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1 Introduction

One of the key steps that advanced the study of three-charge supersymmetric black hole

microstates was the rewriting by Giusto and Mathur [1] of the first example of a smooth

geometry in the fibered form, thus making the connection with the classification of super-

symmetric solutions. This exercise led to the realisation that the four-dimensional base

space for such solutions had to be of the so-called “pseudo-hyper-Kähler” form, which

paved the way for generalisations to the multi-center solutions [2, 3].

It is natural to hope that understanding the known non-extremal microstates [4–10]

from various possible perspectives will shed light on how to go about constructing more gen-

eral non-extremal microstates. Drawing movitation from properties of the supersymmetric

solutions, one such study was performed in reference [11] for the solutions found by Jejjala,

Madden, Ross, and Titchener (JMaRT) [4]. They found that upon dimensional reduction

from 6d to 5d, the 5d solution features locally non-supersymmetric orbifold singularities.

Upon further reduction to 4d, they found that the two singularities are connected by a

conical singularity. The presence of the conical singularity does not allow for an unam-

biguous association of brane charges to the two centers. This led the authors to conclude

that the picture of “half-BPS atoms” making up the multiple centers of supersymmetric

microstates does not extent to the non-supersymmetric ones in any easy way. One must

consider more general kinds of basic building blocks.
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In this paper we add a new dimension to this discussion. We show that the JMaRT

solution can also be thought of as a charged version of Euclidean five-dimensional Myers-

Perry instanton trivially lifted to six dimensions by the addition of a flat timelike direction.

Gravitational instantons in four-dimensions have received much attention under the Eu-

clidean Gravity paradigm, though their higher-dimensional cousins are not so well explored.

For the cases where these objects have been explored, their classification is presented in

terms of turning points of various degenerating Killing vectors [12]; more precisely in terms

of the so-called rod structure [13–15]. Since for the non-supersymmetric microstates only

spacelike Killing vectors degenerate, it is natural to expect that non-supersymmetric mi-

crostates are closely related to gravitational instantons.

For the construction of the multi-center supersymmetric solutions this connection is

the key element [2, 3]. In these constructions the four-dimensional base space is taken

to be multi-center Gibbons-Hawking instanton. For non-extremal microstates such a link

has also been explored, though not yet in a fully systematic way. For example, the first

generalisation [5] of the JMaRT solution was constructed by adding appropriate charges to

the so-called Kerr-Taub-Bolt instanton. Similar ideas, in different guises, were also used in

references [7, 9, 16, 17]. More recently, these and a related circle of ideas have led to the

construction of the first example of non-extremal multi-bubble microstate geometries [10].

It had been anticipated that the JMaRT solution has a close connection to gravita-

tional instantons (see e.g. comments in [5, 17]), though it has never been made precise.

A connection was established in reference [18] where it was highlighted that the JMaRT

metric can be related to the Myers-Perry instanton metric via a simple analytic continua-

tion. In this paper we extend and simplify that construction. There are several differences:

we consider both angular momentum and all three charges, whereas reference [18] only

dealt with the case of two-charges and a single rotation. We work with the well developed

Belinski-Zakharov inverse scattering method [19–22], as opposed to the Breitenlohner-

Maison method [23–26] used in [18]. Moreover, for adding charges we do reductions over

the standard angular coordinates ψ and φ as opposed to linear combinations of these co-

ordinates as was done there. We use timelike reduction to go from 4d to 3d, as opposed

to [18] where the timelike reduction was used to go from 6d to 5d. These points considerably

simplify the calculations and make the full construction more accessible.

The rest of the paper is organised as follows. In section 2 we gather our main ideas

relegating all detailed calculations to the appendices. In section 2.1 we present the Myers-

Perry instanton metric. In section 2.2 we perform a specific SO(4, 4) transformation — a

Weyl reflection — on the matrix of scalars for the Myers-Perry instanton. This Weyl reflec-

tion allows us to match the final solution rather directly to the JMaRT parameterisation

upon adding charges. In section 2.3 we perform the charging transformations on the Weyl

reflected Myers-Perry instanton matrix. The corresponding six-dimensional fields match

on to the over-rotating Cvetič-Youm metric.

We present in detail the inverse scattering construction of the Myers-Perry instanton

metric in appendix A. Certain details on the construction of the SO(4, 4) matrix and the

action of the Weyl reflection on three-dimensional scalars are provided in appendix B.

Details on the construction of the six-dimensional fields are provided in appendix C. A
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discussion on the rod structure of the Cvetič-Youm metric is presented in appendix D. The

black hole and the fuzzball cases are analysed separately.

We end with a brief discussion in section 3.

2 JMaRT as charged Myers-Perry instanton

The JMaRT solutions presented in ref. [4] were originally obtained by starting with a

large family of metrics and determining special choices of parameters that rendered the

geometries smooth and horizonless. Specifically, the starting point was the general five-

dimensional non-extremal solutions, derived by Cvetič and Youm [27], carringy two angular

momenta and three independent U(1) charges, in addition to a mass parameter M . These

metrics are solutions to five-dimensional supergravity theory obtained from ten-dimensional

type IIB supergravity upon compactification on T 4 × S1. While the compact T 4 part of

the metric does not play a significant role in the JMaRT construction, the S1 direction

is crucial for the smoothness analysis. Therefore, the metric and matter fields are most

conveniently considered as six-dimensional quantities. Our goal is to demonstrate that the

JMaRT solutions can be generated in an alternative and more direct way.

2.1 Myers-Perry instanton

The five-dimensional Myers-Perry instanton metric can be expressed as

ds2
5d = dy2 +

M

Σ

[
dy + a1 sin2 θ dφ+ a2 cos2 θ dψ

]2
+ (r2 − a2

1) sin2 θ dφ2 + (r2 − a2
2) cos2 θ dψ2 +

Σ

∆
dr2 + Σ dθ2, (2.1)

where

Σ = r2 − a2
1 cos2 θ − a2

2 sin2 θ, ∆ = r2

(
1− a2

1

r2

)(
1− a2

2

r2

)
+M. (2.2)

This is a vacuum solution of Euclidean gravity possessing three commuting Killing vector

fields, namely ∂y, ∂φ and ∂ψ, and is parametrised by the three numbers M,a1 and a2. We

obtain a Lorentzian metric by trivially lifting to six-dimensions through the addition of a

flat time direction,

ds2
6d =− dt2 + ds2

5d. (2.3)

The line element (2.1) can be easily obtained by the following analytic continuation on the

Myers-Perry metric as given in ref. [14]:

a1 → −ia1,

a2 → −ia2,

t → +iy,

M → −M.

(2.4)
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A standard Euclidean version of the Myers-Perry solution would not include the ana-

lytic continuation on the mass parameter, M → −M .1 While this raises questions about

the regularity of such geometries, we are not concerned with the smoothness properties of

this metric per se. In section 2.3 below, we will add charges on top of this metric and it

is the smoothness properties of the final charged metric that we will be interested in. The

same approach was taken in other references, see e.g., [5, 7].

Inverse scattering construction. The 3-parameter family of solutions (2.1) can also

be constructively generated from five dimensional Euclidean Schwarzschild metric by ap-

plying the Belinski-Zakharov (BZ) inverse scattering method. This procedure is detailed in

appendix A and parallels the derivation of the 5D Myers-Perry metric from Schwarzschild

metric in Lorenztian gravity [22]. One of the key points that is borne out by this construc-

tion is that the parameters must obey

M < (a1 − a2)2. (2.5)

This bound arises in the JMaRT solutions as a condition ensuring that the smooth geome-

tries are horizonless [4].

As is well known for the Lorentzian Myers-Perry metric, the inverse scattering pro-

cedure is not unique. The same is true for the Euclidean metric. In appendix A we

describe one such way of generating the Euclidean solution. A brief summary is as fol-

lows. Let us recall that stationary axi-symmetric solutions of vacuum Einstein equations

in five-dimensions can be expressed in canonical coordinates in the form [14]

ds2 = Gab(ρ, z) dxadxb + e2ν(ρ,z)(dρ2 + dz2) , with detG = ρ2 . (2.6)

Note that the determinant of the Killing matrix Gab is positive, since we are working

in Euclidean gravity. In canonical coordinates the vacuum Einstein equations yield a

decoupled set of equations for the Killing metric Gab. These equations can be equivalently

formulated as a system of first order differential equations (the Lax pair) for the so-called

generating matrix. One ‘dresses’ the generating matrix of the seed solution appropriately

to obtain a new solution.

We follow the procedure of ref. [22]. We first remove a soliton and an anti-soliton with

‘trivial’ BZ vectors from the five dimensional Euclidean Schwarzschild metric, and then add

the same soliton and the anti-soliton with ‘nontrivial’ BZ vectors. Changing the coordinates

from canonical to more standard radial coordinates, and choosing convenient names for the

parameters added through the BZ vectors, we obtain the metric (2.1) together with the

bound (2.5). A step-by-step description of the procedure is presented in appendix A.

Shifted coordinates. For the ensuing discussion the following coordinates are more

useful to work with. These coordinates allow to match rather directly the charged version

of the Myers-Perry instanton to the over-rotating Cvetič-Youm metric. The coordinate

1Nevertheless, with a slight abuse of language we will continue to call metric (2.1) — and its six-

dimensional uplift (2.3) — the Myers-Perry instanton.
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transformation is

r2 −→ r2 + a2
1 + a2

2 −M, (2.7)

θ −→ π

2
− θ. (2.8)

Along with these coordinate shifts, we also interchange coordinates φ and ψ and names of

the rotation parameters a1 and a2:

φ ←→ ψ, (2.9)

a1 ←→ a2. (2.10)

The resulting metric reads

ds2
6d =− dt2 + dy2 +

M

Σ̃

[
dy + a1 sin2 θ dφ+ a2 cos2 θ dψ

]2
+ (r2 + a2

2 −M) sin2 θ dφ2 + (r2 + a2
1 −M) cos2 θ dψ2 +

Σ̃

∆̃
dr2 + Σ̃ dθ2, (2.11)

where

Σ̃ = r2 + a2
1 sin2 θ + a2

2 cos2 θ −M, (2.12)

∆̃ = r2

(
1 +

a2
1

r2

)(
1 +

a2
2

r2

)
−M. (2.13)

2.2 Dimensional reduction to 3d and Weyl reflection

As our next step we will apply a solution generating technique based on three-dimensional

duality symmetries on the Myers-Perry instanton metric (2.11). Thus, we begin by dimen-

sionally reducing down to three dimensions.

The six-dimensional truncation of IIB theory on T 4 that we work with is

L6 = R6 ?6 1− 1

2
?6 dΦ ∧ dΦ− 1

2
e
√

2Φ ?6 F[3] ∧ F[3], (2.14)

where the field strength F[3] = dC[2] comes from the Ramond-Ramond sector of the ten-

dimensional IIB theory. The six-dimensional metric (2.11) is viewed as a solution of the-

ory (2.14), specifically a solution with trivial dilaton Φ and two-form field C[2].

Three-dimensional dualities. Upon dimensional reduction a large number of grav-

ity and supergravity theories become gravity coupled to form-fields and non-linear sigma

models. Such non-linear sigma models are maps from a lower-dimensional base space to a

target space. The target space is generally a coset G/K. The group G is the group of global

isometries of the target space. The group K is the isotropy subgroup of the target space

— a subgroup of G. The symmetry group G of a sigma model can be used to generate new

solutions of the higher-dimensional gravity theory by applying a group transformation to

a coset representative of a seed solution.

These techniques become particularly powerful when the reduction is performed down

to three dimensions. In three dimensions all higher dimensional form fields can be dualized
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to scalars. As a result the symmetry groups become significantly enhanced, and one has at

ones disposal a rich solution generating technique. Further richness comes from changing

the details of the dimensional reduction. For example, by changing the order of the time-

like reduction within the whole sequence of reductions, one can change the denominator

subgroup.

These techniques have been presented at several places in the literature, see e.g., [28];

we will not review it here. We refer the reader to appendix B for some more details and

notation. The key quantity in this method to work with is a matrix M that encodes all

three-dimensional scalars. These are obtained by performing a sequence of Kaluza-Klein

reductions down to 3d, together with the dualisation of the one-forms that are left over.

The matrix M belongs to the coset G/K.

For the theory (2.14) the coset model is

SO(4, 4)

SO(2, 2)× SO(2, 2)
, (2.15)

where the embedding of the denominator subgroup in the numerator group depends on

the details of the dimensional reduction. The specific ordering of the Kaluza-Klein reduc-

tions we adopted was over y, φ, and t, respectively. Group transformations with elements

belonging to the denominator subgroup act as

M→ g−1 M g, for g ∈ SO(2, 2)× SO(2, 2). (2.16)

Thus, from the metric (2.11) we construct the SO(4,4) matrixM, roughly by exponentiat-

ing the various group generators — each generator being weighted by one of the 3d scalars

— and multiplying them all together. The group SO(4,4) has dimension 28. The Cartan

subalgebra is spanned by four generators, denoted HΛ, with Λ = 0, . . . , 3. The remaining

24 generators are broken into ‘positive’ (EΛ, EqΛ , EpΛ) and ‘negative’ (FΛ, FqΛ , FpΛ) ele-

ments and the number of available 3d scalars (sixteen) matches the number of Cartan plus

positive generators. More details are given in appendix B. We adopted the same basis for

the so(4, 4) algebra as the one defined in refs. [29, 30].

Weyl reflection. On the resulting matrix M we act with the following group element

gw = exp
[
i
π

2
Kq2

]
exp

[
i
π

2
Kq3

]
, (2.17)

as

Mw = g−1
w Mgw. (2.18)

Here, we have defined KqΛ := EqΛ − EqΛ
], where the symbol ] denotes the generalised

transpose [see appendix B below eq. (B.15)]. Although complex numbers appear in defi-

nition (2.17), it can be checked by direct inspection that the resulting matrix is real and

indeed belongs to the denominator SO(2, 2)×SO(2, 2) subgroup of the numerator SO(4, 4)

group. We follow the so(4, 4) Lie algebra conventions of [29, 30].

In the numerator SO(4, 4), gw is a Weyl reflection. Of particular interest is the action

of this transformation on the Euclidean gravity truncation to which the metric (2.11)
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belongs. As is discussed in detail in appendix B, its action changes the truncation from

Euclidean five-dimensional vacuum gravity to Lorentzian five-dimensional vacuum gravity.

The bound (2.5) on the parameters does not change. The resulting matrix Mw can be

thought of as describing ‘over-rotating’ Lorentzian Myers-Perry metric. This needs to be

contrasted with the inverse scattering construction of the Lorentzian Myers-Perry metric,

e.g., as presented in [22], where the bound (2.5) cannot be fulfilled with real pole positions

in the dressing transformations. A very similar transformation was used in [18]. However,

details are not identical.

Of course, one could have taken directly, as a starting point, the ‘over-rotating’ Myers-

Perry solution and then charge it up as we will do next. But by following this longer route

we emphasise that the JMaRT smooth solutions can be systematically constructed from

gravitational instantons.

2.3 Charging transformations and 6d fields

On the resulting matrixMw we act with a charging transformation that adds three electric

charges. We choose names for the charging parameters so that the final answer conforms

to the JMaRT notation. The charging transformation is

gc = exp [δpKq1 ] exp [−δ1Kq2 ] exp [δ5Kq3 ] , (2.19)

acting as

Mfinal = g−1
c Mwgc. (2.20)

We read scalars from the matrix Mfinal and build the metric, dilaton, and the C-field

in six-dimensions. We find an answer identical to the fields given in reference [4]. Certain

details on the construction of the six-dimensional fields are provided in appendix C. For

completeness, and for use in appendices, we write the final fields here. The six-dimensional

Einstein frame metric reads

ds2
6d = − f√

H̃1H̃5

(dt2 − dy2) +
M√
H̃1H̃5

(spdy − cpdt)2

+

√
H̃1H̃5

(
r2dr2

(r2 + a2
1)(r2 + a2

2)−Mr2
+ dθ2

)
+

(√
H̃1H̃5 − (a2

2 − a2
1)

(H̃1 + H̃5 − f) cos2 θ√
H̃1H̃5

)
cos2 θdψ2

+

(√
H̃1H̃5 + (a2

2 − a2
1)

(H̃1 + H̃5 − f) sin2 θ√
H̃1H̃5

)
sin2 θdφ2

+
M√
H̃1H̃5

(a1 cos2 θdψ + a2 sin2 θdφ)2

+
2M cos2 θ√

H̃1H̃5

[(a1c1c5cp − a2s1s5sp)dt+ (a2s1s5cp − a1c1c5sp)dy]dψ

+
2M sin2 θ√
H̃1H̃5

[(a2c1c5cp − a1s1s5sp)dt+ (a1s1s5cp − a2c1c5sp)dy]dφ, (2.21)
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where

H̃i = f +M sinh2 δi, f = r2 + a2
1 sin2 θ + a2

2 cos2 θ, (2.22)

and ci = cosh δi, si = sinh δi. The six-dimensional two-form is given by

C2 = −Ms1c1

H̃1

dt ∧ dy − Ms5c5

H̃1

(r2 + a2
2 +Ms2

1) cos2 θdψ ∧ dφ (2.23)

+
M cos2 θ

H̃1

[(a2c1s5cp − a1s1c5sp)dt+ (a1s1c5cp − a2c1s5sp)dy] ∧ dψ

+
M sin2 θ

H̃1

[(a1c1s5cp − a2s1c5sp)dt+ (a2s1c5cp − a1c1s5sp)dy] ∧ dφ,

and finally the six-dimensional dilaton Φ, cf. (B.1), reads

e2
√

2Φ =
H̃1

H̃5

. (2.24)

A discussion of the rod structure for this metric is presented in appendix D.

3 Conclusions

In this paper we have presented an alternative and more direct (inverse-scattering based)

construction of the over-rotating Cvetič-Youm metric. We have generalized — and at

the same time simplified — the construction of [18]. Certain further restrictions on the

parameters of the resulting 6d fields give rise to a discrete family of non-extremal smooth

bound states of the D1-D5-P system [4].

Another objective of this work was to emphasise the idea that the over-rotating Cvetič-

Youm metric can be viewed as a charged version of the Myers-Perry instanton metric.

Indeed, this picture is strongly suggested by the similarities between the rod structures of

the two metrics. Although the Cvetič-Youm geometry is not a vacuum solution, from the

metric alone one can still define a rod structure and this was presented in appendix D.

More generally, one may hope that adding appropriate charges to gravitational instan-

tons might lead to a class of non-supersymmetric fuzzballs. It will be very exciting if this

circle of ideas can be pushed further to construct a class of multi-bubble non-extremal

fuzzball solutions. Given the remarkable success that the inverse scattering method has

had with black rings, we expect that progress should be possible on “three-center” non-

extremal solutions. This may be achieved by generalising the present study by taking a

(yet unknown) Euclidean black ring as the starting point for the charging transformation.

It will also be interesting to understand the recent construction of [10] from the point of

view pursued in this paper.
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A Inverse scattering construction of the Myers-Perry instanton

In the interest of providing a complete derivation of the JMaRT solutions, we present in

this appendix all the details necessary to generate the Myers-Perry instanton from the

Euclidean Schwarzschild solution using the Inverse Scattering Method (ISM). As is well

known, the procedure is not uniquely determined. Below we describe, step by step, one

such way of generating this solution. To set the context, and also to fix some notation, we

begin by offering a very concise account of the formalism.

Overview of the procedure. Recall that solutions of the vacuum Einstein equations

in D = 5 dimensions, Rµν = 0, that are both stationary and (doubly-)axially symmetric

(thus possessing D-3 commuting Killing vector fields) can always be expressed in canonical

coordinates in the form [14]2

ds2 = Gab(ρ, z) dxadxb + e2ν(ρ,z)(dρ2 + dz2) , with detG = ρ2 . (A.1)

In these coordinates the vacuum Einstein equations yield a decoupled elliptic PDE for the

Killing metric Gab. This can be equivalently formulated as a system of first order linear

equations (the Lax pair) for the so-called generating matrix, which depends on an additional

variable (the spectral parameter). A linear transformation on this generating matrix —

in standard terminology, one refers to it getting dressed — takes us to a new solution of

the same field equations. Under the assumption of a linear transformation that adds only

simple poles in the spectral parameter complex plane (i.e. a solitonic transformation) the

whole procedure reduces to a sequence of algebraic calculations [19–21]. The determination

of the conformal factor e2ν can be straightforwardly accomplished by a line integral once

the Killing matrix is found. Nevertheless, even this can be sidestepped since the conformal

factor of the new solution can be directly obtained from that of the seed solution via

another simple algebraic evaluation.

Details of the ISM construction. After this lightening review of the ISM, we now

move on to the construction of the 5D Euclideanized Myers-Perry geometry, closely fol-

lowing Pomeransky’s derivation of 5D Lorentzian Myers-Perry [22]. This instanton can

be connected with the zero-charge JMaRT solution by later adding a flat timelike direc-

tion [18]. The construction proceeds as follows:

1. The starting point is the diagonal metric corresponding to 5D Euclidean Schwarzschild,

which is written in the form (A.1), with G = G0 and ν = ν0 (the “0” in the subscript

2Since we are working in the Euclidean section, the determinant of the Killing matrix Gab is positive.

For Lorentzian solutions we would have an extra minus sign on the far right hand side of (A.1).
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y

ϕ

ψ
b1 b2

(0, 1, 0)

(1, Ωϕ, Ωψ)

(0, 0, 1)

Figure 1. Rod diagram for the 5D Euclidean Myers-Perry geometry. The direction for each rod

is indicated above the corresponding segment. The rod diagram for the seed solution (Euclidean

Schwarzschild) is trivially obtained by setting both “angular velocities” Ωφ and Ωψ to zero. The

points b1 and b2 indicate turning points where regularity of the solution has to be checked explicitly.

refers to the seed solution),

(G0)ab = diag

{
µ1

µ2
, µ2,

ρ2

µ1

}
. (A.2)

The rod diagram for such a solution is displayed in figure 1 (Ωφ and Ωψ must be set

to zero). The Killing sector is parametrized by coordinates (y, φ, ψ) and the solitons

and anti-solitons are defined, respectively, by

µi =
√
ρ2 + (z − bi)2 − (z − bi) , µi = −

√
ρ2 + (z − bi)2 − (z − bi) . (A.3)

They satisfy µiµi = −ρ2.

2. The conformal factor for this seed is algorithmically determined by following the

procedure described in ref. [31],

e2ν0 = k2 µ2

(
µ1µ2 + ρ2

)(
µ2

1 + ρ2
) (
µ2

2 + ρ2
) . (A.4)

The multiplicative constant k can be fixed by requiring asymptotic flatness.

3. From the seed Killing matrix (A.2) we:3

(a) remove a soliton at z = b1 with trivial BZ vector m
(1)
0 = (0, 0, 1), which amounts

to dividing Gψψ by −ρ2/µ2
1;

(b) remove an anti-soliton at z = b2 with trivial BZ vector m
(2)
0 = (0, 1, 0), which

amounts to dividing Gφφ by −µ2
2/ρ

2;

(c) multiply the whole matrix by a factor −µ2/µ1, for convenience.

The Killing matrix thus obtained is

(G′0)ab = diag {−1, µ1, µ2} . (A.5)

This will serve as the seed for the next solitonic transformation.

3This step is necessary in D > 4 to ensure that the final solution satisfies the constraint detG = ρ2 in

eq. (A.1). Refer to e.g. refs. [32–34] for concise accounts of the details of the ISM procedure.
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4. Now we add the (anti-)solitons that we removed previously but with nontrivial BZ

vectors. Namely, we:

(a) add a soliton at z = b1 with BZ vector m
′(1)
0 = (A1, 0, C1);

(b) add an anti-soliton at z = b2 with BZ vector m
′(2)
0 = (A2, B2, 0).

At this stage we have obtained a new Killing matrix. Clearly, if we set A1 = A2 = 0

and C1 = B2 = 1 (and rescale to revert step 3.(c)) this just undoes the previous step

and so we must retrieve the original solution. It is the presence of non vanishing coef-

ficients Ai that mixes y (Euclidean time) and angular components. In the Lorentzian

picture this would correspond to turning on angular velocities.

5. Rescale again the Killing matrix (multiply it by −µ1/µ2) to undo the scaling of step

3.(c). This yields a physical metric satisfying the constraint detG = ρ2. However,

the orientation of the rods is non standard: the solitonic transformation performed to

mix y direction and angular components simultaneously rotated the directions of the

outermost rods. So an analysis of the rods’ orientation must be done at this point,

which we turn to next.

6. It is convenient to set b1 = −b2 = −α, with α > 0, without loss of generality.4 A rod

structure analysis reveals that:

(a) the rightmost rod (rod 3: ρ = 0, z > α) has orientation
(
−4αA2

B2
, 1, 4αA1A2

B2C1

)
;

(b) the leftmost rod (rod 1: ρ = 0, z < −α) has orientation
(
−4αA1

C1
, 4αA1A2
B2C1

, 1
)

.

As a useful check, we confirm that a trivial solitonic transformation (Ai = 0) does

not change the direction of the rods.

7. The linear transformation G→ ΛTGΛ, with

Λ =

 1 −4A2C1α −4A1B2α

0 B2C1 4A1A2α

0 4A1A2α B2C1

 , (A.6)

brings us back to standard orientation (so that rod 1 and rod 3 are aligned with

directions (0, 0, 1) and (0, 1, 0), respectively). In the process the finite middle rod 2

acquires direction (1,Ωφ,Ωψ), where

Ωφ =
A2

C1(4αA2
2 −B2

2)
, Ωψ =

A1

B2(4αA2
1 − C2

1 )
. (A.7)

We have thus generated the Euclidean Myers-Perry solution.

4The metric (A.1) with G and e2ν depending on z only through the combinations µi is invariant under

simultaneous shifts of the z coordinate and the bi parameters.
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Final metric in convenient coordinates. The solution as obtained above (but not

explicitly shown), written in canonical coordinates (ρ, z), is not particularly illuminating

and it is desirable to express it in a more compact form. One useful system is the choice

of prolate spherical coordinates (u, v), related with the canonical coordinates through

ρ = α
√

(u2 − 1) (1− v2) , z = αuv , (A.8)

where u ≥ 1 and −1 ≤ v ≤ 1.

Besides changing coordinates, it is also convenient to redefine the parameters. The

parameters characterising the solution are α,A1/B2, A2/C1. The dependence of the solu-

tion only on the ratios A1/B2 and A2/C1 is a consequence of the invariance of the ISM

procedure under rescalings of the BZ vectors, m
(i)
0 → λim

(i)
0 , with λi 6= 0. Following

Pomeransky [22] we fix the normalisation

B2
2C

2
1 − 16α2A2

1A
2
2 = 1 , (A.9)

which simplifies intermediate steps of the calculation. Then we define

M = −4α
(
4αA2

1 − C2
1

) (
4αA2

2 −B2
2

)
, (A.10)

a1 = 4αA2C1 , (A.11)

a2 = 4αA1B2 . (A.12)

Note that α, a1, a2 and M are not all independent since they satisfy

M = a2
1 + a2

2 − 2
√

4α2 + a2
1a

2
2 . (A.13)

The requirement that α should be real and positive, i.e., the location of rod endpoints are

as described above, implies

M < (a1 − a2)2. (A.14)

After applying all these transformations we obtain the Euclidean Myers-Perry solution

in prolate spherical coordinates. We present the final metric in a different set of coordinates,

(r, θ), closely related to the coordinates used in the Cvetič-Youm and JMaRT papers. They

are related with (u, v) through

α2
(
u2 − 1

) (
1− v2

)
=
r2

4
∆ sin2(2θ) , αuv =

r2

2

(
1− a2

1 + a2
2 −M

2r2

)
cos(2θ) , (A.15)

where

∆ ≡ r2

(
1− a2

1

r2

)(
1− a2

2

r2

)
+M . (A.16)

It is convenient to introduce the following combination:

Σ = r2 − a2
1 cos2 θ − a2

2 sin2 θ. (A.17)

In terms of these new coordinates the metric is expressed as

ds2 = dy2 +
M

Σ

[
dy + a1 sin2 θ dφ+ a2 cos2 θ dψ

]2
+ (r2 − a2

1) sin2 θ dφ2 + (r2 − a2
2) cos2 θ dψ2 +

Σ

∆
dr2 + Σ dθ2. (A.18)
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This metric is to be compared with the five-dimensional spatial part of eq. (4.13) in ref. [18],

which corresponds to the singly spinning case. Indeed, that line element is recovered by

setting a2 = 0, and redefining r → r̃ (note that Σ becomes equal to f̃ in [18].)

B From 6d to 3d and back

In this appendix we present some details on 6d to 3d reduction. We follow conventions

of [30]. We focus on details complementary to what is already presented in that reference.

Notation. A well known truncation of IIB supergravity on T4 has 6D Lagrangian

L6 = R6 ?6 1− 1

2
?6 dΦ ∧ dΦ− 1

2
e
√

2Φ ?6 F[3] ∧ F[3], (B.1)

where the field strength F[3] = dC[2] comes from the RR sector of the ten-dimensional IIB

theory. As discussed in appendix A of [30] upon dimensional reduction on a spacelike circle

the 6D theory reduces to the U(1)3 supergravity in 5D. The reduction ansatz for the metric

and the 3-form field strength are

ds2
6 = e

−
√

3
2

Ψ
(
dz6 +A1

[1]

)2
+ e

Ψ√
6ds2

5, (B.2)

F[3] = F 5d
[3] + dA2

[1] ∧
(
dz6 +A1

[1]

)
, (B.3)

with

F
(5d)
[3] = dC

(5d)
[2] − dA

2
[1] ∧A

1
[1]. (B.4)

After dualizing C
(5d)
[2] to a vector A3

[1] in 5D using the method of Lagrange multipliers, the

triality structure of U(1)3 supergravity becomes manifest.

Now we have obtained two scalars in five-dimensions, namely Ψ and Φ. We parame-

terise the U(1)3 supergravity scalars as

h1 = e

√
2
3

Ψ
, h2 = e

−
√

1
6

Ψ−
√

1
2

Φ
, h3 = e

−
√

1
6

Ψ+
√

1
2

Φ
, (B.5)

which manifestly satisfy h1h2h3 = 1. Further dimensional reduction along a spacelike

direction with the ansatz

ds2
5 = f2

(
dz5 + Ǎ0

[1]

)2
+ f−1ds2

4, (B.6)

AI[1] = ǍI[1] + χI
(
dz5 + Ǎ0

[1]

)
, (B.7)

gives rise to the N = 2 STU model in 4D. The scalars χI and hI combine to form complex

scalars of the STU theory zI = −χI + ifhI ≡ xI + iyI .

Further dimensional reduction over a timelike direction gives an SO(4, 4)/(SO(2, 2)×
SO(2, 2)) coset model. The ansatz for this reduction step is

ds2
4 = −e2U (dt+ ω3)2 + e−2Uds2

3, (B.8)

ǍΛ
[1] = AΛ

3 + ζΛ(dt+ ω3), (B.9)
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where ω3 and AΛ
3 are 1-forms in 3D and Λ = 0, . . . , 3. We dualise these vectors in 3D

to scalars using a similar Lagrange multiplier method as mentioned before. The duality

relations are

−dζ̃Λ = e2U (ImN)ΛΣ ?3 (dAΣ
3 + ζΣdω3) + (ReN)ΛΣdζ

Σ, (B.10)

and

−dσ = 2e4U ?3 dω3 − ζΛdζ̃Λ + ζ̃Λdζ
Λ, (B.11)

where ζ̃Λ and σ are pseudo-scalars dual to AΛ
3 and ω3 respectively. The ReN and ImN

are the real and imaginary parts of the period matrix N of the STU theory and they are

constructed out of the χI ’s and hI ’s, respectively.

Therefore, in 3D we have a total of sixteen scalars

ϕa = {U, zI , z̄I , ζΛ, ζ̃Λ, σ}, (B.12)

parameterising an SO(4, 4)/(SO(2, 2)× SO(2, 2)) coset model. Further details on this set-

up can be found in appendix A of [30], where conventions for the so(4, 4) Lie algebra are

also given. The resulting 3D Lagrangian is

L3 = R3 ?3 1− 1

2
Gab ?3 dϕ

a ∧ dϕb. (B.13)

The whole point of the cumbersome procedure described above was to reduce the theory

to such a sigma model.

If we perform the first dimensional reduction over a timelike direction and the following

reductions over spacelike directions we get a different SO(4, 4)/(SO(2, 2)× SO(2, 2)) coset

model. One can take other combinations as well. Such reductions are used in different

contexts, see [18, 35].

The scalar coset space can be parameterised in the Iwasawa gauge by the coset element

V = e−UH0 ·

 ∏
I=1,2,3

e−
1
2(log yI)HI · e−xIEI

 · e−ζΛEqΛ−ζ̃ΛEpΛ · e−
1
2
σE0 . (B.14)

The matrix M is defined as

M = V]V, (B.15)

where θ] = η′θT η′
−1

for all θ ∈ so(4, 4) and η′ =diag(−1,−1, 1, 1,−1,−1, 1, 1) is invariant

under the action of the maximal subgroup SO(2, 2)× SO(2, 2).

Scalars and some relations from matrix M. We define a matrix N that conveniently

encodes all one-forms in three dimensions, N = M−1dM. Under group transformation

the matrix N transforms as N → g−1N g. From this matrix one can extract duals of one
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forms [36] as follows,

?3dω3 = N74, (B.16)

?3dA
0
3 = N71, (B.17)

?3dA
1
3 = N81, (B.18)

?3dA
2
3 = N76, (B.19)

?3dA
3
3 = N72. (B.20)

Having obtained ?3dω3 one can straightforwardly integrate to construct ω3. This procedure

is emphasised in references [36, 37]5 for STU supergravity. For minimal supergravity it was

noted in [38], though in that set-up it did not bring much technical advantage. For STU

theory this procedure indeed simplifies calculations.

The remaining three-dimensional scalars are determined directly from the matrix M.

There are many ways to extract scalars from the matrixM. Among others, we have found

the following equations useful [36]:

e4U =
1

M33M44 −M2
34

, (B.21)

ζ0 = e4U (M31M34 −M41M33) , (B.22)

ζ1 = e4U (M31M44 −M41M34) , (B.23)

ζ2 = e4U (M64M33 −M63M34) , (B.24)

ζ3 = e4U (M32M34 −M42M33) , (B.25)

x1 =
M34

M33
, (B.26)

x2

y2y3
= M16 + e4U (M34M41M63 +M31M34M64 −M31M44M63 −M33M41M64),

x3

y2y3
= M12 + e4U (M31M32M44 +M33M41M42 −M31M34M42 −M32M34M41),

1

y2y3
= M11 + e4U (M33M2

41 +M44M2
31 − 2M31M34M41), (B.27)

y2
1 =

e−4U

M2
33

, (B.28)

y3

y2
= M22 −

x2
3

y2y3
+
M2

23

M33
+ e4U (M32M34 −M33M42)2

M33
. (B.29)

Details on Weyl reflection. The truncation to pure five-dimensional Lorentzian gravity

corresponds to taking the six-dimensional metric of the form

ds2
6 = dy2 + ds2

5, (B.30)

and setting Φ = 0 and F[3] = 0. In terms of the three-dimensional coset scalars, this

truncation corresponds to setting

xI = 0, yI = y, ζI = 0, ζ̃I = 0. (B.31)

5We thank Geoffrey Compère for discussions on this point and for sharing some of his notes with us.
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Therefore, the ‘active’ fields are

U, y, σ, ζ0, ζ̃0. (B.32)

These five fields correspond to an SL(3, R) truncation of SO(4, 4), generated by the elements

H0, H1 +H2 +H3, Eq0 , Ep0 , E0, Fq0 , Fp0 , F0. (B.33)

Under conjugation (2.17), this SL(3, R) gets mapped to another SL(3, R) generated by,

H1, H0 +H2 +H3, Fp1 , Ep0 , E1, Ep1 , Fp0 , F1. (B.34)

This new SL(3, R) corresponds to ‘active’ fields

y1, U, ζ̃0, ζ̃1, x1. (B.35)

We would like to compare this to a truncation to Euclidean five-dimensional, a metric

that arises as

ds2
6 = −dt2 + ds2

5, (B.36)

and where the six-dimensional dilaton and the three-form field are set to zero. This Eu-

clidean gravity truncation corresponds to setting

y1 = f3e−4U , (B.37)

y2 = y3 = e2U , (B.38)

ζ̃2 = ζ̃3 = 0, (B.39)

ζ0 = ζ1 = ζ2 = ζ3 = 0, (B.40)

x2 = x3 = 0, (B.41)

σ = 0, (B.42)

which conforms to (B.35).

Three-dimensional seed scalars. For calculational simplicity we work with coordi-

nate κ,

κ := cos θ, (B.43)

instead of the polar angle θ. For writing equations in the main text we use θ.

We perform a Kaluza-Klein reduction over y, φ, and t respectively. In three-dimensions

we use the convention εrκψ = +
√

+ det g3d. The non-zero scalars in three-dimensions for

the metric (2.11) are

e4U =
Γ̃

Σ̃
(1− κ2), ζ̃0 = −a1a2M

(1− κ2)2

Σ̃
, (B.44)

ζ̃1 = −a2M
(1− κ2)

Σ̃
, x1 = −a1M

(1− κ2)

Σ̃ +M
, (B.45)

y1 =

√
Σ̃Γ̃

Σ̃ +M

√
1− κ2, y2 = y3 =

√
Γ̃

Σ̃

√
1− κ2, (B.46)
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where

Σ̃ = r2 + a2
1(1− κ2) + a2

2κ2 −M, (B.47)

Γ̃ = (r2 + a2
2)Σ̃ +Ma2

2(1− κ2). (B.48)

Note that eq. (B.47) reproduces the relation (2.12) introduced earlier. The three-dimensional

base metric is

ds2
3 =

Γ̃

∆̃
(1− κ2)dr2 + Γ̃dκ2 + ∆̃κ2(1− κ2)dψ2, (B.49)

where ∆̃ was introduced in (2.13).

Six-dimensional metric. Using scalars (B.44)–(B.46) we construct the matrix M. We

act on this matrix M with the Weyl reflection transformation (2.17) and then we perform

the charging transformation (2.20). From the resulting matrixM we read all scalars (those

obtained in 3d without resorting to dualisation of one-forms) and from the corresponding

matrix N the three-dimensional one-forms. These pieces allow us to construct the 6d

metric. We obtain the over-rotating Cvetič-Youm metric (2.21). In these calculations we

have followed the conventions for dimensional reduction and group theory of [30]. We have

adapted minus signs in the charging transformation (2.20), so that the final answer is same

as the JMaRT notation.

A construction of the C-field is more tedious, which we describe next.

C Construction of the C-field

In principle all the information about the C-field is also contained in the three-dimensional

scalars. Though, in practice, extracting the C-field is tedious. We have proceeded in the

following manner.

Overview of the procedure. An expression for six-dimensional three form F[3] in terms

of five-dimensional fields is [30],

F
(6d)
[3] = −(h3)−2 ?5 dA

3
[1] + dA2

[1] ∧ (dy +A1
[1]). (C.1)

In order to compute F
(6d)
[3] we need (i) an explicit expression for the dilatonic scalar h3,

cf. (B.5), (ii) five-dimensional metric to perform the hodge star, and (iii) the three one-

forms in five-dimensions.

The dilatonic scalar h3 can be obtained from values of the scalars yI from the final

matrix Mfinal. We get

h3 =

(
H̃pH̃1

H̃2
5

) 1
3

, (C.2)

where

H̃i = r2 + a2
1(1− κ2) + a2

2κ2 +Ms2
i . (C.3)
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Five-dimensional metric. The following form of the five-dimensional metric is quite

useful [11] to perform the Hodge star operation,

ds2 = −F 2f(f −M)(dt+ k)2 + F−1ds2
base. (C.4)

It is obtained by dimensional reduction of the 6d dimensional metric (2.21) over the y-

direction. The four-dimensional base metric in (C.4) is

ds2
base =

r2

(r2 + a2
1)(r2 + a2

2)−Mr2
dr2 +

dκ2

1− κ2

+ (f(f −M))−1

{
(f(f −M) + f(a2

2 − a2
1)(1− κ2) +Ma2

1(1− κ2))(1− κ2)dφ2

+ (f(f −M) + f(a2
1 − a2

2)κ2 +Ma2
2κ2)κ2dψ2

+ 2Ma1a2(1− κ2)κ2dφdψ

}
. (C.5)

The one form k in (C.4) is

k =

[
Ms1s5sp

f
a1 −

Mc1c5cp
f −M

a2

]
(1− κ2)dφ+

[
Ms1s5sp

f
a2 −

Mc1c5cp
f −M

a1

]
κ2dψ, (C.6)

and the functions F and f are,

F = (H̃1H̃5H̃p)
−1/3, (C.7)

f = r2 + a2
1(1− κ2) + a2

2κ2. (C.8)

Five-dimensional one forms. All three one-forms in five-dimensions are required for

the construction of three-form field strength in six-dimensions. These one-forms (for I =

1, 2, 3), obtained using the matrices M and N , are

AI = AIψdψ +AIt dt+AIφdφ, (C.9)

where

A1
t = −Mspcp

H̃p

, A2
t = +

Ms1c1

H̃1

, A3
t = −Ms5c5

H̃5

, (C.10)

and

A1
φ =

M(a1cps1s5 − a2spc1c5)(1− κ2)

H̃p

A1
ψ =

M(a2cps1s5 − a1spc1c5)κ2

H̃p

(C.11)

A2
φ = −M(a1spc1s5 − a2cps1c5)(1− κ2)

H̃1

A2
ψ = −M(a2spc1s5 − a1cps1c5)κ2

H̃1

(C.12)

A3
φ =

M(a1sps1c5 − a2cpc1s5)(1− κ2)

H̃5

A3
ψ =

M(a2sps1c5 − a1cpc1s5)κ2

H̃5

. (C.13)

Some of our signs are different from those of reference [11], but this is simply because some

of our conventions are different6 and our calculations are organised differently.

6Note that we use the convention εrκψ = +
√

+ det g3d, where κ = cos θ.
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Final answer. Given these expressions it is straightforward, if somewhat tedious, to

implement (C.1). We find in six-dimensions F[3] field has 12 independent components. The

first six, coming from the first term in (C.1), −(h3)−2 ?5 dA
3
[1], are

Frφt, Frφψ, Frtψ, Fκφt, Fκφψ, Fκtψ, (C.14)

and the next six coming from the second term, dA2
[1] ∧ (dy +A1

[1]), are

Frφy, Frty, Frψy, Fκφy, Fκty, Fκψy. (C.15)

From the resulting F-field a C-field can be constructed by appropriate integrations.

An answer is

C2 = Cty dt∧dy+Ctφ dt∧dφ+Ctψ dt∧dψ+Cyφ dy∧dφ+Cψφ dψ∧dφ+Cyψ dy∧dψ, (C.16)

where

Cty = +
Ms1c1

H̃1

, Cψφ = +
M

H̃1

s5c5

(
r2 + a2

2 +Ms2
1

)
κ2, (C.17)

Ctψ = −M
H̃1

(a2s5c1cp − a1c5s1sp)κ2, Ctφ = −M
H̃1

(a1s5c1cp − a2c5s1sp) (1− κ2),

Cyψ = −M
H̃1

(a1c5s1cp − a2s5c1sp)κ2, Cyφ = −M
H̃1

(a2c5s1cp − a1s5c1sp) (1− κ2).

These expressions match the corresponding expressions in [4] upto an over-all minus sign

(which is convention dependent). In the main text, cf. (2.23), we have flipped the over-all

minus sign, and have employed the polar angle θ instead of κ.

D Rod structure of the Cvetič-Youm metric

Our goal here is to understand the rod structures of the Cvetič-Youm metric, in particular

the two cases (i) black hole and (ii) fuzzball.

We recall that solutions of the vacuum Einstein equations in d dimensions with d− 2

commuting Killing vector fields are classified according to their rod structure: the rods

correspond to line sources for a generalised Poisson equation that determines the Killing

metric (see appendix A). In coordinates adapted to the isometries the metric depends

explicitly only on two variables, the canonical coordinates (ρ, z), and the rods are located

at ρ = 0. They are physically interpreted as the set of spacetime points where some Killing

vector — the associated rod direction — degenerates. In particular if the rod is spacelike

and extends to z = ±∞ this indicates an axis of rotation. If the rod is finite and timelike

(spacelike) it signals an event horizon (Kaluza-Klein bubble). We refer to [13, 14] for

further details.

The above description of rod structures applies only in vacuum, a priori. Consequently,

there is no guarantee that the Cvetič-Youm solution is amenable to such a treatment when

the charges δp, δ1 and δ5 are non vanishing. However, we will now see that the rod structure

can also be defined for this class of metrics. Since for the JMaRT fuzzball, the y direction

shrinks to zero size in the interior of the spacetime, the analysis of the rod structure is

best done in six dimensions. Our starting point is the metric (2.21). For this discussion

the order of the Killing coordinates we use is (t, φ, ψ, y).
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Case 1: Black Holes. The Cvetič-Youm metric describes black holes when M > (a1 +

a2)2. To analyze the rod structure it is convenient to introduce the prolate spherical

coordinates (u, v) and the canonical coordinates (ρ, z). In the present case the coordinate

transformation relating the radial coordinates (r, θ) used in metric (2.21) to the prolate

spherical coordinates (u, v) is

r2 =
1

2

(
M + 4uα− a2

1 − a2
2

)
, (D.1)

cos2 θ =
1

2
(1− v), (D.2)

where

α =
1

4

√
M − (a1 + a2)2

√
M − (a1 − a2)2. (D.3)

We take a1 ≥ a2 ≥ 0. Thus α > 0. The canonical coordinates (ρ, z) are related to the

prolate coordinates as

u =

√
ρ2 + (z + α)2 +

√
ρ2 + (z − α)2

2α
, (D.4)

v =

√
ρ2 + (z + α)2 −

√
ρ2 + (z − α)2

2α
. (D.5)

Note that eqs. (D.1)–(D.2) and (D.3) above are the inverses of (A.15) and (A.13), respec-

tively, upon implementation of the shift transformation (2.7)–(2.8). This makes r2∆ →
r2∆̃, cos(2θ)→ − cos(2θ) and consequently (u, v)→ (u,−v). This implies (ρ, z)→ (ρ,−z)

according to eqs. (A.8), which are just the inverses of eqs. (D.4)–(D.5).

The first rod ρ = 0, z ∈ (−∞,−α) corresponds to the degeneration of the ψ circle at

θ = π/2, i.e., its rod vector is (0, 0, 1, 0). The second rod ρ = 0, z ∈ (−α, α) corresponds

to the horizon with rod vector (1,Ωφ,Ωψ,Ωy). The Killing vector that degenerates at the

horizon is

ξ =
∂

∂t
+ Ωφ

∂

∂φ
+ Ωψ

∂

∂ψ
+ Ωy

∂

∂y
. (D.6)

Explicit expressions for Ωφ, Ωψ, and Ωy are (see also [39]),

Ωφ = +
1

γ

[
a1 − a2√

M − (a1 − a2)2
− a1 + a2√

M − (a1 + a2)2

]
, (D.7)

Ωψ = −1

γ

[
a1 − a2√

M − (a1 − a2)2
+

a1 + a2√
M − (a1 + a2)2

]
, (D.8)

Ωy =
M

γ

[
c1c5sp − s1s5cp√
M − (a1 − a2)2

+
c1c5sp + s1s5cp√
M − (a1 + a2)2

]
,

where

γ = M

[
c1c5cp − s1s5sp√
M − (a1 − a2)2

+
c1c5cp + s1s5sp√
M − (a1 + a2)2

]
. (D.9)

The third rod ρ = 0, z ∈ (α,∞) corresponds to the degeneration of the φ circle at θ = 0,

i.e., its rod vector is (0, 1, 0, 0). The rod diagram is shown in figure 2.
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t

ϕ

ψ

y
-α +α

(0, 1, 0, 0)

(1, Ωϕ, Ωψ, Ωy)

(0, 0, 1, 0)

Figure 2. Rod diagram for the Cvetič-Youm black hole. The direction for each rod is indicated

above the corresponding segment.

Case 2: Fuzzballs. For the smooth solitonic fuzzball solutions we have (a1−a2)2 > M .

The end points of the rod on the z-axis are at ±β where

β =
1

4

√
(a1 + a2)2 −M

√
(a1 − a2)2 −M. (D.10)

Note that β > 0. We introduce the prolate and the canonical coordinates exactly in the

same manner as in the black hole case. The radial coordinates (r, θ) used in metric (2.21)

are related to the prolate spherical coordinates (u, v) via

r2 =
1

2

(
M + 4uβ − a2

1 − a2
2

)
, (D.11)

cos2 θ =
1

2
(1− v), (D.12)

and the canonical coordinates (ρ, z) are related to the prolate coordinates as

u =

√
ρ2 + (z + β)2 +

√
ρ2 + (z − β)2

2β
, (D.13)

v =

√
ρ2 + (z + β)2 −

√
ρ2 + (z − β)2

2β
. (D.14)

As in the black hole case, the first rod z ∈ (−∞,−β) corresponds to the degeneration

of the ψ circle at θ = π/2, i.e., its rod vector is (0, 0, 1, 0). The third rod z ∈ (β,∞)

corresponds the degeneration of the φ circle at θ = 0, i.e., its rod vector is (0, 1, 0, 0). The

second rod ρ = 0, z ∈ (−β, β) corresponds to the degeneration of the y direction. The

determinant of the (4 × 4) Killing matrix over coordinates (t, φ, ψ, y) vanishes at ρ = 0,

which in terms of the original radial coordinate translates into

r2 = r2
+ :=

M + 4β − a2
1 − a2

2

2
. (D.15)

The fuzzball construction [4] further requires that the determinant of the (3×3) Killing

matrix over purely spatial directions (φ, ψ, y) vanishes at ρ = 0, z ∈ (−β, β), i.e., at r = r+.

So, we consider t = const slice along with r = r+. The determinant of the (3 × 3) Killing

matrix vanishes for

M = a2
1 + a2

2 − a1a2

(s2
1s

2
5s

2
p + c2

1c
2
5c

2
p)

s1s5spc1c5cp
. (D.16)
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t

ϕ

ψ

y
-β +β

(0, 1, 0, 0)

(0, Ωϕ, Ωψ, 1)

(0, 0, 1, 0)

Figure 3. Rod diagram for the JMaRT fuzzball. The direction for each rod is indicated above the

corresponding segment.

Substituting this value of M in (D.15) we get,

r2
+ = −a1a2

s1s5sp
c1c5cp

. (D.17)

The Killing vector that degenerates at the second rod ρ = 0, z ∈ (−β, β) is

ξ =
∂

∂y
+ Ωφ

∂

∂φ
+ Ωψ

∂

∂ψ
, (D.18)

with

Ωφ =
spcp

a2c1c5cp − a1s1s5sp
, Ωψ =

spcp
a1c1c5cp − a2s1s5sp

. (D.19)

The rod diagram is shown in figure 3.
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