A(0)′(r)

(

2

r
− r

4
θ(0)

′

(r)2
)

= 0, (3.45)

B(0)′′(r) +B(0)′(r)

(

2

r
− r

4
θ(0)

′

(r)2
)

= 0, (3.46)

θ(0)
′′

(r) + θ(0)
′

(r)

(

4

r
+

F (0)′(r)

F (0)(r)

)

− r

4
θ(0)

′3(r)+ (3.47)

−
(

m2 θ(0)(r) + c θ(0)3
)

H(0)2(r)

r2 F (0)(r)
= 0, (3.48)

The inspection of the above relations enables us to solve them as the first order differ-

ential equation. In zeroth order we obtain the following:

H(0)(r) = h1 exp

[
∫ ∞

r

ds
s

4
θ(0)

′2(s)

]

, (3.49)

F (0)(r) =

[

−
∫ ∞

r

dr D(0)(r) exp

(
∫ ∞

x

dx C(0)(x)

)

+ C2

]

× (3.50)

× exp

[

−
∫ ∞

r

ds C(0)(s)

]

,

where C2 and h1 are constants.

In the next step we find the equations in α1-order. They are given by

f ′(r) + f(r)

(

3

r
− r

4
θ
′(0)2(r)

)

+Q(r) = 0, (3.51)

a′′(r) + a′(r)

(

2

r
− r

4
θ
′(0)2(r)

)

− r

2
ζ ′(r) θ

′(0)(r) A
′(0)(r) = 0, (3.52)

b′′(r) + b′(r)

(

2

r
− r

4
θ
′(0)2(r)

)

− r

2
ζ ′(r) θ

′(0)(r) B
′(0)(r) = 0, (3.53)

h′(r)− H
′(0)(r)

H(0)(r)
h(r)− r ζ ′(r) θ

′(0)(r) H(0)(r) = 0, (3.54)

ζ ′′(r) + ζ ′(r)

(

− r θ
′(0)2(r) +

4

r
+

F
′(0)(r)

F (0)(r)

)

+ ζ(r) M(r) +K(r) = 0, (3.55)

– 11 –



J
H
E
P
0
8
(
2
0
1
6
)
1
2
4

where Q(r), M(r) and K(r) are denoted by

Q(r) = −r

2
F (0)(r)ζ ′(r)θ

′(0)(r)− 6

r
h(r)H(0)(r) +

a′(r)A
′(0)(r)

2r
+

b′(r)B
′(0)(r)

2r
(3.56)

+
m2

2

[

2θ(0)2(r)h(r)H(0)(r) +
ζ(r)θ(0)(r)H(0)2(r)

r

]

+
A

′(0)(r)B
′(0)(r)

4r

+
c

2

[

θ(0)3(r)ζ(r)

r
+ 2h(r)H(0)(r)θ(0)4

]

,

M(r) = −r

2
θ(0)

′2(r)−
(

m2 + θ(0)2(r)

)

H(0)2(r)

r2 F (0)(r)
, (3.57)

K(r) = −
(

m2θ(0)(r) + cθ(0)3
)(

2H(0)(r)h(r)

r2F (0)(r)
− f(r)H(0)2(r)

r2F (0)2(r)

)

(3.58)

+

(

f ′(r)

F (0)(r)
− F

′(0)(r)f(r)

F (0)(r)

)

θ(0)
′

.

As in the previous zeroth-order case, we have obtained two linear differential equations

bounded with the fluctuations of the underlying line element. The exact forms of the

α1-corrections of F (r) and H(r) are given by the relations

f(r) =

[

C −
∫ ∞

r

dr Q(r) exp

[
∫ ∞

r′
dr′

(

3

r′
− r′

4
θ
′(0)2(r′)

)]

× (3.59)

× exp

[

−
∫ ∞

x

dx

(

3

x
− x

4
θ
′(0)2(x)

)]

, (3.60)

h(r) =

[

D +

∫ ∞

r

dr (r ζ ′(r) θ
′(0)(r) H(0)(r)) exp

[

−
∫ ∞

x

dx
H

′(0)(x)

h(0)(x)

]]

× (3.61)

× exp

[

−
∫ ∞

s

ds
H

′(0)(s)

h(0)(s)

]

.

The important question concerns the validity of α-coupling constant expansion. At the

first step let us consider the situation when α = 0.1 From the relation (3.27) one gets

that B is equal to zero if this dark matter field does not carry the chemical potential. On

the other hand, the scalar field θ can be non-zero due to the fact that it is responsible for

the instabilities.

The other case to consider is connected with the fact when α-coupling constant is

small, equations (3.51)–(3.58). As dark matter gauge field component is equal to zero for

the background field, then the leading correction for the other quantities in question can

be set to zero. In the process of this, one receives the homogeneous system of differential

equations (it seems that Q(r) destroys homogeneity but B(0) = 0 and it is equal to zero).

The conclusion one can draw is that nothing sources the perturbative correction. Moreover,

by similar arguments applied to the exact set of equations (3.30)–(3.37) one can show that

corrections to all orders in α vanish unless µD 6= 0.

1We are gratefull to the referee for asking the question, which contributed to the clarification of this

important point.
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Therefore in what follows, in order to obtain the expansions described by the rela-

tions (3.38)–(3.42), we assume that the dark matter gauge field carries the deformation

chemical potential, i.e., B(r → ∞) = µD. This is a quite new situation comparing to the

description of Hall viscosity in the AdS Einsten-Maxwell case [44].

4 The viscosities in the presence of dark matter sector

In this section we shall compute the shear and Hall viscosities in the theory under consid-

eration. As was justified in [90, 91] viscosity components can be found by the inspection of

the spatial components of the energy-momentum tensor like Txy or Txx−Tyy. To commence

with let us consider the following:

R(1)
xy + 3 g(1)xy − λ C(1)

xy = t(1)xy (θ) + T (1)
xy (F ) + T (1)

xy (B) + α T (1)
xy (F, B), (4.1)

where we have denoted by the superscript (1) the fluctuations connected with the leading

order O(ǫ) in the derivative expansion. The exact form of the above relation is provided by

1

H(r)

d

dr

[

− 1

2

r4 F (r)

H(r)

dαxy
dr

]

+

(

r3 H ′(r) F (r)

H3(r)
− r3 F ′(r)

H2(r)
− 3

r2 F (r)

H2(r)
(4.2)

+ 3r2 − r2

2
V (θ)− r2 A′(r)2

4 H2(r)
− r2 B′(r)2

4 H2(r)
− α

r2 A′(r) B′(r)

4 H2(r)

)

αxy

=
r

H(r)
(∂xβy + ∂yβx) +

λ

4 H(r)

d

dr

(

r4 F ′(r) θ′(r)

H2(r)

)

(∂xβy − ∂yβx).

One can see that having in mind equation (3.24), the second term in the relation (4.2) is

exactly equal to −r3/H2(r) multiplied by (3.24) and hence equal to zero. It implies that

for αxy we obtain

αxy =

∫ ∞

r

dl
2 H(l)

l4 F (l)

∫ r

rH

ds

[

s (∂xβy + ∂yβx) +
λ

4

d

ds

(

s4 F ′(s) θ′(s)

H2(s)

)

(∂xβx − ∂yβy)

]

.

(4.3)

In order to compute the asymptotical form of αxy we shall implement the formula [43]

which is valid as r → ∞, namely

rn αxy(r) → −rn+1

n

d

dr
αxy(r). (4.4)

Using the Graham-Fefferman coordinate system it was shown [95] that up to six dimensions

of the spacetime, the expectation value for the stress-energy tensor of the dual theory is

provided by

< Tij >=
n

16π GN
gij(n) +Xij(g(n)), (4.5)

where n denotes the spacetime dimension and Xij(g(n)) is a function of metric tensor

components

gij(xµ, r) = gij(0) +
1

r2
gij(2) + · · ·+ 1

rn
gij(n) + . . . (4.6)

It can be seen that the exact form of< Tij > depends on the dimensionality of the spacetime

in question and indicates the conformal anomalies of the boundary conformal field theory.
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In the odd dimensional spacetime, when the gravitational conformal anomalies are equal

to zero, it reduces to

< Tij >=
n

16π GN
gij(n). (4.7)

One remarks also that when r → ∞ the values of the functions F (r) and H(r) tend to 1.

All the above reveal that in the case under consideration we get

< Txy >=
3

16π GN
αxy(3) = − 1

16πGN
(∂xβy + ∂yβx) (4.8)

− 1

8πGN

[

(∂xβy − ∂yβy)
λ

4

r4 F ′(r) θ′(r)

H2(r)

]

r=rH

.

The first term is the usual shear mode with the shear viscosity ηs provided by

ηs =
1

16πGN
. (4.9)

It can be seen that ηs is not corrected by the α-coupling constant, at the leading order in

it, while the second one is proportional to the Hall viscosity

ηH = − 1

8πGN

λ

4

r4 F ′(r) θ′(r)

H2(r)
|r=rH . (4.10)

When one divides it by the entropy density, we receive the Hall viscosity/ entropy ratio

complement to Einstein-Maxwell dark matter Chern-Simons theory in AdS4 spacetime

subject to the backreaction effects. It depends linearly an the coupling α do dark matter

and reads

ηH
s

=
η
(0)
H

s

(

1 + α Σ

)

+O(αn≥2), (4.11)

where we set for η
(0)
H /s and Σ the following relations:

η
(0)
H

s
= − λ

2 π

(

r4 F
′(0)(r) θ

′(0)(r)

H2(0)(r)

)

|r=rH

, (4.12)

Σ =

(

f ′(r)

F ′(0)(r)
+

ζ ′(r)

θ′(0)(r)
− 2 h(r)

H(0)(r)

)

|r=rH

. (4.13)

The term Σ is a direct consequence of the presence of the backreaction of the matter on

the metric. The sign of the correction is not uniquely determined.

4.1 Dependence of Hall viscosity on condensation value

As noted earlier the shear viscosity ηs takes on universal value not modified by the presence

of dark matter or condensation value. On the contrary, the condensation of the pseudo

scalar field θ is essential to get the parity breaking [44] and consequently non-zero value of

the Hall viscosity. Here we analyze the dependence of the Hall viscosity on the condensation

value and temperature close to the critical one, Tc.
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Let us consider the explicit form of the charged black brane line element [94]

ds2 = 2 dv dr − r2 F (r)dv2 + r2 (dx2 + dy2), (4.14)

where the component of the metric tensor F (r) and the gauge field are provided by

F (r) = 1− 1 + 3κ

r3
+

3κ

r4
, A = 2

√
3 κ

(

1− 1

r

)

dv. (4.15)

In what follows we set that the event horizon is situated at rH = 1. In the chosen units

the Hawking temperature and the chemical potential are given, respectively as

TBH =
3

4π
(1− κ), µ = 2

√
3 κ. (4.16)

We shall use z = 1/r coordinates in which the equation of motion for θ field implies

θ′′ + θ′
(

F ′(z)

F (z)
− 2

z

)

− m2 θ + c θ3

z2 F (z)
= 0. (4.17)

To proceed further, let us expand θ(z) near the black brane event horizon where z = 1.

It yields

θ(z) = θ(1) + θ′(1) (z − 1) +
1

2
θ′′(1) (z − 1)2 + . . . , (4.18)

with finite values of θ′(1) and θ′′(1). Note also that with our choice of units F (1) = 0.

Calculating the limit z → 1 in equation (4.17) we get first the relation for θ′(1)

θ′(1) =
m2 θ(1) + c θ3(1)

F ′(1)
, (4.19)

and θ′′(1)

θ′′(1) =
θ′(1)

2

[

(m2 + 3 c θ2(1)− F
′′

(1))

F ′(1)

]

. (4.20)

Using the above relations, we find the approximate form of θ(z) near the black brane event

horizon

θ(z) = θ(1) + (z − 1)
m2 θ(1) + c θ3(1)

F ′(1)
+ (4.21)

+
(z − 1)2

4

[

θ′(1) (m2 + 3 c θ2(1)− F
′′

(1))

F ′(1)

]

+ . . .

On the other hand, in the asymptotic AdS region, when z → 0, θ behaves like O+ z∆+ .

In order to find θ(1) and O+, we match smoothly the solution at the event horizon and in

AdS region, in some intermediate point zm

θH(zm) = θboundary(zm), θ′H(zm) = θ′boundary(zm). (4.22)
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Namely, one arrives at the following:

O+ z∆+
m = θ(1) + (zm − 1)

m2 θ(1) + c θ3(1)

F ′(1)
+ (4.23)

+
(zm − 1)2

4

[

θ′(1) (m2 + 3 c θ2(1)− F
′′

(1))

F ′(1)

]

,

O+ ∆+ z∆+−1
m =

m2 θ(1) + c θ3(1)

F ′(1)
+ (4.24)

+
(zm − 1)

2

[

θ′(1) (m2 + 3 c θ2(1)− F
′′

(1))

F ′(1)

]

.

We can draw a conclusion that θ(1) ≈ O+. On the other hand, as was revealed in [56–60],

the condensation value is proportional to
√

1− T
Tc
. It suggests that at the critical tem-

perature Tc, the Hall viscosity is independent on α-coupling constant, i.e., ηH does not

depend on the dark matter sector, in the probe limit. As it has been shown in the preced-

ing sections only the backreaction effects are responsible for revealing the aforementioned

dependence.

5 Summary and conclusions

We have studied the holographic fluid in a model containing Maxwell gauge field and

the other U(1) field describing the dark matter with the goal to analyze the influence of

the latter on the fluid viscosities. To study two-dimensional flow we have used (3 + 1)-

dimensional bulk and pseudo scalar field θ coupled to the gravitational Chern-Simons term.

The arena for our investigations is the anti de Sitter spacetime of charged black brane of

finite temperature. The bulk pseudo scalar potential is composed of θ2 and θ4 terms which

guarantee consistent solution at zero temperature. Contrary to the previous studies of

Hall viscosity in AdS Einstein-Maxwell case [44], the spontaneously broken parity by the

pseudo scalar hair, as well as, the dark matter gauge field deformation chemical potential,

give rise to the emergence of a non-zero value of the Hall viscosity at the boundary.

We have solved the underlying equations of motion perturbatively up to the leading

order in the α-coupling constant and found that the shear viscosity mode is not corrected

at the leading order by the presence of dark matter. On the contrary, the correction of the

Hall viscosity to entropy ratio is modified linearly in α. The leading term is the same as

earlier derived in the model without dark matter [43, 44].

Parity or time reversal symmetry breaking is a necessary condition for the existence of

Hall viscosity in the system with gauge fields. In the present approach the parity is broken

spontaneously by the condensation of the θ field below certain transition temperature Tc.

We have found that the Hall viscosity depends on temperature as ηH ∼
√

1− T
Tc
. It is

important to note that neither prefactor nor transition temperature itself in the above re-

lation, depend on the coupling constant α of the dark matter. This makes the condensation

of θ field completely different from earlier studied superconductors [56–60]. In the latter

case both the condensation value and Tc showed marked dependence on α. One crucial

difference between the two systems is obvious. Condensing pseudo scalar field θ is not

charged under U(1)-gauge group.
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The proper condensed matter interpretation of the field θ is at present not clear,

but the issue is of great interest, especially in view of the recent measurements of the

superfluid Hall effect in an ultra cold gas of neutral atoms [96]. This together with close

relation between Hall conductivity and Hall viscosity calls for further studies and condensed

matter interpretation. The problem is also important from cosmological point of view as

the measurements of the Hall viscosity can possibly be used for detection of the dark matter,

by observing the time variations of ηH , i. e., in close analogy to the recent [97] proposal of

the dark matter detection by the daily modulation of some parameters. There is however

an important caveat. Despite great number of studies of the Hall viscosity there is no

consensus how to measure this important parameter. Time will show if the very recent

proposal [55, 98] to relate the Hall viscosity to the density response of the system turns

out to be the feasible method to extract the former.
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