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1 Introduction

The duality between heterotic string theory and Type II string theories hints at non-trivial

relations between seemingly totally unrelated mathematical objects. For example, heterotic

string compactifications involve gauge field moduli, whereas only the compactification ge-

ometry must be specified for Type II compactifications. This article addresses some aspects

of the duality dictionary of heterotic-type IIA duality in four dimensions.

Heterotic-type IIA duality in 4D [1] is not only a historical precursor to heterotic-F-

theory duality at 6D [2, 3]. The former can also be regarded as a more general version of

the latter, and moreover, we expect to formulate the duality in terms of world-sheet string

theory.

The study of duality begins with finding a correspondence between discrete data of the

compactifications on both sides, followed by an identification of the moduli. At the level

of discrete data, however, we must say that the correspondence remains to be understood

very poorly even today, apart from a few cases that have been studied in the context of

heterotic-F-theory duality in 6D. This article intends to provide a survey on the status of

understanding on this problem, and also to make a little progress.

Starting with the heterotic-type IIA duality in six dimensions, the key principle in

understanding the correspondence of discrete data is the idea of adiabatically fibering the

dual six dimensional theories over a base P1 [4–6]. Armed with this principle, the problem

of discrete data correspondence roughly splits into two fronts. One is to find out the variety

in fibering the duality at higher dimensions without violating the adiabaticity; this is the

subject of section 3 in this article. There are often multiple adiabatic fibrations of the

duality for a given pair of lattices Λ̃S ⊕ ΛT ⊂ II4,20. We introduce an approach to use the

hypermultiplet moduli information to distinguish multiple adiabatic fibrations from one an-

other. This approach is used, for example, to indicate that the heterotic ST -model is dual

to the type IIA compactification on (12) ⊂ WP4
[1:1:2:2:6], while three other candidate com-

pactifications1 of type IIA are excluded because of the hypermultiplet moduli information.

The other front is to study how the adiabaticity condition can be violated, and how

to maintain the duality correspondence in the presence of such a violation. We address

this question in sections 4 and 5. Some background material from mathematics (Kulikov’s

theory of degenerations of K3 surfaces) is reviewed in appendix B. A degeneration of a K3

1All three are qualified candidates, so far as the values of h1,1, h2,1 and the Gromov-Witten invariants

are concerned.
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fibre in a type IIA compactification should be regarded as a soliton in the heterotic dual.

The variety in degenerations of a K3 fibre translates into the variety of generalizations of the

NS5-brane in heterotic string theory. The classification theory of degenerations of lattice-

polarized K3 surfaces indicates which pairs of solitons can (co)exist in a BPS configuration.

Furthermore, we can learn about the phase structure of the moduli space of solitons from

the phase structure of the Kähler cone of the Calabi-Yau threefolds on the type IIA side.

Apart from the issues discussed in appendix B, we do not try to make this article strictly

self-contained. The review article [7] contains a lot of useful material about K3 surfaces. A

review of those parts of lattice theory which are heavily used in the study of K3 surfaces can

be found e.g. in [8]. We use the same notation as in [8], and mostly only offer brief explana-

tions here. Similarly, we use the same notation as in [9] for toric geometry. We refer to [9] for

definitions and explanations concerning the methods of toric geometry used in this article.

2 A quick review

Type IIA string theory compactified on certain Calabi-Yau threefolds M are known to be

dual to certain compactifications of heterotic string theory preserving N = 2 supersym-

metry in four dimensions [1]. This D=4 heterotic-IIA duality is best understood as an

adiabatic fibration [4–6] of the D=6 heterotic-IIA duality, where a dual pair is formed of

a Narain compactification of the heterotic string on T 4 and a K3 compactification of the

type IIA string [10–19]. For type IIA compactification, we hence focus on non-singular

Calabi-Yau threefolds M that admit a K3-fibration morphism,

πM : M −→ P1
A . (2.1)

A generic fibre St.A := π−1
M (t) for t ∈ P1

A\∆ (∆ is a set containing a finite number of points

in P1
A) is a non-singular K3 surface, the subscript A for the base P1 and the fibre K3 St is

a mnemonic for their use in type IIA compactification.

To a Calabi-Yau threefold M with a K3-fibration morphism πM we can naturally

associate two lattices: the Neron-Severi (NS) lattice NS(St.A) (rank ρ) of a generic K3 fibre,

and the lattice polarization ΛS (rank r) of the K3 fibration. A K3-fibration morphism πM
is said to be ΛS-polarized, when a set of divisors {D1, · · · , Dr} of M are restricted to a

generic fibre St.A to generate a sublattice ΛS of NS(St.A).

The orthogonal complement of ΛS in H2(St.A;Z) ∼= II3,19 — denoted by ΛT — is well-

defined (regardless of t ∈ P1
A) up to lattice isometry. Since the generators of H0(St.A) and

H4(St.A) of the fibre remain well-defined over the base P1
A, we can replace the lattice ΛS

by Λ̃S := U [−1]⊕ ΛS . The pair of lattices

Λ̃S ⊕ ΛT ⊂ II4,20 (2.2)

can be used to classify Calabi-Yau threefolds fibred by a lattice-polarized K3 surface used

for type IIA compactification. Heterotic duals of such type IIA vacua are obtained by

adiabatically fibering the Narain compactification over the base P1
Het. The central charge

(k8 + ik9) : II4,20 ⊃ Λ̃S −→ C (2.3)

– 2 –



J
H
E
P
0
8
(
2
0
1
6
)
0
3
4

remains non-trivial and invariant over the base P1
Het, while (k6 +ik7) takes values in ΛT ⊗C

and is allowed to undergo monodromy transformations over the base P1
Het.

An intuitive heterotic description is available for such dual pairs of vacua whenever

ΛS ∼= U ⊕W (0,ρ−2), ΛT ∼= R(0,18−ρ) ⊕ U ⊕ U, (2.4)

where W and R are some even negative-definite lattices. In particular, R is regarded as an

overlattice of an ADE root lattice.2 When the first condition above is satisfied, the threefold

for heterotic string compactification can be regarded as T 2×K3Het. A supergravity descrip-

tion is available (for most of the moduli space), because we can take the volume of T 2 to

be parametrically larger than α′; even a lift to Het-F duality at 6D is possible in this case.

When the second condition above is satisfied, we can think of the value of (k6 +ik7) varying

over the base P1
Het as an instanton in the gauge group corresponding to the algebra R.

Even when those two conditions are not satisfied, however, it is common belief that

such heterotic vacua do indeed exist. We can provide a zero-th order approximation of

what those compactifications are by using the language of adiabatic fibrations of Narain

moduli. When there are points in the base P1 where the adiabatic argument fails, extra

care needs to be taken. This is the subject of section 4 in this article.

2.1 Examples of algebraic K3 surfaces

In this section we collect some results about algebraic K3 surfaces, impatient readers are

recommended to directly proceed to section 3.

To an algebraic K3 surface, we can assign its Neron-Severi lattice NSK3 (signature

(1, ρ − 1)) and its transcendental lattice TK3. Conversely, to see which pair of lattices

(NSK3, TK3) can be realized for some algebraic K3 surface, Morrison’s theorem [20] is useful.

• Any even lattice NSK3 with signature (1, ρ − 1) with ρ ≤ 10 can be realized as the

Neron-Severi lattice of an algebraic K3 surface, and furthermore, the corresponding

lattice TK3 is determined uniquely (modulo isometry) for a given such NSK3.

• Any even lattice TK3 with signature (2, 20 − ρ) with 12 ≤ ρ can be realized as the

transcendental lattice of an algebraic K3 surface, and furthermore, the lattice NSK3

is determined uniquely (modulo isometry) for a given such TK3.

Thus, lattice polarizations with low ρ are best worked out by classifying even signature

(1, ρ − 1) lattices ΛS modulo lattice isometry, and those with high ρ by classifying even

signature (2, 20−ρ) lattices ΛT modulo isometry. Clearly, only some algebraic K3 surfaces

listed up in this way satisfy the conditions (2.4).

Here, we list up a few choices of NSK3⊕ TK3, some of which are used in the discussion

later.

2We adopt the ‘geometrical’ convention in this article in which ADE lattices are negative definite.
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Picard number 1 cases. are classified simply by the degree,

NSK3
∼= 〈2k〉 , k = 1, 2, · · · . (2.5)

The signature of the Neron-Severi lattice is (1, 0). The degree 2k is an arbitrary even

positive integer, without an upper limit in the value. The theorem above guarantees that

TK3
∼= 〈−2k〉 ⊕ U⊕2 ⊕ E8 ⊕ E8. (2.6)

Only the case k = 1 satisfies the second condition of (2.4), because 〈−2〉 = A1.

The degree 2k = 2 case has a realization in the form of a double cover over P2, ramified

over a sextic curve. The degree 2k = 4 case is realized by the quartic K3 in P3. The

degree 2k = 6 and degree 2k = 8 cases are realized in the form of complete intersections,

(2) ∩ (3) ⊂ P4 and (2) ∩ (2) ∩ (2) ⊂ P5, respectively. For higher degrees, the construction

becomes more involved, see references found in [21, 22] for further information.

E8-elliptic. K3 is an example with ρ = 2.

NSK3 = U, TK3 = U⊕2 ⊕ E8 ⊕ E8
∼= II2,18. (2.7)

This family of K3 surfaces is elliptically fibred with the elliptic fibre given in the form of a

Weierstrass model, embedded in the ambient space WP 2
[1:2:3]. There is a unique choice of

fibration of WP 2
[1:2:3] over P1 realizing an elliptic Weierstrass K3 surface as a hypersurface.

There are infinitely many cases with Picard number 2. The intersection form of the

Neron-Severi lattice of any ρ = 2 case can be written as

NSK3 =

[
2a b

b 2c

]
, a, b, c ∈ Z, 4ac− b2 < 0, (2.8)

once a basis is chosen. The determinant (4ac − b2) is independent of the choice of basis.3

There is no upper limit for the value of (b2 − 4ac) > 0, although (b2 − 4ac) ≡ 0, 1 mod 4.

Among these infinitely many algebraic K3 surfaces with ρ = 2, just nine are realized as

a generic hypersurface of a 3D toric variety. Only the (b2 − 4ac) = 1 case corresponds to

the E8-elliptic K3 surface; more generally, an algebraic K3 surface with ρ = 2 admits an

elliptic fibration morphism to P1 if and only if (b2 − 4ac) = D2 for some integer D ∈ N;

this elliptic fibration has a D-section (cf [23]).

E7-elliptic. K3 surfaces come with a choice. For this class of elliptic fibrations, the

elliptic fibre curve is embedded in WP 2
[1:1:2] and there is a choice we can make in fibering

this ambient space over P1. Let the toric vectors of the ambient space be

(ν1, ν2, ν3, ν4, ν5) =


1 −2 −1 (−1− n)

1 −1 0 −n
−1 1

 ∈ Z⊕3, n = 0, 1, 2. (2.9)

3The discriminant form (G, q) is a better invariant for the classification of lattices modulo isometry. Even

the discriminant group G alone, taken in the standard form G ∼= Zn1 × Zn2 with n1|n2 for the ρ = 2 cases,

provides more detailed information than just the value of their product n1n2 = b2 − 4ac. The ρ = 2 cases

with an E7-elliptic K3 surface (n = 0, 1 in (2.10)), however, provide an example where the discriminant

form q is necessary for distinction between them.
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The intersection form of the NS lattice is(
−2n 2

2

)
(2.10)

in the basis of {Dν3 , Dν4} for n = 0, 1. A basis change Dν3 → Dν3 + Dν4 changes the

upper-left entry −2n by 4, so that the two cases n = 0, 1 cannot be the same. For these

two cases, the K3 surface has the E7-elliptic curve as the fibre and there is a 2-section

realized by the divisor Dν3 .

In the n = 2 case, however, the ν3 vector is not a vertex of the polytope in Z⊕3⊗R, but

an interior point of an edge
〈
ν4, ν5

〉
of the polytope. The dual face (an edge) has one interior

point so that ρ = 3; the 2-section obtained as the divisor Dν3 now consists of two irreducible

pieces, each of which provides an ordinary section. The intersection form of the NS lattice is
1 1

1 −2

1 −2

 ∼= U ⊕A1[2] ∼= NSK3, TK3
∼= 〈+4〉 ⊕ U ⊕ E8 ⊕ E8. (2.11)

E6-elliptic. K3 also comes with a choice. These are characterized by using WP 2
[1:1:1] = P2

as the ambient space of the elliptic fibre. When we choose the toric ambient space to be

given by

(ν1, ν2, ν3, ν4, ν5) =


1 −1 a

1 −1 b

−1 1

 ∈ Z⊕3, (2.12)

the K3 surface will have ρ = 2, and the divisor Dν3 in the K3 surface provides a 3-

section over the base P1 for most of the ten possible choices of (a, b). When we choose

(a, b) = 2(1, 0), 2(0, 1) or 2(−1,−1), however, ν1 (or ν2 or ν3) is an interior point of an edge

of the 3D polytope in Z⊕3⊗R and its dual face (an edge) contains two interior points. We

hence have a ρ = 4 family of K3 surfaces. The intersection form of the NS lattice is given by
1 1 1

1 −2

1 −2

1 −2

 ∼= U ⊕A2[2] ∼= NSK3, TK3
∼= A2[−2]⊕ E8 ⊕ E8. (2.13)

A series of choices of (NSK3, TK3), which are discussed in [2, 3, 24] in the context of

F-theory/heterotic duality, is

NSK3
∼= U ⊕Rvis, TK3

∼= U⊕2 ⊕ E8 ⊕Rstr, (2.14)

where (Rvis, Rstr) are (none, E8), (A2, E6), (D4, D4), (E6, A2), (E7, A1) and (E8, none) and

the conditions (2.4) are satisfied. When this series of (NSK3, TK3) is used for heterotic-type

IIA duality in four-dimensions (as stated in section 2), the heterotic string description of the

dual vacua is a T 2×K3Het compactification with Rvis-valued Wilson lines on T 2 and (Rstr+

E8)-valued instantons on K3Het. Note also that the (Rvis, Rstr) = (A1, E7) and (A2, E6)

choices in this series are not the same as the E7-elliptic and E6-elliptic K3 cases above.

– 5 –
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3 Choices of lattice-polarized K3 fibration and duality

In this section, we focus our attention to K3-fibred Calabi-Yau threefolds where

a) The lattice polarization of the fibration, ΛS , is equal to NSK3 (not a proper subset).

b) The fibre K3 surface remains irreducible everywhere over the base P1
A.

This is where the adiabatic argument has full strength. To get started, we use toric

hypersurface constructions to illustrate how often these two conditions are satisfied. Once

a pair of lattices NSK3 = ΛS and TK3 = ΛT is chosen, there are still discrete choices to

be made in how to take the corresponding algebraic K3 surface into the fibre to form a

threefold M for type IIA compactification. We find, towards the end of section 3.1, that

there are multiple choices for many pairs of (ΛS ,ΛT ). This general phenomenon motivates

a case study in section 3.2.

3.1 Discrete choices in K3 fibrations

As a preparation for later in this article, let us first consider one of the best known cases:

an E8-elliptic K3 surface (NSK3 = U) as the generic fibre. An E8-elliptic K3 surface can

be constructed as a hypersurface of a toric ambient space whose toric vectors are given by

(ν1
F , ν

2
F , ν

3
F , ν

4
F ) =


1 −2 −2

1 −3 −3

−1 1

 , νi=1,2,3,4
F ∈ Z3 = NF . (3.1)

Let ∆̃F be the polytope in NF ⊗ R spanned by the four vertices above.

In order to obtain a K3-fibred Calabi-Yau threefold M with such a K3 surface in the

fibre, we construct an appropriate toric ambient space as follows. Consider a toric variety

given by the toric vectors

ν1,2,3,4 =

(
ν1,2,3,4
F

0

)
, ν5 =

(
0

−1

)
, ν6 =

(
ν6
F

+1

)
νi=1,··· ,6 ∈ Z⊕4 = N, (3.2)

where ν6
F is chosen so that

ν6
F ∈ (2∆̃F ) ∩NF . (3.3)

This choice secures that the polytope ∆̃ which forms the convex hull of ν1 · · · ν6 is reflexive.

A Calabi-Yau hypersurface M = MU of such a toric ambient space has the E8-elliptic K3

surface over generic points in the base P1
A. In this article, we often use ΛS or NSK3 in the

subscript, as in MU , to have the lattice polarization of the fibre manifest.4

Not all the Calabi-Yau threefolds MU constructed in this way realize completely adia-

batic fibrations over P1
A, however. In the polytope ∆̃F for the E8-elliptic K3 surface in the

fibre, there are two facets —
〈
ν1,3,4
F

〉
∩ ∂∆̃F and

〈
ν2,3,4
F

〉
∩ ∂∆̃F — that contain interior

4ΛS and NSK3 are not the same, in general, but this article does not deal with any explicit example

where they are different.

– 6 –
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points. The condition for the absence of extra vertical divisors (equivalent to the K3 fibre

being irreducible everywhere) is equivalent to choosing ν6
F such that those interior points

in the facets of ∆̃F remain interior points of facets of ∆̃, i.e.

ν6
F ∈

〈
2ν1,3,4
F

〉
∩
〈

2ν2,3,4
F

〉
∩ ∂(2∆̃F ) ∩NF , (3.4)

There are five points of this kind. The corresponding Calabi-Yau threefolds are denoted by

Mn
U , with−2 ≤ n ≤ 2. They are known to be the same as E8-elliptic fibrations over Fn, with

−2 ≤ n ≤ 2. Type IIA compactification on Mn
U is dual to heterotic string compactification

on T 2× K3, with instantons distributed by 12 + n and 12− n among the two E8’s.

It is straightforward to generalized this observation. Suppose that an algebraic K3

surface with a Neron-Severi lattice (NSK3, TK3) can be constructed as a generic toric hy-

persurface. There are 4319 toric hypersurface families of K3 surfaces realized via pairs of

reflexive three-dimensional polytopes [25]. Let ∆̃F be the polytope in NF⊗R = R3. A toric

ambient space for a threefold M is obtained by fibering the toric ambient space for K3 over

P1
A. When we choose a toric vector ν5 = (~0,−1) ∈ Z⊕4, we can take ν6 = (ν6

F ,+1)T ∈ Z⊕4,

with any one of

ν6
F ∈ (2∆̃F ) ∩NF (3.5)

to construct a reflexive four-dimensional polytope.

Different choices of ν6 will, in general, result in different geometries, in particular, the

Hodge numbers for the resulting threefolds can be different. As reviewed shortly, for some

choices of the fibre K3 polytope, ∆̃F , it depends on the choice of ν6 whether conditions a)

and b) are satisfied.

The condition b) is at stake whenever we consider a fibre K3 polytope ∆̃F with a

facet Θ̃[2] with an interior lattice point. To keep the condition b) in a threefold M , we

need to choose ν6 so that the polytope ∆̃ has a facet Θ̃[3] that contains Θ̃[2] and its

interior lattice points altogether (see section 4.1 and appendix A for more explanations).

The restriction (3.4) in the example of E8-elliptic K3 surface came about precisely for

this purpose. To take a few other examples, consider degree-2 and degree-4 K3 surfaces

(NSK3 = 〈+2〉 and 〈+4〉, respectively); they are both realized as toric hypersurfaces. None

of the facets of the polytope ∆̃F for the degree-4 (quartic) K3 surface contains an interior

point, while just one facet of the polytope ∆̃F for the degree-2 K3 surface has an interior

point. In constructing a Calabi-Yau threefold M〈+4〉 that has a quartic K3 surface in the

fibre over P1
A, one can therefore use any one of the lattice points in 2∆̃F for ν6

F . In the

case of degree-2 K3 fibred Calabi-Yau threefolds, however, only lattice points in one facet

of 2∆̃F are permitted if we want to satisfy condition b). Such different choices of taking a

given polarized K3 surface as a fibre have been a subject of study, for example, in [26].

The condition a) is at stake when a fibre K3 polytope ∆̃F and its dual polytope ∆F have

a dual pair of 1-dimensional faces, Θ̃[1] and Θ[1] such that `∗(Θ̃[1]) > 0 and `∗(Θ[1]) > 0. A

divisor Dν of the generic fibre St,A corresponding to an interior point ν of Θ̃[1] is reducible

and each one of the irreducible components of Dν is an independent generator of Pic(St,A)

and contributes to ρ. When we choose ν6
F ∈ 2∆̃F ∩M to construct a Calabi-Yau three-

fold M , however, the divisor D remains to have `∗(Θ[1]) + 1 irreducible components only

– 7 –
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when the choice of ν6
F is such that the point ν remains to be an interior point of some two-

dimensional face of ∆̃. In this case, the contributions of this divisors to NSK3 and ΛS agree.

If ν6
F is chosen such that Θ̃[1] becomes a one-dimensional face5 of ∆̃, on the other hand, the

`∗(Θ[1]) + 1 irreducible components of the divisor Dν in a generic K3 fibre undergo mon-

odromy transformations over the base P1
A and do not define separate independent divisors of

the threefold M . Correspondingly, this lattice point ν leads to only one irreducible divisor

in h1,1(M) and contributes only by a single class to the lattice polarization of fibration, ΛS .

Among the 4319 three-dimensional reflexive polytopes ∆̃F to be use for the fibre K3

polytope [25], 131 do not allow a single choice of ν6 where condition b) is satisfied; for

the remaining 4188 polytopes, there is at least one choice of ν6 such that condition b) is

satisfied. Among these 4188 fibre K3 polytopes ∆̃F , 1071 do not allow a choice of ν6 where

condition a) is satisfied as well. For the remaining 3117 fibre K3 polytopes, however, there

is at least one choice of ν6 such that both the conditions a) and b) are satisfied.

For each one of these 3117 fibre K3 polytopes ∆̃F , we must be able to use the adiabatic

argument to discuss heterotic-type IIA duality. By a computer scan we have found that

for 1134 of the polytopes among the 3117 options the choice of ν6 for which the condi-

tions a) and b) are satisfied is unique. The remaining 1983 fibre K3 polytopes ∆̃F allow

multiple choices6 of ν6 satisfying both conditions. Multiple choices available in (3.4), even

after fixing (NSK3, TK3) = (ΛS ,ΛT ), can be regarded as an example of this more general

phenomenon.

Focussing on the 1983 polytopes ∆̃F for which there are multiple choices of ν6 satisfying

both conditions a) and b), it turns out that the value of h2,1(M) depends on the choice of

ν6 for some polytopes ∆̃F , but remains invariant for others. The example discussed above

and the example presented in the nect section are among those ∆̃F for which there are

different fibration options satisfying conditions a) and b) which all have the same h2,1(M).

3.2 Duality dictionary in a case study: degree-2 K3 in the fibre

The moduli space of type IIA compactification on a K3-fibred Calabi-Yau threefold is there-

fore classified by the choice of (ΛS ,ΛT ), and further by discrete choices of the fibration. The

moduli space of heterotic string compactifications should also have the same structure, and

there should be a duality map that translates discrete as well as continuous data of the two

moduli spaces. The dictionary on the (ΛS ,ΛT ) part simply descends from the dictionary of

the heterotic-type IIA duality at higher dimensions (reviewed in section 2). We can then ask

the question how the discrete choices of fibration are mapped to heterotic string language.

In the case that the Calabi-Yau threefold M for type IIA compactification has an

E8-elliptic K3 surface in the fibre, the dual background for heterotic string theory is well-

known [1–3]. Different choices of fibering an E8-elliptic K3 surface over P1
A — Mn

U with

−2 ≤ n ≤ +2 — correspond to the (12+n, 12−n) distribution of 24 instantons into the two

5In this case, the toric hypersurface construction for a threefold M fails to implement `∗(Θ̃[1])`∗(Θ[2]) > 0

complex structure deformation.
6Choices of ν6 different as toric data are treated separately here, although some of them may be equivalent

under symmetry of the geometry. A case study in 3.2 takes care of this symmetry action, but we have not

implemented anything like this in our simple scan.
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E8’s in heterotic string theory. This is a rare example, however, where the heterotic string

interpretation of the discrete data is known. Different choices of instanton number distribu-

tion in the heterotic string often result in different unbroken symmetries, which correspond

to different choices of (ΛS ,ΛT ), not the different choices of fibration with the same (ΛS ,ΛT ).

Here, we address this question for the ΛS = 〈+2〉 case, where a degree-2 K3 surface

is the fibre for a K3 fibred Calabi-Yau threefold used for type IIA compactification. This

is not as easy as the ΛS = U (E8-elliptic) case, but still remains relatively tractable. We

start off by listing up discrete choices of degree-2 K3 fibred Calabi-Yau threefold M〈+2〉
(see also [26]).

The toric vectors in NF
∼= Z⊕3 for the degree-2 K3 surface (NSK3 = 〈+2〉, ρ = 1) can

be chosen as follows7

(ν1
F , ν

2
F , ν

3
F , ν

4
F ) =


1 −3

1 −1

1 −1

 . (3.6)

The polytope ∆̃F ⊂ NF ⊗ R has four facets, only one of which,
〈
ν2
F , ν

3
F , ν

4
F

〉
, contains an

interior point ν7
F := (−1, 0, 0)T = −ν1

F . The hypersurface equation is in the form of

(X1)2 + F (6)(X2, X3, X4) = 0, (3.7)

where X1,2,3,4 are the homogeneous coordinates associated with the νiF . This provides the

picture of a double cover over P2 (homogeneous coordinates [X2 : X3 : X4]) ramified over

a sextic curve {F (6) = 0} ⊂ P2.

3.2.1 Four branches with h1,1(M) = ρ+ 1

A toric hypersurface Calabi-Yau threefold M with a ΛS = 〈+2〉-polarized K3 surface in the

fibre can be constructed by using a toric ambient space constructed as in (3.2). Any one of

the choices of ν6
F satisfying (3.5) can be used to construct a non-singular threefold M〈+2〉 for

type IIA compactification. In this section, we focus on the choices where the condition b)

is satisfied (condition a) is automatic), such that h1,1(M〈+2〉) = ρ+ 1 = 2 and the resulting

D=4 N = 2 effective theory has h1,1(M) = 2 vector multiplets. This narrows down the

choice of ν6
F to

〈
2ν2,3,4
F

〉
∩∂(2∆̃F )∩NF . There are ten choices for the integers (k2, k3, k4) in

ν6
F = 2ν7

F + k4(ν4
F − ν7

F ) + k2(ν2
F − ν7

F ) + k3(ν3
F − ν7

F ), (3.8)

as shown in figure 1. The ambient space for M〈+2〉 is

P[3:1:1:1] [OP1(2− k2 − k3 − k4)⊕OP1(−k2)⊕OP1(−k3)⊕OP1(−k4)] . (3.9)

There is an S3 symmetry transformation acting on the lattice N which keeps ∆̃F in-

variant. It acts as a permutation on the toric vectors ν2,3,4
F as well as the corresponding

7The literature also contains a complete intersection construction of degree-2 K3 surfaces. The authors

consider, however, that such “degree-2 K3 surfaces” should be regarded as E8-elliptic K3 surfaces with the

zero-section blown-down to an A1 singularity point; it is essentially a ρ = 2 case.
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[24] [−14][14]

[−12]

[22]

[12]

[23]

[13]

[−13]

[0∗]

Figure 1. The ten lattice points
〈

2ν2,3,4F

〉
∩ ∂(2∆̃F )∩NF , which can be used for a toric vector ν6F

in constructing a Calabi-Yau threefold with degree-2 K3 fibration satisfying conditions a) and b).

Lattice points parametrized by (k2, k3, k4) in (3.8) are labelled [na] when we can choose ka = n and

two other k’s zero. Due to the S3 symmetry acting on this graph, at most four of them (maybe only

three as discussed in the main text) define mutually non-isomorphic complex geometries, however.

homogeneous coordinates [X2 : X3 : X4]. The ten choices of ν6
F are grouped into four orbits

under this S3 symmetry and we can choose {ν6,n
F := ν6

F |(k2,k3,k4)=(0,0,n)}n=−1,0,1,2 as repre-

sentatives of those orbits. A (family of) Calabi-Yau threefold(s) obtained as a hypersurface

of such a toric ambient space is denoted by Mn
〈+2〉. The ambient space for the choice [ν6,n=2

F ]

can be regarded as (a resolution of) the weighted projective space WP4
[1:1:2:2:6], while the

three others (n = 1, 0,−1) cannot be regarded as such.

Wall’s theorem states that the diffeomorphism class of a threefold M is characterized

up to a finite number of possibilities by H3(M,Z), H2(M,Z), the intersection ring and the

second Chern class. Furthermore, if H3(M,Z) is torsion free, the diffeomorphism class is

characterized uniquely. The intersection rings of Mn
〈+2〉 with n = 2, 1, 0 do not agree for any

identification of integral cohomology groups H2(Mn
〈+2〉;Z), so that these manifolds cannot

be diffeomorphic. This means that type IIA compactifications on Mn
〈+2〉 with n = 2, 1, 0

each have their own separate moduli spaces [26]. There is such an identification between

H2(Mn=2
〈+2〉;Z) andH2(Mn=−1

〈+2〉 ;Z), on the other hand. This indicates that Mn=2
〈+2〉 andMn=−1

〈+2〉
are the same as real manifolds. It is not known, however, whether the complex structure

moduli space of this real manifold has just one connected component.8 We therefore have

not ruled out the possibility that type IIA compactifications on Mn
〈+2〉 with n = 2 and

n = −1 describe physically different vacua, and we treat them separately in the rest of this

article.9

At the very beginning of the study of heterotic-type IIA duality [1], type IIA com-

pactification on Mn=2
〈+2〉 = [(12) ⊂ WP4

[1:1:2:2:6]] was pointed out as the dual of a heterotic

compactification, the ST -model.10 Primary evidence for this duality claim is comprised of

8An example of this phenomenon is discussed e.g. in [27].
9The Kähler cones of Mn=2

〈+2〉 and Mn=−1
〈+2〉 are mapped to each other under the identification φ. The genus

zero Gromov-Witten invariants of Mn
〈+2〉 with n = 2 and n = −1 also seem to agree under the identification

φ. The result in section 3.2.3, however, makes us hesitate from saying that M2
〈+2〉 and M−1

〈+2〉 are the same.
10The ST -model is a heterotic string compactification on “T 2 × K3” with one S1 ⊂ T 2 at the self-dual

radius. The S1 at the self-dual radius gives rise to an extra gauge group A1 and the 24 instantons are

distributed as 4, 10 and 10 between A1, E8 and E8, respectively.
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i) the agreement of the pair of lattices (Λ̃S ,ΛT ) and ii) the agreement of the number of

vector and hypermultiplets in the D=4 N = 2 effective theory, on both sides of heterotic

and type IIA descriptions. It turns out, however, that all of the Calabi-Yau threefolds

Mn
〈+2〉 with n = 2, 1, 0,−1 — sharing the lattices (Λ̃S ,ΛT ) — have [26]

h1,1(Mn
〈+2〉) = ρ+ 1 = 2, h2,1(Mn

〈+2〉) = 128, χ(Mn
〈+2〉) = −252. (3.10)

Hence from observations i) and ii) not just type IIA compactification on Mn=2
〈+2〉, but on any

one of the Mn
〈+2〉’s must be regarded as an eligible candidate for the dual of the heterotic

ST -model.

Let Di be the divisors of the toric ambient space corresponding to the toric vector νi

(i = 1, · · · , 6), and D̄i := Di|Mn
〈+2〉

.

Let us focus on Mn
〈+2〉 with n = 2, 1, 0. Then we can choose two curves C2 and C5

in Mn
〈+2〉 to generate the cone of effective curves (Mori cone) of Mn

〈+2〉; here, C2 · D̄2 =

C5 · D̄5 = 1 and C2 · D̄5 = C5 · D̄2 = 0. Complexified Kähler parameters (t2, t5) are

introduced (Im(t2) > 0 and Im(t5) > 0), and the complexified Kähler form is given by

(B+iJ) = t = t2D̄2+t5D̄5. The Gromov-Witten invariants of vertical curve classes, namely,

β = n2C2 + n5C5 with n5 = 0, remain independent of the discrete choices (n = 2, 1, 0) of

the fibration [26]. This type IIA information corresponds to the 1-loop threshold correction

in heterotic computations. Thus, the experimental evidence so far allows an interpretation

that all of type IIA compactifications with Mn=2,1,0
〈+2〉 are dual to the heterotic string ST -

model defined at the perturbative level (in the gs expansion of the heterotic string) and

the presence of multiple choices of Mn
〈+2〉 in type IIA (n = 2, 1, 0) is an indication that

multiple non-perturbative completions are possible in heterotic string theory [26].

This is an attractive interpretation, but we must say that it still sounds odd. Certainly

the third term in the D = 4 N = 2 prepotential

F =
2

2
t5t

2
2 +

2n

6
(t2)3 +

1

(2πi)3

∑
β;n5=0

dβLi3(e2πi〈t,β〉) +
1

(2πi)3

∑
β;n5>0

dβLi3(e2πi〈t,β〉) (3.11)

come from 1-loop threshold correction in a heterotic string computation, but the second

term — computed from the intersection ring of Mn
〈+2〉 in type IIA compactifications — is

also supposed to come from heterotic string 1-loop threshold correction. A given heterotic

string compactification (say, the ST -model) cannot take multiple values. If type IIA com-

pactification on one of the Calabi-Yau threefolds Mn
〈+2〉 is dual to the ST -model, the IIA

compactifications on the other Mn
〈+2〉 cannot be dual to the ST -model.

Reference [28] indicates how to extract the coefficients of such tri-linear term in the

prepotential, for some examples of heterotic string compactifications to four-dimensions.11

Hence, it is possible to pursue this approach, which exploits information on the vector

multiplet moduli space on both sides of the duality. In this article, we provide an alter-

native method to study the duality dictionary of the choices of fibration, which uses the

hypermultiplet moduli space. It is better to have more tools than less!

11The ST -model was not chosen as an example there. The study in [29] is not sensitive enough to the

coefficient of the (t2)3 term, either.
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3.2.2 E8 ⊕ E8 degeneration of E8-elliptic K3 surfaces

To get started, let us go back to the case where we choose the generic fibre to be the

E8-elliptic K3 surface, because a lot more is known in the physics literature. In this case,

NSK3 = U and TK3 = E⊕2
8 ⊕ U⊕2. Our discussion in the following is valid in the weak

coupling regime of heterotic vacua, or equivalently, the large volume region of P1
A of type

IIA vacua. The Narain moduli of heterotic string theory and the period integral of the fibre

K3 surface for type IIA can be compared fibrewise in this situation. In order to study the

duality map of discrete data (such as the instanton number distributions and the choice of

fibration of a given lattice polarized K3 surface), it is enough to use any corner of moduli

space that is continuously connected.

The hypersurface equation of an E8-elliptic K3 surface is written down as in

0 = y2 + x3 + x

(
4∑

k=−4

fkz
4+k

)
+

(
6∑

m=−6

gmz
6+m

)
. (3.12)

For a specific fibre, fk and gm are complex numbers. This K3 surface is to be used for type

IIA compactification. On the heterotic side, we have the Narain moduli (ρ̃, τ, aI=1,··· ,16)

corresponding to the volume ρ̃ and complex structure τ of T 2, as well as Wilson lines

aI=1,··· ,16. To establish a dictionary between (fk, gm) and (ρ̃, τ, aI) is simple, at least

conceptually. One merely needs to compute period integrals for transcendental cycles, and

express them in terms of (fk, gm).

In practice, it is not a simple task to determine period integrals depending on 18

complex variables, but even knowing their qualitative behaviour goes a long way.12 At the

qualitative level, there are well-known constraints on the (fk, gm) for the E8 ⊕ E8 gauge

symmetry of the heterotic string to remain unbroken, and furthermore, it is known how to

scale (fk, gm) such that the T 2 volume of the heterotic description is large (i.e., ρ̃→ i∞) [3].

In this way, we learn which part of the complex coefficients of the hypersurface equation

corresponds to the moduli controlling geometric aspects of the heterotic compactification.

This dictionary has been extended to some extent to include the moduli controlling the

breaking of the E8 ⊕E8 symmetry. Such a map has been discussed in the context of local

mirror symmetry for any ABCDE group [30, 31]. For a compact K3 surface, the duality map

has been discussed for the case the symmetry breaking stays within SU(5)×SU(5) ⊂ E8×
E8 [32–36]. See [37] for symmetry breaking in SU(6) ⊂ E8, and [38] for more general cases.

For other aspects of hypermultiplet moduli map, see e.g. [39–42] and references therein.

Consider taking the coefficients (fk, gm) in (3.12) to be

gm = g′m × ε|m|η ε
6(|m|−1)
K , fk = f ′k × ε|k|η ε

6|k|−4
K , (3.13)

with |g′m|, |f ′k| ∼ O(1) and εη � 1 and εK � 1. This is a generalization of the scaling

in [3, 43]. Under such a choice of complex coefficients, 10 out of the 24 discriminant

points of this E8-elliptic K3 surface are found in the region z ∼ (εηε
6
K), 2 are in the region

12This is similar to the use of the logarithmic singularity in the vector multiplet moduli space as a test

of duality.
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z ∼ εη, 2 more are in the region z ∼ ε−1
η and the remaining 10 are found in the region

z ∼ (εηε
6
K)−1. The εK-scaling power of individual coefficients above is determined such

that the hypersurface equation (3.12) around (x, y, z) = (0, 0, 0) is well approximated by a

deformation of an E8 singularity. Indeed, we only need to rewrite (3.12) by using a set of

local coordinates (ξ, η, ζ) in

(x, y, z) = (ε2ηε
10
K ξ, ε

3
ηε

15
K η, εηε

6
Kζ), (3.14)

and drop all the terms with positive powers in εη or εK .

It is also possible (though not necessary) to consider the (reducible) K3 surface asso-

ciated with the stable degeneration limit corresponding to εη → 0 and focus on one of the

two irreducible components. We then have a rational elliptic surface [44]

0 = y2 + x3 + x

(
f0ζ

4 +
4∑

k=1

ε6k−4
K fkζ

4−k

)
+

(
g0ζ

6 +
6∑

m=1

ε6m−6
K gmζ

6−m

)
. (3.15)

The fk and gm here correspond to βk and αm of dP8 in [44].

This description (parametrization) of E8 Wilson lines in T 2 is redundant. This is

due to the fact that we have not fixed the automorphisms acting on the base P1 of the

E8-elliptic K3 surface. For two constants c1 and c2, it is

z′ =
z + c1

c2z + 1
. (3.16)

By allowing this redundancy in the parametrization, however, the collection of εη scaling

powers, {1, 2, 3, 4, 5, 6, 1, 2, 3, 4}, contains the full list of Dynkin labels of the extended

Dynkin diagram of E8. The collection of εK scaling powers, {0, 6, 12, 18, 24, 30, 2, 8, 14, 20},
contains degrees of all of the independent deformation parameters of the E8 singularity

in [45].

With this preparation, let us now consider a Calabi-Yau threefold M that has an E8-

elliptic K3 surface in the fibre. Here, the coefficients f±k and g±m are promoted to sections

of line bundles over the base P1
A. When the fibration corresponds to a choice of ν6

F in (3.4)

with −2 ≤ n ≤ 2,

gm ∈ Γ(P1
A;O(12 + n ·m)) = Γ(P1

A;O(|m|η± + (6|m| − 6)KP1)). (3.17)

fk ∈ Γ(P1
A;O(8 + n · k)) = Γ(P1

A;O(|k|η± + (6|k| − 4)KP1)), (3.18)

where η+ = 12 +n for m > 0 and k > 0, and η− = 12−n for m < 0 and k < 0. Therefore,

we see that any one of (fk, gm) which is required to have a scaling εAη ε
B
K for the Het-sugra

and near-symmetry-restoration takes its value in a line bundle OP1
A

(Aη + BKP1). It is

also known, based on the study of chains of Higgs cascades and singular transitions among

various branches of the moduli spaces of F-theory (or type IIA) compactifications, that

M is dual to heterotic string theory compactified on K3 (K3 × T 2) with the instantons

distributed as η+ and η− to E8 ⊕ E8.

For a given branch of the moduli space of type IIA compactifications on a Calabi-Yau

manifold M with a lattice-polarized K3 fibration πM : M −→ B, we are hence motivated
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to ask if there is an assignment of scalings εAη ε
B
K of the complex coefficients that leads to a

decoupling of gravity and symmetry restoration. When there is such an assignment of the

scalings, one can then further ask if there is a divisor η on the base B such that a section

f under the scaling εAη ε
B
K is a section of OB(Aη + BKB). If such a divisor η is found,

then we can take it to be the instanton number (more generally second Chern character

ch2) defined purely in terms of (hypermultiplet moduli of) the type IIA compactification.

In cases where the heterotic-IIA duality dictionary is not understood well enough, it is

important that we can extract such information intrinsically.

This is a generalization of the same idea that has been known to hold13 in the case

of symmetry breaking with the structure group SU(N). When sections ar ∈ Γ(B;OB(η +

rKB)) (r = 0, 2, · · · , N) for some divisor η on B in a hypersurface equation has the scaling

εηε
r
K for symmetry restoration of SU(N), the heterotic dual involves a vector bundle with

the instanton number (second Chern character ch(2)) specified by η.

3.2.3 E8 ⊕ E8 degeneration of degree-2 K3 surfaces

In order to argue what is the distribution of instanton numbers in the heterotic dual of type

IIA compactifications on Mn
〈+2〉 (n = 2, 1, 0,−1), where the fibre is a degree-2 K3 surface,

we first need to find a scaling behaviour of the complex coefficients of Mn
〈+2〉 that leads to

symmetry restoration.

The E8 ⊕ E8 ⊕ A1 part of two-cycles remains in the transcendental lattice TK3 for

a generic fibre. Since transcendental cycles of a K3 surface correspond to divisors of its

mirror K3 surface (up to a sublattice U), lattice points of the dual polytope ∆F can be

used to capture those two-cycles. The dual polytope ∆F of degree-2 K3 surfaces is shown

in figure 2 (b) along with that of E8-elliptic K3 surface. To each lattice point marked in

figure 2 (b), there is a corresponding transcendental two-cycle. They are all isomorphic to

S2, except for the cycle corresponding to the lattice point at the top of the polytope, which

is isomorphic to a T 2. There are three linear (topological) relations among them, and after

a computation of the intersection form, a rank-18 lattice of transcendental two-cycles,

TK3(St.A) = E8 ⊕ E8 ⊕ 〈−2〉 ⊕ U, (3.19)

is obtained. Two more transcendental cycles are missing here, because they correspond to

H0 and H4 of the mirror of St.A. The entire transcendental lattice is TK3(St.A)⊕U . There

are three different ways in identifying the E8 ⊕ E8 lattice among those two-cycles, which

can be traced back to the S3 symmetry on the moduli space of degree-2 K3 surface. One

of the three identifications is already shown in figure 2 (b).

13There is an alternative idea for an intrinsic definition of the instanton number in F-theory compactifi-

cations. Let πM : M → B be a K3-fibration, and π′M : M → B′ be an elliptic fibration. B′ is a P1-fibration

over B. When there is an unbroken non-Abelian symmetry, the corresponding discriminant locus in B′

will appear as a section of the P1 fibration over B. Let S ⊂ B′ be the image of this section (often referred

to as the GUT divisor). Then in case the heterotic dual involves an SU(N) bundle in E8, its instanton

number can be extracted from η = c1(NS|B′) − 6KS in the F-theory geometry [46]. Unfortunately we

cannot rely on this idea in this article, since neither a P1-fibration B′ → B nor GUT divisor S is available

in heterotic-IIA duality in general.
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(a) (b)

Figure 2. (colour online) Dual polytopes ∆F of E8-elliptic K3 surface (a) and degree-2 K3 surface

(b). Transcendental 2-cycles forming the E8 ⊕ E8 lattice are indicated by red (light grey) nodes.

With this picture in mind, it is now easy to figure out how to assign the scaling

behaviour for the approximate restoration of the E8 ⊕ E8 symmetry in the moduli space

of degree-2 K3 surfaces. Let us write down the hypersurface equation of a degree-2 K3

surface in a set of affine coordinates, (y, x4, x3, x6) = (X1/X
3
2 , X4/X2, X3/X2, X6/X5):

y2 = (a′1x
5
4x3 + a′2x

4
4x

2
3 + a′3x

3
4x

3
3 + a′4x

2
4x

4
3 + a′5x4x

5
3 + a′6x

6
3)

+ (b′1x
3
4x

2
3 + b′2x

2
4x

3
3 + b′3x4x

4
3 + b′4x

5
3) + (c′1x4x

3
3 + c′2x

4
3)

+ x6
4 + b0x

4
4x3 + c0x

2
4x

2
3 + d0x

3
3

+ (b1x
3
4 + b2x

2
4 + b3x4 + b4)x3 + (c1x4 + c2)x2

3

+ (a1x
5
4 + a2x

4
4 + a3x

3
4 + a4x

2
4 + a5x4 + a6), (3.20)

where we used an affine patch (x3, x4) = (X3/X2, X4/X2) of the P2[X2 : X3 : X4], The

scaling is

ar = ar∗ × εrηε6r−6
K , br = br∗ × εrηε6r−4

K , cr = cr∗ × εrηε6r−2
K , (3.21)

where εη and εK are taken to be small, while ar∗, br∗ and cr∗ are O(1). When the value

of εη is small, one set of E8 transcendental cycles (visible sector) are found close to the

point X4 = X3 = 0 in P2, while the other set of E8 transcendental cycles (hidden sector)

are located near the point X4 = X2 = 0. When εK is set to zero, while εη remains small

but non-zero, we have an E8 singularity, y2 + a1εηx
5
4 + d0x

3
3 = 0. The scaling behaviour

assigned for am and bk agrees with those for gm and fk in the case of an E8-elliptic K3.

When the degree-2 K3 surface is fibred over the base P1
A, the coefficients ar, br and

cr for the visible E8 and those for the hidden E8 are promoted to sections of certain line

bundles. We can work out the degree of those line bundles for any given choice of fibration

in figure 1. The results are shown in table 1. If the complex structure moduli of a threefold
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[24] [14] [0∗] [−14] [−12] [23] [13]

ar (12− 2r) (8− r) 4 r 6 2r 2 + r

br (8− 2r) (6− r) 4 2 + r 5 (2 + 2r) 3 + r

cr (4− 2r) (4− r) 4 (4 + r) 4 (4 + 2r) 4 + r

a′r (12− 2r) (8− r) 4 r (6− r) 0 2

b′r (8− 2r) (6− r) 4 (2 + r) (5− r) 2 3

c′r (4− 2r) (4− r) 4 (4 + r) (4− r) 4 4

Table 1. Each column corresponds to a Calabi-Yau threefold hypersurface M in the toric ambient

space corresponding to one of the choices of ν6F shown in figure 1. ar (r = 1, · · · , 6), br (r = 1, · · · , 4),

cr=1,2, and a′r, b
′
r, c
′
r are sections of line bundles on P1

A whose degrees are indicated in the 1st–6th

rows in this table.

Mn
〈+2〉 are to be interpreted as E8 +E8 instanton moduli in heterotic string, we expect that

ar=1,··· ,6 ∈ Γ(P1
A;O(12 + r(Iv − 12))), a′r=1,··· ,6 ∈ Γ(P1

A;O(12 + r(Ih − 12))),

br=1,··· ,4 ∈ Γ(P1
A;O(8 + r(Iv − 12))), b′r=1,··· ,4 ∈ Γ(P1

A;O(8 + r(Ih − 12))), (3.22)

cr=1,2 ∈ Γ(P1
A;O(4 + r(Iv − 12))), c′r=1,2 ∈ Γ(P1

A;O(4 + r(Ih − 12)))

for some choice of instanton numbers Iv and Ih. It turns out that only the [24] choice of

ν6
F allows for an interpretation of E8 + E8 bundle moduli, where Iv = Ih = 10 as in the

heterotic string ST model. The choice [24] of ν6
F corresponds to taking the ambient space

to be the weighted projective space, WP4
[1:1:2:2:6]. For any other choice, the degrees of the

relevant line bundles cannot have the right pattern to even define14 the instanton numbers

of E8 + E8 intrinsically in terms of the threefolds Mn
〈+2〉 (n = 1, 0,−1).

We therefore conclude that only the type IIA compactification on Mn=2
〈+2〉 is dual to

the heterotic ST -model (where the instantons numbers are distributed by 4+10+10 in

A1 + E8 + E8). Type IIA compactifications on Mn
〈+2〉 with n = 1, 0,−1 are not, although

the effective theories with D = 4 N = 2 supersymmetry have the same number of vector

and hypermultiplets, and the special geometry passes highly non-trivial tests of duality

(the third term of (3.11)). The hypermultiplets, however, do not seem to reproduce the

instanton moduli expected in the heterotic ST -model and the heterotic dual of type IIA

compactifications on Mn
〈+2〉 with n = 1, 0,−1 must be something other than the ST -model.

A case study for ΛS = 〈+2〉 was presented above, but this is a very small subset of all

the O(2000) choices of ΛS , where there are multiple choices of fibering ΛS-polarized K3

surface over P1
A. The method described above may be applied to cases where ΛT contains

14As remarked earlier, there are three different identifications of the E8 + E8 transcendental cycles in a

degree-2 K3 surface. Choosing an appropriate identification of the E8 + E8 transcendental cycles and the

corresponding assignment of the scaling behaviour of the coefficients of the hypersurface equation (different

from the one we adopted in the text), the threefolds for the choices [23] and [22] can also be regarded as

the Iv = Ih = 10 case. This should be obvious due to the S3 symmetry of degree-2 K3 surface. For other

choices, such as [−1a], [1a] and [0∗], however, the three options of E8 + E8 identifications do not help in

consistently defining instanton number assignments.
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U ⊕ U ⊕ (⊕aRa) with an ADE root lattice Ra; after assigning the height A and degree B

for a symmetry Ra to monomials in the defining equation of MΛS , one can ask whether an

appropriate divisor ηa for Ra is found. In the case of ΛS = 〈+4〉 (where we have a quartic

K3 surface as the fibre in IIA language), for example, it is at least possible to talk about the

instanton number assignment in the E8⊕E8 part of ΛT , if not for the 〈−4〉 part. It will be

difficult, however, to apply this method to Calabi-Yau manifolds without a complete inter-

section construction, or to choices of ΛT without a U⊕U component, or a single factor of Ra.

4 Degenerations of K3 surfaces and soliton solutions

In the last section, we restricted our attention to K3-fibred Calabi-Yau threefolds where the

K3 fibre remains irreducible everywhere over the base P1
A and furthermore the entire NSK3

lattice of a generic fibre becomes the lattice polarization of the fibration, NS(St.A) = ΛS .

The method of construction was limited to using a toric polytope ∆̃ spanned by just one

toric vector ν6 in addition to ν1,2,3,4,5. The spirit was to focus on situations where the

adiabatic argument can be used.

In this section, we explore fibrations where the adiabatic argument does not hold at

isolated points in the base P1
A, and discuss their heterotic dual descriptions. In particular,

we will relax the condition that the K3 fibre remains irreducible everywhere over the base

P1
A for a smooth threefold M . Examples in section 4.1 are such that only a single extra

vertex ν6 is introduced besides ν1,2,3,4,5 in the toric polytope. In sections 4.2 and 4.3 we

also relax this condition, and the construction in [47] (and its obvious generalization) is

exploited. We will see a rich variety of branches of the type IIA compactification moduli

space, even for a single choice of the lattice ΛS = NSK3. After examining the reducible

fibre geometries and how those branches are connected, we will study their heterotic string

interpretation in section 4.4.

4.1 A simple fibration with reducible fibre(s)

Let us continue to work out discrete fibration choices of degree-2 K3 fibred Calabi-Yau

threefolds M〈+2〉 realized as toric hypersurfaces corresponding to a polytope spanned by

ν1,2,3,4,5, and just one point ν6. Contrary to before, however, we do not require that the

fibre K3 surface remains irreducible everywhere over the base P1
A.

This means that we can choose any one of (3.5), not just those in
〈
ν2,3,4
F

〉
∩∂(2∆̃F )∩NF .

For the choices of toric vectors ν6 := (v1 − 2, v2, v3, 1)T that are now allowed, there is one

lattice point ν7 = (ν7
F , 0)T ∈ N placed in the interior of a two-dimensional face Θ̃[2] of ∆̃,

but not interior to any one of the facets of ∆̃. The contribution to h1,1(M〈+2〉) is

h1,1(M3)− 2 = 1 + `∗(Θ[1]) = (v1 − v2 − v3) , (4.1)

where Θ[1] is the dual face of Θ̃[2]. The possible values of (v1 − v2 − v3) for ν6
F in (3.5)

range from 0 to 4. The cases with (v1− v2− v3) = 0 — those appearing in figure 1 — have

been studied in section 3.2.1.

Interior points to facets of ∆̃F which are not interior to facets of ∆̃ likewise give rise to

reducible divisors for any K3-fibred Calabi-Yau threefold realized as a toric hypersurface. A
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brief explanation for this statement is given in appendix A, but this is well-known already in

the case of having an E8-elliptic K3 surface in the fibre [48]. When ν6
F is chosen from (3.3),

but not from (3.4), then the two lattice points interior to the two-dimensional face
〈
ν2,3,4
F

〉
∩

(∂∆̃F ) result in a singular fibre (or even several singular fibres) with three components,

whereas
〈
ν1,3,4
F

〉
∩ (∂∆̃F ) potentially gives rise to singular fibres with two components.

Coming back to the case of a degree-2 K3 surface as the fibre, let us take (v1−v2−v3) =

1 as an example.15 This is e.g. realized for ν6 = (−ν1
F , 1) = (−1, 0, 0, 1); we denote the

resulting threefold by M
−ν1

F

〈+2〉 . Its defining equation is of the form

0 = X2
1F

(0,1) +X7

(
X1F

(3,2) +X7F
(6,3)

)
, (4.2)

where the F (i,j) are homogeneous polynomials of degree i in [X2 : X3 : X4] and degree j in

the [X5 : X6] coordinates of the base P1
A. At the point t0 ∈ P1

A defined by F (0,1)(X5, X6) = 0

the fibre geometry St0 is singular and consists of the two irreducible components

V0;t0 : X7 = 0 , (4.3)

V1;t0 : X1F
(3,2) +X7F

(6,3) = 0 . (4.4)

We can think of either one of them as the (v1−v2−v3) = 1 extra contribution to h1,1(M
−ν1

F

〈+2〉);

their sum is homologous to the class of the generic fibre.

The K3-fibration degenerates at the point t0 ∈ P1
A. This is an example of a Type II de-

generation; background material on the theory of degeneration of K3 surface is summarized

in appendix B for the convenience of readers. In this particular example of Type II degen-

eration of a lattice-polarized K3 surface (ΛS = 〈+2〉), V0;t0 = P1 and V1;t0 is P2
[X2:X3:X4]

blown-up at eighteen points (F (3,2)|t0 = F (6,3)|t0 = 0). The two surface components inter-

sect along the elliptic curve {F (3,2)|t0 = 0} ⊂ P2, see also [49].

Let us parametrise the Kähler cone of this threefold M
−ν1

F

〈+2〉 by

J = D̄2t2,I + D̄7tvrt,I + D̄5t5,I , (4.5)

where t2,I , tvrt,I and t5,I are real valued; the subscripts I are a reminder that they are meant

to be the imaginary part of the complexified Kähler parameter B+iJ . This parametrization

respects the filtration structure in the space of divisors and curves associated with fibration.

The polytope ∆̃ for the ambient space of M
−ν1

F

〈+2〉 has a unique triangulation and the Kähler

cone of the toric ambient space is bounded by three walls:

0 < tvrt,I , 0 < t2,I − 3tvrt,I , 0 < t5,I − t2,I . (4.6)

At the wall tvrt,I = 0, the eighteen (−1) curves in V1 = Bl18(P2) in the central fibre shrink

to zero volume, while the volumes of P1 ⊂ P2 = V0 and V0 = P2 itself go to zero at the

15In the cases with (v1 − v2 − v3) = 2, 3, 4, we just have the same reducible fibre geometry, V0 + V1, at

(v1 − v2 − v3) isolated points in the base P1
A.
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tvrt,I

t2,I

−tvrt,I

t4,I

(a) (b)

Figure 3. Geometric phases of the Kähler cone in the large base regime a) for M
−ν1

F

〈+2〉 in section 4.1

and b) for M
{0,−1}
〈+2〉 in section 4.2.3, presented in the space of Kähler parameters of the fibre K3.

wall t2,I − 3tvrt,I = 0. The last inequality does not concern us, as we will stay within the

large base P1
A regime

t5,I � |t2,I |, |tvrt,I | (4.7)

of type IIA compactification (which is dual to the weak 4D dilaton regime in heterotic

compactification) in this article.

At the wall tvrt,I = 0, a flop transition16 turns V1 = Bl18(P2) into P2, and V0 = P2 into

Bl18(P2). The phases found at the two sides of the wall can be regarded as the two small

resolutions of a geometry given by(
ξ − F (3,2)

2

)(
ξ +

F (3,2)

2

)
+ F (6,3)F (0,1) = 0. (4.8)

From the perspective of the gauged linear sigma model (type IIA string theory), therefore,

the Kähler parameter phase diagram is like figure 3 (a) in the large base P1
A regime. From

the perspective of classical geometry, on the other hand, there is a holomorphic biregular

map from M
−ν1

F

〈+2〉 in the tvrt,I < 0 phase to that in the tvrt,I > 0 phase so that the singular

fibre components V0 = Bl18(P2) and V1 = P2 in the tvrt,I < 0 phase are identified with

V1 = Bl18(P2) and V0 = P2, respectively. This isomorphism effectively cuts out the tvrt,I < 0

part of the Kähler moduli space. This is consistent with the fact that only one triangulation

is found for the polytope ∆̃ under consideration.

Applying the adiabatic argument of duality to the fibre over generic points around the

degeneration point t0, we find that the heterotic interpretation is to have a soliton (defect)

16It is not a straightforward task to find a toric construction for the geometry on the other side of the flop

transition of a Calabi-Yau hypersurface. Different choices of triangulation of the polytope ∆̃ sometimes do

the job (just as they do for the transitions of the toric ambient space), but that is not always the case. See

e.g. [50, 51] for more examples.
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localized at real codimension-two in the base P1
Het. We cannot say much about what

happens at the centre of the soliton (as the adiabatic argument breaks down there), but

duality indicates that there is a U(1) vector multiplet associated with this soliton, at least

for generic choice of moduli. An extended discussion on the heterotic string interpretation is

provided in section 4.4. Before we get there, we study a few more examples of degeneration

in lattice-polarized K3-fibration in sections 4.2 and 4.3.

4.2 Corridor branches and reducible fibres

Once we allow the K3 fibre to degenerate and become reducible at isolated points in the base

P1
A, we do not need to restrict to a construction where we choose to include just one vector

ν6
F from 2∆̃F ∩ NF in the polytope ∆̃. The moduli spaces of type IIA compactifications

for this broader class of threefolds MΛS form bridges (or corridors) between the branches

of the moduli space corresponding to the multiple fibration choices of a given algebraic K3

surface ΛS ∼ NSK3 discussed in the previous section.

This section will cover the geometry of threefolds where the reducible fibre is a Type

II degeneration (as in section 4.1). Examples with a reducible fibre other than a Type II

degeneration are postponed to section 4.3.

4.2.1 Warm-up

In the context of heterotic-type IIA duality, the best-known example of a K3-fibred Calabi-

Yau threefold with a reducible fibre corresponding to a Type II degeneration is the case

with ΛS = U (i.e., E8-elliptic K3 is in the fibre in type IIA compactification). When we

include all the vectors ν6,n
F in (3.4) within a range (−nv) ≤ n ≤ nh for some integers

−2 ≤ (−nv) < nh ≤ +2, then the heterotic dual is a K3×T 2 compactification with 12−nv
and 12 − nh instantons in E8 ⊕ E8 on K3, along with nh + nv NS5-branes in the S1/Z2

interval of the heterotic-M theory. The moduli space of this threefold M
{nh,··· ,−nv}
U forms

a branch with more vector multiplets and fewer hypermultiplets

h1,1(M
{nh,··· ,−nv}
U ) = ρ+ 1 + (nh + nv), (4.9)

h2,1(M
{nh,··· ,−nv}
U ) = 244− 29(nh + nv), (4.10)

than any one of the moduli spaces for Mn
U with −nv ≤ n ≤ nh. The moduli of M

{nh,··· ,−nv}
U

connects the moduli spaces of Mn
U with −nv ≤ n ≤ nh by a trade-off between the Coulomb

and Higgs branch degrees of freedom [3].

In the context of F-theory compactification, this threefold geometry M
{nh,··· ,−nv}
U is

understood as an elliptic fibration π′M : M
{nh,··· ,−nv}
U → B′ over a base surface B′ =

Blnh+nv(Fnh). A Hirzebruch surface Fnh is a P1 fibration over P1
A. Blowing up a Hirzebruch

surface to B′, the fibration is modified in such a way that the fibre curve P1 degenerates into

(nh+nv+1) curves, C0∪· · ·∪Cnh+nv ; the graph of intersection of those curves in B′ is shown

in figure 4 (b). For the more general heterotic-type IIA duality, however, it is more suitable

to describe the geometry of threefold M
{nh,··· ,−nv}
U in terms of a degeneration processes of

the K3 surface πM : M
{nh,··· ,−nv}
U → P1

A. The complex structure of M
{nh,··· ,−nv}
U has been

tuned so much (relatively to that of Mn
U for any −nv ≤ n ≤ nh) that the fibre K3 surface —
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C0

C1

C2

C3 C0(−1) C1(−2) C2(−2) C3(−1)

V0 = RES V1 V2 V3 = RES

(a) (b)

Figure 4. The toric vectors for the base B′ (a), and the graph of intersection of curves C0 ∪ · · · ∪
Cnh+nv in B′ (b). The latter can also be regarded as the dual graph of a Type II degeneration of

an E8-elliptic K3 surface.

E8-elliptic K3 surface generically — is forced to degenerate to a collection of (nh +nv + 1)

irreducible non-singular surfaces V0 ∪ V1 ∪ · · · ∪ Vnh+nv over one point in the base P1
A. The

surfaces over the curves C0 and Cnh+nv are rational elliptic surfaces, V0 = Vnh+nv = RES

(also known as dP9 in physics community), while the surfaces over C1, · · · , Cnh+nv−1 are

all T 2 × P1 = V1,··· ,nh+nv−1. This is an example of a Type II degeneration of a (ΛS = U)-

polarized K3 surface. This is the language suitable for heterotic-type IIA duality.

4.2.2 Corridor branches among models with a degree-2 K3 surface

Examples of this kind are also available in the case of Calabi-Yau threefolds with a degree-2

K3 surface (ΛS = 〈+2〉) as the fibre over P1
A. As a first group of examples, consider the

threefolds M
{n,n−1,...,m}
〈+2〉 labelled by a choice of integers n,m satisfying 2 ≥ n ≥ m ≥ −1.

They are obtained as toric hypersurfaces for which the polytope ∆̃ contains all of the ν6’s

with n ≥ k4 ≥ m (and k2 = k3 = 0). An example of a “short top” [47] is found as a part

of this polytope ∆̃. It turns out that Hodge numbers of those threefolds are as follows:

M2
〈+2〉 M1

〈+2〉 M0
〈+2〉 M−1

〈+2〉 h
1,1 = 2 h2,1 = 128

M
{2,1}
〈+2〉 M

{1,0}
〈+2〉 M

{0,−1}
〈+2〉 h1,1 = 3 h2,1 = 111

M
{2,1,0}
〈+2〉 M

{1,0,−1}
〈+2〉 h1,1 = 4 h2,1 = 94

M
{2,1,0,−1}
〈+2〉 h1,1 = 5 h2,1 = 77

(4.11)

We observe, in these examples, that the value of h1,1 and h2,1 of M
{n,n−1,··· ,m}
〈+2〉 depend only

on (n−m), just like they do on (nh + nv) in (4.9), (4.10).

Let us first focus on the geometry of M
{n,n−1}
〈+2〉 . A generic fibre St.A (t ∈ P1

A) in

those threefolds is a degree-2 K3 surface, but this K3 surface degenerates at one point

(X6 = 0) in the base P1
A. The singular fibre at the degeneration, referred to as the central

fibre and denoted by S0, consists of two irreducible pieces, V0 ∪ V1. Let V0 be the divisor

D̄6,n in M
{n,n−1}
〈+2〉 for definiteness; V1 = D̄6,n−1 then. Both of these surfaces combined,
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V0 V1 h1,1(M) h2,1(M) −∆h2,1(M) h1,1(V0) h1,1(V1)

[na] [n− 1a] 3 111 17 12 8

[−12] [14] 3 111 17 12 8

[−14] [−12] 3 99 29 9/11 11/9

[14] [12] 3 99 29 9/11 11/9

[24] [−12] 3 99 29 9/11 11/9

Table 2. Data of irreducible components of the central fibres in threefolds M〈+2〉 obtained by using

two “neighbouring” points in figure 1 for ν6F . A pair of points corresponding to the first two rows

are connected by a solid line in figure 1, while a pair corresponding to the next two rows by a dotted

line in figure 1. A pair corresponding to the last row are connected by a dashed line in figure 1. In

the last three rows, the value of h1,1(V0) and h1,1(V1) can be 9 and 11, or 11 and 9, respectively,

depending on the choice of triangulation of the polytope ∆̃ (see the text for more information).

D̄6,n + D̄6,n−1 = S0 are linearly equivalent to the generic fibre class ∼ D̄5. We found, by

using computation techniques available for toric hypersurfaces [52] (plus additional formula

in appendix A.3), that those two irreducible surfaces satisfy

h1,1(D̄6,n−1) = 8, h1,1(D̄6,n) = 12, hi,0(D̄6,n−1) = hi,0(D̄6,n) = 0 (i = 1, 2).

(4.12)

Those two components meet along a curve of genus 1. This information is summarized in

the first line of table 2.

The moduli space of M
{n,n−1}
〈+2〉 and that of Mn

〈+2〉 are connected. The transition locus

between these two branches is reached from M
{n,n−1}
〈+2〉 by tuning a Kähler parameter such

that the surface V1 = D̄6,n−1 collapses to a point, and it is reached from Mn
〈+2〉 by tuning 17

complex structure parameters. At the transition, the geometry has a point-like singularity

of type Ẽ7, which is captured by

X2
1 + F (4)(X2, X3, X6) ' 0 (4.13)

([na]-[n − 1a] with a = 4 is used for this expression). As discussed in [3, 53], this type of

singularity is reached by collapsing a dP7. This can also be seen explicitly by observing

that V1 = D̄6,n−1 is described as a hypersurface of degree 4 in P3
2111, which is a well-known

realization of dP7.

The moduli space of M
{n,n−1}
〈+2〉 is also connected to that of Mn−1

〈+2〉. Here, we can reach

the transition point from M
{n,n−1}
〈+2〉 by collapsing the surface D̄6,n to zero volume to form a

singular threefold, whereas we need to tune 17 complex structure moduli of Mn−1
〈+2〉 to reach

it. At the transition, Mn−1
〈+2〉 develops an A1 singularity along a curve X1 = X4 = X6 = 0,

and the surface V0 = D̄6,n comes out as the exceptional divisor when this singularity is

resolved.17 It turns out that V0 can be regarded as Bl10(F2), see appendix D for more

information.
17At the transition point, the gauge group is enhanced to SU(2) × U(1)2, and NF = 10 SU(2)-doublet

hypermultiplets emerge in the massless spectrum, in the 4D N=2 effective theory.
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Therefore, type IIA compactification on M
{n,n−1}
〈+2〉 has transitions both to a compacti-

fication on Mn
〈+2〉 and a compactification on Mn−1

〈+2〉. The moduli spaces of all of the Mn
〈+2〉

with n = 2, 1, 0,−1 are connected in this way.

Similarly, the threefold M
{14,−12}
〈+2〉 provides a branch of moduli space connecting M1

〈+2〉
and M−1

〈+2〉. In fact, it turns out that the geometry of the degenerate singular fibre in

M
{14,−12}
〈+2〉 is the same as in the M

{n,n−1}
〈+2〉 branch connecting those of Mn−1

〈+2〉 and Mn
〈+2〉.

Although the S3 symmetry of the graph of figure 1 does not explain why the central fibre

geometry is the same for those two transition channels, certainly the [−12]-[14] pair is a

nearest neighbour link in the graph in figure 1 (just like the pairs [na]-[n−1a] are), and this

agreement of the central fibre geometry may be just a trivial consequence of M2
〈+2〉 = M−1

〈+2〉
as complex geometry.

By tuning more complex structure moduli and subsequent resolution, we can also reach

the manifolds M
{n,n−1,··· ,m}
〈+2〉 . Here, the degree-2 K3 surface in the fibre degenerates over

one point (X6 = 0) of the base P1
A to a central fibre S0 = V0 ∪ V1 ∪ · · · ∪ Vn−m. This is

another example of Type II degeneration of degree-2 K3 surface. The dual graph of the

irreducible components, V0, · · · , Vn−m is a chain starting from a node for V0 and ending

with a node for Vn−m. This graph comes directly from an edge (at the height= +1) of the

polytope ∆̃. This is an example of a theorem in [47].

The rational surfaces at the end of the chain remain unchanged, V0 = Bl10(F2), Vn−m =

dP7, while the surface components in the middle, V1, · · · , Vn−m−1 are all identical surfaces

that are ruled over the elliptic curve C ∼= (Vi ∩ Vi+1). They are isomorphic18 to P[OC ⊕L]

for some degree (−2) line bundle L on C (cf Chap.V.2 of [54]). The value (−2) is tied to

the self-intersection of the double curves C = Vi∩Vi+1 (and the degree of dP7). This ruled

surface does not admit an elliptic fibration morphism.19 More information is provided in

the appendices B and D.

4.2.3 The Kähler moduli space of M
{0,−1}
〈+2〉

Let us focus on M
{0,−1}
〈+2〉 and have a closer look at the Kähler moduli space. Recall that the

K3 fibration has a single reducible fibre with irreducible surface components corresponding

to D6,0 and D6,−1 with χ(D6,0) = 14 and χ(D6,−1) = 10. There are 5 different fine, regular,

star triangulations of ∆̃. Accordingly, there are 5 chambers in the Kähler moduli space

of the toric ambient space, see figure 5. Only two of those — phase B and C in figure 5

— result in a toric ambient space with an (obvious) toric fibration morphism to P1
A from

which the K3 fibration follows. At the wall between these two phases, there are surfaces

and curves of the ambient space which collapse, but it seems the Calabi-Yau hypersurface

we are interested in stays perfectly smooth.20 In such a case, we can glue these two cones

together and treat them as a single phase [56].

18Here, we follow the conventions of Chap.II.7 of [54] for P[E ] for some vector bundle E , as opposed to

the convention often used in physics literature.
19See e.g. ref. [55] which is based on Prop.V.2.20 in [54].
20While it is not hard to work out that none of the curves obtained by intersecting a surface in the ambient

space with M
{0,−1}
〈+2〉 collapses at this wall, it is much harder to exclude that there is no collapsing curve of the

ambient space sitting entirely inside M
{0,−1}
〈+2〉 . An example of this phenomenon is given by the 18 (−1) curves

contained in one of the fibre components for the model discussed in section 4.1. While we do not have a

candidate for a similar behaviour in this case, this is of course not enough to rigorously exclude such a thing.
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−D̄6,−1 + D̄4W0

W3

D3D̄4 + 2D̄5

D̄4

W1

W4

B

−2D̄6,−1 + 2D̄5 + 3D̄4

D̄5

W5

W2

A

E

Figure 5. The chamber structure of the Kähler parameters of the toric ambient space of M
{0,−1}
〈+2〉 .

The figure shows a projection preserving the relative location of the rays of the five three-dimensional

cones corresponding to different triangulations. We have labelled the five phases by A to E and

indicated where the various walls mentioned in the text are located.

Let us parametrize the Kähler moduli space by

J = t4,ID4 + tvrt,ID6,−1 + t5,ID5 . (4.14)

The five geometric phases as a whole are delineated by the walls

W0 : t5,I > 0, (4.15)

W1 : (−tvrt,I) > 0 (4.16)

W2 : t4,I + tvrt,I > 0. (4.17)

The wall

W3 : (tvrt,I + t5,I) > 0 (4.18)

separates the phases A and B+C from the phases D and E. The phase B is distinguished21

from the phase A by the wall

W4 : 3t5,I − 2t4,I > 0. (4.19)

Similarly to W5, there seems to be no curve inside M
{0,−1}
〈+2〉 which collapses at W4, so

that we expect this wall to be fictitious and phase A should be combined with the phase

B+C. At the level of the ambient space, however, the triangulation in the phase A is not

compatible with the projection to P 1
A, and hence we cannot obtain K3-fibration morphism

21The phase B is distinguished from the phase C by the wall W5 : 2t4,I + 3tvrt,I > 0.
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M
{2,1}
〈+2〉 → P1

A as restriction of toric fibration morphism of the ambient space. While the

Calabi-Yau M
{0,−1}
〈+2〉 is most likely still K3 fibred after we cross W4, we cannot confidently

speak about the projection to P1
A in phase A.

The walls W1 and W2 are dual to curve classes C1 and C2, where C1 is represented

by one of seven (−1) curves in D̄6,−1 = dP7, and the class C2 by one of ten (−1) curves

in D̄6,0 = Bl10(F2). The volume of D̄6,−1 = dP7 also vanishes at the wall W1, and that of

D̄6,0 = Bl10(F2) at the wall W2. There is no flop available in the compact manifold M
{0,−1}
〈+2〉

acting on those (−1) curves in the central fibre S0 = D̄6,0 + D̄6,−1. There is not even a

limit of Kähler parameters where the volume of those (−1) curves vanish while keeping the

volume of D̄6,−1 and D̄6,0 non-zero. In the large base regime

t5,I � |t4,I |, |tvrt,I |, (4.20)

only the phases B and C can be realized.22 The phase diagram in this context is given by

figure 3 (b).

It is worth noting that the geometric phases D and E are available only outside of the

large base regime (4.20). Given the fact that one can take a detour around the wall of Kähler

cone by turning on B-fields, the heterotic-type IIA duality map should extended (at least

via analytic continuation) to the geometric phases which are not compatible with a K3-

fibration, at least not in an obvious way. Because the large base regime (4.20) corresponds

to the weak coupling regime in heterotic string compactifications, the geometric phases D

and E should be mapped to strongly coupled phase of heterotic string compactifications.

It would be interesting to explore this territory, but this is beyond the scope of this article.

4.2.4 More transitions and degenerate fibres

Besides the singular transitions we have discussed, there are others which connect different

threefolds along the “links of length
√

3” in figure 1. Let us first discuss an example

where we include the lattice points [24] and [−12] as vertices of ∆̃. The resulting threefold

M
{24,−12}
〈+2〉 has Hodge numbers

h1,1(M
{24,−12}
〈+2〉 ) = 3 , h2,1(M

{24,−12}
〈+2〉 ) = 99 , (4.21)

which signals a single reducible fibre with two irreducible components. By construction,

this Calabi-Yau threefold sits in between the threefolds Mn=2
〈+2〉 and Mn=−1

〈+2〉 . As before, these

can be reached by blowing down one of the fibre components, followed by a subsequent

deformation.

The polytope ∆̃ has a two-dimensional face which contains the lattice points ν2, ν3,

ν6
24

, ν6
−12

and ν5. The three different triangulations of this face (figure 6) give rise to

three different torically realized phases of M
{24,−12}
〈+2〉 . The geometries corresponding to the

triangulation on the left and in the middle only differ in how the two components of the

singular fibre are distributed among D6,24 and D6,−12 . These two divisors are rational for

22Here, we exclude A as we cannot rigorously establish the existence of a K3 fibration in this phase.

– 25 –



J
H
E
P
0
8
(
2
0
1
6
)
0
3
4

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

ν

ν

ν

ν

[2 ]

ν

3

5

4

6

6

[−1 ]

4

2 ��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

ν

ν

ν

ν

[2 ]

ν

3

5

4

6

6

[−1 ]

4

2 ��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

ν

ν

ν

ν

[2 ]

ν

3

5

4

6

6

[−1 ]

4

2

Figure 6. Three different triangulations of a face giving rise to different phases of the Calabi-Yau

threefold M
{24,−12}
〈+2〉 .

any triangulation, and they obey

χ(D24) = 13 χ(D−12) = 11 (4.22)

for the triangulation shown on the left of figure 6 and

χ(D24) = 11 χ(D−12) = 13 (4.23)

for the triangulation shown in the middle of figure 6. The two phases are connected by a

flop which brings two (−1) curves from one fibre component to the other. In each of the

two cases, the divisor with χ = 11 is a dP8 realized as a hypersurface of degree 6 in P3
3211,

whereas the divisor with χ = 13 is a blowup of dP8 at two points.

The phase corresponding to the triangulation shown on the right hand side of figure 6

does not respect the K3 fibration we intend to use for the duality between type IIA and

heterotic string theory. Starting from the phase in the middle of figure 6, we can reach

the phase on the right hand side by passing through a wall of the Kähler cone. On the

boundary of the Kähler cone in question, the curve D3 · D4 is collapsed, before another

small resolution takes us to the phase corresponding to the triangulation shown on the

right. This curve is projected surjectively on the base P1
A of the K3 fibration, which means

that we can get there only outside of the large base regime.

The same fibre geometries, including the flops discussed above, are realized by three-

folds connected along other edges of length
√

3 such as M
{−1i,−1j}
〈+2〉 and M

{1i,1j}
〈+2〉 . The 3rd

and 4th rows in table 2 speak about that. However, the different phases cannot all be

seen torically for all of these models. One sometimes has to go beyond toric hypersurfaces

to realize the extended Kähler cone of the Calabi-Yau manifold M , as we have remarked

already in footnote 16.

In parallel to the models M
{n,n−1,··· ,m}
〈+2〉 , we can construct a model with a longer chain

of fibre components by including ν6
[23] as a vertex along with ν6

[24] and ν6
[−12]; the lattice

point ν6
[−12] ceases to be a vertex of ∆̃ then. This leads to a model with a fibre with three

components, its Hodge numbers are

h1,1(M
{24,−12,23}
〈+2〉 ) = 4 , h2,1(M

{24,−12,23}
〈+2〉 ) = 70 . (4.24)

In this case, there are three different triangulations respecting the K3 fibration. They

originate from different triangulations of a two-dimensional phase containing the lattice
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Figure 7. The face of M
{24,−12,23}
〈+2〉 giving rise to different phases. There are 4 different triangula-

tions, three of which are compatible with the fibration structure.

points ν2, ν3, ν5 together with ν6
24

, ν6
−12

and ν6
23

. This face is shown in figure 7. The Euler

characteristics of the three fibre components for different triangulations are

V0 = D6,24 V1 = D6,−12 V2 = D6,23

11 0 13

11 2 11

13 0 11

. (4.25)

As before, the fibre components with Euler characteristic 11 are dP8 surfaces, and those

with 13 are dP8 surfaces blown up in two points. The χ = 0 component in the middle has

a ruling over an elliptic curve C = Vi ∩ Vi+1; it is in the form of P[Oc ⊕ L] for a degree

(−1) line bundle L on C, because (C)2 = +1 in dP8. Starting from the first triangulation,

a flop blows down two (−1) curves in V2, so both V0 and V2 turn into dP8 in the second

triangulation. At the same time, two points in V1 along V1 ∩ V2 are blown up, so the

“ruling” (P1-fibration) in V1 splits into P1 + P1 over two points in C and now χ(V1) = 2.

The phase for the last triangulation is reached by a flop along the other P1 in the P1 + P1

fibre (simultaneously at the two such fibres). Given the symmetry between the [24] and [23]

vertices in figure 1, it is reasonable that these flops exist, so that there is no asymmetry

between V0 = D̄6,24 and V2 = D̄6,23 .

There exists a fourth phase accessible via triangulation for which D5 · D6,−12 6= 0.

so that this phase cannot respect the K3 fibration. Again, this non-fibred phase can be

reached outside of the large base regime.

The general feature of all the examples with degenerate fibres discussed so far is that

they correspond to Type II degenerations in the sense of Kulikov. The degenerate fibre is

always in the form of V0∪V1∪· · ·∪Vµ. There are sometimes multiple geometric phases that

are compatible with a K3-fibration, however, and details of the fibre geometry change from

one phase to another. The monodromy of a generic fibre around the degeneration locus in

the base P1
A, on the other hand, remains invariant under such birational transformations of

the degenerate fibre. The Clemens-Schmid exact sequence extracts such an invariant part

of information from the degenerate fibre (cf the appendix D). Three out of four inequivalent

Type II degenerations of degree-2 K3 surface in (B.20), classified in terms of the lattice
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(W2 ∩ ΛT )/W1, have been realized in the compact models in this section. The one in

section 4.1 is for (W2∩ΛT )/W1 = A17;Z3, the one in sections 4.2.2–4.2.3 is for (E7⊕D10);Z2

(see the appendix D for derivation), while the (E⊕2
8 ⊕A1) case is realized in the examples

in section 4.2.4. It is also possible to construct polytopes for which these different fibre

types coexist within a single threefold.

4.3 Branches with type III or non-Kulikov degenerations

It is also known, in toric language, how to construct a compact K3-fibred Calabi-Yau

threefold that develops a Type III degeneration [47]. The simplest example is to consider

M
{24,14,−12}
〈+2〉 , where we collect three lattice points from figure 1 to form a polytope ∆̃, a toric

ambient space, and a Calabi-Yau hypersurface. A relevant toric graph is a two-dimensional

face Θ̃[2] with ν6
24

, ν6
14

and ν6
−12

as the vertices, but this comes with a multiplicity

`∗(Θ[1])+1 = 2. The dual graph of this degenerate fibre is given by two copies of the triangle

Θ̃[2] glued along the three edges, which topologically is a triangulation of a sphere S2. Since

this threefold should be regarded as a common subset of two different “corridor” branches of

the complex structure moduli for the [24]–[14] link and for the [24]–[−12] link, we should ex-

pect this degeneration to combine the Type II (E7⊕D10);Z2 and the Type II (E⊕2
8 ⊕A1) de-

generations. In light of the stratification structure of the boundary components of the Baily-

Borel compactification of lattice-polarized K3 surfaces (see the appendix B.2.1), it is natural

that a Type III degeneration develops in the common subset of the corridor branches.

It has been proved [47] that M
{··· }
ΛS

→ P1
A has a Type III degeneration when the

collection of lattice points {· · · } ⊂ 2∆̃F∩NF forms a convex hull that is either 2-dimensional

or 3-dimensional. The collection of vertices {24, 14,−12} is a minimal collection to have a

Type III degeneration. The other extreme is to have the collection {· · · } all of 2∆̃F ∩NF .

Despite this variety for construction of a threefold with a Type III degeneration (and the

corresponding stratification of the moduli space) there is less richness in the classification

of Type III degeneration of lattice-polarized K3 surface, primarily due to the indefinite

signature of the lattice (W2 ∩ ΛT )/W0 (see the appendix B).

Degenerations of a lattice polarized K3 surface which correspond to Type I do not

contribute to the story in this article although they are a very common phenomenon. To

be more precise, all the K3-fibred Calabi-Yau threefolds we have discussed in this article

have many degenerations that are not semi-stable, which would become Type I degeneration

after base change of order-2 (see the appendix C). We call such degenerations “would-be

Type I” in this article. In the threefolds Mn
〈+2〉 discussed in section 3.2.1, for example,

there are NL0,0 = 300 would-be Type I degenerations. These NL0,0 = 300 degeneration

points in the base P1
A have also been known as the NL2,1 = 300 Noether-Lefschetz loci that

contribute to the Gromov-Witten invariant dβ=2C2 in (3.11) [26, 57–59]. There is nothing

new in particular.

In the context of string compactification over a compact Calabi-Yau threefold (that

just happens to have a K3-fibration), we are not so happy to replace the threefold by its

base change. Not all the degenerations in πM : M → P1
A are semi-stable, or in Kulikov

model, when we do not allow to “replace” them by their base changes. The would-be Type

I degenerations above is the simplest example (cf. the appendix C). Such degenerations
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still come with the notion of monodromy on the generic fibre H2(St;Z). As one of the

properties of Picard-Lefschetz monodromy of K3 fibration [60], the monodromy matrix T

is quasi-unipotent, in that there exists an integer m so that

(Tm − 1)3 = 0. (4.26)

In the case of semi-stable degenerations, m = 1 and the matrix N defined by

N := ln [Tm] (4.27)

is a nilpotent matrix. We call these degenerations would-be Type I, Type II and Type

III, when N = 0, N2 = 0 (but N 6= 0), and N3 = 0 (but N2 6= 0), respectively, in this

article. They may well be regarded as 1/m-Type I (Type II, Type III, resp.) degenerations,

similarly to fractional D-branes. We are also tempted to call them fractional Type I, Type

II and Type III degenerations for this reason.

Such would-be Type II and would-be Type III degenerations will be constructed

straightforwardly, given an observation in [47]. Recall that we started out in section 3.1

by allowing to use a vertex of the form ν6 = (ν6
F ,+1)T in (3.2) to form a convex polytope

∆̃ ⊂ N ⊗ R. It is the definition of a short top in [47] to restrict the possibility of ν6 to

this form (placed at height +1); this restriction guarantees that all the irreducible compo-

nents in the degenerate fibre appear with multiplicity +1, which is one of the conditions of

semi-stable degeneration [47]. Allowing to involve vertices that are placed at height > 1,

degenerations cease to be semi-stable as fibre components can now appear with multiplic-

ity > 1. In case the degenerate fibre in question has at least two components, they must

be either would-be Type II or would-be Type III. Placing a vertex at height > 1 this is

guaranteed if there is at least a second lattice point ‘above ∆̃F ’ not contained in any face

of dimension < 3. Indeed this happens in all examples known to us, but we do not have a

general proof securing this in general.

4.4 Heterotic string interpretation

We have seen many examples of ΛS-polarized K3-fibred Calabi-Yau threefolds (that are

non-singular) where the fibre K3 surface degenerates and forms multiple irreducible compo-

nents over isolated points in the base P1
A. The adiabatic argument can be used to translate

type IIA compactifications over such threefolds to heterotic string compactifications at

points in P1
A away from such degeneration points. In this section, we discuss the heterotic

dual description of degenerations of K3 fibrations.

There is an example of degenerations of lattice-polarized K3 surface whose heterotic

dual is well-known. That is when we have an E8-elliptic K3 surface in the fibre (ΛS = U),

and the fibre undergoes Type II degeneration with (W2 ∩ ΛT )/W1
∼= E8 ⊕ E8. The local

geometry of M
{nH ,··· ,−nv}
U around a point of degeneration t = 0 ∈ P1

A, discussed in page 20,

corresponds to (nh +nv) NS5-branes of heterotic string theory, wrapped on T 2
89, extending

along R1,3 and localized at t = 0 ∈ P1
Het, the base of T 2

67-fibration of the K3Het when we

see it as an elliptic fibration.

The most direct way to see this duality dictionary is in terms of monodromy around

the degeneration point t = 0. In type IIA language, period integrals of the generic fibre
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undergoes monodromy transformation T = exp[N ], as a point in the base t goes around

t = 0 by t = t∗ × e2πia, a ∈ [0, 1]. The nilpotent matrix N is given by (B.18), with

δ1 = δ2 = 1 and µ = nh + nv:

N = (nh + nv)×

 −1

1

 . (4.28)

The lower two components near the degeneration point are the period integrals over 2-

cycles that are obtained by fibering 1-cycles of the elliptic fibre along the long cylinder axis

in the base P1 of the elliptic K3A.

The fibrewise heterotic-type IIA duality map simply replaces period integrals of a ΛS-

polarized K3 surface in type IIA language by ΛT ⊗ C-valued Narain moduli in heterotic

string language. Being away from the degeneration point, the ΛT ⊗ C-valued period in-

tegrals / Narain moduli are allowed to vary over the base P1
A / P1

Het. Now, the standard

parametrization of Narain moduli in the case of ΛT = U⊕2 ⊕ E⊕2
8 is

0

−τ
1

−ρ̃
−ρ̃τ − (a)2

a


, (4.29)

where the first row corresponds to the rank-2 ΛS = U , the next four rows correspond to

a basis {ê1, ê2, ê
′1, ê

′2} and the last row to E8 ⊕ E8 ⊂ ΛT . τ and ρ̃ roughly correspond

to the complex structure and complexified volume of the T 2
67 fibre of K3Het, and a the

E⊕2
8 -valued Wilson lines along T 2

67. The monodromy matrix N in (4.28) is equivalent to

shift ρ̃ → ρ̃ + (nh + nv) at the end of the monodromy.23 The degeneration of E8-elliptic

K3 surfaces is regarded in heterotic string theory as the presence of a magnetic source for

the three-form field dB:

− 1

(2π)2α′

∫
S1×T 2

67

dB = ∆Re(ρ̃) = (nh + nv), (4.30)

where S1 is a circle around the t = 0 point in P1
Het [61].

We have also seen other examples of Type II degenerations of lattice polarized K3 sur-

faces in this article. All of the Calabi-Yau threefolds M
−ν1

F

〈+2〉 in section 4.1 and M
{n,n−1,··· ,m}
〈+2〉

and M
{24,−12,23}
〈+2〉 in section 4.2 have degree-2 K3 surfaces in the fibre (ΛS = 〈+2〉), but

there are numerous examples of Type II degeneration of K3 surfaces with various choices of

the polarizing lattice ΛS [47]. When the ΛS-polarized K3 surface in the fibre exhibits Type

23ρ̃ behaves as ρ̃(t) '
(

1
2πi

)
ln(t) + const. near the degeneration point.
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II degeneration at a point t = 0 ∈ P1
A, ΛT ⊗ C-valued period integrals have monodromy

around the degeneration point t = 0. Repeating the same argument as above, we find

that such a degeneration in a threefold MΛS for type IIA compactification corresponds to

a soliton in heterotic string theory localized at the t = 0 point in P1
Het. The monodromy

matrix T = exp[N ] now dictates how the heterotic string Narain moduli in the T 4-fibre

over P1
Het are twisted. Let us parametrize the ΛT ⊗ C part of the Narain moduli as

−τ/δ1

1/δ2

a

−ρ̃
−ρ̃τ − [(τ, a)]


(4.31)

in the basis (B.14). The contribution [(τ, a)] — a quadratic in τ and a — needs to be

determined by the unspecified part of the intersection form in (B.16), but does not depend

on ρ̃. The nilpotent matrix N in (B.18) implies that only the ρ̃ parameter of the Narain

moduli in the basis (B.14) gets shifted by

ρ̃ −→ ρ̃+ µ, (4.32)

and all other Narain moduli parameters remain intact around the soliton localized at

t = 0 ∈ P1
Het. Type II degenerations with different δ1, δ2 and (W2 ∩ΛT )/W1 correspond to

a shift (around a point in P1
Het) of different Narain moduli. The shift depends on µ and the

δi in the same way for each case. The value of µ in particular (the number of double curves

in a Type II degeneration) is regarded as the number of coincident solitons of the same type.

What is the Narain modulus ρ̃ that shifts in terms of the weakly coupled heterotic

E8×E8 string theory for each one of those solitons? Let us take the ΛS = 〈+2〉 case as an

example, and provide an explicit answer to this question.

In the ΛS = 〈+2〉 case, we can always take δ1 = δ2 = 1 (see [62], or the appendix B.2),

and the filtration structure {0} ⊂ W1 ⊂ (W2 ∩ ΛT ) ⊂ ΛT in (B.15) can be transformed

into a direct sum,

ΛT = U ⊕ U ⊕ [(W2 ∩ ΛT )/W1], (4.33)

where

W1 = SpanZ{ê
′1, ê

′2}, W ′1 = SpanZ{ê1, ê2}, W1 ⊕W ′1 = U ⊕ U, (4.34)

(ê
′i, ê

′j) = (êi, êj) = 0, (ê
′i, êj) = δij . (4.35)

At least as a question in mathematics, we can easily find how the structure (4.33) fits

into ΛT given by (2.6) in the case of (W2 ∩ ΛT )/W1 = A1 ⊕ E8 ⊕ E8. One just needs

to identify (4.33) with (2.6). For three other choices of (W2 ∩ ΛT )/W1 in (B.20), it is

useful to note that all the four signature (1, 18) lattices U ⊕ [W2 ∩ ΛT )/W1] are mutually

isometric, though the four (0, 17) lattices [(W2 ∩ ΛT )/W1] are not. The Coxeter diagram

of the common (1, 18) lattice can be used to describe how the three other [(W2 ∩ΛT )/W1]
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(a) (b)

Figure 8. The Coxeter Diagram of the signature (1, 18) lattice for degree-2 K3 surfaces (see

text) [62]. This graph contains three nodes that are absent in figure 2 (b), while one point — the

top vertex — of figure 2 (b) has been removed here. Links of mutual intersection number +6 in the

Coxeter diagram of this lattice are omitted in this figure. Affine Dynkin diagrams of A1 ⊕E8 ⊕E8

and E7 ⊕D10 are shown in red in (a) and (b), respectively, as a subgraph. These figures are taken

from [62], the graphs of embeddings of A17 and D16 ⊕A1 are also found in [62].

are embedded into this (1, 18) lattice, and hence into ΛT in (2.6). See [62] and references

therein for more information. Figure 8 contains all the information we need in this article.

Now let us turn to the physics question. To get started, we fix the S3 symmetry

action. We have seen in section 3.2.3 that the heterotic ST -model is dual to type IIA

compactification on M24

〈+2〉, where the weak coupling E8 × E8 in heterotic string theory

corresponds to transcendental two cycles localized near X4 = X2 = 0 and X4 = X3 = 0.

In figure 8 (a), we regard the upper right and lower right corners as those two locations in

P2, and therefore, the upper half triangle and the lower half triangle can be regarded as

the weak coupling E8 × E8 in heterotic string.

Now, at the transition from M24

〈+2〉 to M
{24,14}
〈+2〉 , the Ẽ7 singularity appears at X2 =

X3 = 0, as we saw in (4.13). This point corresponds to the left corner in figure 8 (a).

At the transition from M
{24,14}
〈+2〉 to M14

〈+2〉, a curve of A1 singularity forms along X4 = 0,

parametrized by [X2 : X3] ∈ P1; this curve corresponds to the right edge in figure 8 (a).

Remembering that the E7 algebra is contained in V1 = D̄6,14 of M
{24,14}
〈+2〉 , which collapses

at the transition to M24

〈+2〉, and that the D10 algebra is in V0 = D̄6,24 , which collapses at

the transition to M14

〈+2〉, we conclude that the E7⊕D10 lattice in the Type II degeneration

in M
{24,14}
〈+2〉 is embedded into the U ⊕ E⊕2

8 ⊕A1 of the weak coupling heterotic string in a

way that can be seen by superimposing figure 8 (a) and (b). In particular, the E7 current

algebra associated with the E7-string at the M2
〈+2〉–M

{2,1}
〈+2〉 transition (due to collapsed dP7)

is not from a subgroup of any one of the two weakly coupled E8’s, but from somewhere

in the middle of E8 × E8 (cf [63]). The (W2 ∩ ΛT )/W1
∼= E7 ⊕ D10;Z2 soliton squeezes

instanton degrees of freedom in the ST -model from both of the two weakly coupled E8’s,

and the remaining E8 factors do not have a free-choice in the instanton moduli anymore,

as we saw in section 3.2.3. The soliton returns those degrees of freedom at the M
{24,14}
〈+2〉 –
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M14

〈+2〉 transition, but in a way that the free instanton interpretation is never restored in

the Mn
〈+2〉 branches with n = 1, 0,−1 (at least not in an obvious way for n = −1).

Similarly, in the (W2 ∩ ΛT )/W1 = E⊕2
8 ⊕ A1 soliton that appears in the heterotic

duals of M
{24,−12}
〈+2〉 or M

{24,−12,23}
〈+2〉 type IIA compactifications, the two E8 algebras in the

degenerate fibre correspond to the lower left half triangle and upper right half triangle in

figure 8 (a). Imagine figure 8 (a) rotated by 2π/3 in a counter-clockwise direction. This

soliton extracts the instanton degrees of freedom from a skewed combination of the two E8’s

(not diagonally as in the (E7⊕D10);Z2 soliton), and releases them somewhere else. Table 1

summarizes the consequence of this chain of transitions. The E8-string that emerges at the

transition points is not associated simply with any one of the two weakly coupled E8’s.

By now, the question “what is the ρ̃ modulus that shifts for these solitons” is not more

than a technical question that is not particularly illuminating. So, we are not presenting

technical details here. Roughly speaking, the U factor of U ⊕ (W2∩ΛT )/W1
∼= U ⊕ (E⊕2

8 ⊕
A1) picks up the nodes in the Coxeter diagram that have not been used for (W2∩ΛT )/W1.

A similar reasoning can be applied to Type III degenerations of K3 surfaces. When a

type IIA compactification on a K3-fibred Calabi-Yau threefold M has a Type III degenerate

fibre at one point t = 0 ∈ P1
A in the base, the adiabatic argument (fibre-wise duality) can be

applied to any points away from the degeneration point. The holomorphic dependence of

the period integrals of the K3 fibre in type IIA over P1
A is translated into the holomorphic

dependence of the Narain moduli of the T 4 fibre in heterotic string theory over P1
Het.

Any monodromy action on the generic fibre K3 surface T : H2(St.A;Z) → H2(St.A;Z) is

directly translated into that on the Narain lattice. Parametrizing the Narain moduli /

period integrals on the ΛT ⊂ II4,20 part as(
1/δ, X, −1

2

(
a

δ2
+ 2

B ·X
δ

+XT · C ·X
))T

(4.36)

in the basis (B.22), we find that the monodromy due to T = exp[µN III
0 (δ, u, v, x)] in (B.26)

amounts to

X → X + µv. (4.37)

The heterotic dual of a Type III degeneration is to involve a soliton that is a magnetic

source of the moduli field X and µ is interpreted as the number of soliton of this type.

If we are to ignore the distinction between Λ̃S and ΛT within II4,20 in choosing the

parametrization of the Narain moduli, then we can always use the monodromy matrix

T = exp[µN III
0 (t0)] in (B.12) for (the heterotic dual of) a Type III degeneration. Using a

parametrization (1, ρ1, ρ2,−ρ1ρ2)T for the Narain moduli in the basis adopted in (B.12),

the soliton in question is regarded as a magnetic source introducing a twist

ρ1 → ρ1 + µ, ρ2 → ρ2 + µt0/2. (4.38)

Degenerations of K3 fibration in type IIA compactification that are not in the Kulikov

model are also regarded as solitons in heterotic string, and are magnetic sources of the

Narain moduli fields precisely for the same reason as in the cases of Type II and Type III

degenerations. A case-by-case study is necessary for the explicit form of the monodromy
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matrix in an integral basis for the would-be Type II and would-be Type III degenerations.

Fractional powers of exp[N II
0 ] and exp[N III

0 ] need to be taken in an integral basis.

5 6D perspectives

Degenerations in the K3 fibre of type IIA compactifications and their heterotic duals are

both regarded as solitons, localized in codimension two in the base P1. In this section,

we attempt at recapturing those solitons in terms of 6D (1,1) supergravity by taking the

decompactification limit of the base P1. This approach provides a more bottom-up (more

general, less constructive) perspective, and makes it possible to extract the intrinsic nature

of those solitons unaffected by anything associated with the compactness of the base P1.

This section is therefore meant to provide a complementary perspective to the study in the

previous section.

5.1 6D (1,1) supergravity and half-BPS 3-branes

Both T 4 compactification of the heterotic string and K3 compactification of the type IIA

string leads to a 6D effective theory at low energy with (1, 1) supersymmetry. The massless

field contents of the effective theory in supergravity consists of one supergravity multiplet

and n = 20 vector multiplets.

The 32 bosonic degrees of freedom in the supergravity multiplet are represented by

the 6D metric (9 DOF), Bµν (3+3 DOF), 1 scalar24 σ and four 6D vectors (16 DOF). The

fermionic degrees of freedom consist of the gravitinos ψ
(+)i
µ , ψ

(−)
µ i′ as well as the dilatinos

χ
(+)
i′ and χ(−)i. All of the ψ

(+)i
µ (i = 1, 2, µ = 0, · · · , 5) and χ

(+)
i′ (i = 1, 2) are in the spinor

representation of SO(1, 5) with the Γ7 = +1 eigenvalue, while those with (−) are in the

spinor representation with Γ7 = −1 eigenvalue. The spinors with i = 1, 2 (or with i′ = 1, 2)

combined form a symplectic-Majorana fermion in 6D. One vector multiplet consists of

one 6D vector, four scalars and gauginos λ
(+)
i and λ

(−)
i . The gauginos are subject to the

symplectic Majorana condition.

The supersymmetry transformation parameters of 6D (1, 1) theories are ε
(+)
i with i =

1, 2 and ε(−)i′ , i′ = 1, 2, subject to the symplectic Majorana condition. In 10D type IIA

language, two supersymmetry transformation parameters of 10D (1, 1) supergravity split

under SO(1, 5)× SU(2)× SU(2) as

Γ11ε
(+) = ε(+) → Spin(+) ⊗ 2⊗ 1 + Spin(−) ⊗ 1⊗ 〈2〉 , (5.1)

Γ11ε
(−) = −ε(−) → Spin(−) ⊗ 2⊗ 1 + Spin(+) ⊗ 1⊗ 〈2〉 , (5.2)

where the last SU(2) factor corresponds to the holonomy group of a K3 surface. The

SUSY transformation parameters ε
(+)
i are from Spin(+)⊗2 in the first line, and ε(−)i′ from

Spin(−) ⊗ 2 in the second line. Although it appears in 10D IIA sugra language that both

ε
(+)
i and ε(−)i′ are doublets of a common SU(2) symmetry group, both are doublets of two

separate SU(2) current algebras, one from the left movers and the other one from the right

movers.

24In 10D type IIA language, e2σ = e−2φ10;AJA;str
K3 .
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There are 4×n scalar fields, apart from σ, and they are known to parametrize a coset

space

M ′ := SO(4, n)/ SO(4)× SO(n) (5.3)

(modulo quotient). Let φx (x = 1, · · · , 4n) be a set of local coordinates in M ′.

faγ = dφxfaγx (φ) (5.4)

is a vielbein on M ′, from which a metric gxy = faγx faγy is obtained. This metric is used in

the 6D (1, 1) sugra action as the non-linear sigma model of φx’s.

Here is a little more about the geometry of the coset space M ′. First, let CIJ be the

intersection form of II4,20. Each point in M ′ corresponds to some choice of {h γI }γ=1,2,3,4

satisfying

hγIC
IJhδJ = δγδ, hγIC

IJhbJ = 0, haIC
IJhbJ = −δab, (5.5)

modulo SO(4) action hγI → (h′) γI = h δI (HSO 4) γδ for some (HSO 4) γδ ∈ SO(4). For such a

choice of {h γI }γ=1,2,3,4, one can uniquely find one choice of {ha ∈ II4,20⊗R | a = 1, · · · , 20}
modulo the SO(20) action that satisfies the orthonormality conditions above.

An SO(4)× SO(20) connection on M ′ is defined by

Aγδ = hγIC
IJ(dhδJ), Aab = −haICIJ(dhbJ). (5.6)

For the vielbein on M ′ introduced earlier, we used the following:

faγ = −
√

2haIC
IJ(dhγJ) =

√
2(dhaI )C

IJhγJ . (5.7)

The dictionary between the SO(4) vector indices γ, δ and SU(2) × SU(2)′ doublet indices

i, i′ is given by

(vect) i
′
i :=

1√
2

(vect)γ(σγ) i
′
i , σγ = (1, i~τ), εijεjk = δik, ε12 = −ε1′2′ . (5.8)

Therefore, the orthonormality condition becomes

hi
′
I iC

IJhj
′

J j = εijε
i′j′ . (5.9)

h2′
2 = (h1′

1 )cc, (h1′
1 , h

1′
1 ) = 0, (h1′

1 , h
2′
2 ) = 1, (5.10)

h1′
2 = −(h2′

1 )cc, (h2′
1 , h

2′
1 ) = 0, (h2′

1 ,−h1′
2 ) = 1. (5.11)

Using these geometric data, the supergravity transformation law is written down in

eq. (3.2) of [64]. The SUSY variation of fermionic fields is

δψ
(+)
µ i = Dµε(+)

i + · · · , (5.12)

δψ(−)i′
µ = Dµε(−)i′ + · · · , (5.13)

δχ
(−)
i =

1

2
Γµ(∂µσ)ε

(+)
i + · · · , (5.14)

δχ(+)i′ =
1

2
Γµ(∂µσ)ε(−)i′ + · · · , (5.15)

δλ
(+)a
i =

1

2
Γµfai

′
x i (∂µφ

x)ε
(−)
i′ + · · · , (5.16)

δλ(−)ai′ =
1

2
Γµfai

′
x i (∂µφ

x)ε(+)i + · · · , (5.17)
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where ellipsis stands for terms that involve multiple fermions, or Hµνρ or F Iµν .

We consider codimensionR = 2 defects of this 6D (1, 1) supergravity that preserves

SO(1, 3) Lorentz symmetry and half of the SUSY charges. In particular, we consider field

configurations where the 6D metric and scalars have a non-trivial configuration in (x, y) ∈
R2. Under the unbroken SO(1, 3) Lorentz symmetry, the supersymmetry transformation

parameters ε
(+)
i and ε(−)i′ in 6D decompose as

Spin(+) ⊗ 2→ SpinL⊗ ↑ ⊗ [2 = {(↑↑)i=1, (↓↓)i=2}] + · · · , (5.18)

Spin(−) ⊗ 2→ SpinL⊗ ↓ ⊗
[
2 =

{
(↑↑)i′=1, (↓↓)i′=2

}]
+ · · · , (5.19)

where SpinL is a left-handed spinor of SO(1, 3), and + · · · is the other term involving a

right-handed spinor SpinR of SO(1, 3). We are interested in defects where SpinL⊗ ↑ ⊗(↑↑
)i=1 in the first line and SpinL⊗ ↓ ⊗(↓↓)i′=2 in the second line remain as transformation

parameters of the unbroken supersymmetry.

Let us first take

ds2 = (dx2 + dy2)e2ϕ(x,y) = e2ϕ(dz ⊗ dz̄ + dz̄ ⊗ dz)/2 (5.20)

to be the metric configuration in the directions R2 transverse to the defect.

The BPS conditions from dilatino variations are

δχ
(−)
i=1 = e−ϕ(∂̄z̄σ)SpinL⊗ ↓, δχ

(−)
i=2 = e−ϕ(∂zσ)SpinR⊗ ↑, (5.21)

δχ(+)i′=2 = e−ϕ(∂zσ)SpinL⊗ ↑, δχ(+)i′=1 = e−ϕ(∂̄z̄σ)SpinR⊗ ↓ . (5.22)

For all of these to vanish, we need (∂zσ) = (∂̄z̄σ) = 0. That is, the value of σ must remain

constant.

The BPS conditions from gaugino variations are

δλ
(+)a
i = e−ϕfa i

′=1
x i (∂zφ

x)SpinL⊗ ↑ +e−ϕfa i
′=2

x i (∂̄z̄φ
x)SpinR⊗ ↓, (5.23)

δλ(−)ai′ = e−ϕfa i
′

x i=1(∂̄z̄φ
x)SpinL⊗ ↓ +e−ϕfa i

′
x i=2(∂zφ

x)SpinR⊗ ↑ . (5.24)

From the conditions in the first line, we find that

(∂zφ
x)fai

′=1
x i = (∂̄z̄φ

x)fa i
′=2

x i = 0, i = 1, 2, (5.25)

while the conditions on the second line yield

(∂̄z̄φ
x)fai

′
x i=1 = (∂zφ

x)fa i
′

x i=2 = 0, i′ = 1, 2. (5.26)

Now, the 1-forms fa i
′=1

i=1 and fa i
′=2

i=2 on M ′, pulled back by the scalar φx(z, z̄) field

configuration of a half-BPS configuration, satisfy

(dφx)fa i
′=1

x i=1 = (dφx)fa i
′=2

x i=2 = 0. (5.27)

These conditions are satisfied, when the values of (hI)
i′=1
i=1 = [(hI)

i′=2
i=2 ]cc remain constant

(and equal to their asymptotic values) in the transverse (x, y) ∈ R2 plane. The authors are
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not sure if h1′
1 = (h2′

2 )cc need to be constant for all possible half-BPS SO(1, 3)-preserving

solitons, but we focus on solitons where h1′
1 is constant here.

Let ΛT ⊂ II4,20 be the lattice orthogonal to bot the constant values of hi
′=1
i=1 and hi

′=2
i=2 ,

and Λ̃S ⊂ II4,20 be the orthogonal complement of ΛT . Then hi
′=1
i=2 = −[hi

′=2
i=1 ]cc takes its

value in ΛT ⊗ C. Moreover, the orthonormality condition (5.11) implies that the space of

h2′
1 ’s is an S1-fibration over the period domain of ΛT ,

D(ΛT ) := P
[{
ω ∈ ΛT ⊗ C | ω2 = 0, (ω, ω) > 0

}]
. (5.28)

The S1 fibre corresponds to a complex phase multiplication for h2′
1 (SO(2) rotation on

the 2-plane), which does not change a point in M ′. Thus, we can use a natural set of

complex coordinates of D(ΛT ) for the subspace of M ′ where the soliton has a non-trivial

field configuration. The BPS condition

(∂̄z̄φ
x)fa i

′=2
x i=1 = 0 (5.29)

means that the map φ : R2 = {z = (x+ iy)} = C→ D(ΛT ) is holomorphic.

We are interested in the 6D (1, 1) supergravity where the target space M ′ is replaced

by Isom(II4,20)\M ′n=20, because Isom(II4,20) is the modular group of both heterotic/T 4 and

type IIA/K3 compactifications [12–14]. Since the field configuration φ does not have to be

well-defined at the centre of the soliton, the holomorphic map φ : [C\{z = 0}] → D(ΛT )

may have a branch cut emanating from the origin {z = 0}, and the field configuration may

be identified along the branch cut by some element T ∈ Isom∗(ΛT ).

5.2 Recap and speculations

In the 6D (1, 1) supergravity with M ′ = SO(4, 20)/ SO(4) × SO(20), strings are classified

by their electric and magnetic charges under Bµν , while particles / 2-branes are classified

by their electric / magnetic charges under the 4 + 20 vector fields. Counting of BPS states

has been carried out for those objects as a check of heterotic-type IIA duality. 3-branes

(real-codimension-2 defects) are magnetic source of scalar fields.

A half-BPS 3-brane comes with a choice of a pair of primitive sublattices Λ̃S and ΛT
of II4,20 that are mutually orthogonal in II4,20. [(h)i

′=1
i=1 ] (modulo complex phase) takes

its value in D(Λ̃S) and remains constant over the real 2-dimensional space transverse to

the 3-brane.25 On the other hand, [(h)i
′=2
i=1 ] (modulo complex phase) takes its value in26

Isom∗(ΛT )\D(ΛT ), and is allowed to vary over the transverse space C holomorphically.27

The 6D metric configuration in the real 2-dimensional transverse space R2 is assumed to be

Kähler, and a holomorphic coordinate is introduced in R2 to turn it into C. The holomor-

phic configuration of [hi
′=2
i=1 ] may be twisted around the defect (3-brane) by T ∈ Isom∗(ΛT ).

Such 3-branes are therefore classified by a choice of lattices, Isom(II4,20)\(Λ̃S ,ΛT ), and con-

jugacy classes of Isom∗(ΛT ) are to be used for the twist T around the defect. Note that

we have not yet assumed that the transverse space is compact.

25We did not prove that this is necessary for (5.27), but certainly it is sufficient for (5.27).
26See appendix B.2 for more details.
27In this class of solitons Λ̃S remains constant and is not swapped with ΛT under monodromy. This

means that the monodromy twist under mirror symmetry is not included.
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The type IIA string compactified on an family of ΛS-polarized K3 surfaces provides

an example of such half-BPS 3-branes whenever the fibre K3 surface has a Type II, Type

III, would-be Type II or would-be Type III degeneration. The classification of such de-

generations, reviewed in the appendix B.2, is regarded as a study of a subset of possible

twists in Inn[Isom(ΛT )]\Isom∗(ΛT ). At least for the choices of T that correspond to those

degenerations we know that there is holomorphic solutions to hi
′=2
i=1 .

It may turn out that the BPS 3-branes of the 6D (1, 1) theory from degenerations of

lattice polarized K3 surface is only a small subset of all possible BPS 3-branes characterized

above. We leave it as an open problem for which T ∈ Isom∗(ΛT ) a holomorphic solution

to hi
′=2
i=1 exists.28 It is not obvious to us purely from the perspective of solitons in 6D (1, 1)

supergravity whether the monodromy matrix T should have the quasi-unipotent property

or not. We also note, from the 6D soliton perspective, that Λ̃S = U ⊕ΛS is not necessarily

required. For more general choices of Λ̃S ⊂ II4,20, we cannot expect to obtain such a 3-

brane in a family of K3 surface in the geometric phase. Whether such a 3-brane solution

to supergravity has a UV completion is yet another open question.

5.3 Analogy and difference to 7-branes in F-theory

The 3-branes in the 6D (1, 1) supergravity share many aspects with 7-branes in Type IIB

string/F-theory. Both are magnetic sources of scalar fields, a branch cut emanates from the

centre of the soliton, and scalar fields are identified by an element of the modular group,

Isom(II4,20) or SL(2;Z), along the branch cut.

As an isolated object, (p, q) 7-branes are all alike, in that a (p, q) 7-brane can be

taken into a (1, 0) 7-brane by SL(2;Z) transformation in Type IIB string theory (and if the

asymptotic value of Type IIB axio-dilaton is not referred to). It is associated with a shift of

a scalar field by an integer unit around the defect. 3-branes in 6D associated with a Type

II degeneration are also all alike (if the asymptotic value of the scalar fields φ ∈M ′ is not

referred to), in that one and the same matrix (B.8) is used in describing the monodromy.

The crucial difference is that the 3-branes in 6D have a lot more variety. 3-branes

associated with a Type III degeneration (monodromy T = exp[N III
0 (t0)]) are labelled by

an invariant t0, and are not equivalent to the 3-branes associated with a Type II degener-

ation. Solitons associated with a would-be Type II or would-be Type III degeneration also

constitute a collection of solitons that are inequivalent from one another.

Furthermore, when the information of the asymptotic value of the scalar fields φ ∈M ′
is brought back into the discussion, there is a notion of (Λ̃S ,ΛT ) even for a 3-brane isolated

in C = R2. If a pair of 3-branes share the same (Λ̃S ,ΛT ), they can form a BPS configuration

together. If they do not, they cannot be BPS together. Such a notion is absent in the case

of (p, q) 7-branes in F-theory.

Ramond-Ramond 7-brane charge cancellation condition in a Type IIB orientifold is

replaced by a condition in F-theory that∏
i

Ti = id., (5.30)

28The half-BPS condition from (5.12), (5.13) should also be implemented, although we did not study

those conditions explicitly in this article.
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where Ti is the SL(2;Z)-valued Picard-Lefschetz monodromy matrix associated with a

discriminant point zi ∈ P1
F of the F-theory base. This condition is not additive anymore.

Similarly, the heterotic string Bianchi identity for the B-field

δ4
NS5 −

1

4
T−1
R trR

[(
F

2π

)2
]

=
1

4
tr

SO vect.

[(
R

2π

)2
]

(5.31)

is the condition to be imposed in the supergravity regime (the gauge field F is Hermitian,

here). This condition yields non-trivial constraints for any choice of compact four-cycle.

Relevant to the present discussion is the four-cycle K3Het, which is a T 2
67-fibration over P1

Het

(here, we use ΛS = U , so that we are in the supergravity regime in heterotic language).

This condition is replaced by (5.30), but now with Ti ∈ Isom(ΛT ) ⊂ Isom(II4,20).

The Type IIB additive condition is reproduced from (5.30) in F-theory when we con-

sider the orientifold limit. Two 7-branes come so close to one another, that we can collec-

tively treat them as an O7-plane. The monodromy
∏
i Ti around the two 7-branes (O7-plane

as a whole) commutes with the monodromy matrix for a D7-brane. The multiplicative con-

dition (5.30) for 3-branes in 6D (1, 1) supergravity also becomes additive in the same way.

To see this, note first that monodromy from NS5-branes is given by T = exp[N II
0 ] acting

non-trivially on (U ⊕ U) ⊂ U⊕2 ⊕ E⊕2
8 = ΛT . Secondly, the instanton number is the

same as the zero of g±1 in (3.17), which is a section of O(η±). The monodromy locus was

worked out in [43]. Each one of the zeros of g±1 splits into multiple monodromy points,

and the splitting remains small when we take εη and εK in section 3.2.2 small, just like in

the orientifold limit of F-theory. The monodromy
∏
i Ti from a set of those monodromy

points associated with a given zero of g±1 is block diagonal in E8 ⊕ (U ⊕ U) ⊕ E8 = ΛT ;

it is a Weyl reflection on one of the two E8’s, while it is trivial on the other E8, and it

acts as exp[−N II
0 ] on (U ⊕ U), according to footnote 11 of [43].29 The monodromy

∏
i Ti

from the NS5-branes and instantons combined — the left-hand side of (5.31) — therefore

splits into the two E8’s and (U ⊕ U). The monodromy in the E8 ⊕ E8 takes values in the

Weyl group, and will probably cancel after all of the would-be Type I monodromies (cf

the appendix C) are taken into account. The monodromy on the (U ⊕ U) component has

become additive,
∏
i Ti = exp[(#(NS5)−#(inst.))N II

0 ]. We believe that there is a mistake

somewhere and the correct result is
∏
i Ti = exp[(#(NS5) + #(inst.))N II

0 ] = exp[24N II
0 ],

since there can be trade-off between instantons and the NS5-branes [65], but we have not

managed to identify an error. This U ⊕ U part of the monodromy will presumably be

cancelled against contributions from other would-be Type I monodromy points that are

attributed to the contribution on the right-hand side of (5.31).
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A K3-fibred Calabi-Yau threefolds as toric hypersurfaces

Famously, Calabi-Yau threefolds can be constructed as hypersurfaces in toric varieties by

starting from a pair of reflexive polytopes ∆, ∆̃ [67] (see e.g. [68] for a quick review). Such

Calabi-Yau threefolds may admit a fibration by K3 surfaces which can be spotted already at

the level of the polytopes [5, 48, 69–71]. As most of this material is in principle well-known,

we restrict ourselves to highlight those facts which are relevant to our discussion.

Assume we are given a four-dimensional reflexive polytope ∆̃ ⊂ (N ⊗R) such that, for

a three-dimensional hyperplane NF ⊗ R passing through the origin, ∆̃F = ∆̃ ∩ (NF ⊗ R)

is again a reflexive lattice polytope. Note that this means in particular that the vertices

of ∆̃ ∩ (NF ⊗ R) must be lattice points. A Calabi-Yau hypersurface M constructed from

∆, ∆̃ then admits a fibration by K3 surfaces S over a base P1. Let f be a unit vector

in N∨ (the dual lattice of N) orthogonal to NF ⊂ N . More precisely, we have to use a

triangulation (fan Σ) of ∆̃ such that the fibration morphism is realized as a toric morphism

of the ambient space, i.e. there is a projecting to the fan of P1 such that every cone in Σ

is mapped to a unique cone of the fan of P1. For the examples discussed in this work, this

is easy to verify, section 4.2 contains several interesting examples.

With a triangulation admitting a fibration morphism, we may then describe the coor-

dinates of the base P1 by

[z0 : z1] =

 ∏
νi|〈f,νi〉>0

X
〈f,νi〉
i :

∏
νi|〈f,νi〉<0

X
−〈f,νi〉
i

 (A.1)

One can think of all but one of the coordinates νi for which 〈f, νi〉 > 0 (and similarly for

< 0) as corresponding to the exceptional divisors of blow ups of singular fibres.

A.1 Geometry of generic fibres

Fixing the coordinates at a generic point of the base P1, we find a generic fibre St described

as an algebraic hypersurface. The defining polynomial is found from the defining polyno-

mial of M upon fixing all Xi for which 〈νi, f〉 6= 0 and this hypersurface is embedded in

an ambient toric variety with rays νiF on ∆̃F . Equivalent to ∆̃F = ∆̃ ∩ (NF ⊗ R) being a

lattice polytope is the existence of a projection P : ∆→ ∆F induced by translations along

f such that ∆F is the polar dual to ∆̃F [69]. This means that a generic fibre St is described

in the usual way by a pair of reflexive polytopes ∆F , ∆̃F . In particular, the Picard lattice

of a generic fibre is the same as the Picard lattice of a generic toric K3 hypersurface.
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A.2 Singular fibres

Over specific points in the base P1
A, the K3 fibre may become reducible. Individual com-

ponents of such reducible fibres contribute to h1,1, which can also be computed combi-

natorially. We hence expect to be able to describe in terms of combinatorial data when

reducible fibres occur. From the point of view of ∆̃, these come in two types, which we

discuss now. The first type can already be seen from (A.1): whenever ∆̃ contains30 more

than one lattice point with 〈f, ν〉 > 0 (more than one lattice point with < 0), there is a

reducible fibre over z0 = 0 (z1 = 0). In particular, we may write the total fibre class

[St] =
∑

νi|〈f,νi〉>0

〈f, νi〉[Di] = −
∑

νi|〈f,νi〉<0

〈f, νi〉[Di] (A.2)

Note that some of these fibre components will contribute with a multiplicity greater than

one. This means in particular that fibres for which this happens are not reduced. A closely

related discussion is given in [47].

The second type of singular fibres stems from interior points of facets of ∆̃F which do

not lie in facets of ∆̃. Denoting such a facet of ∆̃F by Θ̃
[2]
F , this means that Θ̃

[2]
F is also a

face of ∆̃. As ∆̃ is reflexive, there is hence a dual one-dimensional face Θ[1] on ∆ and each

interior point of Θ̃[2] gives rise to a divisor that has (`∗(Θ[1]) + 1) irreducible components.

Those (`∗ + 1) irreducible pieces, however, do not form a single reducible fibre of the K3

fibration but are distributed among several reducible fibres separated in the base P1, as

we now explain. First of all, calling the dual vertex (under polar duality of ∆F , ∆̃F ) of

Θ̃
[2]
F by mF , the dual one-dimensional face Θ[1] of Θ̃

[2]
F is contained in the line mF + l · f

(l ∈ R). For any point ν interior to a two-dimensional face Θ̃
[2]
F , the defining equation of

the associated divisor is hence of the form ∏
νi∈∆̃F

(XF ;i)
〈mF ,νi〉+1

P (z0, z1) = 0 (A.3)

It follows from the theory of [52] that P (z0, z1) has `∗(Θ[1]) + 1 roots pi, so that Dν has

`∗(Θ[1])+1 components. As is apparent from the above equation, these components are sit-

ting over `∗(Θ[1])+1 different locations in the base P1. Note that the same monomials (the

ones related to Θ[1]) will appear in the defining equation of each of the divisors correspond-

ing to interior points of the face Θ̃
[2]
F , so that the same P (z0, z1) will appear for each of them.

We can turn the argument around and investigate the geometry of the K3 fibre over

the points pi in the base. As we have learned above, the defining equation of M must have

the form

R(Xi)
∏

ν⊃Θ̃
[2]
F

Xν +Q(Xi)P (z0, z1) = 0 (A.4)

30As usual, points interior to facets do not count as they do not give rise to divisors on a Calabi-Yau

hypersurface.

– 41 –



J
H
E
P
0
8
(
2
0
1
6
)
0
3
4

where only ν interior to Θ̃
[2]
F are considered. Hence the singular fibre over any of the pi has

the components

[St] =
∑
ν⊃Θ̃

[2]
F

Dpi
ν + [R]pi (A.5)

We cannot exclude that R is reducible and gives an non-trivial multiplicity to some of the

Dν . Examples of this second type of singular fibre are found in [48].

A.3 Hodge numbers of divisors of a Calabi-Yau threefold

Let M be a Calabi-Yau n-fold obtained as a hypersurface of a toric (n + 1)-dimensional

ambient space, ν a lattice point ∆̃∩N , and Dν the corresponding divisor of M . The Hodge

numbers of the (n − 1)-fold Dν can be derived using the methods of [52]. Formulas for

h1,1(Dν) are found in [9], but they are applicable only to cases with n ≥ 4. While the same

reasoning can be applied to the n = 3 case, the formula looks different. This appendix

provides a summary of the result for n = 3.

Let Θ̃[k], k = 0, 1, 2 be the face containing ν in its relative interior (a vertex corresponds

to a zero-dimensional face and our convention is to consider it as its own relative interior)

and let us denote the dual face of Θ̃[k] by Θ[3−k]. We can then summarize the Hodge

numbers h0,i(Dν) by [52]

k h0,0 h1,0 h2,0

0 1 0 `∗(Θ[3])

1 1 `∗(Θ[2]) 0

2 `∗(Θ[1]) 0 0

, (A.6)

where `∗(Θ[l]) counts points in the relative interior of the face Θ[l]. Note that these are

already determined without having to specify the details of the fan of the ambient space

(triangulation).

Since divisors of a threefold are surfaces, we only need to determine h1,1(Dν) now. It

depends on the triangulation data of ∆̃ and can be described as

h1,1(Dν) =
∑
Θ̃[1]

`1ν(Θ̃[1]) +
∑

(Θ̃[2],Θ[1])

`1ν(Θ̃[2])`∗(Θ[1])− 3

+ δk,0

`∗(2Θ[3−k])− 4`∗(Θ[3−k])−
∑

Θ[2−k]⊃Θ[3−k]

`∗(Θ[2−k])

 . (A.7)

Here, `1ν(Θ̃[l]) counts the number of ν-containing one-simplices in the relative interior of a

face Θ̃[l]. The last line only contributes if ν is a vertex.

B Mathematics of degenerations of K3 surfaces

A lot is known about the degeneration of K3 surface in the mathematics literature. Here is

a quick summary of what we use in this article, for convenience of readers. The largest frac-

tion of material in this appendix B originates from [62, 72, 73]. Whenever we do not refer to

a reference for a non-trivial statement, at least some clue is provided in one of these papers.
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B.1 Degenerations of K3 surfaces

B.1.1 Kulikov models and the geometry of the central fibre

[Definition]. A one parameter family of K3 surface consists of (X , π,Disc), where X is

a complex threefold, Disc := {t ∈ C | |t| < 1}, and π : X → Disc is a morphism such that

St := π−1(t) for ∀t 6= 0 is a non-singular K3 surface. A central fibre of a degeneration is

π−1(t = 0) which is often denoted by S0.

One can think of a degeneration over a multi-dimensional parameter space, where

Disc ⊂ C is replaced by Disc ⊂ Cn. We do not deal with multi-parameter degenerations,

and we will drop “one parameter”, though it is always assumed implicitly in this article.

[Definition]. A degeneration of a K3 surface (X , π,Disc) is semi-stable, if the following

conditions i)–iii) are satisfied.

i) X is non-singular

ii) the central fibre S0 consists of irreducible components S0 = V0∪V1∪ · · ·∪Vµ, and all

the singularity in the variety S0 corresponds to normal crossing loci of the divisors

Vi’s in X

iii) each one of Vi’s appear in S0 with multiplicity 1 (S0 is reduced)

[Definition]. A semi-stable degeneration of a K3 surface (X , π,Disc) is a Kulikov model,

if KX = 0.

[Theorem (Kulikov [74], Persson-Pinkham [75])]. For a semi-stable degeneration

of a K3 surface (X , π,Disc), one can always find a chain of birational transformations

and base changes of the degeneration so that the resulting degeneration (X ′, π′,Disc) is a

Kulikov model.

[Definition]. A degeneration of (X ′, π′,Disc) is a birational transformation of another

degeneration of a K3 surface (X , π,Disc) and vice versa, if there is a birational morphism

between X ′ and X that commutes with the projections π and π′, and the birational mor-

phism induces isomorphism between X ′\(π′)−1(0) and X\π−1(0).

[Definition]. When (X , π,Disc) is a degeneration of a K3 surface, one can construct

another degeneration of a K3 surface, (X ′, π′,Disc), by using a base change of order n. Let

f : Disc 3 t′ 7→ (t′)n = t ∈ Disc; then X ′ is the fibre product X×DiscDisc of π : X → Disc, f

is the base change morphism, and π′ is the projection to the second factor. A degeneration

(X ′, π′,Disc) constructed in this way is a base change of a degeneration of a K3 surface.

The theorem above makes Kulikov models into a well-motivated class of degenerations

to study. Kulikov model degenerations of K3 surface are classified into three types.

Let (X , π,Disc) be a Kulikov model degeneration of a K3 surface, and S0 the central fibre.

The classification is stated in terms of the geometry of the central fibre and also in terms

of the monodromy of a generic fibre. Let T be the monodromy matrix acting on H2(St;Z)

of a generic non-singular K3 fibre at t 6= 0 around the point of degeneration t = 0, from

which a matrix N is defined as its log, T = exp[N ]. Now,
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• Type I: the central fibre S0 consists of a single irreducible component. N = 0.

• Type II: the central fibre S0 = V0 ∪ V1 ∪ · · · ∪ Vµ consists of µ + 1 > 1 irreducible

components; Vi · Vj is non-empty if and only if |j − i| = 1; the graph of intersection

(the dual graph) has µ edges connecting µ+1 nodes, and forms an interval as a whole

(e.g. figure 4 (b)). N 6= 0, but N2 = 0.

• Type III: the central fibre S0 consists of multiple irreducible components, and their

dual graph is a triangulation of S2 (two-dimensional sphere). N2 6= 0, and N3 = 0.

Even in Type III degeneration, it is known [76] that the matrix N is integer valued, when

represented in the integral basis of H2(St;Z).

A choice of Kulikov model is not necessarily unique, in that there may be two Ku-

likov model degenerations of a K3 surface (X , π,Disc) and (X ′, π′,Disc) that are birational

transforms of one another. Those Kulikov models are always classified into the same type,

because birational morphism between X and X ′ do not modify the properties of the mon-

odromy matrix of a generic fibre.

In this article, examples of Type II degeneration are discussed in sections 4.1, 4.2,

those of Type III degeneration in section 4.3, while a brief discussion is given on a “cousin”

of Type I degeneration in the appendix C.

The geometry of the central fibre of a Type II degeneration has the following properties.

{a} V0 and Vµ at the ends of the dual graph are both rational surfaces, while the surfaces

in the middle, V1, · · · , Vµ−1, have a minimal model that is ruled over an elliptic curve.

{b} The curve Vi ∩ Vi+1 =: Ci,i+1 of a pair of adjacent irreducible pieces Vi and Vi+1 is

often referred to as the double curve. Within X , there is a normal crossing singularity

at each Ci,i+1. The double curve Ci,i+1 is always an elliptic curve.

{c} On a surface Vi, (−KVi) = Ci,i+1 + Ci−1,i; if i = 0 or i = µ, just keep one of them.

For any double curve, there is a relation (Ci,i+1)2|Vi + (Ci,i+1)2|Vi+1 = 0.

{d} All the double curves Ci,i+1 with i = 0, · · · , µ − 1 in a Type II degeneration share

the same complex structure, which is ensured by the ruling of the surfaces Vi+1.

When there is a pair of Type II degenerations of K3 surfaces that are birational transfor-

mations of one another, the number of irreducible components µ + 1 is common to both.

The rational surfaces V0 and Vµ of one degeneration may not be isomorphic to those of the

other degeneration. The value of (Ci,i+1)2|Vi is not necessarily preserved in the birational

transform either.

The geometry of the central fibre of a Type III degeneration has the following proper-

ties.

{a} Each one of the irreducible components, Vi, is a rational surface.

{b} Vi ∩ Vj =: Ci,j , if not empty, is a rational curve.

– 44 –



J
H
E
P
0
8
(
2
0
1
6
)
0
3
4

{c} On a surface Vi, (−KVi) =
∑

j Ci,j . For any curve Ci,j , there is a relation (Ci,j)
2|Vi +

(Ci,j)
2|Vj = −2, where “2” is the number of triple points (Vi · Vj · Vk for some Vk) on

the curve Ci,j .

The number of triple points (Vi · Vj · Vk) — the number of triangles in the dual graph —

remains invariant under flops. This invariant is denoted by t.

B.1.2 Monodromy action

The monodromy group action T = exp[N ] : H2(St;Z) → H2(St;Z) and the geometry of

the central fibre S0 are related by the Clemens-Schmid exact sequence:

0
N // H0(St)

β // H4(S0)
α // H2(S0)

i∗ //

// H2(St)
N // H2(St)

β // H2(S0)
α // H4(S0)

i∗ //

// H4(St)
N // 0.

(B.1)

Reference [73] provides background material for the Clemens-Schmid exact sequence in-

cluding the definition of other homomorphisms (such as α, β and i∗). The monodromy

matrix N introduces a filtration (called the monodromy weight filtration) into the coho-

mology groups of a generic fibre. A filtration is also introduced into the cohomology and

homology groups of the central fibre by using the Mayer-Vietoris spectral sequence com-

putation. In the Clemens-Schmid exact sequence for the degeneration of a K3 surface, the

morphisms α, i∗, N and β respect the filtration structure while shifting the weight by +6,

+0, −2 and −4, respectively.

The monodromy weight filtration on the middle dimensional cohomology H2(St;Z) is

given by

{0} ⊂W0 ⊂W1 ⊂W2 ⊂W3 ⊂W4 = H2(St;Z), (B.2)

where

W0 = Im(N2), W1 = Ker(N) ∩ Im(N), W2 = Ker(N) + Im(N), W3 = Ker(N2).

(B.3)

The following properties are useful: N(Wj) ⊂ Wj−2, and W3−j ⊂ [W⊥j ⊂ H2(St;Z)]. The

monodromy is trivial on H4(St;Z) and H0(St;Z) and the filtration is formally defined here

by H4(St) = W4 ⊃W3 = {0} and H0(St) = W0 ⊃W−1 = {0}.
In a Type II degeneration of a K3 surface, where N2 = 0, W0 = {0}, W3 = W4 =

H2(St;Z),

{0} ⊂ [W1 = Im(N)] ⊂ [W2 = Ker(N)] = W⊥1 ⊂ H2(St;Z), (B.4)

The W1 subspace is always of rank-2, and W2 always of rank-20, within the rank-22 space

H2(St;Z). Restriction of the intersection form of H2(St;Z) to its primitive sublattice W1

is trivial, because an element of W1 ⊂W2 is orthogonal to any element in W1. That is, W1

is a rank-2 isotropic primitive sublattice of H2(St;Z) ∼= II3,19.
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Because of the self-dual nature of II3,19, one can always find a sublattice

W1 ⊂ (U ⊕ U) ⊂ (U ⊕ U)⊕ U ⊕ E⊕2
8 = II3,19 (B.5)

so that

W1 ⊕W ′1 ∼= U ⊕ U, W1 = SpanZ

{
ê
′1, ê

′2
}
, W ′1 = SpanZ

{
ê1, ê2

}
, (B.6)

and

(ê
′i, êj) = δij , (ê

′i, ê
′j) = 0, (êi, êj) = 0. (B.7)

It follows that W2/W1
∼= (U ⊕ E⊕2

8 ), and (W3/W2) ∼= W ′1. Because the matrix T =

exp[N ] = 1 +N needs to be an isometry of the lattice II3,19, the nilpotent matrix N for a

Type II degeneration of K3 surface is always in the form of

N = µN II
0 = µ×

 −1

1

 (B.8)

for some integer µ, in the basis of {ê1, ê2, ê
′1, ê

′2}; N acts trivially on W2, because

N(W2) ⊂ W0 = {0}. The integer µ — taken always positive — is called index of a

Type II degeneration of K3 surface.

It is known that the integer µ is the same as the number of double curves Ci,i+1

(i = 0, · · · , µ−1) in the geometry of the central fibre [49]. It is reasonable that a birational

invariant of the geometry of the central fibre is also captured in the language of monodromy

acting on a generic fibre.

The central fibre is regarded as a limit of complex structure of the fibre K3 surface in

such a way that the period integral is dominated by W1⊗C ⊂ II3,19⊗C. The limiting value

Ω ∈ W1 ⊗ C of the period integrals obviously satisfies Ω2 = 0, because the intersection

form on W1 is trivial.

In a Type III degeneration of K3 surface, where N3 = 0,

{0} ⊂ (W0 = W1) ⊂
(
W2 = W3 = W⊥0

)
⊂ H2(St;Z). (B.9)

The W0 subspace is always of rank-1 and W2 always of rank-21 within the rank-22 space

H2(St;Z). The restriction of the intersection form of H2(St;Z) to its primitive sublattice

W0 is trivial, because an element of W0 ⊂W3 is orthogonal to any element in W0.

The self-dual nature of the lattice II3,19 can be exploited to find a sublattice

W0 ⊂ U ⊂ U ⊕ (U⊕2 ⊕ E⊕2
8 ) = II3,19 (B.10)

so that

W0 = SpanZ{ê′}, W ′0 = SpanZ{ê}, W0 ⊕W ′0 ∼= U, (ê′, ê′) = (ê, ê) = 0, (ê′, ê) = 1.

(B.11)

It follows that W2/W0
∼= (U⊕2 ⊕ E⊕2

8 ) and (W4/W2) ∼= W ′0.
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In the case of a Type III degeneration, both N : W2/W0 →W0 and N : W4/W2 →W2

are non-trivial. Because of the self-dual nature of W2/W0
∼= U⊕2 ⊕ E⊕2

8 , one can always

find a sublattice U ′ = SpanZ{f̂ , f̂ ′} isometric to U such that N(W4) ⊂ U ′ ⊂ W2/W0. In

the basis of {ê, f̂ , f̂ ′, ê′}, the monodromy matrix N is always in the form of

N = µN III
0 (t0) = µ×


0 0

1 0

t0/2 0

−t0/2 −1

 , (B.12)

for some integer µ. Here, µ2t0 = t = (N(ê), N(ê)). It is known that this t is the same

as the birational invariant t of the central fibre geometry explained earlier. The period

integral in this degeneration limit is dominated by the components in W0 ⊗ C.

B.2 Degeneration of lattice-polarized K3 surfaces

[Definition]. A degeneration of a K3 surface (X , π,Disc) is called lattice-polarized, if the

restriction of divisors Di=1,··· ,ρ of X to a generic fibre St generates a subset of Pic(St) that is

isometric to a lattice ΛS . Such a degeneration is also called a degeneration of ΛS-polarized

K3 surface.

The isotropic sublattice W1 in a Type II degeneration and W0 in a Type III degen-

eration is a primitive sublattice of ΛT :=
[
Λ⊥S ⊂ II3,19

]
, because this is where the limiting

values of period integrals reside. The lattice ΛS sits within the W2 component for a Type II

(resp. Type III) degeneration, because the algebraic component in ΛS must be orthogonal

to W1 (resp. W0). The monodromy matrix T (and hence N) acts non-trivially on the

lattice ΛT , and trivially on ΛS .

Scattone [62] formulated a classification problem of Type II and Type III degenerations

of ΛS-polarized K3 surface as follows:

• Type II: classify rank-2 primitive isotropic sublattice W1 in ΛT , modulo Γ,

• Type III: classify rank-1 primitive isotropic sublattice W0 in ΛT , modulo Γ.

Two well-motivated choice of the quotient group Γ are Isom(ΛT ) and its normal subgroup

Isom∗(ΛT ) := Ker [Isom(ΛT ) −→ Isom(GΛT , qΛT )] ; (B.13)

Classification under Γ = Isom∗(ΛT ) achieves a finer classification than that under the

choice Γ = Isom(ΛT ). It is often easier to think of classification by Γ = Isom(ΛT ) first,

and then to refine the classification later. In the rest of this appendix, we only refer to

classification under Γ = Isom(ΛT ).

The Isom(ΛT ) classification for Type II degenerations can be worked out in this

way [62]. Note first, that one can always find a basis{
ê
′1, ê

′2, f̂1, · · · , f̂18−ρ, ê1, ê2
}

(B.14)
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of ΛT in such a way that

W1 = SpanZ{ê
′1, ê

′2},
(W2 ∩ ΛT )/W1 = SpanZ{[f̂1], · · · , [f̂18−ρ]},
ΛT /(W2 ∩ ΛT ) = SpanZ{[ê1], [ê2]}, (B.15)

and the intersection form of ΛT is given by31

∗ ∗ ∗ ∗ δ1

∗ ∗ ∗ ∗ δ2

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
δ1

δ2


(B.16)

for some positive integers δ1 and δ2 satisfying δ1|δ2. The two integers δ1 and δ2 (with a

constraint δ1|δ2) and a lattice (W2 ∩ ΛT )/W1 (modulo isometry) are uniquely determined

for a given Isom(ΛT )-equivalence class.

Once a pair (ΛS ,ΛT ) is given, possible choices of δ1, δ2 and an isometry class of

(W2 ∩ ΛT )/W1 can be worked out systematically as follows. The discriminant group GΛT

is supposed to allow this substructure, first of all:

GΛT = (Zδ1 × Zδ2).G(W2∩ΛT )/W1
.(Zδ1 × Zδ2). (B.17)

The (Zδ1 × Zδ2) subgroup is an isotropic subgroup of (GΛT , qΛT ), and furthermore the

(Zδ1 × Zδ2).G(W2∩ΛT )/W1
subgroup is orthogonal to the (Zδ1 × Zδ2) subgroup under the

discriminant bilinear form b(•, •). Since GΛT
∼= GΛS is a finite group, there are only

finitely many options for such a substructure in (GΛT , qΛT ). In particular, there are only

finitely many choices of δ1, δ2 and isometry classes of the signature (0, 18 − ρ) lattice

(W2 ∩ ΛT )/W1. There can be multiple isometry classes for a given discriminant form

(G(W2∩ΛT )/W1
, q) because of negative definite signature.

The nilpotent matrix N for the monodromy matrix T = exp[N ] is determined uniquely.

When it is presented in the basis (B.14),

N = µN II
0 (δ1, δ2) = µ×

 −δ2 0

δ1 0


. (B.18)

31The presentation in [62] corresponds to δ1 = 1 and δ2 = e. Since concrete examples of Type II

degeneration treated in [62] were all for ρ = 1 lattice polarization, the discriminant group GΛS is always

a cyclic group. It was thus safe to set δ1 = 1 for that reason. The presentation here is a straightforward

generalized of that.
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Here, µ ∈ Z is the index. This µ is the same as that in (B.8), when we allow to choose a

basis without respecting the distinction between ΛS and ΛT .

Here are some examples. The first one is for ΛS = U , the E8-elliptic K3 surface. In

this case, there are only two Type II degenerations of ΛS = U -polarized K3 surface in the

Isom(ΛT ) classification. δ1 = δ2 = 1 (obviously because ΛT is self-dual), and

(W2 ∩ ΛT )/W1
∼= E8 ⊕ E8 or D16;Z2. (B.19)

For ΛS = 〈+2〉 and 〈+4〉 (i.e., degree-2 and quartic K3 surface), there is no choice but

δ1 = δ2 = 1, and there are four choices

(W2 ∩ ΛT )/W1
∼= E⊕2

8 ⊕A1, (D16;Z2)⊕A1, (E7 ⊕D10);Z2, A17;Z3 (B.20)

for ΛS = 〈+2〉, whereas there are nine choices

(W2 ∩ ΛT )/W1
∼= E⊕2

8 ⊕ 〈−4〉 , D16;Z2 ⊕ 〈−4〉 , E8 ⊕D9, (E⊕2
7 ⊕A3);Z2,

D17, (D12 ⊕D5);Z2, (〈−4〉 ⊕D⊕2
8 ); (Z2 × Z2),

(A⊕2
1 ⊕A15); (Z4 × Z2), (E6 ⊕A11);Z3. (B.21)

for ΛS = 〈+4〉. For the ρ = 1 cases ΛS = 〈+2k〉, δ1 = δ2 = 1 are the only possibility, if k

is not divisible by a square of an integer. See [62] for more information.

Similarly, the Γ = Isom(ΛT )-classification of Type III degenerations can be worked out

as follows. Note first that one can choose a basis{
ê′, f̂1, · · · , f̂20−ρ, ê

}
(B.22)

of ΛT so that

W0 = SpanZ
{
ê′
}
,

(W2 ∩ ΛT )/W0 = SpanZ

{
[f̂1], · · · , [f̂20−ρ]

}
,

ΛT /(W2 ∩ ΛT ) = SpanZ {[ê]} , (B.23)

and the intersection form of ΛT is given in this basis as
a B δ

BT C

δ

 (B.24)

for some positive integer δ. Other parts of the intersection form, a, B, BT and C are also

integer valued.

Once a pair (ΛS ,ΛT ) is given, one can systematically work out possible values of δ

and isometry classes of the lattice (W2 ∩ΛT )/W0 as follows. First, the discriminant group

needs to allow the substructure

GΛT = Zδ.G(W2∩ΛT )/W0
.Zδ. (B.25)
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The Zδ subgroup is isotropic under the discriminant form, and the (Zδ.G(W2∩ΛT )/W0
) sub-

group is orthogonal to the Zδ subgroup under the discriminant bilinear form b. There

are only a finite number of such options for a given (GΛT , qΛT ) = (GΛS ,−qΛS ). In the

classification of Type III degenerations, the lattice (W2∩ΛT )/W0 has signature (1, 19−ρ),

which is not negative definite. Due to a theorem of Nikulin [77] (Thm 1.14.2), any two

even lattices (W2 ∩ ΛT )/W0 that reproduce the same discriminant form (G(W2∩ΛT )/W0
, q)

are mutually isometric provided that ρ ≤ 11 [62]. The fact that the monodromy matrix

T = exp[N ] is an isometry translates to the skew-symmetry condition on N with respect

to the intersection form above. Therefore,

N = µN III
0 (δ, u, v, x) = µ×

 δv

δx uT

 , u = −C · v, 2δ · x = −B · v, (B.26)

where u, v, x are assumed to be integral. Allowing to choose a basis that does not respect

the distinction between ΛS and ΛT , this µ here becomes the index µ in (B.12), and t0 =

vT · C · v = (v, v)|(W2∩ΛT )/W0
.

B.2.1 Baily-Borel compactification

The period domain of a ΛS-polarized K3 surface is given by (5.28), and the moduli space

of ΛS-polarized K3 surface is the quotient of this space by Γ = Isom∗(ΛT ). This group

mods out unphysical marking without touching the lattice polarization divisors in ΛS .

This moduli space D(ΛT )/Γ is not compact. There are multiple different ways to make

it compact by adding boundary components. The Baily-Borel compactification D(ΛT )/Γ

is a minimal one. The boundary components D(ΛT )/Γ \ D(ΛT )/Γ form different strata,

each of which corresponds to one of the Type II or Type III degenerations of a ΛS-polarized

K3 surface. A stratum corresponding to a Type II degeneration comes with a variety of

one complex dimension, while one corresponding to a Type III degeneration is a point.

This is because P[W1 ⊗C] for Type II is of one dimension, while P[W0 ⊗C] for Type III is

of zero dimension.

Multiple strata for Type II degenerations labelled by various choices of δ1, δ2 and

(W2∩ΛT )/W1 can meet at a point (stratum) for a Type III degeneration. The structure of

such a stratification of the boundary components is studied for ρ = 1 polarized K3 surfaces

in [62]. In the case of ΛS = 〈+2〉, for example, there is just one Type III stratum and four

Type II strata (appearing in (B.20)), and all the four Type II curve strata meet at the

Type III stratum point.

Other compactifications of the moduli space make it possible to retain more information

of a K3 surface at a degeneration limit [78–83]. Possibly interesting in the context of

heterotic-type IIA duality is the one discussed in [83], which retains information in the

[(W2 ∩ ΛT )/W1] ⊗ C component of the complex structure in the degeneration limit. The

heterotic string “instanton” moduli can be translated into these moduli at the degeneration

limit. A version for [(W2 ∩ ΛT )/W1] = E⊕2
8 in ΛS = U is well-known in string theory

community through [44], but this story may be generalized for other ΛS and (W2∩ΛT )/W1-

Type II degenerations.
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C Picard-Lefschetz monodromy and collapsing dP7

One of the simplest forms of degenerations of a K3 surface is for an A1 singularity to be

formed. In a local geometry, X → Disc may be given by

X =
{
x2 + y2 + z2 + t = 0

}
→ Disc ⊂ {t ∈ C} . (C.1)

This degeneration at t = 0 is not semi-stable, since the fibre at t = 0 has an A1 singularity,

which is not a normal crossing singularity. We can turn this into a Kulikov model by a base

change followed by a resolution. In the present case, this means to replace the coordinate of

Disc from t to t = s2, and further replace X by a small resolution of the conifold singularity

at (x, y, z, s) = (0, 0, 0, 0). We then arrive at a Kulikov model of Type I.

In the context of string compactifications, however, we are interested in a compact

threefold M fibred over a compact space P1
A, instead of X → Disc. We are usually not

happy to replace M → P1
A by its base change, either. We would rather think of the

degeneration above as a “would-be” Type I.

A1-singularities in the fibre, i.e. would-be Type I degenerations, are quite a common

phenomenon. In fact, for any Calabi-Yau threefold M with a ΛS = 〈+4〉-polarized K3-

fibration (quartic K3 in the fibre), there are 216 such would-be Type I fibres; the topological

Euler characteristic of M is understood in a simple way then:

χ(M〈+4〉) = 2(h1,1 − h2,1) = 2(2− 86) = −168,

= (χ(P1
A)− 216)χ(K3) + 216× 23, (C.2)

where the singular fibre of each one of those would-be Type I degenerations has χ = 23.

The number of would-be Type I fibres — 216 — remains the same for any one of ν6
F chosen

from 2∆̃F ∩ NF . Similarly, for any Calabi-Yau threefold M with ΛS = 〈+2〉-polarized

K3-fibration (degree-2 K3 is in the fibre) discussed in section 3.2.1, there are 300 would-be

Type I singular fibres. Here is how the counting goes, then:

χ(M〈+2〉) = 2(h1,1 − h2,1) = 2(2− 128) = −252,

= (χ(P1
A)− 300)χ(K3) + 300× 23, (C.3)

which holds for all the choices of ν6
F in figure 1. The number of would-be Type I singular

fibres can be determined by using the discriminant of the K3 fibre (similarly to elliptic

fibration). See [84] for how to compute the discriminant, from which we can derive such

values as 216 and 300 above.

Let Cp be the two-cycle in the K3-fibre that shrinks at a discriminant point zp ∈ P1
A

of a would-be Type I singular fibre. The Picard-Lefschetz monodromy Tp on H2(St.A;Z)

around z = zp is given by

Tp : H2(St.A;Z) 3 x 7−→ x+ (Cp, x)Cp ∈ H2(St.A;Z). (C.4)

This is a reflection,

(Tp)
2 = Id , (C.5)

and the monodromy becomes trivial after base change.
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Consider tuning the complex structure moduli of M2
〈+2〉 so we approach the transition

point to the branch of M
{2,1}
〈+2〉 . The hypersurface equation (4.13) for the local geometry of

M2
〈+2〉 at the transition can be deformed to

X2
1 +X4

2 +X4
3 +

4∏
i=1

(X6 − zi) = 0 (C.6)

by introducing four parameters zi. When all of the zi’s are set to zero, this hypersurface

equation approaches (4.13) at the transition point. At each one of zi’s, this equation is

in the form of a deformation of a parabolic singularity X9 [85]. In the local geometry of

the fibre K3 captured in this equation (deformed X9), nine compact two-cycles and two

non-compact two-cycles are identified [86]. Seven of them — α1,2,··· ,7 — form E7, the

two remaining compact two-cycles are denoted by e1,2, and the two non-compact ones by

e′1,2. The intersection form is (ei, e
′
j) = δij , (ei, ej) = 0. The singular fibre at a given

zi is regarded as nine would-be Type I fibres coming on top of another, and the Picard-

Lefschetz monodromy Ti :=
∏9
p=1 Tp can be computed by using the information in [86].

The monodromy from all of the four zi’s combined, T =
∏4
i=1 Ti acts trivially on the E7

part of the two-cycles in the fibre, and on the remaining cycles as

T :


e1

e2

e′1

e′2

 7−→


1

1

−1 1

1 1




e1

e2

e′1

e′2

 . (C.7)

This computation — purely transcendental — reproduces the monodromy matrix for a

Type II degeneration T = exp[N II
0 (1, 1)]. The E7 sublattice of dP7 in the central fibre of

the degeneration in M
{2,1}
〈+2〉 has also been captured.

The Type II degeneration of a degree-2 K3 surface, with (W2 ∩ ΛT )/W1
∼= (E7 ⊕

D10);Z2, can be regarded as a certain limit of the complex structure where 4 × 9 = 36

would-be Type I degenerations come on top of each other. With the remaining (300−36 =

264) would-be Type I degenerations, the topological Euler characteristic of M
{2,1}
〈+2〉 can be

understood as

χ(M
{2,1}
〈+2〉 ) = 2(h1,1 − h2,1) = 2(3− 111) = −216,

= (χ(P1
A)− 264− 1)χ(K3) + 264× 23 + 1× χ(V0 ∪ V1). (C.8)

Here, the contribution of the degenerate fibre is χ(V0 ∪ V1) = 24, the same as a generic K3

fibre.

D Technical details of the degeneration of the degree-2 K3 surface in

M
{n,n−1}
〈+2〉

D.1 Geometry of degenerate central fibre in M
{n,n−1}
〈+2〉

Let S0 be the central fibre in a Type II semi-stable degeneration of a degree-2 K3 surface

found in Mn,n−1
〈+2〉 . The central fibre S0 consists of two irreducible components. Let us use

the notation V0 = D̄6,n and V1 = D̄6,n−1.
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The surface V1 has the property

hi,0(V1) = 0 (i = 1, 2), h1,1(V1) = 8, (D.1)

which we found by using the techniques of [52] (and an additional formula (A.7)) available

for divisors of a toric hypersurface. The restriction of divisors of M
{n,n−1}
〈+2〉 to D̄6,n−1, the

first line of (A.7), accounts for only 1 generator within H1,1(V1) and we can take D̄6,n|V1

as this generator.32 The double curve C = D̄6,n|V1 has (D̄6,n|V1)2 = +2 in this surface.

This curve class is also the restriction of the polarization divisor D̄2 of the generic K3

surface (see footnote).

The surface V1 = D̄6,n−1 is a dP7. To see this, note first that it is a hypersurface of

WP3
[2:1:1:1], because of the relation

2ν1 + ν2 + ν3 + ν6,n = ν6,n−1 (D.2)

among the toric vectors. Secondly, V1 belongs to the class(∑
i

Di

)
|D6,n−1 ∼ (D1 +D2 +D3)|D6,n−1 ∼

[
(4) ⊂WP3

[2:1:1:1]

]
. (D.3)

The cohomology group H2(V1;Z) is a unimodular lattice. It is an index-2 overlattice of

〈+2〉 ⊕ E7, (D.4)

where the rank-1 lattice 〈+2〉 is generated by C = D̄6,n|V1 . There are elements of

H2(dP7;Z) that correspond to a Z2 subgroup of the discriminant group Z2 × Z2 of the

lattice above (H2(dP7;Z) is not an even lattice, however).

Let us now turn our attention to V0. Blowing down this irreducible component V0 in

M
{n,n−1}
〈+2〉 , we obtain a threefold Mn−1

〈+2〉 with a singularity which may be deformed so that

we find a smooth Calabi-Yau threefold Mn−1
〈+2〉 branch. The singularity in Mn−1

〈+2〉 right after

this transition is given by

X2
1 +X2

4F
(4)G(2) +X4X6F

(5)G(4−n) +X2
6F

(6)G(6−2n) ' 0 ; (D.5)

F (d)’s and G(d)’s are homogeneous functions of [X2 : X3] and [X5 : X6], respectively,

with the degree specified in the superscript. The singular locus is along the curve X6 =

X1 = X4 = 0, which is a P1
[X2:X3]. The A1 singularity in the directions transverse to this

curve gets worse at 10 points in this P1; that is where the Hessian of the quadratic form in

(X4, X6) degenerates. The divisor V0 = D̄6,n in M
{n,n−1}
〈+2〉 before the blow-down is obtained

as the exceptional locus of this singularity.

A computation using toric techniques (as in V1) indicates that

hi,0(V0) = 0 (i = 1, 2), h1,1(V0) = 12. (D.6)

32For M
{n,n−1}
〈+2〉 , rational equivalence relations are D̄1|V1 ∼ 2D̄2|V1 and D̄2|V1 ∼ D̄3|V1 ∼ D̄6,n|V1 .
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Two generators of H1,1(V0) are realized as restriction of toric divisors in M
{n,n−1}
〈+2〉 (the

first line of (A.7) and we can use D̄6,n−1|V0 and D̄3|V0 for now.33

The complete linear system of the divisor D̄3|V0 can be used to construct a projection

Φ|D̄3|V0
: V0 −→ P1. This P1 can be identified with the curve of A1 singularities in Mn−1

〈+2〉;

[X2 : X3] is the homogeneous coordinate of this P1 and D̄3|V0 ∼ D̄2|V0 is the fibre class

in this projection. This fibre is generically a conic in P2
[X1:X4:X6,n−1]. Both of the divisor

classes D̄4|V0 and D̄6,n−1|V0 are 2-sections in the fibration corresponding to the projection,

they differ only by the fibre class. The fibre conic degenerates into P1 + P1 whenever the

Hessian degenerates. The 2-section D̄6,n−1|V0 intersects once with one P1 and also once

with the other P1 in such singular fibres. Let one of those two P1’s be E±i (i = 1, · · · , 10

labels singular conic fibres and ± distinguishes the two components). We have that D̄3|V0 ∼
E+
i + E−i for any i. From (D̄3|V0)2 = 0 and E+

i · E−i = δij it follows that (E±i )2 = −1.

Then the intersection form of V0 in the basis (D̄6,n−1|V0 , D̄3|V0 , E+
1 , · · · , E+

10) is in the form



−2 2 1 · · · 1

2

1 −1
... · · ·
1 −1


. (D.7)

The discriminant of this intersection form is −4. Hence the unimodular lattice H2(V0;Z)

must be an index-2 overlattice of the lattice generated by the basis above. The intersection

form above indicates that there must be an element that is topologically regarded as 1
2D̄3|V0

The basis above, with D̄3|V0 replaced by 1
2D̄3|V0 can be regarded as a generator set of

H2(V0;Z).

This surface V0 is rational, because V0 ends up with a Hirzebruch surface F2 after

blowing down all the E+
i ’s. The double curve C = D̄6,n−1|V0 has self-intersection (−2) in

V0. The polarization divisor D̄2 of a generic fibre K3 surface is restricted on this surface

to be D̄2|V0 ∼ D̄3|V0 .

The intersection form can be presented in any choice of basis one likes; we do so as

preparation for study in Clemens-Schmid exact sequence later. When we choose D̄6,n−1|V0 ,

(D̄6,n−1 + D̄3)|V0 , D̄3|V0 −E+
1 −E+

2 and (E+
i −E+

i+1) (i = 1, · · · , 9) as a set of generators,

33There are three rational equivalence relations among restriction of the five toric divisors in M
{n,n−1}
〈+2〉 :

D̄3|V0 ∼ D̄2|V0 , D̄4|V0 ∼ D̄6,n−1|V0 +D3|V0 and D̄1|V0 + 2D̄6,n−1|V0 ∼ 3D̄4|V0 .
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it becomes 

−2

2

−2 1

−2 1

1 1 −2 1

1 · ·
· −2 1

1 −2


. (D.8)

This intersection form is that of the lattice 〈−2〉 ⊕ 〈+2〉 ⊕ D10. The unimodular lattice

H2(V0;Z) should be an index-4 overlattice of this one.

D.2 Cohomology and homology groups of the central fibre

Homology and cohomology groups of the central fibre, S0 = V0 +V1, can be determined by

using the Mayer-Vietoris spectral sequence. Let us begin with the homology groups.

First of all, H4(S0;Z) ∼= H4(V0;Z) ⊕ H4(V1;Z) ∼= Z ⊕ Z. The filtration H4(S0;Z) =

W−4 ⊃W−5 = {0} corresponds to the convention in [73].

On H2(S0;Z), the spectral sequence introduces a filtration

{0} = W−3 ⊂W−2 ⊂W−1 = H2(S0;Z); (D.9)

where W−2 is obtained by identifying the double curve E2,1 in H2(V0;Z) and H2(V1;Z);

W−2(H2(S0;Z)) ∼= [E7 ⊕ (〈+2〉 ⊕D10);Z2 ⊕ Z 〈[C]〉] ;Z2 × Z2. (D.10)

The W−1/W−2 part, which is isomorphic to H1(C;Z) ∼= Z⊕2, are the two-cycles that are

obtained by gluing discs in V0 and V1 along α or β cycle in the double curve C.

The cohomology groups of the central fibre are also worked out similarly. We have

H4(S0;Z) ∼= H4(V0;Z)⊕H4(S0;Z) ∼= Z⊕ Z and the convention on the filtration in [73] is

to take {0} = W3 ⊂W4 = H4(S0;Z).

The filtration in H2(S0;Z) is

{0} ⊂W1 ⊂W2 = H2(S0;Z). (D.11)

The W1
∼= H1(C;Z) ∼= Z⊕2 part vanishes on W−1 ⊂ H2(S0;Z). W2/W1 is identified with

the subspace of H2(V0;Z)⊕H2(V1;Z) that evaluates the double curve class [C] in H2(V0;Z)

and H2(V1;Z). That is,

W2/W1
∼=
(
E7 ⊕ [〈+2〉 ⊕D10] ;Z2 ⊕ Z

〈
D̄6,n|V1 − D̄6,n−1|V0

〉)
;Z2. (D.12)

D.3 Clemens-Schmid exact sequence

Let us use the technical results obtained earlier in this appendix and see how the material

fits into the Clemens-Schmid exact sequence (B.1) to confirm that the degeneration in
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M
{n,n−1}
〈+2〉 corresponds to the (W2 ∩ ΛT )/W1 = [E7 ⊕ D10];Z2 case in the classification

of (B.20).

Following the definition of the morphisms β and α explained in [73], one finds that

β : H0(St;Z) 3 1 7−→ [V0] + [V1] ∈ H4(S0;Z) (D.13)

and

α([V0]) = α(−[V1]) = (D̄6,n|V1 , −D̄6,n−1|V0) ∈ H2(S0;Z) (D.14)

in the first line of (B.1). Thus, the exact sequence (B.1) in the first line,

0 // W0(H0(St))
[1] β // W−4(H4(S0))[2] α // W2/W1(H2(S0))[19]

0
α // W1(H2(S0))[2]

(D.15)

continues to the second line, with the W1 part of H2(S0) and the

[E7 ⊕ [〈+2〉 ⊕D10] ;Z2] ;Z2 factor in (D.12). Here, the superscript [n] is the rank

(dimension) of a given space.

The morphism α : H2(S0;Z) → H4(S0;Z) in the second line of (B.1) vanishes on

E7 ⊕ (〈+2〉 ⊕D10);Z2 that are orthogonal to the double curve C.

α : W−2(H2(S0;Z)) 3 [C] 7→ (−2[1V1 ], +2[1V0 ]) ∈ H4(S0;Z). (D.16)

The cokernel of this map generated by (1V1 , 0) ∼ (0, 1V0) is isomorphic to H4(St;Z) under

i∗.

The heart of the Clemens-Schmid exact sequence is this.

H2(S0;Z)
i∗ // H2(St;Z)

N // H2(St;Z)
β // H2(S0;Z)

(W3/W2)[2] = PD(E)

$$

(W3/W2)[2] = PD(E)

))
(W2/W1)[19] // (W2/W1)[18] (W2/W1)[18]

))

(W−1/W−2)[2]

W
[2]
1

// W
[2]
1 = PD(E′) W

[2]
1 = PD(E′) W

[19]
−2

(D.17)

Here, E′ := SpanZ{e′1, e′2} is a rank-2 space of those two-cycles of St.A where the period

integral of St.A near the degeneration limit dominates. The limit of the two-cycles e′1,2 in

S0 are in the form of a pair of discs in V0 and V1 glued along a one-cycle in the double curve

C. E := SpanZ{e1, e2}, on the other hand, is a rank-2 space of two-cycles of St.A, where

the two-cycles e1,2 become topologically trivial in V0 and in V1 in the degeneration limit.
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PD stands for Poincaré duality. Both Coker
(
α : W−4(H4(S0))→ (W2/W1)(H2(S0))

)
and

Ker
(
α : W−2(H2(S0))→W4(H4(S0))

)
are the same and give

(W2/W1)(H2(St;Z)) ∼= (E7 ⊕ (〈+2〉 ⊕D10);Z2) ;Z2. (D.18)

The matrix N is essentially in Hom(W ′1,W1), where W ′1
∼= PD(E).

The 〈+2〉 part of this W2/W1 should be regarded as the Neron-Severi lattice of the

degree-2 K3 surface. So,

(W2 ∩ ΛT )/W1
∼= (E7 ⊕D10) ;Z2. (D.19)
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