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1 Introduction

Recently, various authors [1–3] considered pure R2 theories of gravity coupled to mat-

ter. These theories are particularly interesting also in regard to cosmology because they

naturally accommodate for de Sitter universes. While demanding conformal invariance

(Weyl local gauge symmetry) would require spin two ghosts arising from the Weyl square

term [4, 5], the rigid scale invariant R2 theory propagates only physical massless modes in

de Sitter space, in contrast with the R + R2 theory, which has in addition a Minkowski

phase with a massive scalar, the inflaton. An Einstein term is then obtained through quan-

tum effects as substantiated by the analysis of [1]. Further restrictions that follow from the

supersymmetric extensions of these theories are the aim of the present investigation. In

particular, in this note we implement the analysis of [1] by requiring that pure R2 super-

gravity be effectively derived solely in terms of the geometry of curved superspace. This

poses severe restrictions on the dual standard supergravity theory which, in fact, cannot be

an arbitrary scale invariant theory of supergravity. For example, we find that only certain

cases are possible among the ones worked out in [1]. Moreover, one conformally coupled

chiral superfield (that we call S) and another one that we call the chiral superfield T , are

not matter fields but have a pure gravitational origin. In fact, out of the three (unique)

suggested forms of superpotential in [1], only a certain linear combination of TS and S3

can arise; T 3/2 alone is also possible. This result parallels the same analysis made in the

R + R2 theory [6, 7]. Also, the T 3/2 theory, where only the T field is present, is not an

R2 completion but a particular (scale invariant) case of the super F (R) = R3 chiral the-

ory originally investigated in [8–13]. The latter has in fact an anti-de Sitter rather than

a de Sitter phase. All these theories have instabilities in some scalar direction and the

problem caused by these instabilities is similar to the one found in the context of R + R2

supergravity [13–16, 18–38], which was solved in [15]. Even more interesting is the analysis

in the new minimal formulation [39, 40]. Here the dual supergravity R + R2 theory is a

gauge theory in the Higgs phase [17–20]. The de-Higgsed phase corresponds to the pure

– 1 –



J
H
E
P
0
8
(
2
0
1
5
)
0
0
1

R2 theory in the limit that HMP = gM2
P is kept fixed (H is the Hubble constant) while

the gauge coupling goes to zero. This theory is in fact the extension of the Freedman

model [41], where a massless vector multiplet with a Fayet-Iliopoulos (FI) term gives rise

to a positive cosmological constant. Here there is an additional massless chiral field, dual

to the antisymmetric tensor auxiliary field that has become dynamical.

The paper is organized as follows. In section 2 we present the superconformal rules

needed for our analysis and we discuss the pure R2 in the old minimal formulation of the

N = 1 supergravity. We also present the corresponding scale invariant matter couplings.

In section 3 we describe pure R2 supergravity in the new minimal formulation; we conclude

in section 4.

2 R
2 supergravity in the old minimal formulation

For our convenience we report here some rules of superconformal tensor calculus that will

be useful in order to go from the R2 theory to its standard supergravity form. These rules

are explained in [42], and also in [13, 21].

Superconformal fields are denoted by their Weyl weight w and chiral weight n. So we

will use the notation Xw,n and we will only consider scalar superfields. The basic operator

is the Σ operator, which is the curved superspace analog of D̄2. The Σ operator has weights

(1, 3) and it can be applied to a superconformal field Xw,w−2 so that ΣXw,w−2 is a chiral

superfield of weights (w + 1, w + 1). X can be (anti)chiral only if w = 1, in which case

ΣX̄(1,−1) is a chiral superfield of weight (2, 2). The basic identity between F and D densities

of a chiral superfield f of weight (0, 0) is

[fRS2
0 ]F = [(f + f̄)S0S̄0]D, (2.1)

where R = (Σ(S̄0)/S0)(1,1) is the chiral scalar curvature multiplet. The notation [O]D,F

denotes, as usual, the standard D- and F-term density formulae of conformal supergravity,

for a real superfield O with scaling weight 2 and vanishing chiral weight or a chiral superfield

with Weyl (and chiral) weight 3. In particular, the bosonic components of the curvature

chiral scalar multiplet R are

R =
1

3
ū+ · · ·+ θ2FR, (2.2)

where

FR = −1

2
R− 3A2

µ + 3iDµAµ. (2.3)

and u,Aµ are the supergravity auxiliary fields [43, 44].

2.1 Scale invariant supergravity

It can easily be seen from the chiral curvature superfield R that we can write the following

scale-invariant supergravity action

Lscal.inv = α[RR̄]D − β[R3]F , (2.4)

– 2 –
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where α, β are dimensionless couplings. We may write eq. (2.4) in a dual form by intro-

ducing Lagrange multiplier superfields T, S so that

LD = α
[

S0S̄0SS̄
]

D
− β

[

S3
0S

3
]

F
− 3

[

T

(R
S0

− S

)

S3
0

]

F

, (2.5)

It is easy to check that by integrating out the Lagrange multiplier superfield T in (2.5),

we get back the original theory (2.4). However, by using the identity in eq. (2.1), we may

write (2.5) as

LD = −[(3T + 3T̄ − αSS̄)S0S̄0]D + [(−βS3 + 3TS)S3
0 ]F , (2.6)

which describes standard supergravity with Kähler potential (α ≥ 0)

K = −3 log

(

T + T̄ − α

3
SS̄

)

, (2.7)

and superpotential

W (T, S) = 3TS − βS3. (2.8)

The case α = 0. In this particular case, the scale invariant supergravity action turns

out to be

LD = −β[R3]F , (2.9)

which can be written in a dual form as

LD = −[3(T + T̄ )S0S̄0]D + [(−βS3 + 3TS)S3
0 ]F . (2.10)

We see that S appears now as a Lagrange multiplier superfield and it can be integrated

out. As a result, we find that S = (T/β)1/2 and eq. (2.10) is written as

LD = −[3(T + T̄ )S0S̄0]D + [2β−1/2T 3/2S3
0 ]F , (2.11)

so that the Kähler potential and the superpotential are given by

K = −3 log(T + T̄ ) , (2.12)

W =
2

β1/2
T 3/2. (2.13)

This is one of the models used in [1] to describe a supergravity dual of pure R2 supergravity.

However, its origin is not from the scale invariant RR̄ term but rather from the other scale

invariant R3 term. As observed in [1], it has a negative cosmological constant and so it

cannot be the dual of an R2 theory [13, 14].

– 3 –
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2.2 Scale invariant matter couplings

Pure R2 supergravity (in its dual formulation) is invariant under scale symmetry under

T → Teλ, S → Seλ/2, S0 → S0e
−λ/2, (2.14)

which is inherited from the scale symmetry of the gravitational R2 theory

R
S0

→ R
S0

eλ/2, S0 → S0e
−λ/2. (2.15)

Let us add n superconformal chiral multiplets Ai with scaling Ai → Aieλ/2 (but (0, 0)

superfield weights). Then as in [1], we can have conformally coupled matter C ī
jA

jĀīS0S̄0

but also chiral F terms coupling to the curvature R,1

RCijA
iAjS2

0 ,
R2

2
CiA

iS0, CijkA
iAjAkS3

0 , (2.16)

with some constant coefficient C ī
j , Cij , Ci, Cijk. In this case, the dual theory takes

the form

−3

[(

T + T̄ − α

3
SS̄ − C j̄

i

3
AiĀj̄

)

S0S̄0

]

D

+ [W (T, S,Ai)S3
0 ]F (2.17)

with2

W (T, S,Ai) = 3TS − βS3 +
S2

2
CiA

i + SCijA
iAj + CijkA

iAjAk. (2.18)

This is a restricted superpotential which does not have a T 3/2 term, neither other direct

coupling to matter. Note that the scaling symmetry weight is not the same as the super-

conformal weight, that in our notation is always (0, 0) for all chiral fields with the exception

of S0 (1, 1) and R (1, 1). R is actually scale inert as it is obvious from eq. (2.15). So the

scale symmetry in the pure gravitational theory is only dictated by the compensator S0.

3 R
2 supergravity in the new minimal formulation

In new-minimal supergravity, the appropriate gauging is implemented by a real linear

multiplet L with scaling weight w = 2 and vanishing chiral weight n = 0 [39, 45]. In

particular, the pure R2 new minimal supergravity Lagrangian can be written as

L =
1

4g2

(

[Wα(VR)Wα(VR)]F + h.c.

)

, (3.1)

where

VR = ln

(

L

S0S0

)

, (3.2)

Wα(VR) = −1

4
∇2∇α(VR). (3.3)

1A term diRĀ
i that generates a mixing diSĀ

i + h.c in the Kähler potential is also possible.
2Note that the terms containing S in W can be transferred to the Kähler potential by a T redefinition.

– 4 –
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The Lagrangian in eq. (3.1) is superconformally invariant and the superconformal

symmetry can be fixed by choosing L = 1. Then, the superspace geometry is described

by the new-minimal formulation, [39, 40], where the graviton multiplet (eaµ, ψµ, Aµ, Bµ)

consists of: the graviton eaµ, the gravitino ψµ and two auxiliary gauge fields Aµ, and Bµν

possessing the gauge symmetry

δAµ = ∂µb , δBµν = ∂µbν − ∂νbµ. (3.4)

In fact, the superconformal gauge fixing respects the U(1)R R-symmetry of the supercon-

formal algebra, which is gauged by the vector Aµ. Then, VR is the gauge multiplet of the

supersymmetry algebra with components (in the Wess-Zumino gauge)

VR =

(

Aµ − 3Hµ,−γ5γ
νrν ,−

1

2
R̂ − 3HµH

µ

)

, (3.5)

where rν is the supercovariant gravitino field strength, R̂ is the (supercovariant) Ricci scalar

and Hµ the Hodge dual of the (supercovariant) field strength for the auxiliary two-form [40]

Hµ = − 1

3!
ǫµνρσH

νρσ , Hµνρ = ∂µBνρ + cyclic perm. (3.6)

Obviously, Hµ is divergenceless

∇µHµ = 0. (3.7)

In other words, the bosonic content of the gauge multiplet VR is

VR =

(

A−

µ , 0, −
1

2
R− 3HµH

µ

)

, A−

µ = Aµ − 3Hµ. (3.8)

Clearly, the F-term in eq. (3.1) will produce the usual D2
R term in the bosonic action,

where DR is the highest component of the gauge multiplet. Since the latter contains the

scalar curvature R as can be seen form eq. (3.8), it is obvious that eq. (3.1) describes an

R2 theory [17–20]. Indeed, by employing eqs. (3.3), (3.5), we find that the bosonic part

of (3.1), is written as

e−1L =
1

8g2

(

R+ 6HµH
µ
)2

− 1

4g2
Fµν(A

−

ρ )F
µν(A−

ρ ) . (3.9)

We can integrate out Hµ after introducing the Lagrange multipliers Λ, a such that

e−1L =
1

8g2
Λ (R+ 6HµH

µ)− 1

32g2
Λ2 − 1

4g2
FµνF

µν +
1

g2
a∇µH

µ. (3.10)

Integrating out Λ gives back (3.9), whereas the field a enforces the constraint (3.7). The

auxiliary field Hµ appears now quadratically and it can easily be integrated out leading to

Hµ =
2

3Λ
∂µa; (3.11)

– 5 –
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therefore, eq. (3.10) is equivalent to

e−1L =
1

8g2
ΛR− 1

4g2
FµνF

µν − 1

32g2
Λ2 − 1

3g2Λ
∂µa∂

µa. (3.12)

The theory in eq. (3.12) is in a Jordan frame and it can be expressed in the Einstein frame

after the conformal transformation

gµν → e
−

√

2

3
φ
gµν , (3.13)

where

φ =

√

3

2
ln

Λ

4g2
. (3.14)

Then, eq. (3.12), after rescaling A−

µ → gA−

µ and a → g2
√
6a, is written in the Einstein

frame as

e−1L =
1

2
R− 1

4
FµνF

µν − 1

2
∂µφ∂µφ− 1

2
e
−2

√

2

3
φ
∂µa ∂

µa− 1

2
g2. (3.15)

Therefore, R2 in new minimal supergravity is described by a standard supergravity coupled

to a massless vector field and a massless complex scalar

T =
1

2
e

√

2

3
φ
+ i

a√
6
. (3.16)

The field T parametrizes the symmetric space SU(1, 1)/U(1) of scalar curvature R = −2/3.

In fact, in new minimal supergravity, the R2 theory and its dual form, can both be described

by a unique Lagrangian of the form [17–19]

L = [B(L− S0S̄0e
U )]D +

1

4g2
Wα(U)Wα(U)]F + c.c. , (3.17)

where U is an unconstrained vector superfield, Wα(U) = −1
4∇

2∇α(U) and B is a real-

multiplet Lagrange multiplier. It is easy to see that by integrating out B we find that

U = VR. (3.18)

Substituting (3.18) into (3.17), we get back the new minimal supergravity action (3.1). On

the other hand, integrating out L we get

B = T + T̄ , (3.19)

where T is chiral. Hence, eq. (3.17) can be written in standard old minimal form as

L = −[S0S̄0e
U (T + T̄ )]D +

1

4g2
Wα(U)Wα(U)]F + c.c . (3.20)

We see that the Kähler potential is

K = −3 ln
[

(T + T )
]

, (3.21)

– 6 –
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whereas the term eU will give rise a FI term [46, 47]. Indeed, in component form, La-

grangian (3.20) is

e−1L =
1

2
R− 1

4
FµνFµν −

3

(T + T )2
∂µT ∂µT̄ − 1

2
g2. (3.22)

In fact the pure R2 theory can be seen already from the R+R2 theory in the new minimal

supergravity, which is described in ref. [33], by taking an appropriate limit. Restoring

dimensions in the FI term ξ = gM2
P , the limit is g → 0 with ξ fixed, which corresponds to

a de-Higgsed phase. The R+R2 theory is described by the master action [33]

L = −[S0S̄0e
UU ]D + [B(S0S̄0e

U − L)]D +
1

4g2
([Wα(VR)Wα(VR)]F + h.c.). (3.23)

The rescaling

S0 → S0e
−λ/2, B → Beλ, L → Le−λ (3.24)

clearly gives eq. (3.1) in the λ → ∞ limit. Therefore, the dual R2 theory in new minimal

supergravity can be described as standard supergravity coupled to a massless chiral super-

field and a massless vector superfield with a FI term. This theory is an extension of the

Freedman model [41] by a masless chiral multiplet. The latter describes a massless vector

coupled to supergravity with a positive cosmological constant.

4 Conclusions

Prompted by the interesting proposal of [1–3], we have discussed here the supersymmetric

completion of pure R2 gravity. The latter is rigidly scale invariant and propagates a

massless graviton and a massless scalar on a de Sitter backgound [3], contrary to the R+R2

theory which has an additional Minkowski phase with a massive scalar (the inflaton). In

N = 1 supergravity, one can write two scale invariant superspace densities, an RR̄ (D-

term) and an R3 (F-term). If both terms are present, the dual theory in old-minimal

formulation contains the usual scalaron field T together with a conformally coupled scalar

S of gravitational origin. In this case the most general superpotential turns out to be a

linear combination of ST and S3. However, when only the R3 term is present, it turns out

that S is auxiliary and after integrating it out, a superpotential of the form T 3/2 arises.

This theory has an anti-de Sitter rather than a de Sitter phase [1, 13, 14]. When matter

fields with definite scaling are introduced, it is possible to couple them to supergravity

either by a D-term or an F-term coupling to the chiral curvature multiplet R. In this case,

it turns out that the matter fields mix with S but not with T in the superpotential.

A similar analysis can be done in the new minimal formulation of N = 1 supergravity,

which reveals that the dual theory of the R2 theory is described by a massless chiral

multiplet together with a massless vector multiplet with a FI term. The dual theory is

thus an extension by a chiral multiplet of the Freedman model.

– 7 –
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