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Abstract: The simple correlation among three lepton flavor mixing angles (θ12, θ13, θ23)

and the leptonic Dirac CP-violating phase δ is conventionally called a sum rule of lepton

flavor mixing, which may be derived from a class of neutrino mass models with flavor

symmetries. In this paper, we consider the solar lepton mixing sum rule θ12 ≈ θν12+θ13 cos δ,

where θν12 stems from a constant mixing pattern in the neutrino sector and takes the

value of θν12 = 45◦ for the bi-maximal mixing (BM), θν12 = tan−1(1/
√

2) ≈ 35.3◦ for the

tri-bimaximal mixing (TBM) or θν12 = tan−1
[
2/(
√

5 + 1)
]
≈ 31.7◦ for the golden-ratio

mixing (GR), and investigate the renormalization-group (RG) running effects on lepton

flavor mixing parameters when this sum rule is assumed at a superhigh-energy scale. For

illustration, we work within the framework of the minimal supersymmetric standard model

(MSSM), and implement the Bayesian approach to explore the posterior distribution of

δ at the low-energy scale, which becomes quite broad when the RG running effects are

significant. Moreover, we also discuss the compatibility of the above three mixing scenarios

with current neutrino oscillation data, and observe that radiative corrections can increase

such a compatibility for the BM scenario, resulting in a weaker preference for the TBM

and GR ones.
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1 Introduction

Thanks to the dedicated experimental efforts in the last two decades, our knowledge on

neutrinos has been greatly improved. It is now a well-established fact that neutrinos are

massive and three lepton flavors are significantly mixed [1]. The ongoing and forthcoming

experiments will further unravel the mysteries of neutrinos, such as the neutrino mass

ordering, the size of CP violation in the lepton sector, the absolute neutrino mass scale

and the Majorana or Dirac nature of neutrinos (i.e., whether neutrinos are their own

antiparticles). On the other hand, future neutrino oscillation experiments can also measure

the currently known mixing parameters to a higher precision level.

The precision measurements of neutrino mixing parameters will provide us with a great

opportunity to test the neutrino mass models that account for both tiny neutrino masses

and large lepton flavor mixing. Although the theoretical predictions from neutrino mass

models are often model-dependent, there actually exist some generic model-independent

ones. One example of these model-independent predictions is the sum rule that imposes

a relation among absolute neutrino masses [2–11] or neutrino mixing parameters [12–22].

Given the fact that these sum rules are usually derived from neutrino mass models with fla-

vor symmetries that are supposed to work at a superhigh-energy scale, one then inevitably

needs to take into account the corrections to neutrino masses and mixing parameters from

the RG running. For instance, in a recent work [11], the RG running effects on the sum

rule of neutrino masses have been investigated.
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In this paper, we study the impact of RG running effects on the sum rule of lepton

flavor mixing. As is well known, the RG running effects on the lepton mixing parameters

are insignificant in the Standard Model (SM), so the sum rule can be directly confronted

with neutrino oscillation data. We therefore consider scenarios that go beyond the SM,

and for illustration we choose to work within the framework of MSSM, as it is known that

large RG running effects on lepton mixing parameters can be present if tan β is relatively

large. Moreover, since in MSSM the mixing angle θ12 is much more sensitive to the running

effects than the other two mixing angles θ13 and θ23 [23–28], we then examine only the sum

rule for θ12 or the so-called solar mixing sum rule, which can be derived from a general

class of flavor symmetry models. To the leading order, such a sum rule is approximately

given as θ12 ≈ θν12 + θ13 cos δ [12–15], where θν12 stems from a constant mixing pattern in

the neutrino sector and takes the value of θν12 = 45◦ for the BM mixing [29–32], θν12 =

tan−1(1/
√

2) ≈ 35.3◦ for the TBM mixing [33–36] or θν12 = tan−1
[
2/(
√

5 + 1)
]
≈ 31.7◦ for

the GR mixing [37–39].1 According to the latest global-fit analysis of neutrino oscillation

data, as shown in table 1, one can observe that imposing the aforementioned sum rule

directly at the low-energy scale would yield a prediction of δ ≈ 180◦ for the BM mixing,

while δ ≈ 90◦ or 270◦ for the TBM and GR mixings. These predictions are valid in the case

when RG corrections are insignificant, so a future precise measurement of δ can be used to

discriminate BM from the other two. The further discrimination between TBM and GR

would require an even higher precision, which may not be reached in a near future.

Our study is different from ref. [11] and other relevant works [21] in several aspects.

First, only the sum rule among three mixing angles (θ12, θ13, θ23) and the Dirac CP-violating

phase δ is considered, but neutrino masses (m1,m2,m3) and the Majorana CP-violating

phases (ϕ1, ϕ2) are set to be free. Second, a particular attention is given to the unknown

CP-violating phase δ. We investigate how the RG running effects modify the predicted

values of δ from the solar mixing sum rule that is valid at a superhigh-energy scale. Quan-

titatively, the Bayesian statistical approach is adopted to calculate the posterior distribu-

tion of δ at the low-energy scale. We find that the prediction for δ is quite sensitive to RG

corrections; the modification can be of order O(10◦), or even 180◦ in some extreme cases.

Such modifications would complicate the test on a certain solar mixing sum rule, and also

blur the discrimination among different solar mixing sum rules. Finally, the compatibility

of the sum rule corresponding to the BM, TBM or GR mixing with neutrino oscillation

data is examined by including the running effects. In order to fully test these mixing sum

rules, one needs to first find out if the running effects are important or not. This might

be achieved in the future by pinning down the neutrino mass ordering and the absolute

neutrino mass scale, and by constraining the value of tan β in the MSSM. It should be

noted that the above findings are restricted to the scenario of MSSM. For other possible

1There exist alternative mixing patterns involving the golden ratio, which assume θν12 =

cos−1
[
(
√

5 + 1)/4
]

= 36.0◦ [40, 41], or θν12 = tan−1
[
2/(
√

5 + 3)
]

= 20.9◦ [42]. In the former case, the

resultant solar mixing sum rule would be quite similar to that for the TBM mixing, which we shall study

in detail in this work. In the latter case, significant radiative corrections to the corresponding sum rule are

needed to reconcile theoretical predictions of mixing parameters with low-energy neutrino oscillation data.

This kind of leptonic mixing sum rule deserves further studies in a future publication.
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Parameter Best fit 1σ range 2σ range 3σ range

Normal neutrino mass ordering (NO) (m1 < m2 < m3)

θ12/
◦ 33.48 32.73–34.26 31.98–35.04 31.29–35.91

θ13/
◦ 8.50 8.29–8.70 8.08–8.90 7.85–9.10

θ23/
◦ 42.3 40.7–45.3 39.1–48.3 38.2–53.3

δ/◦ 306 236–345 0–24 ⊕ 166–360 0–360

∆m2
21/[10−5 eV2] 7.50 7.33–7.69 7.16–7.88 7.02–8.09

∆m2
31/[10−3 eV2] +2.457 +2.410 — +2.504 +2.363 — +2.551 +2.317 — +2.607

Inverted neutrino mass ordering (IO) (m3 < m1 < m2)

θ12/
◦ 33.48 32.73–34.26 31.98–35.04 31.29–35.91

θ13/
◦ 8.51 8.30–8.71 8.09–8.91 7.87–9.11

θ23/
◦ 49.5 47.3–51.0 45.1–52.5 38.6–53.3

δ/◦ 254 192–317 0–20 ⊕ 130–360 0–360

∆m2
21/[10−5 eV2] 7.50 7.33–7.69 7.16–7.88 7.02–8.09

∆m2
32/[10−3 eV2] −2.449 −2.496–−2.401 −2.543 — −2.355 −2.590 — −2.307

Table 1. The best-fit values, together with the 1σ, 2σ and 3σ intervals, for three neutrino mixing

angles {θ12, θ13, θ23}, two mass-squared differences {∆m2
21 ≡ m2

2−m2
1,∆m

2
31 ≡ m2

3−m2
1 or ∆m2

32 ≡
m2

3 − m2
2} and the Dirac CP-violating phase δ from a global analysis of current experimental

data [43]. Several independent global-fit analyses can be found in refs. [44–46], which are in perfect

agreement with the results presented here at the 3σ level.

extensions of the SM, one may have to study the RG running effects in question separately,

as both the corresponding RG equations of lepton mixing parameters and the energy range

available for RG running can be quite different. Taking the universal extra-dimensional

models [47–49] for example, in which all the SM fields are allowed to propagate in one or

more compact extra dimensions, one can find that the running of neutrino parameters will

obey a power law due to the increasing number of excited Kaluza-Klein modes, implying a

remarkable boost in the running within a relatively narrow range of energy scales [50–52].

The remaining part of our paper is organized as follows. In section 2, we provide with

a quick overview on the solar mixing sum rule, and derive formulas that account for the RG

corrections. We then introduce our numerical method in section 3, followed by a detailed

discussion on four examples in section 4. In section 5, we present our global numerical

results for all the cases that have been studied in this work. Lastly, we summarize our

results in section 6.

2 Solar mixing sum rule and RG corrections

2.1 Solar mixing sum rule

Given the fact that neutrinos are massive, the lepton flavor mixing [53–55] is described

by the Maki-Nakagawa-Sakata-Pontecorvo (MNSP) matrix U = U †l Uν , where Ul and Uν

– 3 –



J
H
E
P
0
8
(
2
0
1
6
)
0
2
4

are the unitary matrices that arise from the diagonalization of the charged-lepton mass

matrix and the neutrino mass matrix, respectively. Assuming that neutrinos are Majorana

particles, we have the standard parameterization

U = V (θ12, θ13, θ23, δ) ·Diag(e−iϕ1/2, e−iϕ2/2, 1) , (2.1)

with

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 , (2.2)

where cij ≡ cos θij and sij ≡ sin θij (for ij = 12, 13, 23) have been defined, and δ and ϕ1,2

are the Dirac and Majorana CP-violating phases, respectively.

In the neutrino mass model with a discrete flavor symmetry (see, e.g., ref. [17] for a

recent review), it is quite common that the unitary matrix Uν arising from the diagonal-

ization of neutrino mass matrix takes a particular form of the BM, TBM or GR mixing,

which implies θν23 = 45◦ and θν13 = 0 when the standard parametrization as in eqs. (2.1)

and (2.2) is applied to Uν(θν12, θ
ν
13, θ

ν
23). In this case, Uν can be in general parametrized by

Uν = P νL

 cν12 sν12 0

−sν12/
√

2 cν12/
√

2 1/
√

2

sν12/
√

2 −cν12/
√

2 1/
√

2

P νR , (2.3)

where P νL,R are diagonal phase matrices, and cν12 ≡ cos θν12 and sν12 ≡ sin θν12 are implied.

The phases in P νL are to be combined with those from Ul and will contribute to the final

MNSP matrix. On the other hand, the phases in P νR simply drop out in the final stage of

extracting mixing angles and the Dirac CP-violating phase from U , but they are relevant

for the Majorana CP-violating phases.

Since a non-zero value of θ13 has been discovered [56, 57], Uν alone is unable to describe

the measured lepton flavor mixing angles and small corrections in Ul from the charged-

lepton sector are needed. Motivated by the observation that the charged-lepton masses

exhibit a very strong hierarchy as quark masses do, one can make a further assumption that

the rotation angle θl13 in Ul is vanishingly small. Consequently, as shown in ref. [21], there

exists a simple but instructive relation for the matrix elements of U , namely, |Uτ1|/|Uτ2| =
tan θν12, where Uτ1 and Uτ2 are the first two elements in the last row of the MNSP matrix.

With the standard parameterization of U given in eq. (2.1), we then obtain the exact form

of the solar mixing sum rule [19, 21]

cos δ =
(s2

12 − sν2
12)t23

2s12c12s13

− (s2
12 − cν2

12)s13

2s12c12t23

, (2.4)

with t23 ≡ tan θ23. Noticing that s13 ∼ |θ23 − π/4| ∼ |θ12 − θν12| � 1 holds for the BM,

TBM and GR constant mixing patterns, one can reduce eq. (2.4) to a much simpler form

θ12 ≈ θν12 + θ13 cos δ, which characterizes the deviation of θ12 from θν12 by a combination

of the smallest mixing angle θ13 and the yet-unknown CP-violating phase δ. For the BM

– 4 –
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mixing with θν12 = 45◦, which is larger than the best-fit value θ12 = 33.48◦ in table 1,

δ ≈ 180◦ is preferred to relax the tension between the solar mixing sum rule and neutrino

oscillation data. For the TBM mixing with θν12 ≈ 35.3◦ and the GR mixing with θν12 ≈ 31.7◦,

which are already consistent with the observed θ12 within 2σ, a maximal CP-violating

phase δ ≈ 90◦ or 270◦ is implied by the sum rule. Although the leading-order form of the

solar mixing sum rule appears simple, we shall employ the exact expression in eq. (2.4)

when performing analytical and numerical studies on the RG corrections, as significant

running effects can spoil the above approximations. Note that an alternative derivation of

the above sum rule can be found in ref. [20], where individual mixing matrices in U are

carefully relocated, and eventually one realizes that U can be described by only three free

parameters after separating out the Majorana CP-violating phases. Therefore, one sum

rule among the three mixing angles and the Dirac CP-violating phase is obtained.

Before discussing the RG corrections to the solar mixing sum rule, we briefly summarize

the previous results without RG running effects. In ref. [21], one assumes some prior

distributions that are compatible with the latest global-fit results of three mixing angles,

and then predicts the posterior distribution of the Dirac CP-violating phase according to

eq. (2.4). It has been found that the predicted value of cos δ in the BM case is centered

far below −1, with only a tiny tail above it, while for TBM and GR the prediction of cos δ

is well within the range of [−1, 1], and their central values are close to 0. More explicitly,

if taking the best-fit values of all the three mixing angles in the case of NO from table 1,

we find cos δ = −1.27 for BM, while cos δ = −0.13 and cos δ = 0.27 for TBM and GR,

respectively. Thus, if the RG corrections are negligible, the scenario of BM mixing is

already disfavored by current data, while TBM and GR are still allowed. An important

motivation of this work is to investigate whether such a conclusion still holds when RG

running effects are considered.

2.2 RG corrections to solar mixing sum rule

In this subsection, we perform an analytical study on the RG corrections to the solar mixing

sum rule. For later convenience, let us introduce a parameter ∆ to describe how much the

sum rule is violated, namely,

∆ ≡ 2s12c12s13 cos δ + (sν2
12 − s2

12)t23 + (s2
12 − cν2

12)s2
13/t23 , (2.5)

from which one can verify that eq. (2.4) corresponds to ∆ = 0. Note that the mixing angles,

CP-violating phases and ∆ depend actually on the renormalization scale [28]. If the solar

mixing sum rule is first derived at a superhigh-energy scale, we have ∆ = 0 but it may

become non-zero at the low-energy scale due to radiative corrections. In order to avoid any

confusion, we denote the RG-corrected value of ∆ at low energies by ∆L. Hence, one can

predict the Dirac CP-violating phase δL at low energies in terms of the low energy mixing

angles {θL
12, θ

L
13, θ

L
23} by using eq. (2.5). Note that here any quantity with the superscript

“L” stands for its low-energy value that is derived from the RG evolution of its initial value

at the high-energy scale, at which the sum rule is satisfied.

The evolution of ∆ can be found by solving the RG equations of three mixing angles

and CP-violating phases, which have been summarized in appendix A. Expanding the RG

– 5 –
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equations in terms of θ13, one can find that θ̇ij ∼ O(θ0
13) and δ̇ ∼ O(θ−1

13 ), where ḟ = df/dt

with t = lnµ and µ is the renormalization scale. Therefore, the RG evolution of ∆ is

governed by the following equation

∆̇ = −2(sin δ)s12c12s13δ̇−2s12c12t23θ̇12+2(cos δ)s12c12θ̇13+(sν2
12−s2

12)/c2
23θ̇23+O(s13) , (2.6)

which is the master equation of this work. Based on eq. (2.6), we discuss two extreme

scenarios for small and large RG running effects, respectively.

• Small running effects — This scenario can arise when three neutrino masses are

hierarchical, or when the value of tan β in the MSSM is relatively small. Now that

all the mixing angles and CP-violating phases do not run significantly in this case,

we can integrate the evolution equation of ∆ by assuming the coefficient of each term

on the right-hand side of eq. (2.6) to be constant. Denoting the RG correction to a

parameter f as ∆f , we obtain

cos δL ≈ cos δ0 − sin δL(∆δ)− tL23

(
∆θ12

θL
13

)
+cos δL

(
∆θ13

θL
13

)
+

sν2
12 − sL2

12

2sL
12c

L
12c

L2
23

(
∆θ23

θL
13

)
,

(2.7)

where cos δ0 is given by eq. (2.4) but with the mixing angles on the right-hand side

substituted by their RG-corrected values θL
ij (for ij = 12, 13, 23). It is then clear that

when ∆θij is comparable to θL
13 significant modifications to the Dirac CP-violating

phase δ can arise.

• Nearly-degenerate mass spectrum — As is well-known, all the mixing angles and CP-

violating phases can receive remarkable RG running effects [23] when the lightest

neutrino mass m0 is relatively large, i.e., m0 & 0.05 eV and neutrino mass spectrum

is nearly degenerate. Assuming three light neutrino masses mi ≈ m0 (for i = 1, 2, 3),

we find that the RG equation of ∆ is approximately given by

32π2

y2
τ

∆̇ ≈ sin2(2θ12) sin(2θ23)
m2

0

∆m2
32

(cosϕ1 − cosϕ2)

− 4t23(sν2
12 − s2

12)
m2

0

∆m2
32

(1 + c2
12 cosϕ2 + s2

12 cosϕ1)

+2 sin2(2θ12)t23s
2
23

m2
0

∆m2
21

[1 + cos(ϕ2 − ϕ1)] , (2.8)

where yτ is the tau-lepton Yukawa coupling. Given |∆m2
32| � ∆m2

21, then if (ϕ2−ϕ1)

is far away from 180◦, the dominant contribution to ∆̇ comes from the last term due

to the enhancement from m2
0/∆m

2
21. Moreover, such a contribution is always positive,

resulting in a more negative value of ∆ (or cos δ) at low energies. As a consequence,

the BM case would become even more incompatible with the low energy data, while

for TBM and GR the predicted values of δL tend to be in the second or third quadrant.

In fact, because of this observation, we will see in the later numerical studies that

the relation (ϕ2 − ϕ1) ∼ 180◦ arises in the case of BM, and even in TBM and GR

when RG runnings effects are sizeable.

– 6 –
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After a brief discussion about two extreme scenarios in an analytical way, we then turn

to the numerical study, where a more detailed discussion on the RG running effects will

be given.

3 Numerical method

Our method for numerical studies is to adopt the notion of Bayesian statistical analysis,

by focusing on the posterior distribution of δ at low energies. Before presenting the de-

tailed numerical procedure, let us first discuss the application of general Bayesian analysis

formalism to our work. See, e.g., refs. [58, 59], for more details about Bayesian analysis.

The Bayesian analysis resides in the well-known Bayes’ theorem Pr(A|B) =

Pr(B|A)P(A)/Pr(B), where Pr(B|A) is the probability of the proposition B to be true

under the condition that A is true, and likewise for Pr(A|B). In this work we are in-

terested in the question: given the current neutrino data, what the consequences on the

neutrino parameters are when further imposing the solar sum rule at some high energy

scale. Thus, we take A as parameters of interest in this work, namely, the lepton mixing

angles and CP-violating phases, and they are collectively denoted as Θ. On the other hand,

B represents one of our hypotheses H, the satisfaction of a particular solar sum rule at

high energy. With these identifications, we then rewrite the above theorem as

Pr(Θ|H) =
Pr(H|Θ)Pr(Θ)

Pr(H)
. (3.1)

Here Pr(Θ|H) denotes the posterior probability distribution of neutrino parameters assum-

ing the satisfaction of sum rule at high energy, while Pr(H|Θ) is the likelihood function of

satisfying the solar sum rule at high energy given a particular set of neutrino parameters.

Furthermore, Pr(Θ) is the prior probability distribution of neutrino parameters. Since

current neutrino data have been taken as the background information, Θ is then taken to

be lepton mixing parameters that are given at low energies, and their prior distribution

Pr(Θ) will be determined according to the latest global-fit analysis of neutrino oscillation

data. Lastly, we identify Pr(H) as the probability of satisfying the solar sum rule at high

energy in face of the current data. Since the posterior distribution needs to be normalized,

i.e.,
∫

Pr(Θ|H) dNΘ = 1, where N is the dimension of the set of free parameters Θ, we

then have

Pr(H) =

∫
Pr(H|Θ) Pr(Θ) dNΘ. (3.2)

Note that when obtaining the posterior probability distribution for neutrino parameters,

this Pr(H) is a common factor for all Θ, and therefore it is often ignored. However, in the

later comparison of several different hypotheses it will play an important role.

The RG evolution of lepton mixing parameters has been extensively studied in the

literature, and recently summarized in ref. [28]. Our strategy in this work can be described

as follows:

• In the flavor basis where the charged-lepton mass matrix Ml is diagonal, lepton flavor

mixing and neutrino masses are determined by the effective neutrino mass matrix Mν ,

– 7 –
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NO IO

sin2 θ12 N (0.304, 0.0125) N (0.304, 0.0125)

sin2 θ13 N (0.0218, 0.001) N (0.0219, 0.001)

sin2 θ23 N (0.452, 0.04) N (0.579, 0.031)

∆m2
21/[10−5 eV2] N (7.50, 0.18) N (7.50, 0.18)

|∆m2
31|/[10−3 eV2] N (2.457, 0.047) N (2.449, 0.0475)

δ, ϕ1,2 U(0, 360◦)

m0/[eV] 0.005, 0.015, 0.05, 0.15

tanβ 10, 30, 50

Table 2. Details of the input parameters at low energies and the values of tan β. Here N (µ, σ)

stands for a Gaussian distribution with mean µ and standard deviation σ, while the uniform prior

on [a, b] is denoted by U(a, b). Numerical values in each Gaussian prior are obtained by taking the

best fit value in ref. [43] as mean µ and symmetrizing the corresponding 1σ errors for standard

deviation σ.

arising from the dimension-five Weinberg operator [60] after the spontaneous break-

down of electroweak gauge symmetry. In the seesaw models, the Weinberg operator

emerges naturally below the seesaw scale, where the heavy degrees of freedom have

been integrated out. Therefore, one can calculate the radiative corrections to lepton

flavor mixing parameters by investigating the RG evolution of the effective neutrino

mass matrix Mν in the framework of effective theories [61–63].

• In our calculations, one-loop RG equations for the effective neutrino mass matrix,

gauge couplings and Yukawa couplings in the MSSM are adopted. The RG running is

chosen to start from the energy scale of 1 TeV, at which we input the values of various

gauge and Yukawa couplings from ref. [64–67].2 To reconstruct the neutrino mass

matrix, we assume Gaussian priors for the sines of lepton flavor mixing angles and two

neutrino mass-squared differences according to the recent global-fit result [43], while

uniform priors on [0, 360◦] are used for the CP-violating phases. For the lightest

neutrino mass m0, we take four reference values, i.e., m0 = 0.005 eV, 0.015 eV,

0.05 eV and 0.15 eV at low energies.3 The value of tan β is also crucial, so we

consider three benchmark values tan β = 10, 30 and 50. The input parameters can

be found in table 2.

• With low energy boundary values specified, we then run all the physical parameters

via one-loop RG equations to a superhigh-energy scale, which will be fixed as Λ =

2For simplicity, we do not include the supersymmetric threshold corrections [68–73]. Adding them would

make the numerical results less tractable, so we defer it to a future work.
3Although m0 = 0.15 eV is already disfavored by the Planck 2015 result [74], i.e.,

∑
mν < 0.23 eV,

we still adopt it for two reasons: first, this large value may still be possible if some assumptions in the

Planck analysis are relaxed; second, we can employ it to represent the scenario where RG running effects

are violent.

– 8 –
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1012 GeV. Since RG running depends logarithmically on the energy scale, varying

this high energy boundary scale by one order of magnitude should not change our

results significantly. At the high-energy scale, we impose the exact form of the solar

mixing sum rule by defining the likelihood function

Pr(H|Θ) ∝ e−χ2/2 with χ2 ≡
(

∆H − 0

σ∆

)2

, (3.3)

where ∆H is the value of ∆ at high energies, and the size of σ∆ characterizes the

tolerance of satisfying the sum rule. Here we choose a very small value for σ∆, i.e.,

σ∆ = 0.0001, to ensure the satisfaction of the sum rule.

Finally, numerical results in this work are obtained with the help of the MULTINEST

program [75–77], which not only evaluates Pr(H) efficiently but also generates the posterior

distributions as a by-product.

4 Four illustrative examples

In this section, we present four illustrative examples to understand the RG corrections to

the mixing sum rule. Since the predictions for θν12 are similar in the TBM and GR cases, we

consider two examples for BM and another two for TBM, and the discussions on TBM can

be readily applied to GR. Furthermore, only the scenario of NO is studied. The scenario

of IO can also be similarly studied, although because of more intense RG corrections in IO

some cases are less tractable, and a simple analytical understanding of them may not be

easily achieved. A full numerical analysis will be given in the next section.

4.1 BM case

As discussed previously, without including RG corrections, there exist little allowed param-

eter space in the BM case for the low energy mixing angles in order to yield a prediction on

δ. Therefore, without RG corrections this BM scenario is already disfavored by the current

data. An immediate question is whether it is possible to revive this BM case when the RG

running effects are included. For this purpose, in this subsection, we discuss two examples:

Case I with tan β = 30 and m0 = 0.005 eV for negligible running effects, and Case II with

tanβ = 50 and m0 = 0.05 eV for significant RG corrections.

Case I: BM, NO, tanβ = 30, m0 = 0.005 eV. As the absolute neutrino mass

m0 is tiny, RG running effects are quite small for all three mixing angles and phases.

Quantitatively, we can employ the RG equations of mixing angles and phases from appendix

A to estimate the RG corrections. First, given yτ ∼ 0.3, we have y2
τ/(32π2) ∼ 0.3× 10−3.

Then, with the logarithm of the ratio of two energy scales, i.e., ln(1012/103) ∼ 21, one

obtains |∆θ12| . 0.5◦, |∆θ13| . 0.1◦, |∆θ23| . 1◦ and |∆δ| . 1◦, which are negligible as

we expect.

On two top panels of figure 1 we show the posterior distributions of both low (solid

curves) and high (dashed curves) energy neutrino parameters. On the left, the results
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Figure 1. Posterior distributions of neutrino mixing parameters at low and high energies in Case

I (top) and II (bottom). On the left panel we present the results for the three mixing angles and

their priors used in the numerical study, while on the right the results of three phases are shown.

Solid and dashed curves with colors indicate low and high energy neutrino parameters, respectively.

for the three mixing angles (red, green and blue curves for θ12, θ13 and θ23, respectively)

are shown, together with their used priors (black curves) according to the recent global

fit results. As one can see, the running of all the mixing angles and phases is indeed

insignificant, with the solid and dashed curves almost indistinguishable.

Because of insufficient contributions from the RG running, this case is almost identical

to that without RG corrections. Namely, satisfying the sum rule at high energy requires

mixing angles at low energy to deviate from the regions favored by the recent global fit

results. On the top-left panel of figure 1, one can see that θL
12 (red and solid curve) resides

at the large end of its prior distribution, and θL
23 (blue and solid curve) favors smaller

values. With eq. (2.4) one can check that both of these two observations can help cos δL

to obtain a more positive value. Finally, the predicted δL (red and solid curve) on the

top-right panel of figure 1 is still narrowly centered around 180◦, as observed in the case

without RG corrections [21].

Case II: BM, NO, tanβ = 50, m0 = 0.05 eV. In a similar way, we can estimate

the RG running to neutrino parameters, i.e., |∆θ13| . 2◦ and |∆θ23| . 4◦, while more than

10◦ of running can be easily found for θ12 and δ. Due to this significant RG running, it is

now possible the BM to reach a good agreement with low-energy neutrino oscillation data.

This can be seen from the bottom-left panel of figure 1, where the posterior distributions

of three mixing angles at low energies are quite similar to their priors.

In addition, we also observe several other interesting features, which can be quickly

explained. First, since the RG evolution of θ23 is always in the negative direction at leading
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order, the high-energy value of θ23 is smaller than its low-energy counterpart. In fact,

smaller values at high energies are helpful to obtain a solution for δ, as seen in the previous

case. Second, in this quasi-degenerate scenario the difference between two Majorana phases

has to be around 180◦ so as to suppress the significant negative running of ∆. This can

be observed on the bottom-right panel of figure 1 (see blue curves). Moreover, due to

this phase difference, the running of θ12 is suppressed, as one can see from the bottom-left

panel. Third, we attempt to explain why the Majorana phase ϕ1 mostly sits in the second

and third quadrants and why the high-energy value of θ13 turns out to be larger than

its low-energy value. To this end, we employ the expression of ∆̇ in eq. (2.8) and insert

ϕ2 − ϕ1 ≈ 180◦. A straightforward calculation leads to

32π2

y2
τ

∆̇ ≈
{

2 sin2(2θ12) sin(2θ23) cosϕ1 − 4t23(sν2
12 − s2

12)[1− cosϕ1 cos(2θ12)]
} m2

0

∆m2
32

.

(4.1)

Therefore, in order to achieve a large and positive value of ∆ at low energies, it is favorable

to have ∆̇ < 0, which leads to a constraint on ϕ1. As a rough estimation, using the best-fit

values of three mixing angles, we find 69◦ < ϕ1 < 291◦, which agrees with the observation

that ϕ1 favors the second and third quadrants. Moreover, ϕ1 ∼ 180◦ minimizes the right-

hand side of the above equation, resulting in the largest possibly positive contributions to

∆. The above favored range of ϕ1 also explains why θ13 tends to decrease when running

towards low energies. More explicitly, the equation θ̇13 ∝ cos(ϕ1− δ) holds approximately,

which tends to be positive when ϕ1 sits in the second and third quadrants and δ ∼ 180◦.

Lastly, it is worthwhile to emphasize that because of significant RG running in this case,

the predicted Dirac phase δ has a broader distribution around 180◦, compared to the

previous case.

4.2 TBM case

In the case of TBM, θν12 is very close to its measured value of θ12 at low energies, so current

neutrino oscillation data are already well compatible with the sum rule if no RG corrections

are considered. However, this situation may be spoiled by RG corrections, as large RG

running contributions to ∆ could cause no solution for δ at low energies. As a result of

this constraint, the neutrino parameters at high energies have to reside at some non-trivial

ranges. In this subsection, we will also present two examples for TBM, Case III and Case

IV, for which different patterns of mixing angles at high energies are observed.

Case III: TBM, NO, tanβ = 30, m0 = 0.05 eV. Let us also first estimate the

running effects of three mixing angles and the Dirac phase δ. Similar inspections as before

lead to |∆θ13| . 0.5◦ and |∆θ23| . 1◦, while more than 10◦ of running can be easily found

for θ12 and δ. Unlike Case II, where one needs to suppress the running of θ12 by requiring

ϕ2 − ϕ1 ≈ 180◦ so that a better agreement with data at low energies can be obtained, we

can now tolerate a large running of θ12, as long as it is not too large.

A simple way to figure out the allowed running of θ12 is to take a close look at the

sum rule at high energies. Assuming θH
12 at high energy to be not far away from θν12, we

can use the sum rule at leading order, i.e., θH
12 ≈ θν12 + θH

13 cos δH. Given θH
13 ∼ θL

13 ∼ 9◦, we

– 11 –
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Figure 2. Posterior distributions of neutrino mixing parameters at low and high energies in Case

III (top) and IV (bottom). The rest of descriptions are the same as figure 1.

roughly need θH
12 > 24◦ to guarantee a solution of δH. Such a finding indeed agrees with

the numerical result given in the top-left panel of figure 2. The allowed running range of

θ12 also leads to a corresponding constraint on the difference between two Majorana phases

ϕ2−ϕ1. With the help of the RG equation of θ12, one can verify that requiring the running

of θ12 to be less than 10◦ yields 115◦ . ϕ2 − ϕ1 . 245◦, which roughly agrees with the

results given in the top-right panel of figure 2.

Finally, we point out that the allowed large running of θ12 implies a positive ∆̇, and

thus a negative ∆L at low energies. Consequently, the predicted δL would favor the second

and third quadrants, as we can see from figure 2.

Case IV: TBM, NO, tanβ = 30, m0 = 0.15 eV. In Case IV with relatively large

neutrino masses, RG running can be significant for all the mixing angles and phases. As

an immediate consequence, according to eq. (2.8), ∆ receives an enormous contribution

from the last term that involves the difference between two Majorana phases ϕ2 − ϕ1. To

ensure a solution for δL one has to suppress this contribution by requiring ϕ2−ϕ1 ∼ 180◦.

Such a requirement also leads to an insignificant running of θ12. Both of these findings are

in a good agreement with the numerical results given in the bottom panels of figure 2.

Some further comments are in order. First, from the above observations of ϕ2 − ϕ1 ∼
180◦ and a negligible running of θ12, eq. (2.8) can be simplified to

32π2

y2
τ

∆̇ ≈ 2 sin2(2θ12) sin(2θ23)
m2

0

∆m2
32

cosϕ1 . (4.2)

Integrating the above equation, we find that at low energies ∆L ∼ −0.1 cosϕ1 and thus

cos δL ∼ − cosϕ1. Roughly speaking, the relations (ϕ1±δ) ∼ 180◦ seem to be favored, and
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they are consistent with the results given in the bottom-right panel of figure 2. Second,

with (ϕ1 ± δ) ∼ 180◦, the peculiar double-peak distribution of θ13 can be explained. To

see this, we first notice that in the nearly-degenerate mass region the RG equation of θ13

reduces to θ̇13 ∝ cos(ϕ1 − δ). Thus, for the case (ϕ1 − δ) ∼ 180◦ one has a larger value of

θ13 at low energies, implying the left peak. Regarding the right peak, it is due to the other

possibility (ϕ1 +δ) ∼ 180◦, in which |ϕ1−δ| < π/2 occurs quite likely. Lastly, according to

eq. (4.2) and the fact that ϕ1 favors the first and fourth quadrants leads to a more negative

value of ∆L, the predicted δL tends to be in the second and third quadrants.

Before turning to the full numerical analysis, let us recapitulate what we have learned

from the above detailed investigation of four examples:

• For the BM scenario, it is possible to have three mixing angles at low energies com-

patible with the latest global-fit results, as long as the RG corrections are signifi-

cant enough.

• In contrast, for the TBM scenario, the role played by the RG running effects is

then to single out different favored distributions of the Dirac and Majorana phases,

depending on the size of RG corrections. Moreover, because of those requirements

on phases, flavor mixing angles show different patterns at high energies, which may

provide some clues for the flavor model building.

In the next section, a few more scenarios will be considered, and a model comparison among

them will also be performed.

5 Full numerical results

We now present a complete numerical analysis of all the scenarios, which are labeled by

three different constant mixing patterns (i.e., BM, TBM and GR), three choices of tan β

(i.e., tan β = 10, 30, 50), four different values of the lightest neutrino mass (i.e., m0 =

0.005 eV, 0.015 eV, 0.05 eV and 0.15 eV), and a further distinguish of two neutrino mass

orderings (i.e., NO or IO). While in our numerical study the posterior distributions of

all neutrino parameters can be obtained, we restrict ourselves to only four of them, i.e.,

three mixing angles and the Dirac phase, as a precise determination of two Majorana

phases will not be experimentally achievable in a near future. Moreover, among these four

parameters, from the previous study we notice that satisfying the current neutrino data of

mixing angles is not difficult for most cases, their posterior distributions thus almost follow

the priors. In other words, imposing the solar mixing sum rule at high energies yields

essentially no constraints on the mixing angles. Hence, in this section we focus on the

posterior distributions of the Dirac phase δL at low energies, which are shown in figure 3

and figure 4 for NO and IO, respectively.

First, we study the case of NO by carefully examing the results given in figure 3. The

main observations can be summarized as follows:

• In all three mixing scenarios, increasing the strength of RG running via either a

larger value of m0 or tanβ yields significant distortions to the results in the case
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Figure 3. Posterior distributions of the Dirac phase δL at low energies in the scenario of NO.

of no RG corrections, which can be approximately represented by tan β = 10 and

m0 = 0.005 eV. Such a distortion can be a much broader distribution, or a shift of

peaks, or a disappearance of peaks, or a combination of them.

• In the case of BM, one may neglect the impact from RG running when tan β . 30

and m0 . 0.05 eV, while for TBM and GR, a stricter requirement is needed, i.e.,

m0 . 0.015 eV for tan β ∼ 30.

• When RG running effects are moderate, in the case of BM, δL tends to favor regions

that are away from 180◦. On the contrary, for TBM and GR, moderate RG corrections

would lead δL to move towards 180◦, as also discussed in the previous section. As a

result, one may have significant overlap in the favored regions of δL among all these

three mixing scenarios, e.g., in the case of tan β ∼ 30 and m0 ∼ 0.05 eV. Therefore,

compared to the non-RG case, distinguishing BM from TBM and GR by a precise

measurement of δ would be more difficult.

• Finally, we also observe that when the RG running effects are very strong, i.e., tan β &
30 and m0 & 0.15 eV, the resulting prediction on δL becomes less tractable, so that

an experimental verification of solar mixing sum rule becomes less promising.

Then, we turn to the scenario of IO. In figure 4, we observe that for the BM case,

the change to the posterior distribution of δL seems to follow the same trend as that
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Figure 4. Posterior distributions of the Dirac phase δL at low energies in the scenario of IO.

observed in the NO case, i.e., becoming broader and starting to favor regions away from

180◦. However, for the TBM and GR cases, the RG running effects on the prediction of δL

are very violent, and no characteristic feature can be easily identified. Moreover, in this

case we may only neglect the RG corrections to the solar mixing sum rule when tan β . 10

and m0 . 0.015 eV.

Lastly, since we have adopted the Bayesian analysis to perform the numerical study,

and three different hypotheses corresponding to those three different mixing scenarios have

been considered, one then may be curious about which hypothesis is most compatible with

current neutrino data, given the requirement of satisfying the solar mixing sum rule at high

energies. In the previous discussion of four examples we have already opposed the BM case

to the TBM case, but only in a qualitative manner, now we want to study this question

more quantitatively, within the formalism of Bayesian analysis.

In Bayesian analysis, the comparison of degrees of belief of different hypotheses can be

carried out by computing the ratios of so-called posterior odds between any two competing

hypotheses. In our case, this posterior odds is simply Pr(Hi)/Pr(Hj), which coincides

with the Bayes factor B, assuming equal prior probabilities for all hypotheses. Moreover,

to interpret the value of this posterior odds or the Bayes factor, one often adopts the

Kass-Raftery [78] or Jeffreys [79–81] scale. In table 3 we list the Jeffreys scale that used

in [80, 81], and will implement them to interpret our numerical results.

Thanks to the MULTINEST program we are able to calculate Pr(H) for all the cases

under consideration. Assuming equal prior probabilities, we then can find out which one
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|ln(odds)| Odds Probability Interpretation

< 1.0 . 3 : 1 . 75.0% Inconclusive

1.0 ' 3 : 1 ' 75.0% Weak evidence

2.5 ' 12 : 1 ' 92.3% Moderate evidence

5.0 ' 150 : 1 ' 99.3% Strong evidence

Table 3. The Jeffreys scale used for the statistical interpretation of Bayes factors, posterior odds

and model probabilities [80, 81].

Figure 5. Logarithm of the Bayes factors for all BM and TBM cases in both NO and IO scenarios.

Here we choose the case with m0 = 0.005 eV, tanβ = 10, BM and NO as the benchmark case.

Bayes factors of other cases are obtained by computing the ratios of their Pr(H) to that of the

benchmark case.

is more favorable by computing the Bayes factor. Choosing the benchmark case as the one

with m0 = 0.005 eV, tanβ = 10, BM and NO, we plot the logarithm of the Bayes factors,

lnB, for all BM and TBM cases in both NO and IO scenarios in figure 5. The results for

the GR case are not shown here, as they are quite similar to those for the TBM.

In figure 5, we observe that in the scenario of NO, when the RG running effects are

insignificant, i.e., tan β . 30 and m0 . 0.015 eV, the differences of lnB between the TBM

and BM cases are around 2.5, indicating a moderate preference for TBM according to the

Jeffreys scale in table 3. However, when RG effects becomes non-negligible, the preference

between the two cases gets diminished, e.g., the difference of lnB can even reduce to less

than one for the case with tan β = 50 and m0 = 0.15 eV. For the IO scenario, the above
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finding not only holds but also becomes more evident. Hence, we can conclude that while

in general the TBM (or GR) case is more compatible with current neutrino data as opposed

to the BM case, RG running effects can weaken such a preference, so that singling out one

promising scenario among others becomes more difficult.

6 Summary and conclusions

Solar mixing sum rules are generic predictions that relate the lepton mixing angles and

the Dirac CP-violating phase. They arise when the corrections from the charged-lepton

sector are added to the mixing matrix in the neutrino sector, with the assumption that

the latter takes particular forms of constant mixing matrices, such as Bimaximal, Tri-

Bimaximal and Golden Ratio. Motivated by the fact that these sum rules can be derived

at high energies, we set out in this work to study the RG running effects on them, and pay

particular attention to their predictions for the Dirac CP-violating phase at low energies.

For illustration, we choose to work within the framework of MSSM, where large RG running

effects can be present if tan β is relatively large.

To quantify the RG corrections to the sum rule, we have introduced a parameter ∆,

which vanishes at the high-energy scale and deviates from zero at the low-energy scale.4

It is found that the size of such a deviation is related to the running of the lepton flavor

mixing angles and the Dirac phase, and too large running of these neutrino parameters

may lead to no solution for the Dirac phase at low energy. We have carefully studied this

impact on the low-energy lepton mixing parameters in four special cases, and find that

when RG effects are too large, the two Majorana phases need to differ by around 180◦ so

as to suppress the running of mixing angles and phases.

In a full numerical analysis, we adopt the notion of Bayesian statistical approach. We

choose the lepton mixing parameters at low energies as our parameters of interest. Current

global-fit results are used for their prior distributions at low energies, and then the impact

of imposing solar mixing sum rule at a high-energy scale can be addressed by analyzing

the posterior distributions. To relate parameters at low- and high-energy boundaries, we

solve the RG equations of all lepton mixing parameters numerically. Our main conclusions

are summarized below:

• First, in the case of BM, RG corrections improve the agreement with current neutrino

data for the three mixing angles. Without RG corrections, satisfying the solar mixing

sum rule would require the three mixing angles to lie in the regions that are less

favored by data. Moreover, with more significant running effects, the predicted Dirac

phase δ have a broader distribution around 180◦, indicating that an experimental

verification is more difficult. In addition, when RG effects are too large, the favored

region can be quite far away from 180◦.

• Second, for the cases of TBM and GR, the role played by the RG running effects is to

single out different favored distributions of the Dirac and Majorana phases, resulting

4In this connection, it is worth mentioning that the radiative corrections to a possible µ-τ symmetry in

the MNSP matrix [82] have already been investigated in ref. [83, 84].
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in different patterns of mixing angles and phases at high energies. Regarding the

prediction for δ, as in the BM case, including RG running effects would make the

distribution broader on the one hand, and the favored regions tend to be closer to 180◦

on the other hand, if RG running is moderate. However, when the RG running effects

are violent, especially in the scenario of inverted neutrino mass ordering, the predicted

distributions of δ are rather complicated and no obvious features can be identified.

• Third, we investigate the possibility to discriminate the case of BM from the TBM

and GR cases in the presence of RG running. It is found that RG corrections could

lead to a remarkable overlap in the favored regions of the Dirac phase among all

three cases. As a result, a discrimination of them by a precise measurement of the

Dirac phase seems less promising. Moreover, we also find that RG running effects

can weaken the preference of TBM and GR over BM.

It should be noticed that the above conclusions are restricted to the scenario of MSSM,

and a separate but similar analysis to the one given here needs to be performed for other

extensions of the SM. However, we have demonstrated that in order to explore possible

sum rules or flavor symmetries at high energies, one has to find out whether the RG running

effects are small or not, in addition to precise measurements of neutrino mixing parameters

at low energies. In MSSM, this can be done by pinning down neutrino mass ordering, the

absolute neutrino mass scale and the value of tan β. The further extension of current work

to other sum rules of leptonic mixing and to a different framework is also interesting and

deserves a dedicated study.
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A RG equations of lepton mixing parameters

In this appendix, we list the RG equations of three mixing angles and three CP-violating

phases, essentially following the notations of ref. [23]. The RG equations of three mixing

angles are given by

dθ12

dt
= − y2

τ

32π2
sin 2θ12s

2
23

|m1e
iϕ1 +m2e

iϕ2 |2

∆m2
21

+O(θ13) , (A.1)

dθ13

dt
=

y2
τ

32π2
sin 2θ12 sin 2θ23

m3

∆m2
32(1 + ζ)

×

×[m1 cos(ϕ1 − δ)− (1 + ζ)m2 cos(ϕ2 − δ)− ζm3 cos δ] +O(θ13) , (A.2)

dθ23

dt
= − y2

τ

32π2
sin 2θ23

1

∆m2
32

[
c2

12|m2e
iϕ2 +m3|2 + s2

12

|m1e
iϕ1 +m3|2

1 + ζ

]
+O(θ13) , (A.3)
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where ∆m2
21 = m2

2 − m2
1 and ∆m2

32 = m2
3 − m2

2, and their ratio is defined as ζ =

∆m2
21/∆m

2
32. The RG equation of the Dirac phase reads

dδ

dt
=

y2
τ

32π2

δ(−1)

θ13
+

y2
τ

8π2
δ(0) +O(θ13) , (A.4)

where

δ(−1) = sin 2θ12 sin 2θ23
m3

∆m2
32(1 + ζ)

×

×[m1 sin(ϕ1 − δ)− (1 + ζ)m2 sin(ϕ2 − δ) + ζm3 sin δ] , (A.5)

δ(0) =
m1m2s

2
23 sin(ϕ1 − ϕ2)

∆m2
21

+m3s
2
12

[
m1 cos 2θ23 sinϕ1

∆m2
32(1 + ζ)

+
m2c

2
23 sin(2δ − ϕ2)

∆m2
32

]
+m3c

2
12

[
m2 cos 2θ23 sinϕ2

∆m2
32

+
m1c

2
23 sin(2δ − ϕ1)

∆m2
32(1 + ζ)

]
; (A.6)

and those for the Majorana CP phases

dϕ1

dt
=

y2
τ

4π2

{
m3 cos 2θ23

m1s
2
12 sinϕ1 + (1 + ζ)m2c

2
12 sinϕ2

∆m2
32(1 + ζ)

+
m1m2c

2
12s

2
23 sin(ϕ1 − ϕ2)

∆m2
21

}
+O(θ13) , (A.7)

dϕ2

dt
=

y2
τ

4π2

{
m3 cos 2θ23

m1s
2
12 sinϕ1 + (1 + ζ)m2c

2
12 sinϕ2

∆m2
32(1 + ζ)

+
m1m2s

2
12s

2
23 sin(ϕ1 − ϕ2)

∆m2
21

}
+O(θ13) . (A.8)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin.

Phys. C 38 (2014) 090001 [INSPIRE].

[2] G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of

tri-bimaximal mixing from A4, JHEP 03 (2008) 052 [arXiv:0802.0090] [INSPIRE].

[3] M. Hirsch, S. Morisi and J.W.F. Valle, Tri-bimaximal neutrino mixing and neutrinoless

double beta decay, Phys. Rev. D 78 (2008) 093007 [arXiv:0804.1521] [INSPIRE].

[4] F. Bazzocchi, L. Merlo and S. Morisi, Phenomenological consequences of see-saw in S4 based

models, Phys. Rev. D 80 (2009) 053003 [arXiv:0902.2849] [INSPIRE].

[5] M.-C. Chen and S.F. King, A4 see-saw models and form dominance, JHEP 06 (2009) 072

[arXiv:0903.0125] [INSPIRE].

– 19 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+%22Chin.Phys.,C38,090001%22
http://dx.doi.org/10.1088/1126-6708/2008/03/052
http://arxiv.org/abs/0802.0090
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.0090
http://dx.doi.org/10.1103/PhysRevD.78.093007
http://arxiv.org/abs/0804.1521
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1521
http://dx.doi.org/10.1103/PhysRevD.80.053003
http://arxiv.org/abs/0902.2849
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.2849
http://dx.doi.org/10.1088/1126-6708/2009/06/072
http://arxiv.org/abs/0903.0125
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0125


J
H
E
P
0
8
(
2
0
1
6
)
0
2
4

[6] G. Altarelli and D. Meloni, A simplest A4 model for tri-bimaximal neutrino mixing, J. Phys.

G 36 (2009) 085005 [arXiv:0905.0620] [INSPIRE].

[7] J. Barry and W. Rodejohann, Deviations from tribimaximal mixing due to the vacuum

expectation value misalignment in A4 models, Phys. Rev. D 81 (2010) 093002 [Erratum ibid.

D 81 (2010) 119901] [arXiv:1003.2385] [INSPIRE].

[8] J. Barry and W. Rodejohann, Neutrino mass sum-rules in flavor symmetry models, Nucl.

Phys. B 842 (2011) 33 [arXiv:1007.5217] [INSPIRE].

[9] L. Dorame, D. Meloni, S. Morisi, E. Peinado and J.W.F. Valle, Constraining neutrinoless

double beta decay, Nucl. Phys. B 861 (2012) 259 [arXiv:1111.5614] [INSPIRE].

[10] S.F. King, A. Merle and A.J. Stuart, The power of neutrino mass sum rules for neutrinoless

double beta decay experiments, JHEP 12 (2013) 005 [arXiv:1307.2901] [INSPIRE].

[11] J. Gehrlein, A. Merle and M. Spinrath, Renormalisation group corrections to neutrino mass

sum rules, JHEP 09 (2015) 066 [arXiv:1506.06139] [INSPIRE].

[12] S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton

unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].

[13] I. Masina, A maximal atmospheric mixing from a maximal CP-violating phase, Phys. Lett. B

633 (2006) 134 [hep-ph/0508031] [INSPIRE].

[14] S. Antusch and S.F. King, Charged lepton corrections to neutrino mixing angles and CP

phases revisited, Phys. Lett. B 631 (2005) 42 [hep-ph/0508044] [INSPIRE].

[15] S. Antusch, P. Huber, S.F. King and T. Schwetz, Neutrino mixing sum rules and oscillation

experiments, JHEP 04 (2007) 060 [hep-ph/0702286] [INSPIRE].

[16] N. Haba, K. Kaneta and R. Takahashi, Stability of leptonic self-complementarity, Europhys.

Lett. 101 (2013) 11001 [arXiv:1209.1522] [INSPIRE].

[17] S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog.

Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

[18] P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing atmospheric mixing

sum rules at precision neutrino facilities, Phys. Rev. D 89 (2014) 016016 [arXiv:1308.4314]

[INSPIRE].

[19] S.T. Petcov, Predicting the values of the leptonic CP-violation phases in theories with

discrete flavour symmetries, Nucl. Phys. B 892 (2015) 400 [arXiv:1405.6006] [INSPIRE].

[20] I. Girardi, S.T. Petcov and A.V. Titov, Determining the Dirac CP-violation phase in the

neutrino mixing matrix from sum rules, Nucl. Phys. B 894 (2015) 733 [arXiv:1410.8056]

[INSPIRE].

[21] P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing solar lepton mixing sum

rules in neutrino oscillation experiments, JHEP 12 (2014) 122 [arXiv:1410.7573] [INSPIRE].

[22] I. Girardi, S.T. Petcov, A.J. Stuart and A.V. Titov, Leptonic Dirac CP-violation predictions

from residual discrete symmetries, Nucl. Phys. B 902 (2016) 1 [arXiv:1509.02502]

[INSPIRE].

[23] S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP

phases: analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401

[hep-ph/0305273] [INSPIRE].

– 20 –

http://dx.doi.org/10.1088/0954-3899/36/8/085005
http://dx.doi.org/10.1088/0954-3899/36/8/085005
http://arxiv.org/abs/0905.0620
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0620
http://dx.doi.org/10.1103/PhysRevD.81.119901
http://arxiv.org/abs/1003.2385
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.2385
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.015
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.015
http://arxiv.org/abs/1007.5217
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.5217
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.003
http://arxiv.org/abs/1111.5614
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.5614
http://dx.doi.org/10.1007/JHEP12(2013)005
http://arxiv.org/abs/1307.2901
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2901
http://dx.doi.org/10.1007/JHEP09(2015)066
http://arxiv.org/abs/1506.06139
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06139
http://dx.doi.org/10.1088/1126-6708/2005/08/105
http://arxiv.org/abs/hep-ph/0506297
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506297
http://dx.doi.org/10.1016/j.physletb.2005.10.097
http://dx.doi.org/10.1016/j.physletb.2005.10.097
http://arxiv.org/abs/hep-ph/0508031
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508031
http://dx.doi.org/10.1016/j.physletb.2005.09.075
http://arxiv.org/abs/hep-ph/0508044
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508044
http://dx.doi.org/10.1088/1126-6708/2007/04/060
http://arxiv.org/abs/hep-ph/0702286
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0702286
http://dx.doi.org/10.1209/0295-5075/101/11001
http://dx.doi.org/10.1209/0295-5075/101/11001
http://arxiv.org/abs/1209.1522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1522
http://dx.doi.org/10.1088/0034-4885/76/5/056201
http://dx.doi.org/10.1088/0034-4885/76/5/056201
http://arxiv.org/abs/1301.1340
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1340
http://dx.doi.org/10.1103/PhysRevD.89.016016
http://arxiv.org/abs/1308.4314
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4314
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.011
http://arxiv.org/abs/1405.6006
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.6006
http://dx.doi.org/10.1016/j.nuclphysb.2015.03.026
http://arxiv.org/abs/1410.8056
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8056
http://dx.doi.org/10.1007/JHEP12(2014)122
http://arxiv.org/abs/1410.7573
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.7573
http://dx.doi.org/10.1016/j.nuclphysb.2015.10.020
http://arxiv.org/abs/1509.02502
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.02502
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.050
http://arxiv.org/abs/hep-ph/0305273
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0305273


J
H
E
P
0
8
(
2
0
1
6
)
0
2
4

[24] S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass

parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].

[25] J.-w. Mei, Running neutrino masses, leptonic mixing angles and CP-violating phases: From

M(Z) to Λ(GUT ), Phys. Rev. D 71 (2005) 073012 [hep-ph/0502015] [INSPIRE].

[26] J.-w. Mei and Z.-z. Xing, Radiative corrections to democratic lepton mixing, Phys. Lett. B

623 (2005) 227 [hep-ph/0506304] [INSPIRE].

[27] S. Luo and Z.-z. Xing, Generalized tri-bimaximal neutrino mixing and its sensitivity to

radiative corrections, Phys. Lett. B 632 (2006) 341 [hep-ph/0509065] [INSPIRE].

[28] T. Ohlsson and S. Zhou, Renormalization group running of neutrino parameters, Nature

Commun. 5 (2014) 5153 [arXiv:1311.3846] [INSPIRE].

[29] F. Vissani, A study of the scenario with nearly degenerate Majorana neutrinos,

hep-ph/9708483 [INSPIRE].

[30] V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Bimaximal mixing of three

neutrinos, Phys. Lett. B 437 (1998) 107 [hep-ph/9806387] [INSPIRE].

[31] A.J. Baltz, A.S. Goldhaber and M. Goldhaber, The Solar neutrino puzzle: An Oscillation

solution with maximal neutrino mixing, Phys. Rev. Lett. 81 (1998) 5730 [hep-ph/9806540]

[INSPIRE].

[32] R.N. Mohapatra and S. Nussinov, Bimaximal neutrino mixing and neutrino mass matrix,

Phys. Rev. D 60 (1999) 013002 [hep-ph/9809415] [INSPIRE].

[33] P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino

oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

[34] P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino

mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].

[35] Z.-z. Xing, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002)

85 [hep-ph/0204049] [INSPIRE].

[36] X.G. He and A. Zee, Some simple mixing and mass matrices for neutrinos, Phys. Lett. B

560 (2003) 87 [hep-ph/0301092] [INSPIRE].

[37] A. Datta, F.-S. Ling and P. Ramond, Correlated hierarchy, Dirac masses and large mixing

angles, Nucl. Phys. B 671 (2003) 383 [hep-ph/0306002] [INSPIRE].

[38] Y. Kajiyama, M. Raidal and A. Strumia, The Golden ratio prediction for the solar neutrino

mixing, Phys. Rev. D 76 (2007) 117301 [arXiv:0705.4559] [INSPIRE].

[39] L.L. Everett and A.J. Stuart, Icosahedral (A5) family symmetry and the golden ratio

prediction for solar neutrino mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057]

[INSPIRE].

[40] W. Rodejohann, Unified parametrization for quark and lepton mixing angles, Phys. Lett. B

671 (2009) 267 [arXiv:0810.5239] [INSPIRE].

[41] A. Adulpravitchai, A. Blum and W. Rodejohann, Golden ratio prediction for solar neutrino

mixing, New J. Phys. 11 (2009) 063026 [arXiv:0903.0531] [INSPIRE].

[42] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite modular groups and lepton

mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].

– 21 –

http://dx.doi.org/10.1088/1126-6708/2005/03/024
http://arxiv.org/abs/hep-ph/0501272
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0501272
http://dx.doi.org/10.1103/PhysRevD.71.073012
http://arxiv.org/abs/hep-ph/0502015
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0502015
http://dx.doi.org/10.1016/j.physletb.2005.07.056
http://dx.doi.org/10.1016/j.physletb.2005.07.056
http://arxiv.org/abs/hep-ph/0506304
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506304
http://dx.doi.org/10.1016/j.physletb.2005.10.068
http://arxiv.org/abs/hep-ph/0509065
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0509065
http://dx.doi.org/10.1038/ncomms6153
http://dx.doi.org/10.1038/ncomms6153
http://arxiv.org/abs/1311.3846
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.3846
http://arxiv.org/abs/hep-ph/9708483
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9708483
http://dx.doi.org/10.1016/S0370-2693(98)00880-6
http://arxiv.org/abs/hep-ph/9806387
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9806387
http://dx.doi.org/10.1103/PhysRevLett.81.5730
http://arxiv.org/abs/hep-ph/9806540
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9806540
http://dx.doi.org/10.1103/PhysRevD.60.013002
http://arxiv.org/abs/hep-ph/9809415
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9809415
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://arxiv.org/abs/hep-ph/0202074
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0202074
http://dx.doi.org/10.1016/S0370-2693(02)01753-7
http://arxiv.org/abs/hep-ph/0203209
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0203209
http://dx.doi.org/10.1016/S0370-2693(02)01649-0
http://dx.doi.org/10.1016/S0370-2693(02)01649-0
http://arxiv.org/abs/hep-ph/0204049
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0204049
http://dx.doi.org/10.1016/S0370-2693(03)00390-3
http://dx.doi.org/10.1016/S0370-2693(03)00390-3
http://arxiv.org/abs/hep-ph/0301092
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0301092
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.026
http://arxiv.org/abs/hep-ph/0306002
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0306002
http://dx.doi.org/10.1103/PhysRevD.76.117301
http://arxiv.org/abs/0705.4559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.4559
http://dx.doi.org/10.1103/PhysRevD.79.085005
http://arxiv.org/abs/0812.1057
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1057
http://dx.doi.org/10.1016/j.physletb.2008.12.010
http://dx.doi.org/10.1016/j.physletb.2008.12.010
http://arxiv.org/abs/0810.5239
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.5239
http://dx.doi.org/10.1088/1367-2630/11/6/063026
http://arxiv.org/abs/0903.0531
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0531
http://dx.doi.org/10.1016/j.nuclphysb.2012.01.017
http://arxiv.org/abs/1112.1340
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1340


J
H
E
P
0
8
(
2
0
1
6
)
0
2
4

[43] M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing:

status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].

[44] F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of

three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018

[arXiv:1312.2878] [INSPIRE].

[45] D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90

(2014) 093006 [arXiv:1405.7540] [INSPIRE].

[46] J. Bergstrom, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Bayesian global analysis of

neutrino oscillation data, JHEP 09 (2015) 200 [arXiv:1507.04366] [INSPIRE].

[47] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new

dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

[48] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

[49] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999)

4690 [hep-th/9906064] [INSPIRE].

[50] M. Blennow, H. Melbeus, T. Ohlsson and H. Zhang, Renormalization group running of the

neutrino mass operator in extra dimensions, JHEP 04 (2011) 052 [arXiv:1101.2585]

[INSPIRE].

[51] T. Ohlsson and S. Riad, Running of neutrino parameters and the Higgs self-coupling in a

six-dimensional UED model, Phys. Lett. B 718 (2013) 1002 [arXiv:1208.6297] [INSPIRE].

[52] A.S. Cornell, A. Deandrea, L.-X. Liu and A. Tarhini, Renormalisation running of masses

and mixings in UED models, Mod. Phys. Lett. A 28 (2013) 1330007 [arXiv:1209.6239]

[INSPIRE].

[53] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles,

Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

[54] B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [Zh. Eksp.

Teor. Fiz. 33 (1957) 549] [INSPIRE].

[55] B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge,

Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [INSPIRE].

[56] Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance

at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

[57] RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino

Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802

[arXiv:1204.0626] [INSPIRE].

[58] D.S. Sivia and J. Skilling, Data analysis: a bayesian tutorial, Oxford University Press,

Oxford U.K. (2006).

[59] G. Cowan, Statistical data analysis, Clarendon, Oxford U.K. (1998).

[60] S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566

[INSPIRE].

[61] P.H. Chankowski and Z. Pluciennik, Renormalization group equations for seesaw neutrino

masses, Phys. Lett. B 316 (1993) 312 [hep-ph/9306333] [INSPIRE].

– 22 –

http://dx.doi.org/10.1007/JHEP11(2014)052
http://arxiv.org/abs/1409.5439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5439
http://dx.doi.org/10.1103/PhysRevD.89.093018
http://arxiv.org/abs/1312.2878
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D89,093018%22
http://dx.doi.org/10.1103/PhysRevD.90.093006
http://dx.doi.org/10.1103/PhysRevD.90.093006
http://arxiv.org/abs/1405.7540
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7540
http://dx.doi.org/10.1007/JHEP09(2015)200
http://arxiv.org/abs/1507.04366
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.04366
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://arxiv.org/abs/hep-ph/9803315
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9803315
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://arxiv.org/abs/hep-ph/9905221
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9905221
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://arxiv.org/abs/hep-th/9906064
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906064
http://dx.doi.org/10.1007/JHEP04(2011)052
http://arxiv.org/abs/1101.2585
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2585
http://dx.doi.org/10.1016/j.physletb.2012.11.042
http://arxiv.org/abs/1208.6297
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6297
http://dx.doi.org/10.1142/S0217732313300073
http://arxiv.org/abs/1209.6239
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.6239
http://dx.doi.org/10.1143/PTP.28.870
http://inspirehep.net/search?p=find+J+%22Prog.Theor.Phys.,28,870%22
http://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,6,429%22
http://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,26,984%22
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://arxiv.org/abs/1203.1669
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1669
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://arxiv.org/abs/1204.0626
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0626
http://dx.doi.org/10.1103/PhysRevLett.43.1566
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,43,1566%22
http://dx.doi.org/10.1016/0370-2693(93)90330-K
http://arxiv.org/abs/hep-ph/9306333
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9306333


J
H
E
P
0
8
(
2
0
1
6
)
0
2
4

[62] K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator,

Phys. Lett. B 319 (1993) 191 [hep-ph/9309223] [INSPIRE].

[63] S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator

renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005] [INSPIRE].

[64] S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP

11 (2013) 115 [arXiv:1306.6879] [INSPIRE].

[65] Z.-z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running

fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013

[arXiv:1112.3112] [INSPIRE].

[66] Z.-z. Xing, H. Zhang and S. Zhou, Updated values of running quark and lepton masses, Phys.

Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].

[67] H. Fusaoka and Y. Koide, Updated estimate of running quark masses, Phys. Rev. D 57

(1998) 3986 [hep-ph/9712201] [INSPIRE].

[68] L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10)

unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].

[69] M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking

and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253]

[INSPIRE].

[70] R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys.

Rev. D 49 (1994) 6168 [INSPIRE].

[71] T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM

matrix elements in the large tanβ regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364]

[INSPIRE].

[72] S. Antusch and M. Spinrath, Quark and lepton masses at the GUT scale including SUSY

threshold corrections, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717] [INSPIRE].

[73] A. Crivellin and C. Greub, Two-loop supersymmetric QCD corrections to Higgs-quark-quark

couplings in the generic MSSM, Phys. Rev. D 87 (2013) 015013 [Erratum ibid. D 87 (2013)

079901] [arXiv:1210.7453] [INSPIRE].

[74] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological

parameters, arXiv:1502.01589 [INSPIRE].

[75] F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative

to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008)

449 [arXiv:0704.3704] [INSPIRE].

[76] F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference

tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601

[arXiv:0809.3437] [INSPIRE].

[77] F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance nested sampling and the

MultiNest algorithm, arXiv:1306.2144 [INSPIRE].

[78] R.E. Kass and A.E. Raftery, Bayes factors, J. Am. Stat. Ass. 90 (1995) 773.

[79] H. Jeffreys, The theory of probability, Oxford University Press, Oxford U.K. (1961).

[80] M. Hobson et al., Bayesian methods in cosmology, Cambridge University Press, Cambridge

U.K. (2010).

– 23 –

http://dx.doi.org/10.1016/0370-2693(93)90801-N
http://arxiv.org/abs/hep-ph/9309223
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9309223
http://dx.doi.org/10.1016/S0370-2693(01)01127-3
http://arxiv.org/abs/hep-ph/0108005
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0108005
http://dx.doi.org/10.1007/JHEP11(2013)115
http://dx.doi.org/10.1007/JHEP11(2013)115
http://arxiv.org/abs/1306.6879
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6879
http://dx.doi.org/10.1103/PhysRevD.86.013013
http://arxiv.org/abs/1112.3112
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3112
http://dx.doi.org/10.1103/PhysRevD.77.113016
http://dx.doi.org/10.1103/PhysRevD.77.113016
http://arxiv.org/abs/0712.1419
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1419
http://dx.doi.org/10.1103/PhysRevD.57.3986
http://dx.doi.org/10.1103/PhysRevD.57.3986
http://arxiv.org/abs/hep-ph/9712201
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9712201
http://dx.doi.org/10.1103/PhysRevD.50.7048
http://arxiv.org/abs/hep-ph/9306309
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9306309
http://dx.doi.org/10.1016/0550-3213(94)90313-1
http://arxiv.org/abs/hep-ph/9402253
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9402253
http://dx.doi.org/10.1103/PhysRevD.49.6168
http://dx.doi.org/10.1103/PhysRevD.49.6168
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D49,6168%22
http://dx.doi.org/10.1103/PhysRevD.52.4151
http://arxiv.org/abs/hep-ph/9504364
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9504364
http://dx.doi.org/10.1103/PhysRevD.78.075020
http://arxiv.org/abs/0804.0717
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.0717
http://dx.doi.org/10.1103/PhysRevD.87.015013
http://arxiv.org/abs/1210.7453
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.7453
http://arxiv.org/abs/1502.01589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01589
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://arxiv.org/abs/0704.3704
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.3704
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://arxiv.org/abs/0809.3437
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3437
http://arxiv.org/abs/1306.2144
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2144


J
H
E
P
0
8
(
2
0
1
6
)
0
2
4

[81] R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp.

Phys. 49 (2008) 71 [arXiv:0803.4089] [INSPIRE].

[82] Z.-z. Xing and Z.-h. Zhao, A review of µ-τ flavor symmetry in neutrino physics, Rept. Prog.

Phys. 79 (2016) 076201 [arXiv:1512.04207] [INSPIRE].

[83] S. Luo and Z.-z. Xing, Resolving the octant of θ23 via radiative µ-τ symmetry breaking, Phys.

Rev. D 90 (2014) 073005 [arXiv:1408.5005] [INSPIRE].

[84] Y.-L. Zhou, µ-τ reflection symmetry and radiative corrections, arXiv:1409.8600 [INSPIRE].

– 24 –

http://dx.doi.org/10.1080/00107510802066753
http://dx.doi.org/10.1080/00107510802066753
http://arxiv.org/abs/0803.4089
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.4089
http://dx.doi.org/10.1088/0034-4885/79/7/076201
http://dx.doi.org/10.1088/0034-4885/79/7/076201
http://arxiv.org/abs/1512.04207
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04207
http://dx.doi.org/10.1103/PhysRevD.90.073005
http://dx.doi.org/10.1103/PhysRevD.90.073005
http://arxiv.org/abs/1408.5005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5005
http://arxiv.org/abs/1409.8600
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8600

	Introduction
	Solar mixing sum rule and RG corrections
	Solar mixing sum rule
	RG corrections to solar mixing sum rule

	Numerical method
	Four illustrative examples
	BM case
	TBM case

	Full numerical results
	Summary and conclusions
	RG equations of lepton mixing parameters

