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1 Introduction

The discovery of a 126 GeV Higgs boson at the LHC [1, 2] together with the absence of a

signal for supersymmetric particles up to the TeV scale [3, 4] generated some tension in su-

persymmetric theories. The mass of the Higgs boson is consistent with the range predicted

by the minimal supersymmetric standard model (MSSM) but the supersymmetry breaking

scale Ms is pushed far above the weak scale Mz leading to the little hierarchy problem. For

recent reviews on the status of supersymmetry after the LHC see, for example, [5, 6].

In the MSSM the tree level Standard Model Higgs mass is bounded from above by

the Z boson mass (Mz ' 91GeV) which is reached for large values of tanβ, defined as the

ratio of the two Higgs vacuum expectation values (VEV) and taken as a free parameter

in the MSSM. Therefore radiative corrections need to be large in order to achieve the

measured 126 GeV value which in turn put a lower bound on the soft supersymmetry

breaking parameters of order O(TeV). In principle this fact could be used to argue for

the absence of signals of supersymmetry at the LHC. However, soft parameters trigger

electroweak symmetry breaking through the following tree level relation [7]

M2
z = 2 (−µ2 + m̂2) , (1.1)

where µ is a free parameter in the MSSM and m̂ is fixed by the soft parameters and tanβ.

From (1.1) one learns that a cancellation between µ and m̂ is needed in order to match

Mz with its experimental value. This fact is the above mentioned little hierarchy problem.

Various suggestions towards its solutions can be found for example in [8–11].

It is of interest to address the problem within non-minimal versions of the supersym-

metric standard model. In particular, in the Next-to-Minimal Supersymmetric Standard
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Model (NMSSM) a singlet chiral multiplet is added to the field content of the MSSM (for

a comprehensive review see [12]). The singlet couples to the Higgs sector of the MSSM

via a Yukawa interaction λ. The latter also generates an effective µ term that elegantly

solves the µ-problem for the scale (or Z3) invariant version of the NMSSM.1 Furthermore,

λ provides an additional quartic term for the Higgses which enhances the tree level Higgs

mass with respect to the MSSM bound for large values of λ and low values of tanβ. In this

regime, the relevant parameters that determine m̂ differ from the MSSM case and thus can

lead to new possibilities to study the little hierarchy.

In the present paper we investigate the question whether a special configuration of the

soft parameters can explain the little hierarchy problem within the NMSSM. In particular

we consider scenarios where m̂ is suppressed with respect to the supersymmetry breaking

scale, i.e.

m̂�Ms . (1.2)

m̂ depends on the soft terms defined at the GUT scale. For the customary choice of

universal boundary conditions at the GUT scale, m̂ is determined by the gaugino massesM0

and soft scalar masses m0.2 If M0 and m0 are related to yield (1.2) then the little hierarchy

problem disappears.3 This scenario was studied in the MSSM in [10], see also [14, 15].

Here the relation is derived in singlet extensions of the MSSM with non-universal Higgs

masses at the GUT scale. The latter is a natural option to generalize the minimal setup,

the Higgses carry no family index and thus there is no danger of flavor changing neutral

currents (FCNC) and no urge for the universality condition.

In particular, we consider soft gaugino masses and soft terms in the Higgs sector

while all other soft terms vanish. This setup can be embedded in e.g. higher-dimensional

orbifold GUTs where the singlet together with the quarks and leptons are confined to a

four-dimensional subspace (brane or orbifold fixed point) while the gauge fields and the

Higgses propagate in the bulk.4 The additional assumption that supersymmetry breaking

occurs at a spatially separated brane by a hidden field [25] leads to the so called gaugino

mediation [26–28] and reproduces the boundary conditions for the soft terms studied in

this paper.

In the present work we study the phenomenology of these scenarios. The low energy

spectrum can be very different from the MSSM and has implications for the next LHC

run. The predictions depend on the value of the Yukawa coupling λ. For λ . O(10−1)

the singlet scalar and singlino are heavy O(TeV) while for lower values λ . O(10−4) the

1In the more general case additional sources for the µ term exist and thus spoil this property. However,

there are well motivated generalized versions of the scale invariant NMSSM for which the µh term can be

generated after supersymmetry breaking and can be naturally of order of the soft parameters [13].
2Universal boundary conditions at the GUT scale correspond to the minimal setup of soft terms

M0,m0, A, b. m̂ depends mildly on the A-terms thus they can be ignored in the argument.
3Note, however, that this does not imply that the fine tuning is relieved. In order to have this suppression

one requires a very precise relation among the soft parameters and small deviations from this value would

spoil the necessary cancellations. Therefore, such a relation should be understood as an outcome of a UV

completed theory.
4See [16–20] for examples of higher dimensional orbifold GUTs in five and six dimensions and [21–24]

for examples derived from asymmetric orbifold compactifications in the heterotic string theory.
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singlet becomes the lightest scalar and the singlino the LSP. The pseudoscalar singlet is

O(100)GeV below λ . O(10−1) and reaches O(TeV) for larger values of λ. The gravitino

mass is O(10)GeV and can be the LSP depending on the value of λ. These scenarios can

also be interesting for dark matter searches.

In addition we study whether the special relation among the soft terms computed

above could be obtained from a more fundamental theory. Soft terms at the GUT scale

rely on the mechanism and mediation of supersymmetry breaking. Within supergravity,

i.e. for gravity mediated supersymmetry breaking, soft terms are computed in [29] in a

model independent way. More precisely, without specifying the dynamics that trigger

supersymmetry breaking, they are parametrized through general (unknown) couplings in

the Kähler potential, the superpotential and the gauge kinetic functions. One can also

consider, as an intermediate step of a UV completion, effective globally supersymmetric

theories. Supersymmetry breaking can be communicated for example, via gauge or gaugino

mediation. In this paper, pursuing the spirit of [29] we compute the soft terms for this

class of theories in a model independent way. We then use the example suggested in [10]

to provide the special relation between soft gaugino and Higgs scalar masses required to

ease the little hierarchy problem. It is worth stressing that this relation should come out

of the UV theory, adjusting the coefficient to the necessary value implies a fine tuning as

severe as in conventional MSSM models. However, the aim of the example is to illustrate

that one can expect the little hierarchy problem to be an artifact of our ignorance and to

hint for patterns of soft terms at the GUT scale that lead to a natural electroweak scale.

This paper is organized as follows. In section 2.1 we introduce the relevant parameters

in the NMSSM, in section 2.2 we compute the relation between the soft gaugino and

Higgs scalar masses that leads to the condition (1.2) and in section 2.3 we investigate the

phenomenological implications of the models studied. In section 3 we motivate via higher-

dimensional orbifold GUTs the structure of soft terms used in section 2 and compute them

within a simple example that yields the required values. In appendix A we provide the soft

terms for effective global supersymmetric theories, used in section 3.

2 A low electroweak scale from a special gaugino-scalar mass relation

2.1 Conditions for electroweak symmetry breaking

In this section we present the Lagrangian of the NMSSM and the conditions for electroweak

symmetry breaking. The NMSSM extends the MSSM by adding a chiral gauge singlet

supermultiplet S. The singlet is coupled to the Higgs sector via a Yukawa interaction with

coupling λ and it contributes to the electroweak symmetry breaking as an additional Higgs.

To be more precise, the singlet gets a vacuum expectation value (VEV) and mixes with

the MSSM Higgses in the mass matrix. The NMSSM superpotential is given by

WNMSSM =(λS + µh)HuHd +
1

3
κS3+∑

generations

yuQURHu + ydQLDRHd + yeLLERHd ,
(2.1)
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where S is the NMSSM singlet and Hu, Hd are the MSSM Higgs multiplets. λ and κ are

dimensionless Yukawa couplings and µh is the supersymmetric Higgs mass term.5 yu, yd, ye
are the Yukawa couplings of the MSSM, Q are the quark doublets, UR and DR are the

quark singlets, LL are the lepton doublets and ER are the lepton singlets. In addition to

the supersymmetric interactions given in (2.1), supersymmetry breaking induces soft terms

given by

Vsoft =
1

2
Maλaλ̄a +m2

hu |Hu|2 +m2
hd
|Hd|2 +m2

s|S|2

+

(
λAλHuHdS +

1

3
κAκS

3 +
1

2
bsS

2 + ξsS + bh HuHd + h.c.

)
+

∑
generations

m2
q |Q|2 +m2

u|UR|2 +m2
d|DR|2 +m2

l |L|2 +m2
e|E|2

+ (yuAuQHuUR − ydAdQHdDR − yeAeLHdER + h.c.) ,

(2.2)

where Ma, a = 1, 2, 3 are the three soft gaugino masses, mj are the soft scalar masses,

Ay are the A-terms, bh is the b-term and bs, ξs are b-term and tadpole soft terms of the

singlet.6

After these preliminaries the computation of the scalar potential is straightforward.

For the Higgs sector together with the singlet the potential reads [12]

Vhiggs =
1

8
(g2

1 + g2
2)(|hu|2 − |hd|2)2 + (m2

hu + µ2)|hu|2 + (m2
hd

+ µ2)|hd|2

+ λ2|hu|2|hd|2 + κ2|s|4 +m2
s|s|2 +

(
− b huhd +

κ

3
Aκs

3 +
1

2
bss

2 + ξss+ h.c

)
,

(2.3)

where hu, hd, s are the scalar components of the respective supermultiplets and µ and b are

defined as

µ = µeff + µh, µeff = λs , b = µeff beff + b2h, beff = Aλ + κs . (2.4)

The VEVs 〈hu〉, 〈hd〉, 〈s〉 can be computed by minimizing (2.3). Since the soft terms

are of order of the supersymmetry breaking scale Ms and we assume Ms � 〈hu〉, 〈hd〉 the

VEV of the singlet can be obtained from the minimum of Vs given by

Vs ' κ2s4 +
2

3
κAκs

3 + (m2
s + bs)s

2 + 2ξss . (2.5)

The global minimum, for (m2
s + bs) < 0 and neglecting Aκ, which corresponds to our

parameter space as explained in section 2.2, can be approximated by

〈s〉 ' −2sign(q)

√
−p
3

cosh
(1

3
arccosh(

√
−x)

)
, (2.6)

5In the literature the NMSSM often denotes the scale (or Z3) invariant version of singlet extensions

of the MSSM which has µh = 0. In the generalized versions considered in [13] an underlying symmetry

forbids the µh term before supersymmetry breaking. However after supersymmetry breaking this can be

non-vanishing and naturally be of order of the soft parameters. One could also consider quadratic and

linear terms for the singlet to be generated after superymmetry breaking. In this work we take these to be

vanishing, this choice is motivated in section 3.
6 Provided that µh and bh are non-vanishing after supersymmetry breaking the quadratic and linear soft

terms of the singlet can grow radiatively and thus must be included in the discussion of the potential.
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with p = (m2
s + bs)/(2κ

2), q = ξs/(2κ
2) and x = 27q2/(4p3). The remaining two minimiza-

tion conditions determine Mz and tanβ := <hu>
<hd>

, via the following equations

M2
z = 2 (−µ2 + m̂2) , (2.7)

where we defined

m̂2 :=
m2
hd
− tan2 βm2

hu

tan2 β − 1
, (2.8)

and

sin(2β) =
2b

m2
hu

+m2
hd

+ 2µ2 + λ2v2
, (2.9)

with v2 = 〈hu〉2 + 〈hd〉2 = (174GeV)2, β ∈ [π4 ,
π
2 ] and all parameters are to be taken at the

scale Ms. The value of tanβ and the (running) top mass mt fix the top Yukawa coupling

via

mt = ythu = ytvsinβ . (2.10)

The scalar potential gets threshold corrections at one loop which can be computed

from the Coleman-Weinberg potential [12]

∆V =
1

64π2
Str M4

(
log

(
M2

M2
s

)
− 3

2

)
, (2.11)

where Ms =
√
mt̃1

mt̃2
with mt̃1,2

being the eigenvalues of the stop mass matrix. They

explicitely read

m2
t̃1,2

= m2
t +

1

2
(m2

q +m2
u)∓

√
W , (2.12)

where W = 1
4(m2

q −m2
u)2 + m2

t (Au − µ hd/hu)2 is the mixing parameter. The dominant

contribution in ∆V comes from the top sector and shifts the soft Higgs masses as follows

m2
hu → m2

hu +
3

32π2
y2
t ct̃ , m2

hd
→ m2

hd
, m2

s → m2
s , (2.13)

where

ct̃ = m2
t̃1

(
log

m2
t̃1

M2
s

− 1

)
+m2

t̃2

(
log

m2
t̃2

M2
s

− 1

)
− 2m2

t

(
log

m2
t

M2
s

− 1

)
. (2.14)

Before continuing let us recall a few properties of the Higgs mass within the NMSSM.

The three neutral scalars hu, hd, s mix in a 3× 3 mass matrix that should be diagonalized

in order to obtain the three mass eigenstates [12]. For most of the parameter space the

singlet is heavy and a SM-like Higgs is found when the mixing with with the singlet can

be neglected. In this case one finds for the mass of the SM-like Higgs at one loop [30]

m2
h 'M2

z cos2 2β + λ2v2 sin2 2β +
3m4

t

4π2v2
ln
M2

s

m2
t

, (2.15)

where m2
t̃1,2
∼ m2

q ∼ m2
u � m2

t is assumed and additional terms coming from the stop

mixing are neglected.7 Notice that the tree level contribution (i.e. the first two terms) can

7This expression is derived for the Z3 version of the NMSSM but the result holds for general versions of

the NMSSM after replacing λ〈s〉 for µ.
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be larger than in the MSSM for large λ and low tanβ, while the one loop correction (third

term) depends logarithmically on the SUSY scale Ms and is identical to the MSSM.

For completeness we provide the tree level masses of the components of the singlet, i.e.

the scalar mhs , the pseudoscalar mas and the fermion mχs . The expressions given below

assume that there is no mixing in the mass matrices of the corresponding fields and were

calculated following [12] assuming non-vanishing µh, see also [31]. They are given as follows

m2
hs =

1

2
λAλ sin(2β)

v2

s
+ κs(Aκ + 4κs)− λµh

v2

s
− ξs
s
,

m2
as =

1

2
λ(Aλ + 4κs) sin(2β)

v2

s
− 3Aκκs− 2bs −

ξs
s
,

mχs = 2κs .

(2.16)

2.2 Calculation of k

In this section we study soft terms which naturally generate the electroweak scale within

the NMSSM. In particular, we consider the following non-universal soft terms at the GUT

scale
m2

0 = m2
hu = m2

hd
, m2

q = m2
u = m2

d = m2
l = m2

e = m2
s = 0,

M0 = Mi=1,2,3 , Au = Aλ = Aκ = 0 , bs = ξs = 0
(2.17)

while the parameters bh0 and µh0 are left free.8 Note that the parameters given in (2.17)

are flavor-diagonal but they are non-universal in that the soft Higgs masses differ from the

soft sfermion masses.

To compute the soft terms atMs, the one-loop renormalization group equations (RGEs)

are used [12] and threshold corrections of the soft Higgs masses given in (2.13) are also

included. The gauge couplings are fixed at the GUT scale by α0 = α2 = α3 = 3
5α1 ' 0.04

and only the top Yukawa (yt) and the NMSSM Yukawa couplings (λ,κ) are taken into

account while all other Yukawa couplings are neglected. This approximation holds as long

as tanβ is not too large [7]. In sum, the free parameters before electroweak symmetry

breaking are

M0, m0, µ, tanβ, λ0, and κ0 , (2.18)

where µh and bh have been traded for µ defined in (2.4) and tanβ defined in (2.9) respec-

tively. From the RGE one obtains the soft Higgs mass parameters at low energy in terms

of the GUT parameters. Explicitly one finds

m2
hi=1,2

= αi(λ0, κ0, tanβ)M2
0 + βi(λ0, κ0, tanβ)m2

0 , (2.19)

where αi, βi are functions of the Yukawa couplings which can be computed numerically and

we replaced the top Yukawa by tanβ using (2.10).

Using the assertion

M0 = km0 , (2.20)

we computed the values of k for which m̂ in (2.8) is suppressed with respect to the super-

symmetry breaking scale, i.e.

m̂�Ms . (2.21)

8The index “0” denotes parameters which are taken at MGUT ' 1016GeV.
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s

Figure 1. m̂/Ms for different values of λ0, from left to right λ0 = 0.4, 0.001, tanβ = 6, 15

(dashed,thick) and fixed κ ' 0.4− 0.6, Ms = 3 TeV.

Inserting the soft Higgs masses (2.19) and m0 from (2.20) into (2.8) one obtains

m̂2 = c(λ0, κ0, tanβ, k) M2
0 , (2.22)

where c can be expressed in terms of αi, βi, k and tanβ. For the Yukawa coupling κ at low

energy we use κ ∼ 0.4− 0.6 which corresponds to κ0 ∼ O(1). Thus, effectively m̂2 at low

energy is parametrized by

m̂2 = c(λ0, tanβ, k) M2
0 . (2.23)

For λ0 � 1 the singlet decouples and the Higgs sector is effectively the Higgs sector of

the MSSM. In this case the Higgs mass reaches its upper tree level bound for large values of

tanβ and thus allows for Ms = O(1TeV). From figure 1 we see that in the regime λ0 � 1

and for 0 . m̂ . 0.2Ms, the range of the required k take values in the narrow range

0.70 . k . 0.76 (effective MSSM) . (2.24)

On the other hand, a phenomenologically interesting region in the NMSSM corresponds

to low tanβ and large λ0. In this regime the tree level value of the Higgs mass is maximized

and can take larger values than in the MSSM case. However, too small values of tanβ imply

a large cancellation of the two terms that contribute to m̂ in (2.8), due to the fact that

m2
hd

is large at low energies. Hence we only consider moderate values of tanβ (' 10),

for which m̂2 ' −m2
hu

. Analogously, too large values of λ0 induce large µeff, e.g. for

Ms = 3TeV the upper bound λ0 . 0.4 corresponds to λ . 0.33 and µeff . 500GeV.

Moreover, the upper bound on λ0 is lessened for larger Ms.
9 Notice that these constraints

exclude the appealing regime of the NMSSM where the Higgs mass can get a larger tree

level contribution. Requiring 0 . m̂ . 0.2Ms, 5 . tanβ . 15 and 0.01 . λ0 . 0.4 the

range of k widens

0.66 . k . 0.76 (NMSSM). (2.25)

9The parameter Aκ is negligible at low energy and thus can be disregarded in the calculation of 〈s〉.
However, ξs can get sizable radiative corrections provided λ0 is not too small. Similarly, m2

s and bs are the

dominant contribution to 〈s〉 when λ0 → 0. 〈s〉 is computed from (2.6).
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- 0.2
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m /M
s

Figure 2. m̂/Ms plotted as a function of λ0, with k = 0.71 (upper plot), k = 0.67 (lower plot),

increasing tanβ between 6 and 12 from left to right and with Ms ' 3TeV. We see that m̂ is O(Mz)

(region between -0.2 and 0.2) for a broad range of tanβ and λ0.

The bh parameter can be adjusted to give the desired values of tanβ. Using (2.9)

and (2.25) the values of bh that give 5 . tanβ . 20 are within the range

0 . bh/M
2
0 . 0.4 . (2.26)

Finally, in figure 2 we show that as promised m̂�Ms for different values of tanβ and k.

2.3 Phenomenological implications

In this section we investigate the phenomenological implications of the scenarios studied in

section 2.2. In particular, depending on the value of λ0, we find different predictions that

could be tested in the next LHC run.

Using (2.15) we find that for Ms ∼ 3− 6TeV, tanβ ' 10 the Higgs mass is consistent

with the measured value [32, 33] mh = 125.6GeV within an uncertainty of 3GeV and

we checked that the mixing of the singlet with the Higgs is negligible in this range of

parameters.
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Figure 3. In the left figure we show the masses of the singlet scalar (dashed), singlino (dashed-

dotted) and singlet pseudoscalar (dotted) for low values of λ0 and Ms = 3TeV. In the right plot

the masses of the singlet and singlino are plotted for the same values of Ms and larger values of λ0.

One can see that they rapidly increase with λ0.

The above values of Ms correspond to M0 ∼ 1.5 − 3.5TeV. The gluino mass M3

obtained from the RGEs and stop masses calculated from (2.12) are

M3 ∼ 4− 8TeV , mt̃1,2
∼ 3− 6TeV . (2.27)

From M3 the wino and bino masses are computed via the standard relations [7, 12] M3 :

M2 : M1 ∼ 5.5, 1.9, 1 giving

M2 ∼ 1400− 3000 GeV, M1 ∼ 700− 1600 GeV . (2.28)

As we already discussed the Higgsino masses scale with µ, which is bounded from

below by 100 GeV. Since m̂ is of the order of the electroweak scale we need to have µ in a

similar range to obtain the correct Z boson mass. As a consequence the Higgsino masses

turn out to be a few hundred GeV.

On the other hand, in the effective MSSM region we find that for very small λ0 O(10−4)

the neutral singlet can become lighter than the Higgs. In this regime, the singlino is the

lightest neutralino (see figure 3). Moreover, a light singlet can yield significant changes in

the Higgs decay constants that are consistent with the present LHC bounds. Experimental

signatures have been recently studied and provide predictions for the next run [34–36]. For

larger values of λ0 the singlet and singlino become heavy O(TeV).

The singlet pseudoscalar turns out to be also very light and its mass strongly depends

on the λ0 coupling (see figure 3). In the scale invariant version of the NMSSM, the potential

exhibits an approximate global U(1) R-symmetry. This symmetry was first discussed in [37]

and it is exact at the GUT scale with Aλ = Aκ = 0 as set in (2.17) and becomes approximate

at low energies via the radiative corrections to the A-terms. The symmetry is spontaneously

broken when the scalars, hu, hd and s get a VEV. The corresponding pseudo-Goldstone

boson is the singlet pseudoscalar. Here the symmetry is already broken by the µh and bh
terms terms at the GUT scale, however, provided that these together with λ0 are small, the

mass is slightly corrected from the scale invariant NMSSM case. Moreover, it can modify
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Parameters P1 P2 P3 P4

λ0 0.33 10−4 0.1 10−3

M0 [GeV] 2000 2500 3000 3500

m2
0 [GeV2] 7 · 106 9.5 · 106 1.35 · 107 1.75 · 107

mhs [GeV] 1850 114.5 907.4 178.3

mh [GeV] 123.6 126 125.7 127.9

mH ,mH±,mA [GeV] 2824 3434 4067 4660

mas [GeV] 1040 66.65 561 108.8

mχ̃s [GeV] 1659 93.65 814.4 147.8

mχ̃µ1
[GeV] 491 695 693 766.2

mχ̃µ2
[GeV] 497 700 696 770

mχ̃bino
[GeV] 880 1106 1335 1569

mχ̃wino [GeV] 1642 2056 2473 2893

mg̃ [GeV] 4070 5145 6104 7047

msquark [GeV] 2680-3760 3330-4630 3930-5480 4540-6310

mslepton [GeV] 667-1300 840-1620 1000-1940 1180-2250

Table 1. Examples of mass spectra computed with SPheno [41, 42] created by SARAH [43–45].

We used tanβ = 15, κ0 = 1 and Ms = 3, 3.8, 4.5, 5TeV (from left ro right in the table).

the Higgs boson decays, the collider signatures of this scenario have been studied and are

consistent with present LHC bounds [34–36, 38, 39].

The spectrum of sleptons and squarks of the first and second generation resembles that

of the MSSM in gaugino mediated scenarios [26, 40]. In particular, squarks are heavier

than sleptons. The lightest sleptons are the right-handed ones and their masses lie below

the bino neutralino within mẽR ' 600− 1300 GeV.

We cross check the results with a modified version of SPheno [41, 42] created by

SARAH [43–45].10 This performs a complete one-loop calculation of all SUSY and Higgs

masses and includes the dominant two-loop corrections for the scalar Higgs masses. We

show several benchmark points in table 1, in particular, the spectrum for large λ0 in P1

and P3, for small λ0 in P2 and an intermediate value of λ0 in P4.

3 Higher dimensional orbifold GUTs

In this section we discuss an orbifold GUT as an example which leads to the previously

chosen structure of soft terms in (2.17) and the relation (2.20). Let us start by discussing

the low energy effective theory.

The starting point is the assumption that the NMSSM is embedded in a higher-dimen-

sional orbifold GUT. In these models a unified gauge group (e.g. SU(5) or SO(10)) in a

higher-dimensional theory breaks to the SM gauge group and N = 1 supersymmetry in

four space-time dimensions via the compactification [16–20]. Thus, MGUT ' R−1 where R

is the compactification radius. The four-dimensional low energy theory can be such that

10We thank Kai Schmidt-Hoberg and Florian Staub for helping with the program.
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only the MSSM (or extensions thereof) survive at scales below R−1. An important aspect

of these higher dimensional theories is that they are non-renormalizable, i.e perturbation

theory can only be trusted up to a cutoff scale Λ.

In order to study phenomenological aspects, it is necessary to specify where the matter

content is localized and how supersymmetry breaking occurs. We follow ref. [26] (see

also [27, 46]) in that the gauge fields and MSSM Higgses live in the bulk whereas the

singlet and the 3rd family of fermions sit at one of the orbifold fix points. The 1st and 2nd

fermion generations can be located at the same or a different fixed point.

We consider the situation where a hidden field Σ sits at a fixed point which is different

from the fixed point of the singlet and the 3rd generation and further assume that Σ gets

a VEV that triggers supersymmetry breaking [25]. Σ is coupled through local universal

operators to fields in the bulk which induce soft breaking terms for the latter. However,

soft terms for the fields that live on different, separated branes are suppressed at tree level

by the size of the extra dimensions and can only develop radiatively. For the localization of

fields specified above it implies that soft terms for the singlet and sfermions are negligible

while gaugino and Higgs soft scalar masses are sizable and universal. With this setup

the theory generates the soft terms in (2.17) and defines the boundary condition at the

GUT scale. Let us now explicitly calculate m0 and M0 using the expressions given in

appendix A.11

The soft terms arise from (non-renormalizable) couplings of the higher-dimensional

theory involving Σ, its F -term FΣ and the observable fields in the bulk. These couplings

rely on the specific mechanism of supersymmetry breaking and they can be computed

with the knowledge of the supersymmetric theory at high energies. At low energies the

hidden sector decouples, thus the Lagrangian for observable fields reduces to the global

supersymmetric piece plus soft terms. The leading order contribution to the soft terms is

proportional to the scale

msoft =
FΣ

Λ
, (3.1)

with FΣ being the supersymmetry breaking parameter. We follow the approach of [29],

i.e. do not specify the dynamics that triggers supersymmetry breaking and parametrize

our ignorance through unknown couplings (functions of the hidden field) in the effective

Lagrangian. Hence soft terms are given in a model independent way in terms of the Kähler

potential (K), the superpotential (W ) and the gauge kinetic function (f).

Assuming that the couplings between the hidden field and the observable fields in the

bulk are universal we can parametrize K, W and f as follows

K = Z(Σ̂, ˆ̄Σ) ( |Hu|2 + |Hd|2) +

(
1

2
µK (Σ̂, ˆ̄Σ)HuHd + c.c.

)
,

f = h(Σ̂) , W = µW (Σ̂)HuHd ,

(3.2)

11 One can consider the possibility that the 1st and 2nd generation of fermions sit at the same fixed

point as the supersymmetry breaking field. In this case they could couple to the latter and get tree level

soft terms. In particular, the soft scalar masses could be considerably heavier than the third generation of

sfermions at low energy.
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where we defined Σ̂ = Σ
Λ . Since we do not explicitly know the dynamics of the higher-

dimensional theory, the functions Z, h, µK , µW are unknown.

Via the Giudice-Masiero mechanism [47] the last term in K gives rise to the µh and

bh parameters. µh receives an additional contribution from µW and thus does not have

to be of order msoft. Therefore we treat µh as a free parameter (i.e. do not address the

µ-problem).12

After these preliminaries, the calculation of the soft gaugino and soft scalar masses

is straightforward by means of (A.15) and (A.10) in the appendix. Written in terms of

canonically normalized fields, they are given as follows

M0 = FΣ ∂Σ log Re(h) , m2
0 = −|FΣ|2∂Σ∂̄Σ̄ logZ . (3.3)

From (3.3) we derive the relation between the soft gaugino and soft higgs masses to be

M0 = km0 , k =
∂Σ log Re(h)

(−∂Σ∂̄Σ̄ logZ)
1
2

. (3.4)

Furthermore, the leading order contribution of this relation is obtained by expanding Z

and h in powers of Σ̂, ˆ̄Σ

Z ' 1 + ρ |Σ̂|2 + . . . , h ' 1 + γΣ̂ + . . . , (3.5)

where the numerical coefficients ρ, γ are unknown constants.13 A linear term in Z, ρ1 (Σ̂+ ˆ̄Σ)

can be absorbed in ρ by a field redefinition of the form Hu,d → (1+ρ1)Hu,d and ρ→ ρ−ρ2
1.

Inserting (3.5) into (3.4) yields

k =
1

2

γ

(−ρ)
1
2

. (3.6)

One example where k can be estimated is using Näıve Dimensional Analysis (NDA) [48,

49]. NDA assumes that at the cutoff scale (Λ) all couplings, and their loop corrections,

become order one in units of Λ, i.e. the theory becomes strongly coupled at energies near Λ.

The corresponding ratio between gaugino and soft scalar masses in this case was computed

in [10] and is completely determined in a d-dimensional theory in terms of Λ and the volume

of the extra dimensions Vd−4. This relation is explicitly given by

M0 = km0 , with k =

(
ld

l4Λd−4Vd−4

) 1
2

, (3.7)

with ld a numerical factor ld = 2dπd/2Γ(d/2). Λ is bounded from above by the Planck scale

in d-dimensions, which is defined via

MP,d =

(
M2

P

Vd−4

) 1
d−2

. (3.8)

12See [13] for examples of effective µh terms after supersymmetry breaking in singlet extensions of the

MSSM.
13The quadratic terms (Σ2 + ˆ̄Σ2) (|Hu|2 + |Hd|2) give subleading contributions to the soft masses.
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We calculate k replacing V = (2πRl)
d with R−1

l 'MGUT and 1.24MGUT . Λ .MP,d (the

lower bound of Λ is determined by the absence of FCNC, see discussion below). For d = 5

it yields

0.3 . k . 0.8 (3.9)

and thus provides the coefficient in (2.25) with the expected size. For d = 6 or larger

the out coming k is smaller than the required values. Notice that k decreases with Λ, in

particular, if Λ takes the value of the Planck mass in 5 dimensions k is too small to account

for the necessary values.

Let us mention that FCNC in these models are absent as long as the cutoff is sufficiently

large. More precisely, dangerous terms are generated through loops in the extra dimensions

and scale like ∝ e−ΛL with L the distance between the branes [46], here L = 2πR. A

suppression consistent with experimental bounds (. 4 · 10−4) implies ΛL & 7.8, see [26].

Thus, we must require a lower bound on Λ of Λ & 1.24R−1. On the other hand, as stated

above Λ is bounded from above by MP,d which, for V = (2πRl)
d and R−1

l ' MGUT in

d = 5, yields O(1017)GeV so the window for Λ is quite constraint.

Embedding the NMSSM into a spontaneously broken supergravity yields a gravitino

mass m 3
2

= FΣ√
3MP

. The relation between Λ and MP is model dependent, however, as long

as Λ�MP the soft terms that correspond to gravity mediated interactions are sub-leading

and thus can be neglected. Moreover, the gravitino mass generically appears as the lightest

supersymmetric particle (LSP) and is a good dark matter candidate [50]. For a study on

gravitino dark matter in gaugino mediation see [51]. One can estimate m 3
2

by using Λ as

in the calculation of soft terms for d = 5 and msoft 'M0. This yields

m 3
2
' O(0.006− 0.06)M0. (3.10)

Replacing M0 as calculated in section 2.3 we find m 3
2
' 10−100 GeV and thus the gravitino

can be the LSP.

4 Conclusions

In this paper we investigated a special relation among the soft terms that explains the

small hierarchy between the supersymmetry breaking scale and the electroweak scale. More

precisely, we looked for a condition of the soft terms for which the parameters that trigger

electroweak symmetry breaking are suppressed with respect to the supersymmetry breaking

scale. We considered the NMSSM and, as boundary conditions at the GUT scale, vanishing

soft terms except of gaugino masses and soft terms for the Higgs sector. This setup can

be embedded in e.g. higher-dimensional orbifold GUTs where the singlet together with the

quarks and leptons are confined to a four dimensional subspace (brane or orbifold fixed

point) while the gauge fields and the Higgses propagate in the bulk. Moreover, assuming

that supersymmetry breaking occurs at a spatially separated brane by a hidden field leads

to the so called gaugino mediation and yields the soft terms at the GUT scale studied in

this paper. From the requirement of naturalness explained above we obtained a specific

relation between the soft gauginos and Higgs scalar masses.
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In addition, we studied the phenomenology of these scenarios. The low energy spec-

trum depends on the value of the Yukawa coupling λ of the singlet. For λ . O(10−1)

the singlet scalar and singlino are heavy O(TeV) while for lower values λ . O(10−4) the

singlet becomes the lightest scalar and the singlino the LSP. The pseudoscalar singlet is

O(100)GeV below λ . O(10−1) and reaches O(TeV) for larger values of λ. The gravitino

mass is O(10)GeV and can be the LSP depending on the value of λ. These scenarios can

also be interesting for dark matter searches.

Furthermore, we derived the soft terms for effective global supersymmetric theories in

a model independent way. This class of theories can be considered as an intermediate step

of the UV completion and provide the necessary framework in e.g. for gaugino mediated

scenarios. We specifically considered the example of [10] where higher-dimensional GUTs

provide the special relation between soft gaugino and soft scalar masses required to explain

the little hierarchy. This example relies on näıve dimensional analysis arguments which

allows to have explicit expressions for the couplings that determine the soft terms. In

particular, these depend on the size of the extra dimensions and the cutoff scale and yield

the required values for d = 5 and a cutoff below the Planck mass.
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A Model independent soft terms in non renormalizable theories with

global supersymmetry

The starting point is a supersymmetric N = 1 theory described by two sectors: the observ-

able sector, which includes (extensions of) the MSSM and a hidden sector that is responsible

for supersymmetry breaking. The chiral superfields in the observable sector are denoted by

QI while the chiral fields in the hidden sector are called φi. Arbitrary non-renormalizable

couplings are allowed which come suppressed by a cutoff scale Λ. The Lagrangian can be

completely specified in terms of the Kähler potential K, the superpotential W and the

gauge kinetic function f . K is a real and gauge invariant and can be expanded in powers

of the chiral fields QI , Q̄Ī which reads

K = Λ2K̂(φ, φ̄) + ZIJ̄(φ, φ̄)QIQ̄J̄ +

(
1

2
HIJ(φ, φ̄)QIQJ + c.c.

)
+ . . . . (A.1)

The superpotential is an holomorphic function of the chiral fields which is expanded as

W (φ,Q) = Ŵ (φ) +
1

2
µ̃IJ(φ)QIQJ +

1

3
YIJK(φ)QIQJQK + ... . (A.2)

The gauge kinetic function can depend on the hidden fields and defines the gauge couplings

g−2
a (φ, φ̄) where a runs over different factors of the gauge group, i.e. G =

∏
aGa. The ga
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renormalize in field theory with an all order expression given by [52, 53]

g−2
a (φ, φ̄, p) = Refa(φ) +

ba
8π2

log
Λ

p
+
T (Ga)

8π2
log g−2

a (φ, φ̄, p)

−
∑
r

Ta(r)

8π2
log detZ(r)(φ, φ̄, p) .

(A.3)

Here p < Λ is the renormalization scale and the numerical coefficients are given by Ta(r) =

Trr(T
2
a ), T (Ga) = Ta(adjoint) and ba =

∑
r nrTa(r)−3T (Ga) where the summation is over

representations r of the (observable) gauge group G. The first term corresponds to the tree

level gauge couplings while the other are loop corrections.

The effective potential of the hidden fields, responsible for supersymmetry breaking,

can be written as

V hid ' Λ2K̂ij̄F
iF̄ j̄ , (A.4)

where

F̄ j̄ = Λ−2K̂ j̄i∂iŴ . (A.5)

Supersymmetry is spontaneously broken if 〈F i〉 6= 0 which defines the scale of SUSY

breaking via

msoft = 〈K̂ij̄F
iF̄ j̄〉

1
2 . (A.6)

Following [29], we calculate the effective Lagrangian for the observable sector. In order

to do so, we replace the hidden fields and their auxiliary partners by their VEVs. Keeping

only the renormalizable couplings we obtain

V (Q, Q̄) =
∑
a

g2
a

4
(Q̄ĪZĪJTaQ

J)2 + ∂IW
effZIJ̄ ∂̄J̄W̄

eff

+m2
IJ̄Q

IQ̄J̄ +

(
1

3
AIJKQ

IQJQK +
1

2
BIJQ

IQJ + c.c.

)
,

(A.7)

where W eff denotes an effective superpotential defined as follows

W eff(Q) =
1

2
µIJQ

IQJ +
1

3
YIJKQ

IQJQK , (A.8)

with

µIJ = µ̃IJ − F̄ j̄ ∂̄j̄HIJ . (A.9)

From (A.7) we see that the first two terms correspond to a supersymmetric scalar potential

while the last three terms are soft supersymmetry breaking terms. These soft terms depend

on the original parameters of the Kähler function and the superpotential via

m2
IJ̄ = −F iF̄ j̄Rij̄IJ̄ , (A.10)

AIJK = F iDiYIJK , (A.11)

BIJ = F iDiµIJ , (A.12)
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with
Rij̄IJ̄ = ∂i∂̄j̄ZIJ̄ − ΓNiIZNL̄Γ̄Lj̄J̄ , ΓNiI = ZNJ̄∂iZJ̄I ,

DiYIJK = ∂iYIJK − ΓNi(IYJK)N ,

DiµIJ = ∂iµIJ − ΓNi(IµJ)N .

(A.13)

From (A.10) one learns that this framework does not guarantee positive soft scalar masses,

their sign is model dependent. Another observation is that, as in supergravity, mIJ̄ need

not be universal, hence the appearance of flavor mixing is also a problem in the global case.

The kinetic term of the gauginos is given by

g−2
a (φ, φ̄) λ̄aσ

µDµλb . (A.14)

After canonically normalizing the kinetic term of gauginos the soft gaugino masses read

1

2
(Maλ

aλa + c.c.) , Ma = F i∂i log g−2
a (φ, φ̄). (A.15)
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