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1 Introduction

Quantum chromodynamics (QCD) is now firmly accepted as the theory of strong interac-

tions. It is well tested not only at high energy, where QCD couples weakly, but also at low

energy, where QCD becomes strongly interacting. In practice, however, QCD is notoriously

hard to solve directly to describe the properties of hadrons such as mass spectrum, form

factors, or other matrix elements, which are intrinsically nonperturbative. Understanding

the low-energy physics of hadrons in terms of QCD still remains to be a great challenge.

In recent years, however, the lattice QCD has progressed enormously to simulate with

parameters such as the light quark masses very close to physical values in describing the

properties of hadrons, whose analytic understanding is therefore pressing.

Another development to understand low-energy QCD has been made recently in string

theory. Recent study of string theory has shown that a strongly coupled conformal field

theory (CFT) is dual to a weakly interacting gravity in anti-de Sitter (AdS) space in the

limit of large degrees of freedom, which is known as AdS/CFT correspondence. This finding

leads to a new possibility of solving QCD in a certain limit, if one finds the holographic

dual of QCD.

Several models for holographic QCD were proposed and were shown to be quite suc-

cessful in describing the properties of hadrons [1–5]. Holographic QCD deals directly with

hadrons as basic degrees of freedom and the dynamics of hadrons is determined by the

gauge/gravity duality prescription, found in string theory when both the number of colors,

Nc, and the ’t Hooft coupling, λ = g2Nc, are very large.

In this paper we calculate the electromagnetic contributions to the hadron masses in the

Sakai-Sugimoto model of holographic QCD [1], which is constructed from a type IIA string

theory with D4-D8 branes to provide a successful effective theory of hadrons, consistent

with QCD [2]. Calculating accurately the electromagnetic mass is quite important, since it

is vital to determine the precise value of the light quark masses from the hadron spectrum.

Fortunately, the lattice calculation on the electromagnetic contributions to hadron mass has

been progressed a lot to accurately determine the electromagnetic mass of hadrons [6–11].

In this paper we provide a holographic estimate of the electromagnetic mass of hadrons,

which will be complementary to the lattice results.
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2 Meson masses

One of the successes of QCD is that it naturally explains why low-lying mesons like pions

and kaons are much lighter than baryons. QCD with three (light) flavors has a chiral

symmetry, SU(3)L × SU(3)R in the massless limit, which is predicted to be spontaneously

broken to SU(3)V due to the strong dynamics of QCD. Pions and kaons are then identified

as the Nambu-Goldstone bosons associated with the spontaneously broken chiral symme-

try. By Goldstone theorem, the Nambu-Goldstone bosons are massless when the chiral

symmetry is exact. However, the chiral symmetry is only approximate in QCD due to the

current quark mass and also electroweak interactions, which then makes pions and kaons

massive, but much lighter than baryons.

When a continuous global symmetry, Gf , is spontaneously broken to its subgroup H

and also intrinsically broken to Sw ⊂ Gf , the orientation of the true vacuum should be

selected or aligned to minimize the vacuum energy, induced by the intrinsic breaking. Pro-

vided that the intrinsic breaking is perturbative, the potential for the vacuum orientation

g ∈ Gf is given to the lowest order as

V (g) = 〈0, g|H′ |0, g〉 , (2.1)

where |0, g〉 = U(g) |0〉 is a Gf -rotated vacuum of QCD and H′ is the Hamiltonian that

breaks Gf intrinsically. Instead of rotating the vacuum, one might rotate the external

perturbation,

V (g) = 〈0|U(g)−1H′U(g) |0〉 , (2.2)

then the minimization of the vacuum energy becomes tantamount to finding the direction

of the symmetry-breaking Hamiltonian in the basis of the unperturbed vacuum. Finding

the vacuum alignment due to the intrinsic breaking was studied by Dashen [12] for the

chiral symmetry breaking in strong interactions and subsequently by Weinberg [13] in a

generalized context of dynamical electroweak symmetry breaking. Later it has been applied

to calculate masses of Nambu-Goldstone bosons in technicolor [14, 15].

There are two sources for the intrinsic breaking of chiral symmetry in QCD. One is

current quark mass and the other is the electroweak interaction. At the leading order in

perturbation the vacuum alignment by both current quark mass and electroweak interac-

tions can be treated independently. In this paper we study the vacuum alignment due to

the electromagnetic interaction and calculate the electromagnetic corrections to the pion

mass in holographic QCD. The vacuum alignment in holographic QCD due to the current

quark mass has been studied previously [16–18].

The vacuum energy density due to the electromagnetic interaction is given in the

leading order as (see figure 1)

Evac = −e
2

2

∫
d4xDµν(x) 〈0|U−1JQem

µ (x)JQem
ν (0)U |0〉 , (2.3)

where U = e2iπ/fπ describes the pion fields, JQem
µ the electromagnetic currents of quarks,

and Dµν(x) denotes the photon propagator. The electric charge operator, Qem, in the
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Figure 1. The electromagnetic corrections to the vacuum energy at the leading order. The blob

denotes the vacuum polarization and the wiggly line denotes the photon propagator. A counter

term to the vacuum energy is denoted as ⊗, which is independent of the pion fields.

basis of the strong-interaction vacuum, is defined as a sum of isospin and hypercharge,

Qem = I3 + 1
2Y up to a Gf -rotation.

For simplicity, we consider two-flavor QCD, where Gf = SU(2)L × SU(2)R × U(1)V
and Y becomes the baryon number. The electromagnetic (EM) mass of pions is now given

as [14, 15]

m2
π± −m

2
π0 =

∂2

∂π+∂π−
Evac[U ]

∣∣∣∣
U=1

≡ e2M2, (2.4)

where

M2 =
1

f2π

∫
d4xDµν(x) 〈0|T

[
V 3
µ (x)V 3

ν (0)−A3
µ(x)A3

ν(0)
]
|0〉 , (2.5)

with the vector and axial vector flavor currents, V a
µ and Aaµ (a = 1, 2, 3) respectively.

The vacuum correlator of (vector) flavor currents is given as

Πab
V µν(q) =

∫
d4x eiq·x 〈0|V a

µ (x)V b
ν (0) |0〉 = δab

(
qµqν − q2gµν

)
ΠV (q) , (2.6)

and similarly the vacuum correlator of axial vector currents is given as

Πab
Aµν(q) =

∫
d4x eiq·x 〈0|Aaµ(x)Abν(0) |0〉 = δab

(
qµqν − q2gµν

)
ΠA(q) +

qµqν

q2
f2πδ

ab . (2.7)

The vacuum correlators are nonperturbative and has precluded any analytic calculations,

though several attempts were made to estimate the vacuum correlator by using QCD sum

rules or dispersion relations among others. However, in the large Nc and large λ limit,

where QCD is described by its gravity dual, called holographic QCD, the correlators of

flavor currents are easily calculated by gauge/gravity duality. The holographic QCD is

described in general by a five-dimensional Chern-Simons-Yang-Mills theory for the flavor

symmetry of QCD, the boundary gauge theory,

SA = κ

∫
d5xTr

[
− 1

2g2(z)
F 2
µν + f2(z)F 2

zµ

]
+ SCS , (2.8)

where SCS = Nc/24π2
∫
ω5(A) is the 5D Chern-Simons action, that reproduces the QCD

flavor anomaly, and the fifth coordinate z corresponds to the holographic direction with

– 3 –
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Figure 2. The vacuum polarization in holographic QCD.

a warp factor, parameterized by g(z) and f(z). In the case of Sakai-Sugimoto model,

that we will focus on in the paper, g3 = f =
√

1 + z2 , taking the Kaluza-Klein scale

MKK = 949 MeV to be the unit of the scale, and κ = Nc λ/(216π3). Another popular

approach to holographic QCD is a so-called bottom-up approach, first introduced in [3, 4].

The mass difference of π± and π0 in the hard-wall model was calculated in [4]. By the

AdS/CFT correspondence the 5D action becomes the generating functional for one-particle

irreducible Green’s function of 4D operators in the limit of large number of color (Nc � 1)

and large ’t Hooft coupling (λ� 1), if evaluated on-shell for the bulk fields dual to the 4D

operators, whose ultra-violet values are identified as the sources of the operators.

By the AdS/CFT prescription the (axial) vector current-current correlators in the

momentum space are given by the bulk action evaluated on-shell as

ΠV (A)(q
2) = − 2κ

q2
(
1 + z2

)
∂z A(z, q2)

∣∣∣∣
zm

, (2.9)

where zm is the UV boundary of the holographic coordinate that goes to infinity in the

Sakai-Sugimoto model and A(z, q2) is the non-normalizable bulk gauge field, up to the

polarization vector, that satisfies the equation of motion,

(1 + z2)4/3 ∂2zA(z, q2) + 2z(1 + z2)1/3 ∂zA(z, q2) + q2A(z, q2) = 0 (2.10)

with (anti-) symmetric UV boundary conditions for (axial) vector currents. If we expand

the non-normalizable modes, corresponding to the source, in the basis of normalizable

modes of bulk solutions as a sum of infinite tower of (axial) vector mesons (see figure 2),

using the decomposition formula [19], we get for the vector and axial vector correlators,

respectively, following the notations in [2],

ΠV (q2) =
∞∑
n=1

g2vn

(q2 −m2
vn)m2

vn
, ΠA(q2) = −f

2
π

q2
+
∞∑
n=1

g2an

(q2 −m2
an)m2

an
, (2.11)

where gvn (gan) and mvn (man) are the decay constants and mass of n-th (axial) vector

mesons, respectively.

After Wick-rotation, the electromagnetic mass becomes, generalizing the formula by

Das et al. [21],

e2M2 =
3e2

f2π

∫
d4Q

(2π)4
[
ΠV (−Q2)−ΠA(−Q2)

]
(2.12)

=
3e2

8π2f2π

∑
n

[
g2vn ln

(
Λ

mvn

)
− g2an ln

(
Λ

man

)]
, (2.13)
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(a) (b)

Figure 3. (a) The vector and axial vector correlation functions. The orange line denotes ΠA(−Q2)

and the blue line ΠV (−Q2). (b) The pion EM mass. (Q2 and Λ2 are in the unit of M2
KK.)

where Λ is the UV cutoff. The Weinberg first sum rule on spectral functions is used in

the second line, since (axial) vector currents are conserved in hQCD.1 Being a radiative

correction to the pion mass term, the EM corrections could be quadratically divergent.

But, the quadratic divergence is absent due to the Weinberg first sum rule. We further

note that, since the chiral symmetry is spontaneously broken to vector symmetry in the

holographic QCD, the Weinberg second sum rule on the spectral functions,
∑

n(g2vn−g2an) =

0 should hold in hQCD as well [20]. Therefore, though each term in the sum of eq. (2.13)

is logarithmically divergent, the logarithmic divergence is absent in the sum and the EM

mass of pions is finite and thus independent of the UV cutoff.

We find numerically the vector and axial vector correlation functions converge to each

other rather quickly in the Sakai-Sugimoto model (see figure 3 (a)). Though the EM mass of

pions is finite, we introduce a UV cutoff Λ for the numerical estimate of the integral, (2.12).

However, as shown in figure 3 (b), the electromagnetic mass2 of pion converges rather

quickly to 1.8 MeV for Λ2 > 2M2
KK and insensitive to the UV cutoff. We estimate, therefore,

the pion EM mass in the Sakai-Sugimoto model to be 1.8 MeV, which is less than half of the

experimental value, 4.5 MeV. Compared to the result obtained by Das et al. [21], 5 MeV,

and also to the hard wall calculation [4], 3.6 MeV, our estimate of the pion EM mass in

the Sakai-Sugimoto model turns out to be rather small.

3 Baryons in holographic QCD

Baryons in the large Nc QCD should be realized as solitons [22]. In holographic QCD,

being a 5D gauge theory, there is a topologically conservered current

JM =
1

32π2
εMNLPQ tr (FNLFPQ) , (3.1)

1We also checked numerically that limQ2→0Q
2ΠA(−Q2) = f2

π and limQ2→0Q
2ΠV (−Q2) = 0 to find the

Weinberg first sum rule holds in the Sakai-Sugimoto model.
2Since f2

π = 4κ/πM2
KK, the EM mass of pions is independent of Nc and λ and its scale is set only by

MKK = 949 MeV.
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where the 5d coordinates M,N,L, P,Q = 0, 1, 2, 3, z . As the 5d current couples to the

U(1) bulk gauge field, corresponding to the quark number, through the 5d Chern-Simons

term, one can define the 4d baryon current as

Bµ =
1

8π2

∫
dz εµνρσtr (FνρFσ z) , (3.2)

which becomes the Skyrme current upon the Kaluza-Klein reduction of the bulk gauge

fields [23]. Baryons are hence realized as topological solitons in holographic QCD [24–26],

whose topological charge is nothing but the instanton number, identified as baryon

numbers; ∫
d3x dz J0(x, z) =

1

32π2

∫
d3x dz F aIJ F̃

aIJ =

∫
d3xB0(x) = NB , (3.3)

where F aIJ are the field strength tensors of the bulk flavor gauge fields and F̃ aIJ are their

dual with I, J = 1, 2, 3, z .

In holographic QCD the size of instanton is not a zero mode but has a potential, due

to the warped geometry and to the U(1) Coulomb repulsion, which has a minimum away

from the origin. Since the Coulomb energy is coming from the CS term, which is subleading

in 1/λ-expansion, compared to the DBI energy, the size of soliton is expected to be of the

order of 1/
√
λ, quite small in the large λ limit.

The energy of the soliton from the DBI part of the 5d action (2.8) is given as

E0 = κ

∫
d3xdz

[
1

4

(
1 + z2

)−1/3 (
F aij
)2

+
1

2

(
1 + z2

)
(F aiz)

2

]
, (3.4)

where the SU(2) index a = 1, 2, 3 and the spatial index i, j = 1, 2, 3 . Since the instanton

soliton satisfies the duality condition,

F aiz =
1

2

√
−g4 εizlk F alk, (3.5)

where ε is the fully antisymmetric tensor in the flat space and g4 is the determinant of the

induced 4d metric of the z = constant hyper surface, we find that

F aiz =
1

2

(
1 + z2

)−2/3
εijkF

a
jk . (3.6)

The DBI energy can be then written as

E0 = κ

∫
d3x dz

(
1 + z2

)1/3 ~Ea · ~Ba . (3.7)

where Eai = F aiz and Ba
i = 1

2εijkF
a
jk . For the small size soliton, located at the origin z = 0,

we may use the flat-space instanton soluton with an instanton density for NB = 1

1

8π2
~Ea · ~Ba =

6

π2
· ρ4

(ρ2 + ~x2 + z2)4
, (3.8)
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where ρ is the size of the instanton. For ρ� 1 (≡M−1KK) the DBI energy may be expanded

in powers of ρ to get

E0 = m
(0)
B

(
1 +

1

6
ρ2 + · · ·

)
(3.9)

where m
(0)
B = 8π2κ = λNcMKK/(27π). Without the Coulomb repulsion the potential for

the size ρ will have minimum at the origin so that the instanton soliton is unstable against

shrinking to a zero size. However, since the instanton sources through the 5D Chern-Simons

term the U(1) gauge field in the bulk, the Coulomb repulsion balances the gravitational

attraction to stabilize the instanton soliton. The action for the bulk U(1) can be written as

SU(1) = κ

∫
d4xdz

[
−1

4

(
1 + z2

)−1/3
F 2
µν +

1

2

(
1 + z2

)
F 2
µz

]
+

1

2
Nc

∫
d4xdz A0J

0 , (3.10)

where the electrostatic potential energy is coming from the 5d Chern-Simons term of

holographic QCD action (2.8). For a given, static U(1) charge distribution J0(xi, z), its

Coulomb energy is given as

EC = κ

∫
d3xdz

[
−1

2

(
1 + z2

)−1/2
E2
i −

1

2

(
1 + z2

)
E2
z

]
+

1

2
Nc

∫
d4xdz A0J

0 (3.11)

=
1

4
Nc

∫
d3xdz A0J

0 , (3.12)

where we used the Gauss’s law in the second line. For the small size soliton located at

the origin

J0(x, z) ' 6

π2
· ρ4

(ρ2 + ~x2 + z2)4
, (3.13)

the electric field can be obtained by the Gauss’s law∫
~E · d~Σ =

Nc

2κ
· 6

π2

∫ r

0

ρ4 2π2r3dr

(ρ2 + r2)4
, (3.14)

from which we get

Er =
Nc

4π2κ r3

[
1−

ρ4
(
ρ2 + 3r2

)
(ρ2 + r2)3

]
. (3.15)

Therefore, the Coulomb energy becomes in the expansion of powers of ρ

EC '
κ

2

∫
d3x dz E2

r =
N2
c

40π2κ
·
(

1

ρ2
+O(1)

)
. (3.16)

The total energy of the instanton soliton becomes for ρ� 1

E = 8π2κ+
4π2κ

3
ρ2 +

N2
c

40π2κ
· 1

ρ2
+ · · · . (3.17)

We see that the size of the instanton soliton, that minimizes the total energy (3.17), becomes

in the unit of M−1KK

ρB '
1

π

(
3

40

)1/4
√
Nc

2κ
=

9.6√
λ
, (3.18)
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which is quite small in the large λ limit, as the Coulomb potential energy is subdominant

in the 1/λ expansion, compared to the DBI energy [24–26]. Being a small-sized soliton, the

supergravity approximation of Sakai-Sugimoto model might be invalid to describe holo-

graphic baryons. However, it has been shown that the stringy effects to the instanton

solitons are numerically suppressed [27].

Since the size of instanton solitons turns out to be much smaller than the characteristic

length of holographic QCD, the holographic baryons can be described by point-like bulk

spinor fields at low energy, assuming Nc is odd. Similarly to the bottom-up model of

holographic baryons [5], a 5D effective action for the bulk baryon field has been derived

in the 5D momentum expansion to be consistent with the bulk gauge symmetry [24].

Especially the coefficient of the Pauli term has been calculated for the baryons sitting at

the origin, z = 0, at the leading order, which is essential to correctly reproduce the axial

couplings of nucleons among others.

The (low-energy) effective action for the holographic baryons is given in powers of

momentum by the AdS/CFT correspondence as [5, 24],

SB =

∫
d5x
√
g
[
B̄ eMA ΓA∇MB −mb(z)B̄B + µ5(z)B̄ ΓMNFMNB + h.o.

]
, (3.19)

where B is the 5d bulk spinor with a position-dependent mass mb(z), eAM is the vielbein,

satisfying gMN = eAMe
B
NηAB, and the Dirac matrices satisfy

{
ΓA,ΓB

}
= 2ηAB . The

covariant derivative

∇M = ∂M +
i

4
ωABM ΓAB − iAaM ta . (3.20)

where the Lorentz generator ΓAB = 1
2i

[
ΓA,ΓB

]
. The coupling of Pauli term is determined

by the fact that it should produce the correct long distance tail of instanton solitons that

the spinor sources. For the spinor located at the origin, µ5(0) = 4π2ρ2b/(3κ) [24]. The

effective action gives couplings of baryons to mesons, upon the Kaluza-Klein reduction of

the bulk fields, which turn out to be in good agreement with data.

4 Electromagnetic masses of baryons

At the leading order in the αem expansion the electromagnetic (EM) contributions to baryon

masses come from two diagrams, shown in figure 4 and figure 5 (a). The EM correction

like the diagram, figure 5 (a), is in general present because baryons have the non-minimal

EM couplings, figure 5 (b), as well as the minimal coupling with form factors.

The EM form-factors of nucleons are in general non-perturbative and difficult to cal-

culate. But, in holographic QCD they are rather easily calculated from the wave-function

overlap integration by the AdS/CFT prescription. As was shown in [24], the Pauli term

in the non-minimal coupling of bulk spinors in (3.19) does not contain a U(1) part, as

the spinor sources the instanton solitons, which have only a SU(2) long-distance tail. An

immediate consequence of this is that the two-spinor two-photon diagram, figure 5 (b),

vanishes. The EM corrections to the baryon self energy, coming from the diagram in fig-

ure 5 (a), therefore vanish as well, not just at the leading order but at all orders in the αem

– 8 –
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NN N (N′)

Figure 4. An electromagnetic correction to the nucleon mass at the leading order in αem. The blob

denotes the EM form-factor of the nucleon. N denotes low-lying nucleons and N′ denotes excited

nucleons.

(b)

N N N N

(a)

Figure 5. The wiggly line denotes a photon and the solid line the nucleon. (a) An electromagnetic

correction to the nucleon self energy. (b) A non-minimal electromagnetic coupling of nucleons.

expansions. In holographic QCD the EM corrections to the baryon mass therefore come

only from the diagram, shown in figure 4.

To the leading order we can replace the blob in figure 4 by the Dirac EM form factors

of nucleons, since the nucleons in the loop are almost on-shell as the nucleon mass is close

to the ultraviolet (UV) cutoff, MKK (=949 MeV) of the holographic effective theory.3 The

electromagnetic form factors of nucleons (figure 6) are the matrix elements of an external

electromagnetic current, which correspond to a non-normalizable U(1) gauge field in the

bulk with a charge Qem = I3 + 1
2B by the AdS/CFT dictionary:

〈
p′
∣∣ Jµem(x) |p〉 = eiqx ū(p′)Oµ(p, p′)u(p) . (4.1)

By the Lorentz invariance and the current conservation we get for Q2 = −q2

Oµ(p, p′) = γµF1(Q
2) + i

σµν

2MN
qνF2(Q

2) , (4.2)

where MN ' 940 MeV is the nucleon mass. From the effective action (2.8) we can easily

obtain the EM form factors, given as the overlap of the wave functions in the holographic

3Note that since the form factor decays rather quickly as 1/Q2 for the large momentum transfer, the

loop diagram, shown in figure 4, is finite. Furthermore, as the transition form factor, which does not have

the Dirac form factor F1, is suppressed by the nucleon mass, the contributions of excited nucleons in the

loop is negligible.
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p

p′

q

Figure 6. The blob denotes the electromagnetic (transition) form factors of nucleons.

direction [28]: the Dirac and Pauli form factors are given respectively as

F1(Q
2) =

∞∑
k=1

(
g
(k)
V,minQem + g

(k)
V,mag I3

) ζkm
2
2k+1

Q2 +m2
2k+1

, (4.3)

F2(Q
2) = F 3

2 (Q2) I3 = I3

∞∑
k=1

g
(k)
2 ζnm

2
2k+1

Q2 +m2
2k+1

, (4.4)

where m2k+1 is the mass of k-th (proper) vector meson and g
(k)
V , ζk are given by the wave

function overlap of the nucleons and k-th (proper) vector meson. The electromagnetic mass

of nucleons become in the Landau gauge, which is consistent with the Ward-Takahashi

identity for the γ matrix structure of the vertex in our approximation [29],

δMp (n) = e2
∫

d4Q

(2π)4

[
F
p (n)
1 (Q2)

]2 3MN

Q2 +M2
N

· 1

Q2
. (4.5)

We find, keeping the first four vector mesons (k = 1, · · · , 4) in the form factors [28], that

δMp = 0.494 MeV, δMn = 0.018 MeV. (4.6)

The holographic estimate of EM mass difference of nucleons, ∆QEDMN ≡ δMp − δMn =

0.48 MeV compares roughly well with recent lattice calculations [6–11].

To conclude we have calculated the electromagnetic contributions to the hadron mass

in the Sakai-Sugimoto model of holographic QCD, where the Kaluza-Klein scale is taken to

be MKK = 949 MeV, setting the scale of our estimate of EM corrections. For pions, the vac-

uum alignment due to the electromagnetic interactions has been calculated holographically

to obtain the mass difference mπ± −mπ0 = 1.8 MeV, which is less than half of the experi-

mental value, 4.5 MeV. The EM mass of pions is finite because of the Weinberg sum rules

on spectral functions. Numerically we have shown that the EM mass is finite. We then cal-

culate the electromagnetic mass of nucleons in the effective theory of holographic baryons,

derived from the Sakai-Sugimoto model and find the EM mass of proton δMp = 0.494 MeV

– 10 –
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and that of neutron δMn = 0.018 MeV to get (Mp −Mn)QED = 0.48 MeV . Our estimate

of EM mass difference of nucleons agrees with recent lattice calculations, though the latest

lattice result [11] prefers a bit larger value than ours.
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